
Electronic Communications of the EASST

Pre-Proceedings of the
International Colloquium on

Graph and Model Transformation –
On the occasion of the 65th birthday of Hartmut Ehrig

(GraMoT 2010)

Guest Editors: Claudia Ermel, Hartmut Ehrig, Fernando Orejas, Gabriele Taentzer
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

Pre-Proceedings GraMoT 2010

ii

Pre-Proceedings GraMoT 2010

Preface
This report is a collection of invited papers and position statements presented at the Inter-

national Colloquium on Graph and Model Transformation, February 11-12, 2010, at Tech-
nische Universität Berlin on the occasion of the 65th birthday of Hartmut Ehrig. After the col-
loquium all contributions will be peer-reviewed, and the final versions of the accepted contri-
butions will be published in a special issue of the ”Electronic Communications of the European
Association of Software Science and Technology” (ECEASST).

Scope and Objectives of the Colloquium

Graphs are a general kind of models which have been used in various fields of computer science.
On the one hand, they are well-suited to formally describe complex structures. On the other hand,
the underlying structure of models, especially visual models, can be described best by graphs,
due to their multidimensional extension. Graphs can be manipulated by graph transformation
in a rule-based manner. Considering current trends in software development such as model
driven engineering and model-integrated computing, there is an emerging need to describe model
manipulations, model evolution, model semantics, etc. in a precise way. Recent research has
shown that graph transformation is a promising formalism to specify model transformations.

The goal of the colloquium is to foster interaction between the graph transformation and the
model transformation community in order to facilitate exchange of results and challenging prob-
lems. The graph transformation research community has built up a significant body of knowledge
over the past 30 years and in addition to the theoretical base several practical implementations
have been created. The research area of model transformations has recently been identified as a
key subject in model-driven development. Graph transformations could offer an elegant theory
and powerful concepts for the model-driven engineering of software systems, while the soft-
ware engineering community can generate interesting challenges for the graph transformation
community. Therefore, there is a need for strong interaction and inter-operation between these
communities: the interchange of ideas, problems, and solutions will lead to major advances in
both fields.

Invited Papers and Position Statements for the Colloquium

The workshop program has been organized in six technical sessions, in two days:

Thursday, February 11, 2010 Friday, February 12, 2010

Graph Transformation Techniques, Model Transformations,
Modeling with Graph and Net Transformations, Software System Modelling
Verification and Constraints, (incl. Panel Discussion)
Modeling of Chemical and Biochemical Reactions

In Session 1 (Graph Transformation Techniques), hierarchical graphs are used to model
a service and session calculus in the first contribution by A. Corradini, U. Montanari et al. In

iii

Pre-Proceedings GraMoT 2010

the second one by F. Orejas, the new concept of symbolic attributed graphs is introduced to
deal with attributed graphs in contrast and comparison with the standard approaches to attributed
graph transformation.

The paper by K. Ehrig and C. Ermel in Session 2 (Modelling with Graph and Net Transfor-
mations) focuses on the role of graphs and graph transformations in practical application areas
like molecular analysis, model transformations, and medical information systems. The second
contribution by F. Parisi-Presicce et al. proposes a new termination criterion for graph transfor-
mation systems with negative application conditions. Finally, an integration of Petri nets and
high-level replacement systems, known as reconfigurable Petri nets, is used in the third paper by
K. Hoffmann, J. Padberg et al. for formal modeling and analysis of flexible processes in com-
munication based systems, like mobile ad-hoc networks and Skype.

In Session 3 (Verification and Constraints), the first paper by T. Margaria et al. presents a
second order value numbering as new optimization method to be used in the M2L(Str) verifica-
tion tool set for monadic second-order logic on strings. This new method allows applications to
transformations on directed acyclic graphs. In the second paper by L. Ribeiro et al., the Event-B
formal method and its theorem proving tools are proposed to analyze graph grammars, especially
reachable states. Finally, in the third contribution by A. Habel et al., graph conditions – in the
sense of nested application conditions – are extended to graph conditions with variables in order
to improve the expressive power, especially concerning non-local properties like ”there exists a
path”.

In Session 4 (Modelling of Chemical and Biochemical Reactions), the contribution by
R. Heckel et al. presents a methodology for extracting ordinary differential equations from
stochastic graph transformation systems, especially based on a model for chemical reactions.
In the second contribution G. Rozenberg introduces the new concept of reaction systems as a
formal framework for biochemical reactions.

The first paper by S. Glesner et al. in Session 5 (Model Transformations) presents an ap-
proach of the VATES project using process algebraic techniques in order to integrate model-
ing, implementation, transformation, and verification stages of embedded system development.
The second contribution by F.Hermann, B. König et al. presents specification and verification
techniques for model transformations based on triple graph grammars and the Double-Pushout-
Approach with Borrowed Context (DPO-BC). Finally, H.-J. Kreowski et al. show how to use
graph transformation units in order to handle composition and correctness of model transforma-
tions.

In Session 6 (Software System Modelling), the first contribution by G. Engels et al. is a pa-
per on test-driven language derivation using the specification technique Dynamic Meta Modelling
which is based on graph transformations. The remaining contributions are position statements
for the Panel Discussion Software System Modelling : Past, Present and Future. The position
statement of H. Ehrig discusses the state of the art and role of formal specification techniques in
these three periods, starting from single techniques in the past and leading to certified, integrated,

iv

Pre-Proceedings GraMoT 2010

and visual techniques and environments in the future. The statement of M. Löwe discusses the
role of graph transformations for agile software development, including concepts like software
refactoring, test-first, extreme programming, or dynamic systems development. B. Mahr points
out in his statement that the modeling of software systems is a task in which a complex inter-
action of models is being created. Finally, G. Taentzer shows that the theory of algebraic graph
transformation can be used to show important properties of model transformations, like type con-
sistency, functional behavior, as well as conflicts and dependencies between transformation steps.

We would like to thank all invited speakers and panelists for their contributions presented at
the colloquium. Moreover we are looking forward to the special issue of ECEASST, where -
after the review process - the final versions of the accepted contributions will be published.

Berlin, February 2010

Claudia Ermel,
Hartmut Ehrig,

Fernando Orejas,
Gabriele Taentzer

PC of GraMoT 2010

v

Pre-Proceedings GraMoT 2010

vi

Pre-Proceedings GraMoT 2010

Welcome Address on Behalf of the ICGT Steering Committee

This spring it will be 10 years since the first meeting of the steering committee of the Interna-
tional Conference on Graph Transformation. By now we have had four successful conferences,
in Barcelona, Rome, Natal, and Leicester, with the fifth coming up in Enschede this Autumn.
Graph transformation is firmly established as a discipline and recognised both for its founda-
tional contributions and applications.

None of this would have happened without Hartmut’s scientific contribution and services to
the community. Recognising its potential, Hartmut was among those who first formalised the
general mechanism of rewriting on graphs in the early 70ies, based on the algebraic or double-
pushout approach which is still amongst the most popular today. He went on to make seminal
contributions to its conceptual foundation and mathematical theory and it is not an overstatement
to say that the majority of papers published in the area today in some way rely on foundations
Hartmut helped to establish. For example, two thirds of the papers presented at the last ICGT in
2008 are directly based on the algebraic approach or variants of it.

Besides founding this Berlin school of graph transformation, Hartmut has also been the driving
force behind the formation and organisation of the community of people behind what is now the
ICGT conference, but evolved via a series of international workshops and with support from a
number of European projects such as COMPUGRAPH, APPLIGRAPH, GETGRATS and SEG-
RAVIS. After having led two instalments of the European Working Group COMPUGRAPH in
the late 80ies and early 90ies, Hartmut kept his role as coordinator of the community, motivating
and guiding others like myself, until he became chair of the ICGT steering committee in 2000.

Apart from his scientific achievements and organisational contributions, Hartmut’s main legacy
are the people he educated in his culture of theoretical research inspired by practical phenomena,
formalised in terms of graphs, algebra and category theory. Equipped with this background, we
are now able to address today’s problems in computer science and beyond, build tools, design
languages and algorithms for analysis, etc. while relying on solid foundations.

Dear Hartmut, on behalf of your students, the ICGT steering committee, and the graph trans-
formation community at large I would like to thank you for your invaluable contributions and
the support and guidance you are giving us. We hope that you keep driving us forward both
scientifically and as a community for many years to come and wish you many happy returns of
your anniversary.

Leicester, February 2010

Reiko Heckel, University of Leicester (UK)
Chair of the ICGT Steering Committee

vii

Pre-Proceedings GraMoT 2010

Table of Contents

Session 1: Graph Transformation Techniques

Modeling a Service and Session Calculus with Hierarchical Graph Transformation . . 10
Andrea Corradini, Ugo Montanari and Roberto Bruni

Symbolic Attributed Graphs for Attributed Graph Transformation 26
Fernando Orejas

Session 2: Modeling with Graph and Net Transformations

Graph Modeling and Transformation . 56
Claudia Ermel and Karsten Ehrig

A Termination Criterion for Graph Transformations with NACs 76
Francesco Parisi-Presicce and Paolo Bottoni

Formal Modeling and Analysis of Flexible Processes Using Reconfigurable Systems . 86
Kathrin Hoffmann, Julia Padberg and Tony Modica

Session 3: Verification and Constraints

Second-Order Value Numbering . 106
Tiziana Margaria and Bernhard Steffen

Towards Theorem Proving Graph Grammars using Event-B 122
Leila Ribeiro, Simone Costa, Fabiane Dillenburg and Fernando Dotti

Expressiveness of Graph Conditions with Variables 136
Annegret Habel and Hendrik Radke

Session 4: Modeling of Chemical and Biochemical Reactions

From Stochastic Graph Transformations to Differential Equations 156
Reiko Heckel and Mayur Bapodra

Reaction Systems - a Formal Framework for Biochemical Reactions 178
Grzegorz Rozenberg

Session 5: Model Transformations

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification180
Sabine Glesner, Björn Bartels and Thomas Göthel

Specification and Verification of Model Transformations 196
Frank Hermann, Barbara König and Matthias Hülsbusch

Stepping from Graph Transformation Units to Model Transformation Units 216
Hans-Jörg Kreowski, Sabine Kuske, and Caro von Totth

viii

Pre-Proceedings GraMoT 2010

Session 6: Software System Modelling

Test-driven Language Derivation with Graph Transformation-based Dynamic Meta
Modeling . 240

Gregor Engels, Christian Soltenborn

From Separate Formal Specifications to Certified Integrated Visual Modelling Tech-
niques and Environments . 258

Hartmut Ehrig

Formal Methods and Agile Development . 264
Michael Löwe

Models in Software and Systems Development . 270
Bernd Mahr

Why Model Transformations Should be Based on Algebraic Graph Transformation
Concepts . 278

Gabriele Taentzer

ix

ECEASST

Modeling a Service and Session Calculus
with Hierarchical Graph Transformation∗

Roberto Bruni1, Andrea Corradini1, and Ugo Montanari1

1 [bruni,andrea,ugo]@di.unipi.it
Dipartimento di Informatica, Università di Pisa, Italy

Abstract: Graph transformation techniques have been applied successfully to the
modelling of process calculi, for example for equipping them with a truly concurrent
semantics. Recently, there has been an increasing interest towards hierarchical
structures both at the level of graph-based models, in order to represent explicitly
the interplay between linking and containment (like in Milner’s bigraphs), and at
the level of process calculi, in order to deal with several logical notions of scoping
(ambients, sessions and transactions, among others). In this paper we show how
to encode a sophisticated calculus of services and nested sessions by exploiting a
suitable flavour of hierarchical graphs. For the encoding of the processes of this
calculus we benefit from a recently proposed algebra of graphs with nesting.

Keywords: Hierarchical graphs, service oriented architecture, process calculi, CaSPiS

1 Introduction

The use of graphs or diagrams of various kinds is pervasive in Computer Science, as they are
very handy for describing in a two-dimensional space the logical or topological structure of
systems, models, states, behaviors, computations, metamodels, and several other entities of
interest; well-known examples are the graphical presentations of data structures (like lists and
trees), of entity-relationship diagrams, of various kinds of automata and labeled transition systems,
of static and behavioral UML diagrams (like class, message sequence and state diagrams), of
computational formalisms like Petri nets, and so on.

The advantage of drawing graphs or diagrams, rather than using their underlying set-theoretical
definition or some term-like linear syntax, lies in the fact that graphs emphasize relevant topologi-
cal features of the systems or models they describe, like adjacency and connectivity of components,
sharing of data and structures, causal dependencies, hierarchical structuring, among others, mak-
ing such features easily understandable and detectable also to non-specialists. In several cases
graphs provide a representation of models or systems at the “right” level of abstraction: for
example, as drawings are always understood “up to isomorphism”, the order in which nodes and
arcs are drawn is typically irrelevant (unless some tacit drawing convention is enforced) and if the
concrete identity of certain syntactical entities is irrelevant (e.g., the names of the states of a finite
state automata), it is sufficient not to depict them in the drawing.

The use of graphs as a domain for the visualization of algebraically-specified systems, in
general, and process calculi, in particular, has been pursued in a vast literature of which is not

∗ Research supported by the EU FP6-IST IP 16004 SENSORIA.

Volume X (2010)

10

mailto:[bruni,andrea,ugo]@di.unipi.it

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

possible to give a comprehensive account here (see, e.g., [BL05] and references therein), but one
striking example is the research on “optimal” implementations for functional calculi [AG98]. Here
we restrict the attention to the analysis of the concurrent behavior of process calculi with name
passing, in the style of [Gad03, BMM06]. To this aim, there are several “graphical specification
frameworks” which provide general techniques and/or tools for the graphical description of
systems and, possibly, of their behavior, including Graph Transformation [Roz97], Bigraphical
Reactive Systems [Mil06] and Synchronized Hyperedge Replacement [FHL+06].

Recently, there has been an increasing interest towards hierarchical structures both at the
level of graph-based models, in order to represent explicitly the interplay between linking and
containment (like in Milner’s bigraphs), and at the level of process calculi, in order to deal with
several logical notions of scoping (ambients, sessions, and transactions, among others). The
goal of the work summarized in this paper is to show how to encode both the static aspects and
the dynamics of CaSPiS, a sophisticated calculus of services and nested sessions [BBDL08], by
exploiting a suitable flavor of hierarchical graphs and corresponding transformation rules.

Following a methodological approach that has been applied recently to provide a graphical
encoding of the static aspects of a variety of formalisms (including process calculi, workflow
languages, entity relationship diagrams and others, see [BGL09, BGLa]), we will not present
the graph encoding of CaSPiS processes directly, but we will exploit instead as an intermedi-
ate language a recently proposed algebra of hierarchical designs, which allows to reduce the
representation distance between the considered formalisms.

The algebra is defined by an equational signature, whose operator symbols are interpreted
as operations on graphs, and where the axioms formalize suitable properties of such operators.
Therefore the terms of the initial algebra can be interpreted as graphs, and the axioms can be
shown to be sound and complete with respect to the interpretation, in the sense that two terms
are equivalent if and only if they denote the same graph (up to isomorphism). The interesting
fact, is that the interpretation of the terms of the algebra can be given over different kinds of
graphs, resulting in different layouts. As a typical example, the nested structure of designs can be
interpreted adequately in a class of truly hierarchical graphs, where subgraphs can be encapsulated
in hyperedges, or also can be rendered by over-imposing to a standard, flat hypergraph, a tree
representing the hierarchy.

Therefore, the advantages of the use of an intermediate algebra for the encoding are twofold:

• the algebra provides explicit operators for parallel composition, nesting of components,
names representing shared resources, local and global restriction, as well as aliasing
mechanisms: the richness of such operators makes the encoding of process algebras like
CaSPiS quite intuitive, less error-prone and easy to understand;

• the various interpretations of the terms of the algebra as different kinds of graphs can be
defined once and for all, and reused for the encoding of several other formalisms.

In the next sections we shall first account for the algebra of hierarchical graphs, showing, only
at the informal level, how it can be interpreted over both hierarchical graphs and term graphs.
Next we introduce the syntax and the reduction semantics of (a significant fragment of) CaSPiS,
and show how the static aspects of CaSPiS can be encoded in the algebra. As far as the dynamics
of CaSPiS processes is concerned, the work is still ongoing, but some interesting aspects will be

Proc. GMT 2010

11

ECEASST

discussed. In particular, as the CaSPiS reduction semantics allows for reactions in (static) contexts
of arbitrary depth, the standard notion of graph transformation rule, which has a local effect only,
is not sufficient to model it. We will sketch some possible approaches to overcome this problem.

Some preliminary work on the graphical encoding of CaSPiS and its behavioral semantics has
been presented in [Ter08].

2 An algebra of hierarchical graphs

We introduce here our algebra of (typed) hierarchical graphs that we call designs. The alge-
braic presentation of designs is inspired by our previous work on Architectural Design Rewrit-
ing [BLMT08] (hence the name) and by the graph algebra of CHARM [CMR94].

Definition 1 (design) A design is a term of sort D generated by the grammar

D ::= Lx[G] G ::= 0 | x | l〈x〉 | G |G | (νx)G | D〈x〉

where l and L are drawn from disjoint vocabularies E and D of edge and design labels, respectively,
x is taken from a global set N of nodes, and x ∈N ∗ is a list of nodes.

As a matter of notation, in the following, we let bxc denote the set of elements of a list x and
overload | · | to denote both the length of a list and the cardinality of a set.

Terms generated by G and D are meant to represent hierarchical graphs and “edge-encapsulated”
hierarchical graphs, respectively. The syntax has the following informal meaning: 0 represents the
empty graph, x is a discrete graph containing node x only, l〈x〉 is a graph formed by an l-labeled
(hyper)edge attached to nodes x (the i-th tentacle to the i-th node in x, sometimes denoted by
x[i]), G |H is the graph resulting from the parallel composition of graphs G and H (their disjoint
union up to shared nodes), (νx)G is the graph G after making node x not visible from the outside
(borrowing nominal calculus jargon we say that the node x is restricted), and D〈x〉 is a graph
formed by attaching design D to nodes x (the i-th node in the interface of D to the i-th node in x).

A term Lx[G] is a design labeled by L, with body graph G whose nodes x are exposed in
the interface. To clarify the exact role of the interface of a design, we can use a programming
metaphor: a design Lx[G] is like a procedure declaration where x is the list of formal parameters.
Then term Lx[G]〈y〉 represents the application of the procedure to the list of actual parameters y;
of course, in this case the lengths of x and y must be equal.

Restriction (νx)G acts as a binder for x in G and similarly Lx[G] binds bxc in G, leading to the
usual notion of free nodes fn(D) and fn(G), defined inductively as follows:

fn(Lx[G]) = fn(G)\bxc fn(0) = /0 fn(x) = {x} fn(l〈x〉) = bxc
fn(G |H) = fn(G)∪ fn(H) fn((νx)G) = fn(G)\{x} fn(D〈x〉) = fn(D)∪bxc

The algebra includes the structural graph axioms of [CMR94] such as associativity and commu-
tativity for | with identity 0 (axioms DA1–DA3 in Definition 2) and restricted nodes (DA4–DA6).
In addition, it includes axioms to α-rename bound nodes (DA7–DA8), an axiom for making
immaterial the addition of a node to a graph where that same node is already free (DA9) and
another one ensuring that global names are not localized within hierarchical edges (DA10).

Volume X (2010)

12

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

Definition 2 (≡D) The structural congruence ≡D over well-formed designs and graphs is the
least congruence satisfying the axioms in Fig. 1, where in axiom (DA7) the substitution is required
to be a function (to avoid node coalescing) and substitutions are required to respect the typing.

G |H ≡ H |G (DA1)
G | (H | I) ≡ (G |H) | I (DA2)

G | 0 ≡ G (DA3)
(νx)(νy)G ≡ (νy)(νx)G (DA4)

(νx)0 ≡ 0 (DA5)
G | (νx)H ≡ (νx)(G |H) if x 6∈ fn(G) (DA6)

Lx[G] ≡ Ly[G{y/x}] if byc∩ fn(G) = /0 (DA7)
(νx)G ≡ (νy)G{y/x} if y 6∈ fn(G) (DA8)

x |G ≡ G if x ∈ fn(G) (DA9)
Lx[z |G]〈y〉 ≡ z | Lx[G]〈y〉 if z 6∈ bxc (DA10)

Figure 1: Structural congruence axioms for designs

It is immediate to observe that structural congruence respects free nodes, i.e. G≡D H implies
fn(G) = fn(H) for any G,H. Moreover, being ≡D a congruence, we remark that Lx[G]≡D Lx[H]
whenever G≡D H.

Two different classes of models have been studied for our design algebra, as summarized in the
next two subsections: these are in straight analogy with two common visual representations of file
systems. The icon view, where each folder is a window recursively containing files and folders,
represents a global view of the system taken “from the top”. Instead the tree-like view, where the
whole hierarchy is presented as a tree whose nodes can be contracted and expanded and where
containment is rendered, for example, through indentation, represents some sort of “side-view” of
the system.

2.1 Top-view models

In [BGLb] we have proposed an original notion of hierarchical graphs with interfaces: roughly
they extend ordinary hyper-graphs with the possibility to embed (recursively) a hierarchical graph
within each edge, thus inducing a layered structure of nodes and edges. Notably, differently from
the definition proposed in [DHP02], the nodes defined in one layer are also visible below in the
hierarchy (but not above). The main result of [BGLb] shows that the encoding of design terms
in hierarchical graphs is surjective and that the axiomatization of the design algebra is sound
and complete w.r.t. the encoding. Moreover, in the presence of the extrusion axiom, which is
introduced later, the encoding can be slightly modified in order to preserve the validity of the main
results. The set-theoretical presentation of hierarchical graphs is quite heavy and out of the scope
of this paper: we refer the interested reader to [BGLb] for all technical details and formal proofs.

The following example gives a better intuition of the algebra and the model of hierarchical
graphs. For this purpose we use an informal, appealing visual notation.

Proc. GMT 2010

13

ECEASST

Figure 2: Some terms of the graph algebra

Example 1 Let a,b ∈ E , A ∈ D , u,v,w,x,y ∈N . We depict in Fig. 2 the hierarchical graphs
corresponding to a few terms of our algebra. Nodes are represented by circles and free nodes
are annotated with their name. Edges are represented by rounded boxes, annotated inside with
the edge label. Each design is represented by a square box with their label in a top bar, and
encapsulating the body graph. Instead of numbering the tentacles of edges and designs, we use
different kinds of lines and arrows: in this example the first tentacle of an edge is represented by a
plain line, while the second one is denoted by a standard arrow.

To avoid the node proliferation, we omit drawing the local interface nodes of a design and fuse
them with the corresponding nodes to which the design is attached and mark the overlapping with
small black boxes at the border of designs.

Figure 2 includes the graphs corresponding to the following terms: G = a〈u,w〉 | b〈w,v〉 (left-
top), Au,v[(νw)G]〈x,y〉 (left-bottom), and (νw)(Au,v[G]〈x,y〉 | Au,v[G]〈y,x〉) (right). Note how
the tentacles attached to x and y do actually cross the interface and are hence denoted by small
black boxes in border of designs. This does not happen for tentacles attached to node w, because
it is shared without being exposed in the interfaces of the design.

The hierarchical graphs in Fig. 2 illustrate a global view of the system taken from the top. An-
other possibility is to take a side-view of the system, where containment is traced by dependencies
between items in different layers.

2.2 Side-view models

In [BCG+] we have followed the tree-like analogy to define a second interpretation over a class
of graphs already available in the literature, called gs-graphs [FM00]. Roughly, they are an
extension of term-graphs [BEG+87] tailored to many-sorted hyper-signatures. The crucial fact is
that the algebraic structure of gs-graphs has been formalized in terms of the so-called gs-monoidal
theories [CG99]. The main idea is to define a signature whose sorts correspond to nodes of the
type graph and whose operators correspond to the edges of the type graph. One additional sort •
is introduced to represent locations within the hierarchy. Then each design label L ∈D defines
an operator that takes as arguments a location and the list of actual parameters and returns a
location and the list of formal parameters (i.e., it provides the inner graph with the location where
to reside and with a local environment). Edge labels l ∈ E provide no result (their coarity is ε ,

Volume X (2010)

14

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

Figure 3: Hierarchical structure as gs-monoidal terms

the empty list of sorts). Then, the results in [BCG+] define a sound and complete encoding of
design terms in gs-graphs.1 Again, we skip all technical details and we just sketch in Fig. 3 the
gs-graphs corresponding to the two hierarchical graphs in Fig. 2: Au,v[(νw)G]〈x,y〉 on the left,
and (νw)(Au,v[G]〈x,y〉 | Au,v[G]〈y,x〉) on the right (for G = a〈u,w〉 | b〈w,v〉). The drawing is
decorated with an external dashed line enclosing the gs-graph and emphasizing its boundary, on
which the names of the available free nodes are placed; furthermore some dotted lines suggests
the correspondence between actual and formal parameters of A-labeled edges. Such decorations
are not part of the formal definition and have the only purpose of making easier the intuitive
correspondence with Fig. 2.

2.3 Well-typedness and extrusion

In practice, it is very frequent that one is interested in disciplining the use of edge and design
labels so to be attached only to a specific number of nodes (possibly of specific sorts) or to contain
graphs of a specific shape. To this aim it is typically the case that: 1) nodes are sorted, in which
case their labels take the form n : s for n the name and s the sort of the node; 2) each label of E and
D has a fixed arity and for each rank a fixed node sort; 3) designs can be partitioned according
to their top-level labels (i.e. the set of design labels D can be seen as the set of sorts, with a
membership predicate D : L that holds whenever D = Lx[G] for some x and G). When this is the
case, we say that a design (or a graph) is well-typed if for each sub-term Lx[G] we have that the
(lists of) sorts of x and L coincide, and similarly for sub-terms D〈x〉 and l〈x〉.

In addition to the axioms of Fig. 1, another axiom that has been considered in the literature is
the so-called extrusion axiom.

1 Actually the construction in [BCG+] is carried out for a slightly different algebra of design, but it is discussed how to
extend the results to the algebra considered here.

Proc. GMT 2010

15

ECEASST

Definition 3 (Extrusion axiom) The extrusion axiom extr is Ly[(νz)G]〈x〉 ≡ (νz)Ly[G]〈x〉, for
any L ∈D , where z 6∈ bxc∪byc.

The presence or absence of the extrusion axiom marks the distinction between the so-called
global restriction (orthogonal to nesting) and located restriction stressed in [BCG+]. Our encoding
of CaSPiS requires the presence of the extrusion axiom: roughly, at the level of gs-graphs, the
difference between the two alternatives relies in the absence/presence of the arc connecting
ν-labeled boxes to •-nodes (see e.g. Figures 3 and 6).

3 A calculus with nested structures and communication: CaSPiS

This section recalls the basics of CaSPiS [BBDL08], a session-centered calculus. We have chosen
this calculus since it represents a non-trivial example of the interplay between nesting and linking
introduced by nested sessions, pipelines and communication.

While referring the interested readers to [BBDL08] for an exhaustive description of CaSPiS,
we remark that we focus here on the close-free fragment of the calculus and we present a slightly
simplified syntax (without summation and pattern-matching). Both decisions are for the sake of a
convenient and clean presentation only, and constitute no limitation on expressiveness.

CaSPiS is based on the following key computing entities: (i) service definitions s.P and
invocations s.Q, whose synchronization establishes (ii) a fresh session name r shared by the
two partner session sides r .P and r .Q, where respective interaction protocols can interact in
both directions by executing (iii) intra-session (synchronous) output 〈u〉 and input (?x) prefixes.
Moreover, (iv) session sides can be nested, and (v) a children side can execute an (extra-session)
return prefix 〈u〉↑ for making u available to its parent session side as an output for intra-session
communication with its corresponding partner side. Finally, (vi) in-side computation can be
achieved using the pipeline operator P > (?x)Q, which redirects each output 〈u〉 from P to activate
a corresponding new instance Q{u/x} of Q. Notably, any such instance will run in parallel with
P > (?x)Q. Summarizing all the above, each CaSPiS process can be thought of as running in
an environment providing him different means of communication: one channel for “standard”
input (expecting values from the partner session side), one channel for “standard” output (either
directed to the partner session side or to an in-side pipeline) and one channel for returning values
one level up (according to the nesting of session sides).

Definition 4 (CaSPiS syntax) Let S a set of service names, R be a set of session names,
V ⊇S a set of value names (disjoint from R), and X ⊆ V a set of value variables. The set P
of CaSPiS processes is the set of all the terms P generated by the grammar below

P ::= 0 | r .P | P > Q | (νw)P | P | P | A.P
A ::= s | s | (?x) | 〈u〉 | 〈u〉↑

where s ∈S , r ∈R, u ∈ V , w ∈ (V ∪R)\X and x ∈X .

As usual, the restriction operator (νw)P binds w in P, and similarly (?x).P binds x in P,
leading to straightforward definition of free names fn(P) of a process P. Albeit the syntax allows

Volume X (2010)

16

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

a more general form of pipelines, for simplicity we restrict to consider pipelines of the form
P > (?x)Q, sometimes written as P > x > Q, using a notation reminiscent of the Orc programming
language [KCM06].

We assume that in any process P at most two session sides are present for the same session
name and that the binary relation ≺+

P over session names is irreflexive, where we write r ≺P r′

whenever in P a session side r′ appears nested within a session side r and≺+
P denotes the transitive

closure of ≺P.
The operational semantics is defined in terms of reduction rules over processes taken up to a

suitable structural congruence.

Definition 5 (≡C) The structural congruence for CaSPiS processes is the relation≡C⊆P×P ,
closed under process construction, inductively generated by the axioms in Fig. 4.

P | (Q | R) ≡ (P | Q) | R (CA1)
P | Q ≡ Q | P (CA2)
P | 0 ≡ P (CA3)

(νn)(νm)P ≡ (νm)(νn)P (CA4)
(νn)0 ≡ 0 (CA5)

P | (νn)Q ≡ (νn)(P | Q) if n 6∈ fn(P) (CA6)
((νn)Q) > P ≡ (νn)(Q > P) if n 6∈ fn(P) (CA7)

r . (νn)P ≡ (νn)r .P if n 6= r (CA8)
(νn)P ≡ (νm)P{m/n} if m 6∈ fn(P) (CA9)
(?x).P ≡ (?y).P{y/x} if y 6∈ fn(P) (CA10)

Figure 4: Structural congruence axioms for CaSPiS.

Reduction rules make use of contexts; a context C[·] is simply a process term in which there is
a single occurrence of a process variable X , called the hole of the context. With C[P] we denote
the process obtained filling the hole of the context with the process P (i.e. we substitute X with
P). We can easily generalize such definition to n-holes: instead of a single process variable X , we
will have n process variables X1, . . . ,Xn.

Definition 6 (Static and dynamic operators) The operators s.[·], s.[·], 〈u〉.[·], (?x).[·], 〈u〉↑.[·] and
P > [·] are dynamic. The remaining operators (r . [·], [·] > P, (νn)[·] and P|[·]) are static.

Intuitively the dynamic operators, like the prefixes in the π-calculus or in CCS, do not allow
a transition to take place in their argument. Therefore we can define the contexts in which the
various kinds of action prefixes are ready to be executed.

Definition 7 (Static and “immune” contexts) A context C[·] is static if its hole does not occur in
the scope of a dynamic operator. A static context is session-immune if the hole does not appear
in the scope of a session operator r . [·]. A static context is pipeline-immune if the hole does not
appear in the scope of a pipeline operator [·] > P.

Proc. GMT 2010

17

ECEASST

Session-immune contexts are guaranteed not to interfere with inputs and returns of the process
in their hole, while contexts that are both session- and pipeline-immune are also guaranteed not to
interfere with outputs. Note that in the latter case, the hole can only appear under restriction and
parallel composition. We are ready now to present the reduction semantics of CaSPiS.

Definition 8 (Reduction rules of CaSPiS) Given two CaSPiS processes P and Q we have P⇒Q
if and only if one of the five cases in Fig. 5 holds, for some static contexts C[·], C[·, ·], some static
session-immune contexts S0[·] and S1[·], some processes P′,P′′,R and some names r,r′,u and x.

(1)
P ≡ C[s.P′ , s.R]
Q ≡ (νr)C[s.P′|r .P′ , r .R] with r fresh for P′,C[·],R (ServiceSync)

(2)
P ≡ C[r . (P′|〈u〉.P′′) , r .S0[(?x).R]]
Q ≡ C[r . (P′|P′′) , r .S0[R{u/x}]]

(SessionSync)

(3)
P ≡ C[r′ . (P′|r .S0[〈u〉↑.P′′]) , r′ .S1[(?x).R]]
Q ≡ C[r′ . (P′|r .S0[P′′]) , r′ .S1[R{u/x}]]

(SessionSyncRet)

(4)
P ≡ C[(P′|〈u〉.P′′) > (?x).R]
Q ≡ C[R{u/x} | ((P′|P′′) > (?x).R)]

(PipelineSync)

(5)
P ≡ C[(P′|r .S0[〈u〉↑.P′′]) > (?x).R]
Q ≡ C[R{u/x} | ((P′|r .S0[P′′]) > (?x).R)]

(PipelineSyncRet)

Figure 5: Possible cases for P⇒ Q

The first rule models the invocation of a service: there is a definition of service s (s.P′) and a
request of invocation of such service (s.R) located somewhere else in the system. Then a new
session r is created with the protocols P′ and R of the server and of the client respectively. Note
that differently from [BBDL08], here services are persistent: they are not discarded once invoked
and thus they can serve other requests.

Rule (SessionSync) allows session partners to exchange messages, through a concretion and
an abstraction. Technically, the concretion 〈u〉 can appear in an arbitrary session- and pipeline-
immune context within the session operator, but since restrictions can be moved outside the
session operator by structural congruence, this is equivalent to require that the concretion is in
parallel with an arbitrary process P′, as indicated in the rule. Instead the abstraction (?x) can be
at an arbitrary depth in the syntax tree, for example in the left-side of a pipeline, but not in a
nested session operator: for this reason we use a static session-immune context S0[·]. The next
rule (SessionSyncRet) can be used for returning a value computed by a nested session side to the
session partner. One can view this rule as composed of two steps: first the value computed in
session r is passed to the enclosing session side r′, then such session side sends the value to its
partner.

Volume X (2010)

18

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

The pipeline rule (PipelineSync) shows that a value computed by the left-hand side P′|〈u〉.P′′
can trigger an instance of the right-hand side (?x)R. Finally the rule (PipelineSyncRet) describes
the situation where a pipe can be activated through a value returned by a nested session side of
the process on the left side of the pipeline.

4 Encoding CaSPiS into the algebra of designs

In [BGL09, BGLb] we have provided a sound and complete encoding of CaSPiS processes to our
algebra of designs, exploiting the fact that reduction rules can then be directly interpreted over and
applied to graphs instead of terms. Unfortunately, this way an interleaving semantics is obtained,
not a truly concurrent one, because the whole graph is rewritten at each step (no standard notion
of “preserved” nodes/edges is available).

Here we pursue a different objective, by establishing an encoding for which ordinary graph
rewriting techniques can be used to recover the dynamics. In particular, as rewrites are forbidden
under dynamic contexts of CaSPiS, we will expand dynamic operators only by need. This means
that for each term P having a dynamic top operator, we introduce a corresponding edge label,
sorted according to the free names of P, which are needed as parameters in the rewrite rule
that will expand P to the corresponding graph after a reaction. Instead, the static contexts will
be encoded in nested designs corresponding to the session and left-pipeline operators, while
restriction operators will be encoded directly as restrictions of the algebra of designs.

In the following we assume that a standard total order on names is available, and for a set of
names X we denote by dXe the list of names in X ordered accordingly. Moreover, we assume
the existence of a canonical set of totally ordered fresh names C , together with a canonical
(order preserving) renaming σX : X → C for any X ⊆ V ∪R such that whenever |X |= |Y | then
σX(X) = σY (Y). We denote by can(P) the term Pσfn(P) obtained by renaming the free names of
P according to σfn(P).

Names (of services, sessions, etc.) are encoded as nodes of the algebra, thus we assume that
the set of nodes is sorted accordingly, even if we do not make this formal. The set of edge labels
is { A.P }, i.e. it includes one standard representative label A.P for (the equivalence class up to
structural congruence of) each CaSPiS process of the form can(A.P). The tentacles of A.P are
sorted according to fn(A.P). The set of design labels includes SES for session sides (exposing an
anonymous session name), and one standard representative x > Q for each static context of the
form [·] > (?x)Q, exposing n = |fn(Q)\{x}| canonical fresh variables σfn(Q)\{x}(fn(Q)\{x}).

As a matter of notation, for a term Ly[G]〈x〉 we use the shorthand L[G]〈x〉 if byc∩ fn(G) = /0.

Definition 9 (CaSPiS encoding) The interpretation of CaSPiS operators over the design algebra
(with extrusion, i.e., with global restriction) is given by

J0K def= 0
JA.PK def= A.P〈dfn(A.P)e〉
Jr .PK def= SES[JPK]〈r〉

JP > (?x)QK def= x > Q[JPK]〈dfn(Q)\{x}e〉
JP | QK def= JPK | JQK

J(νw)PK def= (νw)JPK

Proc. GMT 2010

19

ECEASST

It is worth stressing that if one is interested in analyzing, through the encoding to the algebra of
designs and the transformation of the corresponding graphs, a finite set of CaSPiS processes, then
the resulting algebra will have a finite number of edge and design labels, determined by the set of
sub-processes of those of interest. Instead, to be able to accommodate the encoding of all possible
CaSPiS processes, denumerable sets of labels are needed.

Notably, structural congruence amounts to design equivalence, i.e. equivalent processes are
mapped into isomorphic graphs.

Proposition 1 For any Q,R ∈P we have P≡C Q iff JPK≡D JQK.

4.1 Transformation rules for CaSPiS reduction semantics

Given the encoding of CaSPiS processes as terms of the algebra of designs, and any suitable
model of the algebra in terms of a class of graphs (like those presented in Sections 2.1 and 2.2),
it is natural to try to lift the reduction semantics of CaSPiS, through these encodings, to a
corresponding notion of transformation over the resulting graphs. Ideally, we would like to
translate the reduction rules of Definition 8 to ordinary graph transformation rules, in order to
exploit the rich theory of graph transformation and the corresponding analysis and verification
tools, also accounting for concurrency aspects.

However, this is not possible in a direct way. In fact, the reduction rules of CaSPiS include
suitable contexts in the left- and right-hand sides, which can be instantiated in arbitrary ways
to match a subterm of the process to be reduced. In other words, each reduction rule can be
considered as a rule schema, summarizing the common shape of infinitely many similar rules,
obtained by consistently replacing the contexts with suitable terms. Quite obviously, if we are
interested in reducing a single process (or a finite set of processes), we need to consider only a
finite set of instances of the rules.

In Figures 6, 7 and 8 we depicted the graph transformation rule schemata corresponding to the
reduction rules (ServiceSync), (SessionSync) and (PipelineSync), using the side-view of designs
discussed in Section 2.2. Comparing them with the corresponding reduction rules in Fig. 5, we
can note that: 1) we can now omit to specify the static context C under which the interacting
redexes are found, because the left-hand side of a graph transformation rule can always be applied
in larger graphs; 2) for the same reason, we can safely omit idle items that run in parallel, like
process P′ from rules (SessionSync) and (PipelineSync) in Fig. 5; 3) but we must still account
for the presence of any admissible static session-immune context S0, because it constraints the
applicability of the rule (in general JS0K can be a chain of pipeline-labeled boxes of arbitrary
length, possibly 0). Even if we did not work out the corresponding definitions, we identified two
graph transformation frameworks which can provide the means to turn each such rule schemata
into a collection of graph rules, whose overall effect would be the expected one when applied to a
graph representing a CaSPiS process.

Synchronized Hyperedge Replacement. In the SHR approach [FHL+06], the parallel appli-
cation of a set of rules to a graph is controlled by a synchronization mechanism which requires
a consistency check among the redex boundaries of the involved rules. This mechanism can be
used to build (standard) rules with unbound left-hand sides, starting from a finite set of rules.

Volume X (2010)

20

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

Figure 6: Rule (ServiceSync)

Figure 7: rule (SessionSync)

Figure 8: Rule (PipelineSync)

Proc. GMT 2010

21

ECEASST

Therefore a CaSPiS rule schema could be implemented by a set of SHR rules, which should be
able to induce the set of all its instantiations.

Graph Transactions. The notion of graph transaction proposed in [BCD+08] is based on a
notion of “unstable” graph items. A transaction is a minimal derivation starting and ending in
graphs not containing unstable items, up to shift equivalence, and the operational semantics of a
transactional graph transformation system includes only derivations that are made of transactions.
Therefore a CaSPiS rule schema could be translated into a collection of rules which simulate the
navigation of the process in order to identify an occurrence of the left hand side. This can be done
by generating unstable items in the graph: their presence conceptually inhibits the application of
other rules in parallel. When the left pattern is recognized and the effect of the rule is applied,
such unstable elements are deleted, resulting in the commitment of the transaction.

The study of these possible translations of CaSPiS rule schemata is an interesting topic for
future research.

5 Conclusions

In this paper we have shown the main issues regarding the graphical encoding of a sophisticated
process calculus with inherently hierarchical features. The encoding of processes can be written
quite smoothly by exploiting a recently proposed algebra of graphs with nesting (see Definition 9),
and it can be shown to preserve and respect the structural congruence of processes. On the
other hand, the encoding of reduction rules as ordinary graph transformation rules requires some
ingenuity, because the redexes can require the traversal/inspection of an unbound number of
nesting levels due to the presence of static session-immune contexts in the rules of Fig. 5.

The main methodological innovation of the paper, with respect to other proposals of encoding
process algebras into graph transformation systems, resides is the identification of an intermediate
algebra of designs, which bridges the gap between the syntax of the process calculus and the set
theoretical definition of the graphs. A direct translation of CaSPiS processes to, for example,
gs-graphs, would be possible but more cumbersome. Furthermore, a sound and complete interpre-
tation of the algebra into a class of graphs can be reused for different process calculi. For example,
besides the top- and side-view graphs discussed in the paper, another natural graph model for the
algebra are Milner’s bigraphs [Mil06], which are naturally endowed with a notion of embedding
and of linking.

The ultimate motivation in equipping CaSPiS with a graph transformation operational semantics
is to exploit the rich theory of graph transformation and corresponding tools for the analysis and
verification of relevant properties of CaSPiS processes. The intermediate design algebra provides
one additional framework for such analysis, which could be performed by exploiting tools directly
based on the algebra, which are currently under development (see http://www.albertolluch.com/
adr2graphs/).

Acknowledgements: We want to thank Fabio Gadducci, Alberto Lluch Lafuente, Daniele
Terreni and Liang Zhao for many interesting discussions and exchange of ideas regarding the
graphical encoding of CaSPiS.

Volume X (2010)

22

http://www.albertolluch.com/adr2graphs/
http://www.albertolluch.com/adr2graphs/

Modeling a Service and Session Calculus with Hierarchical Graph Transformation

Bibliography

[AG98] A. Asperti, S. Guerrini. The Optimal Implementation of Functional Programming
Languages. Cambridge University Press, 1998.

[BBDL08] M. Boreale, R. Bruni, R. De Nicola, M. Loreti. Sessions and Pipelines for Structured
Service Programming. In Barthe and de Boer (eds.), FMOODS 2008. LNCS 5051,
pp. 19–38. Springer, 2008.

[BCD+08] P. Baldan, A. Corradini, F. Dotti, L. Foss, F. Gadducci, L. Ribeiro. Towards a
Notion of Transaction in Graph Rewriting. In Bruni and Varró (eds.), International
Workshop on Graph Transformation and Visual Modeling Techniques (GT-VMT 2006).
ENTCS 211. Elsevier, 2008.

[BCG+] R. Bruni, A. Corradini, F. Gadducci, A. Lluch Lafuente, U. Montanari. On GS-
Monoidal Theories for Graphs with Nesting. Submitted.

[BEG+87] H. Barendregt, M. van Eekelen, J. Glauert, J. Kennaway, M. Plasmeijer, M. Sleep.
Term graph reduction. In PARLE’87. LNCS 259, pp. 141–158. Springer, 1987.

[BGLa] R. Bruni, F. Gadducci, A. Lluch Lafuente. An Algebra of Hierarchical Graphs.
Submitted.

[BGLb] R. Bruni, F. Gadducci, A. Lluch Lafuente. An Algebra of Hierarchical Graphs and its
Application to Structural Encoding. Submitted.

[BGL09] R. Bruni, F. Gadducci, A. Lluch Lafuente. A Graph Syntax for Processes and Services.
In Jianwen and Laneve (eds.), WS-FM 2009. LNCS. Springer, 2009. To Appear.

[BL05] R. Bruni, I. Lanese. On Graph(ic) Encodings. In Koenig et al. (eds.), Proceedings
of Dagstuhl Seminar n. 04241, Graph Transformations and Process Algebras for
Modeling Distributed and Mobile Systems. Pp. 23–29. 2005.

[BLMT08] R. Bruni, A. Lluch Lafuente, U. Montanari, E. Tuosto. Style Based Architectural
Reconfigurations. Bulletin of the European Association for Theoretical Computer
Science (EATCS) 94:161–180, February 2008.

[BMM06] R. Bruni, H. Melgratti, U. Montanari. Event Structure Semantics for Nominal Calculi.
In Baier and Hermanns (eds.), CONCUR 2006. LNCS 4137, pp. 295–309. Springer,
2006.

[CG99] A. Corradini, F. Gadducci. An Algebraic Presentation of Term Graphs, via GS-
Monoidal Categories. Applied Categorical Structures 7:299–331, 1999.

[CMR94] A. Corradini, U. Montanari, F. Rossi. An Abstract Machine for Concurrent Modular
Systems: CHARM. Theoretical Computer Science 122(1-2):165–200, 1994.

[DHP02] F. Drewes, B. Hoffmann, D. Plump. Hierarchical Graph Transformation. Journal on
Computer and System Sciences 64(2):249–283, 2002.

Proc. GMT 2010

23

ECEASST

[FHL+06] G. L. Ferrari, D. Hirsch, I. Lanese, U. Montanari, E. Tuosto. Synchronised Hyperedge
Replacement as a Model for Service Oriented Computing. In Boer et al. (eds.), FMCO
2005. LNCS 4111, pp. 22–43. Springer, 2006.

[FM00] G. L. Ferrari, U. Montanari. Tile Formats for Located and Mobile Systems. Informa-
tion and Computation 156(1-2):173–235, 2000.

[Gad03] F. Gadducci. Term Graph Rewriting for the pi-Calculus. In Ohori (ed.), APLAS 2003.
LNCS 2895, pp. 37–54. Springer, 2003.

[KCM06] D. Kitchin, W. R. Cook, J. Misra. A Language for Task Orchestration and Its Semantic
Properties. In Baier and Hermanns (eds.), CONCUR 2006. LNCS 4137, pp. 477–491.
Springer, 2006.

[Mil06] R. Milner. Pure bigraphs: Structure and dynamics. Information and Computation
204(1):60–122, 2006.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation, Volume 1: Foundations. World Scientific, 1997.

[Ter08] D. Terreni. Computational models based on hierarchical graphs: bigraphs and cogs-
graphs. Master thesis, Dipartimento di Informatica, Università di Pisa. 2008.

Volume X (2010)

24

Pre-Proceedings GraMoT 2010

25

ECEASST

Symbolic Attributed Graphs for Attributed Graph Transformation

Fernando Orejas∗

orejas@lsi.upc.edu
Dpt. de Llenguatges i Sistemes Informátics

Universitat Politècnica de Catalunya, Barcelona, Spain.

Abstract: In this paper we present a new approach to deal with attributed graphs
and attributed graph transformation. This approach is based on working with what
we call symbolic graphs, which are graphs labelled with variables together with a
formula that constrains the possible values that we may assigned to these ariables.
In particular, in this paper we will compare in detail this new approach with the
standard approach to attributed graph transformation.

Keywords: Graph Transformation, Attributed Graphs, Symbolic Graphs

1 Introduction

The study of graph grammars and graph transformation started 40 years ago. However, the first
formal approach to deal with attributed graphs is much more recent [12], even if this kind of
graphs are needed in many applications of the field. Actually, the development of the fundamen-
tal theory of graph transformation for the case of attributed graphs is quite recent [7]. The reason
for this late development is probably that, even if the attributed case may seem to be a straight-
forward generalization of the standard case, it presents some difficulties which have hampered
the development of this fundamental theory. One of these difficulties lies on the complication of
putting together two theoretical frameworks, algebraic specification and graph transformation,
even if both are algebraic and categorical frameworks. In fact, to avoid, to some extent, this
problem, in [12] graphs are coded as algebras with the aim of having a uniform setting. The
problem is that, in general, algebra transformation does not enjoy the right properties to ensure
that the basic theory of graph transformation will hold. The approach taken in [12], based in the
approach presented in [10] is quite different. In this case, an attributed graph is seen as a pair
formed by an algebra, to define the values of the attributes of the graph, and a graph that includes
all the values of the algebra as (a special kind of) nodes, In this way, the algebra part and the
graph part of an attributed graph are kept separated up to a certain point. However, this approach
still has some difficulties caused by the fact that, even if the graphs of interest are defined over
the same data algebra, we have to consider categories including graphs over different algebras.
The reason is that, must often, the algebras in the graphs occurring in the transformation rules are
different from the algebras in the graphs to which we apply these rules. In particular, an aspect
which is not completely obvious in this approach is how one should define the algebra associated
to a graph transformation rule. In this sense, in this paper we introduce a specific way to do this
by taking the initial algebra associated to a given specification.

∗ This work has been partially supported by the CICYT project (ref. TIN2007-66523) and by the AGAUR grant to
the research group ALBCOM (ref. 00516).

Volume X (2010)

26

mailto:orejas@lsi.upc.edu

Symbolic Attributed Graphs

However, the main aim of this paper is to present a new approach to deal with attributed graph
transformation, which we believe is conceptually simpler than previous approaches, and more-
over it is more powerful, as we show. The approach is partially inspired on how the clausal part
and the data part are conceptually separated in Constraint Logic Programming [11, 14]. In par-
ticular, attributed graphs are presented assymbolic graphsconsisting of a graph that includes as
nodes some variables which represent the values of the attributes, together with a set of formulas
that constrain the possible values of these variables. This means that the underlying algebra of
values remains only implicit to define the satisfaction of these formulas. The idea underlying this
approach was first introduced in [16, 17] to study graph constraints over attributed graphs and,
then,used again with a similar aim to specify model transformations by means of patterns [8].

Symbolic graphs can be seen as specifications of attributed graphs. Actually, to compare the
standard approach to attributed graph transformation, we define a semantics of symbolic graphs
in terms of classes of attributed graphs and we show how attributed graphs can be identified
with some specific kind of symbolic graphs, which we call grounded symbolic graphs. Then,
to compare the expressive power of the two approaches with respect to attributed graph trans-
formation, we first show that symbolic graphs, as it happens with attributed graphs [10], form
an adhesive HLR category [13, 4] to ensure that symbolic graphs inherit the fundamental theory
of graph transformation. A variant of this proof is already included in [17]. Finally, we show
that attributed graph transformation systems can be coded into symbolic graph transformation
systems but that the converse is not true in general.

The paper is organized as follows. In section 2 we provide a reminder of some notions that
are used in the rest of the paper. In particular, first, we briefly enumerate some notions from
algebraic specification; then, we present E-graphs which are used as the graph part for both
attributed graphs and symbolic graphs; finally, we define the category of attributed graphs as
presented in [4]. In Section 3 we present the category of symbolic graphs, showing that it is
adhesive HLR. Section 4 is dedicated to relate the categories of attributed and symbolic graphs
and Section 5 to compare the the expressive power of both approaches with respect to attributed
graph transformation. In Section 6, we draw some conclusions. Finally, in an appendix some
technical details and proofs are provided.

2 Preliminaries

We assume that the reader has a basic knowledge on algebraic specification and on graph trans-
formation. For instance, we advise to look at [6] for more detail on algebraic specification or at
[18, 4] for more detail on graph transformation.

2.1 Basic algebraic concepts and notation

As usual, a signatureΣ = (S,Ω) consists of a set of sortsS, and a family of operation symbols of
the formop : s1×·· ·×sn→ s, denoted byΩ, wheren≥ 0 ands1, . . . ,sn,s∈ S. However, in this
paper, signatures include also predicates. We can deal with this extended case in two ways. The
first one is to consider thatΣ consists, in addition, of a family of predicate symbols. The second
one, which we will use, because it is simpler, is based in considering that there is a spacial sort in

Proc. GMT 2010

27

ECEASST

S, which we could calllogical, and that predicate symbols are just operation symbols with profile
s1×·· ·×sn→ logical. In this case, logical connectives can be treated as operation symbols over
the logical sort. In addition, the truth valuest andf may be seen as constants in the signature.

A Σ-algebraA consists of anS-indexed family of sets{As}s∈S and a functionopA : As1×·· ·×
Asn→As for each operationop: s1×·· ·×sn→ s in the signature. AΣ-homomorphismh : A→A′

consists of anS-indexed family of functions{hs : As→ A′s}s∈S commuting with the operations.
Σ-algebras andΣ-homomorphisms form the categoryAlg .

A congruence≡ on an algebraA is an S-indexed family of equivalence relations{≡s}s∈S

which are compatible with the operations. In this case,A/ ≡ denotes quotient algebra whose
elements are equivalence classes of values inA. BetweenA andA/≡ there is a canonical homo-
morphism mapping every element inA into its equivalent class.

Given signaturesΣ,Σ′, with Σ′ ⊆ Σ, everyΣ-algebra can be seen as aΣ′-algebra, byforgetting
all the sorts an operations which are not inΣ′. In particular this is called theΣ′-reduct of a
Σ-algebraA and is denoted byA|Σ′ .

Given a signatureΣ, we denote byTΣ the term algebra, consisting of all the possibleΣ-(ground)
terms.TΣ is initial in Alg , and the unique homomorphismhA : TΣ→ A yields the value of each
term inA. Similarly, TΣ(X) denotes the algebra of allΣ-terms with variables inX, and given a
variable assignmentσ : X→ A, this assignment extends to a unique homomorphismσ# : X→ A
yielding the value of each term after the replacement of each variablex by its valueσ(x). In
particular, when an assignment is defined over the term algebra, i.e.σ : X → TΣ, thenσ#(t)
denotes the term obtained by substituting each variablex in t by the termσ(x).

A Σ-algebraA is finitely generated if every element inA is the value of some ground term. It
is not difficult to see that ifA is finitely generated there is at most on homomorphism betweenA
and any other algebraA′.

A specificationSP= (Σ,Ax) consists of a signatureΣ and a set of axiomsAx, which may
be seen as terms of logical sort. Equational specifications are a special case, where the only
predicate symbol is the equality. Similarly, conditional equations may be considered as a special
kind of terms. GivenSP, AlgSP denotes the full subcategory ofAlg , consisting of allΣ-algebras
A satisfying the axioms in the specification, i.e.A |= Ax. In the case whereSP consists of
equations or conditional equations there is an initial algebra inAlgSP, denoted byTSP.

2.2 E-graphs

E-graphs are introduced in [4] as a first step to define attributed graphs. Intuitively, an E-graph
is a kind of labelled graph, where both nodes and edges may be decorated with labels from a
given setE. The difference with labelled graphs, as commonly understood, is that in labelled
graphs it is usually assumed that each node or edge is labelled with a given number of labels,
which is fixed a priori. In the case of E-graphs, each node or edge may have any arbitrary (finite)
number of labels, which is not fixed a priori. Actually, in the context of graph transformation,
the application of a rule may change the number of labels of a node or of an edge.

Formally, in E-graphs labels are considered as a special class of nodes and the labeling relation
between a node or an edge and a given label is represented by a special kind of edge. Notice that,
for instance, this means that the labeling of an edge is represented by an edge whose source is an
edge and whose target is a node (a label).

Volume X (2010)

28

Symbolic Attributed Graphs

Definition 1 (E-Graphs and morphisms) AnE-graphover the set of labelsL is a tupleG =
(V,L,EG,ENL,EEL,{sj , t j} j∈{G,NL,EL}) consisting of:

• V andL, which are the sets ofgraph nodesand oflabel nodes, respectively.

• EG, ENL, andEEL, which are the sets ofgraph edges, node label edges, andedge label
edges, respectively.

and the source and target functions:

• sG : EG→VG andtG : EG→VG

• sNL : ENL→V andtNL : ENL→ L

• sEL : EEL→ EG andtEL : EEL→ L

Given the E-graphsG andG′, anE-graph morphism f: G→G ′ is a tuple,〈 fVG : VG→V ′G, fL :
L→ L′, fEG : EG→ E′G, fENL : ENL→ E′NL, fEEL : EEL→ E′EL〉 such thatf commutes with all the
source and target functions.

E-graphs and E-graph morphisms form the categoryE−Graphs.

The following construction, which tells us how we can replace the labels of an E-graph, is
used in the sections below.

Definition 2 (Label substitution) Given an E-graphG= (V,L,EG,ENL,EEL,{sj , t j} j∈{G,NL,EL}),
a set of labels L’, and a functionh : L→ L′ we define the graph resulting from the substitution of
L alongh, denotedh(G), the E-graphh(G) = (V ′,L′,E′G,E′NL,E

′
EL,{s

′
j , t
′
j} j∈{G,NL,EL}) defined:

• V = V ′,E = E′,EG = E′G,ENL = E′NL,EEL = E′EL,{sj = s′j} j∈{G,NL,EL}, andtG = t ′G

• For everye∈ ENL : t ′NL(e) = h(tNL(e))

• For everye∈ EEL : t ′EL(e) = h(tEL(e))

Moreoverh induces the definition of the morphismh∗ : G→G′, with h∗= 〈idV ,h, idEG, idENL, idEEL〉.

It is routine to see thatG′ is indeed an E-graph andh∗ is an E-graph morphism. In addition, it
should be obvious that ifh is a bijection thenh∗ is an isomorphism.

2.3 Attributed Graphs

Following [4], an attributed graph is an E-graph whose labels are the values of agiven data
algebra that is assumed to be included in the graph.

Definition 3 (Attributed graphs and morphisms) Given a signatureΣ anattributed graphover
Σ is a pair〈G,D〉, whereD is a givenΣ-algebra, called the data algebra of the graph, andG is
an E-graph such thatLG the set of labels ofG consists of all the values inD, i.e. LG =

⊎

s∈SDs,
where s is the set of sorts of the data algebra and

⊎

denotes disjoint union.

Proc. GMT 2010

29

ECEASST

Given the attributed graphs overΣ AG = 〈G,D〉 and AG′ = 〈G′,D′〉 and G′, an attributed
graph morphism h: AG→ AG′ is a pair〈hgraph,halg〉, wherehgraph is an E-graph morphism,
hgraph : G→G′ andhalg is a overΣ-homomorphism,halg : D→ D′ such that the values inD are
mapped consistently byhgraph andhalg, i.e. for each sorts∈ S the diagram below commutes:

Ds
halg

//
� _

��

D′halg(s)� _

��

LG hgraph

// L′G

Attributed graphs and attributed graph morphisms form the categoryAttGraphs . Moreover,
given a data algebraD we will denote byAttGraphsD the full subcategory ofAttGraphs con-
sisting of attributed graphs overD.

In [4] it has been proved thatAttGr aphs is an adhesive HLR category. Let us first recall this
notion [4, 13]:

Definition 4 (Adhesive HLR category) A categoryC is adhesive HLR with respect to a class
M of morphisms if:

1. M is a class of monomorphisms closed under isomorphism, composition (i.e. iff : A→
B∈M andg : B→ A∈M theng◦ f ∈M), and decomposition (i.e. ifg◦ f ∈M andg∈M
then f ∈M).

2. C has pushouts and pullbacks along M-morphisms. Moreover, M-morphisms are closed
by pushouts and pullbacks.

3. Pushouts inC along M-morphisms are van Kampen squares, i.e. for any commutative di-
agram as the one below, assuming thath1 andg2 are M-morphisms, if the bottom diagram
is a pushout and the back faces are pullbacks then the top diagram is a pushout if and only
if the front diagrams are pullbacks.

The key idea to show thatAttGraphs is adhesive HLR is the choice of the right kind of M-
morphisms. Actually,AttGraphs is not adhesive because it fails to satisfy the van Kampen
property for arbitrary monomorphisms.

Theorem 1 AttGraphs is adhesive HLR, with respect to the class of M-morphisms consisting
of all monomorphisms〈hgraph,halg〉 such that halg is an isomorphism.

Volume X (2010)

30

Symbolic Attributed Graphs

A′0
h′1

wwooooooooooooooo

h′2

��?
?

?
?

?
?

?

f0

��

A′1
g′1

��?
?

?
?

?
?

?

f1

��

A′2

f2

��

g′2

wwooooooooooooooo

A′3

f3

��

A0

h1
wwooooooooooooooo

h2 ��@
@

@
@

@
@

@
@

A1

g1
 A

A
A

A
A

A
A

A2

g2
wwnnnnnnnnnnnnnnn

A3

3 The category of symbolic graphs

A symbolic graphs can be seen as the specification of an attributed graph (or of a class of at-
tributed graphs). In particular, a symbolic graph consists of an E-graphG whose labels are
variables, together with a set of formulasΦ that constrain the possible values of these variables.
In this sense, we consider that a symbolic graph denotes the class of all attributed graphs where
the variables in the E-graph have been replaced for values that makeΦ true in the given data
domain. For instance, below on the right, we can see an example of a very simple symbolic
graph and, on the left, the (unique) attributed graph denoted by that symbolic graph.

27 45 3712 15

18

x y zd1 d2

d3

with x = 27∧y = 45∧z= 37
∧ d1 = 12∧d2 = 15∧d3 = 18

However, as said above, a symbolic graph, in general denotes a class of graphs. For instance,
the graph below specifies a class of attributed graph that includes the graph depicted above on
the left, but it also specifies many other graphs.

x y zd1 d2

d3

with d3≤ d1 +d2

It may be noted that the class of attributed graphs denoted by a symbolic graph may be empty
if the associated condition is unsatisfiable.

Therefore, let us define what is a symbolic graph over a given data algebra.

Proc. GMT 2010

31

ECEASST

Definition 5 (Symbolic graphs and morphisms) Asymbolic graphover the the dataΣ-algebra
D is a pair〈G,Φ〉, whereG is an E-graph over a set of variablesX, i.e. LG = X, andΦ is a set of
first-orderΣ-formulas over the free variables inX and over the values inD.

Given symbolic graphs〈G1,Φ1〉 and〈G2,Φ2〉 over the same data algebra D, a symbolic graph
morphismh : 〈G1,Φ1〉 → 〈G2,Φ2〉 is an E-graph morphismh : G1→ G2 such thatD |= Φ2⇒
h#(Φ1), whereh#(Φ1) is the set of formulas obtained when replacing inΦ1 every variablex1 in
the set of labels ofG1 by hL(x1).

Symbolic graphs overD together with their morphisms form the categorySymbGraphsD.

In what follows, to simplify notation, even if it may be considered an abuse of notation, we will
write h(Φ) instead ofh#(Φ). Moreover, also for simplicity, we may identify the set of formulas
Φ with the formula consisting of the conjunction of all the formulas inΦ, even if that formula
may be infinitary in the case whereΦ is an infinite set.

Notice that, according to the above definition, given any E-graphG, if D |= Φ⇔ Φ′ then
〈G,Φ〉 and〈G,Φ′〉 are isomorphic inSymbGraphsD.

To show that symbolic graphs are an adhesive HLR category, first, we have to define our no-
tion of M-morphism over symbolic graphs. We consider that M-morphisms are monomorphisms
where the formulas constraining the source and target graphs are equivalent (in most cases they
will just be the same formula). The intuition of this definition is based on the use of our cate-
gory of symbolic graphs to define graph transformation. More precisely, we think that the most
reasonable formulation of graph transformation rules in our context is based on defining a graph
transformation rule as an E-graph transformation rule, together with a set of formulas that glob-
ally constrain and relate all the variables in the rule. This is equivalent to consider that the left
and right-hand sides (and also the interface) of a rule are constrained by the same set of formulas.

Definition 6 (M-morphisms) AnM-morphism h: 〈G,Φ〉 → 〈G′,Φ′〉 is a monomorphism such
thatLG≡ LG′, i.e. hL is a bijection, andD |= h(Φ)⇔Φ′

It is not difficult to see that M-morphisms satisfy the required properties. Then, to define
pushouts and pullbacks inSymbGraphsD we use, respectively, pushouts and pullbacks inE−Graphs.
More precisely, the pushout of〈G1,Φ1〉← 〈G0,Φ0〉→ 〈G2,Φ2〉 is a graph〈G3,Φ3〉, whereG3 is
the pushout ofG1←G0→G2 andΦ3 is the conjunction ofΦ1 andΦ2. The case of pullbacks is
similar, but the pullback of〈G1,Φ1〉 → 〈G3,Φ3〉 ← 〈G2,Φ2〉 is the graph〈G0,Φ0〉, where is the
pullback ofG1→G3←G2 andΦ0 is the disjunction ofΦ1 andΦ2. However, since theG0 may
include a strict subset of the variables ofΦ1 andΦ2, in this caseΦ0 is existentially quantified by
the variables not inG0.

Proposition 1 SymbGraphsD has pushouts and pullbacks.

To see that pushouts and pullbacks preserve M-morphisms we just have to do some basic
logical deduction. If the diagram below is a pushout andh1 is an M-morphism then we essentially
have to prove that ifD |= Φ2⇒ h2(Φ0) thenD |= Φ2⇔ (h2(Φ0)∧Φ2), which is obvious. The
case of the pullbacks is slightly more complex because of the existential quantifiers inΦ0.

Volume X (2010)

32

Symbolic Attributed Graphs

〈G0,Φ0〉
h1 //

h2

��

〈G1,Φ1〉

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉

Proposition 2 Pushouts and pullbacks preserve M-morphisms.

Finally, to prove the van Kampen property we show that a cube inSymbGraphsD is a van
Kampen square if and only if the underlying cube in inE−Graphs is also a van Kampen square.
To do this, again we just need to do some basic logical reasoning. As a consequence we have:

Theorem 2 SymbGraphsD is adhesive HLR.

4 Symbolic graphs and attributed graphs

In this section we present the relation between the categories of symbolic and attributed graphs
over a given data algebra. On one hand, we will see that every symbolic graph may be seen as
denoting a class (a subcategory) of attributed graphs, which may be considered its semantics. On
the other hand, we will see that every attributed graphs can be represented in a canonical way by
a symbolic graph, which means that, for a given data algebra, the category of attributed graphs
can be seen as a subcategory of the corresponding category of symbolic graphs.

Definition 7 (Semantics of symbolic graphs) Given a symbolic graph〈G,Φ〉 over a data alge-
braD, its semantics is a class of attributed graphs defined as follows:

Sem(〈G,Φ〉) = {〈σ(G),D〉 | σ : LG→ D andD |= σ(Φ)}

whereσ(G) denotes the graph obtained according to Def.2.

For example, given the symbolic graph below:

x y zd1 d2

d3

with d3≤ d1 +d2

wehave that its semantics would include the following attributed graphs:

27 45 3712 15

18

6 7 88 25

4

Conversely, we can identify every attributed graphAGwith agroundedsymbolic graph whose

Proc. GMT 2010

33

ECEASST

semantics consists only ofAG. More precisely a grounded graph is a symbolic graph〈G,Φ〉
that includes a variablexv for each elementv of the data algebra and where the only substitution
σ : LG→ D such thatD |= σ(Φ) is defined for each variablexv asσ(xv) = v.

Definition 8 (Grounded symbolic graphs) A symbolic graph〈G,Φ〉 over a data algebraD is
grounded if

1. LG includes a variable, which we denote byxv, for each valuev∈ D, and

2. For every substitutionσ : LG→ D, such thatD |= σ(Φ), we haveσ(xv) = v, for each
variablexv ∈ LG.

Moreover, we defineGSymbGraphsD as the full subcategory ofSymbGraphsD consisting
of all grounded graphs.

Notice that if〈G,Φ〉 is grounded andσ : LG→ D is a substitution such thatD |= σ(Φ) then
σ ∗ : G→ σ(G) is an isomorphism.

It should be obvious that the semantics of a grounded graph includes exactly one attributed
graph and that grounded graphs are closed up to isomorphism. Moreover, we can see and that
for every attributed graphAG there is a unique grounded symbolic graph (up to isomorphism)
GSG(AG) such thatSem(GSG(AG)) consists ofAG. In particular, the E-graph associated to the
symbolic graph is obtained substituting every data valuev in a set of labels by a variablexv.
Then, the set of formulas in the symbolic graph consists of an equationxv = v, for each valuev
in D.

Proposition 3

1. If SG is grounded then Sem(SG) consists exactly of one attributed graph.

2. Grounded symbolic graphs are closed up to isomorphism.

3. For each attributed graph AG= 〈G,D〉 there is a unique grounded symbolic graph GSG(AG)
such that AG∈ Sem(GSG(AG)), which means that Sem(GSG(AG)) = {AG}.

As a consequence, we can identify each attributed graph with a grounded symbolic graph, and
vice versa. Therefore, we may ask whetherAttGraphsD is isomorphic or equivalent to some
subcategory ofSymbGraphsD consisting of all grounded graphs. The answer is negative since
GSGcannot be made injective on morphisms as the following counter-example shows.

Example1 Let D be a data algebra consisting of two values, which we calla andb. Let AG
be an attributed graph having no graph nodes and no graph edges (i.e. the graph structure of
AG is empty, which means that it consists only of the label nodesa andb). As a consequence,
GSG(AG) = 〈G,xa = a∧ xb = b〉, whereG is an E-graph consisting only of the label nodesxa

andxb. Now, there are four morphisms,f1, f2, f3 and f4, from AG to itself:

• f1(a) = a, f1(b) = b.

Volume X (2010)

34

Symbolic Attributed Graphs

• f2(a) = a, f2(b) = a.

• f3(a) = b, f3(b) = b.

• f4(a) = b, f4(b) = a.

However the only morphism fromGSG(AG) to itself is the identity. For example we may
see that the mappingg : {xa,xb} → {xa,xb}, definedg(xa) = xa, g(xb) = xa, does not define a
symbolic graph morphism. In particular, ifg is a morphism it should hold thatD |= (xa = a∧xb =
b)⇒ g(xa = a∧ xb = b). But this is equivalent toD |= (xa = a∧ xb = b)⇒ (xa = a∧ xa = b),
which is obviously false.

The problem in the above counter-example is that we assume that we can define any mapping
between the elements of the algebra, while for the variables of the grounded graphs we are forced
to map the variablexv associated to a value to the corresponding variable associated to the same
value. This problem disappears if the value algebra is finitely generated. In that case, we know
that the only homomorphism of an algebra into itself is the identity causing that morphisms on
attributed graphs should be the identity on data values. This means that, ifD is finitely generated
then the categoriesAttGraphsD andGSymbGraphsD are equivalent. Moreover, this kind of
restriction is quite reasonable since, otherwise, the algebra would include values which we cannot
refer to. Nevertheless, as we will see in the following section, attributed graph transformation
rules are usually defined over non-finitely generated algebras.

Proposition 4 If D is finitely generated thenAttGraphsD andGSymbGraphsD are equivalent.

5 Symbolic graph transformation and attributed graph transfor-
mation

In this section we compare attributed graph transformation with symbolic graph transformation.
This comparison may seem trivial: if attributed graphs may be seen as a special case of symbolic
graphs then we can conclude that attributed graph transformation is a special case of symbolic
graph transformation. However things are not so obvious. As we have seen, if the given data
algebraD is finitely generated, we can identify attributed graphs overD with grounded symbolic
graphs overD. This means, in that case, that if transformation rules are spans of M-morphisms
in AttGraphsD then these transformation rules can be considered equivalent to spans of M-
morphisms inGSymbGraphsD, and the application of these rules to a graphAG in AttGraphsD

is equivalent to the transformation ofGSG(AG) by the corresponding rules inGSymbGraphsD.
The problem is that if the graphs that we want to transform are inAttGraphsD, usually, the
transformation rules will not be spans of M-morphisms inAttGraphsD, but in AttGraphsD′ ,
whereD′ is some free algebra overD and, hence, different fromD. This means that the rules for
transforming graphs inAttGraphsD are are not directly equivalent to rules inSymbGraphsD.

In order to compare attributed and symbolic graph transformation we start describing how we
usually define attributed graph transformation rules by means of the following example.

Proc. GMT 2010

35

ECEASST

Example2 Let us suppose that we are dealing with a class of graphs whose edges have an
attribute that represents the distance between the source and target nodes. For instance, the
graphG below may be an example of a graph in this class:

a b c

d

10

20 10

15

30

Let us also suppose that we want to compute the distance of the shortest paths between any
two nodes. The rulep below could describe how a new distance can be computed:

x y

t

d1 d2

L

x y

t

d1 d2

K

x y

t

d1 +d2

d1 d2

R

Applying this rule, matchingx with d, y with c and,t with b, we could transformG into G1:

a b c

d

10

20 10

15

25

30

Similarly, matchingx with a, t with b, andy with c, we would get the graphG2:

a b c

d

10

20 10

15

25

30

25

Let us analyze what happens in this example.G,G1, andG2 are attributed graphs over the

Volume X (2010)

36

Symbolic Attributed Graphs

algebraD natural numbers, defined over the signatureΣ:

Sorts nat,bool
Opns 0 : nat

suc: nat→ nat
true, f alse: bool
+ : nat×nat→ nat
≤: nat×nat→ bool

This means that the graphsG,G1, andG2 include the natural numbers and the booleans as
label nodes, even if they are not depicted in the above figures. But the graphsL,K, andR in
the transformation rulep are not defined over the same algebra. The reason is that the labels
d1,d2, or d1 +d2 are not inD, since they are not natural numbers. The simplest solution that we
can use here, is to consider thatL,K, andR are attributed graphs over the algebraTΣ({d1,d2}),
i.e. the term algebra over the variablesd1 andd2. These graphs would include as label nodes
all the possibleΣ-terms over these two variables, even if they are not depicted explicitly. Now,
according to the example, when we applyp to G we define a morphismm from L into Gmatching
x with D, y with C and, and T with B. Obviously,m would also match the edges inL with the
edges inG in the expected way and it would also matchd1 with 10andd2 with 15. But this is not
all. The matchm includes aΣ-homomorphismmalg from TΣ({d1,d2}) to D matching not onlyd1

with 10 andd2 with 15, but also each possible term overd1 andd2 with its corresponding value,
after assigning tod1 andd2 the values10 and15, respectively. This means that, for instance,m
would also matchsuc(d1) with 11 or suc(d1) ≤ suc(suc(d2)) to t. In particular,m would also
matchd1 +d2 with 25, even ifd1+d2 is not explicitly depicted inL, i.e. we need to compute the
resulting value ofd1 +d2 when defining the match, before computing the transformation.

The fact that the values of the underlying algebra are considered (label) nodes of the attributed
graphs, together with the fact that match morphisms must be homomorphisms for the algebra
part, allow us to do some kind of conditional graph transformation without using a negative
application condition (NAC) [3, 9]. For example, inG2 the nodesA andC are connected with
two edges labelled with25and30, respectively. If we want to compute the shortest distances on
the given graph, we may like to delete the edge which includes the largest distance. In particular
the following rulep′ deletes the edge labelled withd2:

x yd1

d2

L′

x yd1

K′

x yd1

R′

However, we would like to use this rule only ifd1≤ d2. We can do this, as said above, without
using a NAC. First we define a specificationSP including the variablesd1 andd2 as constants,

Proc. GMT 2010

37

ECEASST

and the desired condition as an axiom, i.e.:

SP= Sorts nat,bool
Opns 0 : nat

d1,d2 : nat
suc: nat→ nat
true, f alse: bool
+ : nat×nat→ nat
≤: nat×nat→ bool

Axms (d1 ≤ d2) = true

Let TSP be the initial algebra associated toSP, andTSP|Σ its Σ-reduct. InTSP the termd1 ≤ d2

and the termtrue denote the same element. This means that ifh is a homomorphism fromTSP|Σ
into D, h(d1) = n1, andh(d2) = n2, thenn1 must be smaller or equal thann2. As a consequence,
if we consider thatL′,K′, andR′ are attributed graphs onTSP|Σ then any morphism fromL′ to G2

matching nodex to nodeA and nodey to nodeC would necessarily matchd1 to 25 andd2 to 30.
Hence the application ofr ′ to G2 with that match would yield the graph:

a b c

d

10

20 10

15

25

25

Therefore, we can consider that, in a transformation system for attributed graphs over aΣ-
algebraD, each ruler is a span on the categoryAttGraphsDr

, whereDr = TSPr |Σ andSPr is a
specificationSPr = (Σr ,Φr), such thatΣr = Σ∪X andΦr is a set ofΣr-equations or conditional
equations, since this ensures the existence of initial algebras. For simplicity, we assume thatΦr

only includes equations, since the case of conditional equations is similar. Under this assumption,
we may see that attributed graph transformation systems can be seen as a special case of symbolic
graph transformation system. The idea is that every ruler as above can be represented by a
symbolic transformation ruler ′, where each termt in r has been replaced by a variablext and the
set of formulasΦr ′ associated tor ′ consists of all the axioms inΦr plus all the equalitiesxt = t.

For instance, the symbolic rules associated to the attributed graph transformation rules de-
scribed above could look like:

x y

t

x1 x2

x y

t

x1 x2

with x1 = d1∧x2 = d2∧x3 = d1 +d2

x y

t

x3

x1 x2

and

Volume X (2010)

38

Symbolic Attributed Graphs

x yd1

d2

x yd1

with (d1≤ d2) = true

x yd1

Definition 9 Given a specificationSP= (Σ∪X,Φ), such that there is an initial algebraTSP in
the category ofSP-algebras, we say thatch : TSP→ TΣ∪X is achoice functionfor TSP if for every
element|t ′| ∈ TSP if ch(t) = t ′ thenTSP |= t = t ′.

Given SP, an attributed graphAG = 〈G,TSP|Σ〉, and a choice functionch for TSP we define
the symbolic representation ofAG with respect toch, SRch(AG) as the symbolic graph〈G′,Φ′〉,
where:

• The set of labels of the E-graphG′ is X∪Y, whereY is disjoint withX and it consists of a
variableya for each elementa∈ TSP such thata /∈ {|x| | x∈ X}.

• G′ = f ∗(G), where f : TSP→Y is a substitution such that for everya∈ TSP, if a /∈ {|x| |
x∈ X} then f (a) = ych(a). Otherwise,f (|x|) = x.

• Φ′ = Φ∪{ye = t | ye∈Y∧ch(e) = t}.

This means thatG′ includes as labels the variables inX and a variableya for every elementa
in TSPwhich is not the congruence class of a variable inX. This means that the substitutionf is a
bijection. As a consequence, for every attributed graphAG= 〈G,TSP|Σ〉, if SRch(AG) = 〈G′,Φ′〉
thenG andG′ are isomorphic E-graphs,f ∗.

It may be noted that we have not stated to which categorySymbGraphsD shouldSRch(AG)
belong. The reason is that we may consider thatSRch(AG) is in any categorySymbGraphsD,
for anyΣ-algebraD.

We may extend the previous definition to define the symbolic representation of attributed graph
transformation rules over the algebraTSP|Σ:

Definition 10 Given a specificationSP= (Σ∪X,Φ), such that there is an initial algebraTSP,
a choice functionch for TSP, and an attributed graph transformation ruler = (〈L,TSP|Σ〉 ←֓
〈K,TSP|Σ〉 →֒ 〈R,TSP|Σ〉), we define the symbolic representation ofr with respect toch, SRch(r)
as the symbolic transformation ruler ′ = 〈L′ ←֓ K′ →֒ R′,Φ′〉 where:

• 〈L′,Φ′〉= SRch(〈L,TSP|Σ〉), 〈K′,Φ′〉= SRch(〈K,TSP|Σ〉), and〈R′,Φ′〉= SRch(〈R,TSP|Σ〉).

• The inclusionsK′ ⊆ L′ andK′ ⊆R′ are a consequence, first, of the fact that we assume that
K ⊆ L andK ⊆R1; second, of the definition of how a label substitution is applied toan E-
graph; and third of the fact that the use of the choice function ensures that the substitution
of values inTSP|Σ by variables inY is the same on the three graphsL′, R′, andK′.

1 Sincethe morphisms relatingL andR are M-morphisms, without loss of generality, we may assume that they are
the identity on the algebra part and an inclusion on the graph part

Proc. GMT 2010

39

ECEASST

Moreover, it may be noticed that, by definition of the choice functions, diagrams (1), (2), (3),
and (4) below are pushouts, wheref ∗L , f ∗K , and f ∗R are, respectively, the isomorphisms relating
L,K, andRwith L′,K′, andR′, and wheref ∗−1

L , f ∗−1
K , and f ∗−1

R are their inverses:

L

(1)f ∗L
��

K

(2)

? _oo � � //

f ∗K
��

R

f ∗R
��

L′

(3)f ∗−1
L

��

K′

(4)

? _oo � � //

f ∗−1
K

��

R′

f ∗−1
R

��
L′ K′? _oo � � // R′ L K?

_oo � � // R

Theorem 3 Let r = (AL← AK → AR) be an attributed graph transformation rule, where
AL,AK, and AR are attributed graphs over TSP|Σ and SP= (Σ∪X,Φ), let ch be a choice function
for TSP, and let r′ = SRch(r), then for every attributed graph AG= 〈G,D〉 and every morphism
m : AL→ AG there is a morphism m′ : 〈SRch(AL),Φ′〉 →GSG(AG) such that AG is transformed
into AH by r with match m, i.e. AG⇒m

r AH, if and only if GSG(AG)⇒m′
r ′ GSG(AH). Conversely,

for every morphism m′ : 〈SRch(AL),Φ′〉→GSG(AG) there is a morphism m: AL→AG such that
GSG(AG)⇒m′

r ′ GSG(AH) if and only if AG⇒m
r AH.

The theorem above shows that attributed graph transformation can be seen as a special case of
symbolic graph transformation. One may wonder whether both kind of transformations can be
considered equivalent in the sense that every symbolic graph transformation ruler can be coded
into an attributed graph transformation ruler ′ such that the application ofr to a grounded graph
produces the same effect as the application ofr ′ to the corresponding attributed graph. The an-
swer is negative as the counter-example below shows, which means that symbolic transformation
rules have more definitional power than attributed graph transformation rules.

Example3 Let us suppose that the following symbolic graphSG is the left-hand side of a
symbolic graph transformation ruler:

x y

with x = 0∨y = 0∨x = y

where the signature of the data domain is:

Sorts nat
Opns 0 : nat

suc: nat→ nat

and where the given data algebraD is the algebra of natural numbers. This means that, ifr could
be represented by an attributed graph transformation ruler ′, thenr ′ would include as a left-hand
side an attributed graphAG like:

a1 a2

Volume X (2010)

40

Symbolic Attributed Graphs

wherea1 anda2 are elements of someΣ-algebraA. Moreover, there should exist a matchm from
SGinto any grounded symbolic graphSG′ if and only if there exists a similar matchm′ from AG
into the corresponding attributed graph. In particular, given the symbolic graph:

x y

with x = n1∧y = n2

wherea andb are two natural numbers, there should exist a homomorphism fromA to D mapping
a1 to n1 anda2 to n2 if and only if n1 = 0 or n2 = 0 or n1 = n2. Let us see that this is impossible.

First, we may notice that we may assume without loss of generality thatA satisfies the axiom:

e : s(x) = s(y)⇒ x = y

since for every homomorphismh : A→ D there is a unique homomorphismh′ : A/≡e→ D such
that the diagram below commutes:

A

i
��

h
// D

A/≡e

h′

77ooooooooooooo

where≡e is the congruence onA defined by the axiome and i is the canonical homomorphism
from A into its quotient, mapping every element fromA into its congruence class. Vice versa, for
every homomorphismh′ : A/≡e→ D there is a unique homomorphismh : A→ D such that the
diagram above commutes. Finally, we know thath(a1) = 0 or h(a2) = 0 or h(a1) = h(a2) if and
only if h′(|a1|) = 0 or h′(|a2|) = 0 or h′(|a1|) = h′(|a2|).

Therefore, let us assume thatA satisfies the above axiom. Now, let us notice that neithera1

nor a2 can be the value of some ground termsucn(0), for 0≤ n. The reason is that, otherwise, if
n1 = n2 6= n the match would be impossible. We can also see that it is not possible thata1 is the
value of some termsucn(a), for 1≤ n and anya0 ∈ A. The reason is that, otherwise, ifn1 = 0 the
match would be impossible, against the assumption, since if the matchm′ satisfiesm′(a0) = n0

thenm′(a1) would ben+ n0. For similar reasons, we know that it is not possible thata2 is the
value of some termsucn(a0), for 1≤ n and anya0 ∈ A. As a consequence, we can see that

A′ = A\{a | (a = sucnA(a1))∨ (a = sucnA(a2)) for somen≥ 0}

is a subalgebra ofA. Suppose, otherwise, thatA′ is not a subalgebra ofA. This would mean
that there is an elementa′ ∈ A′ such thatsucA(a′) ∈ A\A′. But this would mean thatsucA(a′) =
sucnA(a1)) or sucA(a′) = sucnA(a2)). But this would imply one of the following cases:

1. sucA(a′) = a1 or sucA(a′) = a2. These two cases are impossible according to what we have
proved above.

2. sucA(a′) = sucnA(a1)) or sucA(a′) = sucnA(a2)) for n≥ 1. However, sinceA is assumed to
satisfy the axiome, this means thata′ = sucn−1

A (a1)) or a′ = sucn−1
A (a2)), implying that

a′ ∈ A\A′, against the hypothesis.

Proc. GMT 2010

41

ECEASST

As a consequence of the previous facts we know that every homomorphismh : A→ D is
uniquely determined by a homomorphismh′ : A′→ D and by the values ofh(a1) andh(a2), in
the sense that givenh′, there is a uniqueh extendingh′ satisfyingh(a1) = n1 andh(a2) = n2, for
anyn1,n2 ∈ D, and vice versa. But this implies that there is a morphismm′ : A→ D satisfying
m′(a1) 6= m′(a2).

In general, a symbolic transformation ruler ′ = 〈L′ ←֓ K′ →֒ R′,Φ′〉 over aΣ-algebra D can
be simulated by an attributed graph transformation ruler = (AL← AK→ AR) over aΣ-algebra
A, if the specificationSP, whose signature isΣ plus the labels inr ′ (considered as constants),
and whose set of axioms isΦ′, has an initial algebraTSP. The problem in the previous counter-
example is that the associated specification has no initial algebra. In particular, to ensure the
existence of initial algebrasΦ′ should include only equations and conditional equations.

6 Conclusion

In this paper we have presented a new approach to deal with attributed graphs based on the new
notion of symbolic graphs, showing that the new category is adhesive HLR, which means that it
is adequate to define graph transformation. Moreover we have compared this new approach with
the most standard approach to deal with attributed graphs. In particular, there are essentially two
kinds of approaches to define attributed graphs and attributed graph transformation. On one hand,
we have the approaches [10, 7] where an attributed graph is a pair(G,D) consisting of a graph
G and a data algebraD whose values are nodes inG. On the other hand, we have the approaches
[12, 1] where attributed graphs are seen as algebras over a given signature ASIG, whereASIG
is the union of two signaturesASSIG, the graph signature andDSIG, the data signature, that
overlap in the value sorts. In particular,ASSIGmay be seen as a representation of the graph
part of an attributed graph. In [2] the two approaches are compared showing that they are, up
to certain point, equivalent. However, only a complete theory of graph transformation has been
formulated for [7] as a consequence of its characterization as an adhesive HLR category (for
more detail see [4]). For these reasons, in this paper we have essentially used that approach to
study it in connection with our approach based on symbolic graphs.

As we have seen, our approach can be considered an abstract version of [7], since we work at
the specification level, rather than dealing directly with algebras to define the attributes. How-
ever, as we have shown, it has more expressive power than [7] for the definition of graph trans-
formation rules. In addition to the expressive power, using symbolic attributed graphs has some
other advantages. For instance, in [15] working with symbolic attributed graphs makes simple
certain kinds of operations defined on transformation rules. For example, this is the case of the
operation that, given two transformation rulesr1 andr2, wherer1 is a subrule ofr2, yields a rule
r3 that computes the remainder ofr2 with respect tor1, i.e. what has not been computed byr1

but is computed byr2. In particular, when working with symbolic graphs the attribute conditions
of r3 are just a simple combination of the attribute conditions ofr1 andr2. However, if we would
have worked with attributed graphs, computing the attributes forr3 may involve some complex
equation solving.

Moreover, we think that there are further aspects related to symbolic graph transformations

Volume X (2010)

42

Symbolic Attributed Graphs

that deserve some further study. In particular, Using logical conditions to specify the attributes
of a graph, may allow us to postpone finding the solution to attribute constraints when making
graph transformation. This can make attributed graph transformation more efficient. In addition,
a generalization of this idea would allow us to define a certain form of narrowing that may be
useful in connection to some kind of problems.

Bibliography

[1] M. Berthold, I. Fischer, M.Koch: Attributed Graph Transformation with Partial Attribution.
Technical Report 2000-2 (2000).

[2] H. Ehrig: Attributed Graphs and Typing: Relationship between Different Representations.
Bulletin of the EATCS82: 175-190 (2004)

[3] H. Ehrig, A. Habel: Graph Grammars with Application Conditions. InThe Book of L(Grze-
gorz Rozenberg and Arto Salomaa, Eds.), Springer (1986), 87–100.

[4] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, Gabriele Taentzer:Fundamentals of Alge-
braic Graph Transformation, Springer (2006).

[5] Hartmut Ehrig, Annegret Habel, Julia Padberg, Ulrike Prange: Adhesive High-Level Re-
placement Categories and Systems. InGraph Transformations, Second International Con-
ference, ICGT 2004. Springer Lecture Notes in Computer Science 3256 (2004),144-160.

[6] H. Ehrig, B. Mahr:Fundamentals of Algebraic Specifications 1: Equations and Initial Se-
mantics. Vol. 6 of EATCS Monographs on Theoretical Computer Science. Springer, 1985.

[7] H. Ehrig, U. Prange, G. Taentzer: Fundamental Theory for Typed Attributed Graph
Transformation. InGraph Transformations, Second International Conference, ICGT 2004.
Springer Lecture Notes in Computer Science 3256 (2004), 161-177.

[8] Esther Guerra, Juan de Lara, Fernando Orejas: Pattern-Based Model-to-Model Transfor-
mation: Handling Attribute Conditions. InTheory and Practice of Model Transformations,
Second International Conference, ICMT 2009, Richard F. Paige (Ed.), Springer Lecture
Notes in Computer Science 5563 (2009), pp. 83–99.

[9] A. Habel, R. Heckel, G. Taentzer: Graph Grammars with Negative Application Conditions.
Fundam. Inform. 26(3/4): 287–313 (1996).

[10] R. Heckel, J. Küster, G. Taentzer: Towards Automatic Translation of UML Models into
Semantic Domains. In Proc.APPLIGRAPH Workshop on Applied Graph Transformation
2002, pp. 11–22.

[11] J. Jaffar, M. Maher, K. Marriot, and P. Stukey. The semantics of constraint logic programs.
The Journal of Logic Programming, (37):1–46, 1998.

Proc. GMT 2010

43

ECEASST

[12] M. Löwe, M. Korff, A. Wagner: An Algebraic Framework for the Transformation of At-
tributed Graphs. InTerm Graph Rewriting: Theory and Practice. John Wiley and Sons Ltd.
(1993) 185199.

[13] S. Lack, P. Sobocinski: Adhesive Categories. InFoundations of Software Science and
Computation Structures, 7th International Conference, FOSSACS 2004(Igor Walukiewicz,
Ed.), Springer Lecture Notes in Computer Science 2987 (2004), 273–288.

[14] P. Lucio, F. Orejas, E. Pasarella and E. Pino. A Functorial Framework for Constraint Nor-
mal Logic Programming. InAlgebra, Meaning, and Computation, Essays Dedicated to
Joseph A. Goguen on the Occasion of His 65th Birthday, Kokichi Futatsugi, Jean-Pierre
Jouannaud, José Meseguer (Eds.), Springer-Verlag Lecture Notes in Computer Science
4060 (2006), 555–577.

[15] M. Naeem, R. Heckel, F. Orejas, F. Hermann, Incremental Service Composition based on
Partial Matching of Visual Contracts. Accepted FASE 2010.

[16] F. Orejas: Attributed Graph Constraints. InGraph Transformations, 4th International
Conference, ICGT 2008(Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, Gabriele
TaentzerEds.), Springer Lecture Notes in Computer Science 5214 (2008): 274–288

[17] F. Orejas: Attributed Graph Constraints for Attributed Graph Transformation. Submitted,
2009.

[18] Rozenberg, G. (ed.):Handbook of Graph Grammars and Computing by Graph Transfor-
mation, Vol 1 Foundations, World Scientific, 1997.

Volume X (2010)

44

Symbolic Attributed Graphs

Appendix

In this appendix we provide the detailed proofs of the results presented in the paper. In some
cases these proofs need some auxiliary results which are also included.

Proposition 5 M-morphisms inSymbGraphsD are closed under isomorphism, composition
and decomposition

Proof. Let us first prove that isomorphisms inSymbGraphsD are M-morphisms. Leth : 〈G,Φ〉→
〈G′,Φ′〉 be an isomorphism. On one hand, this means that all its components are bijections,
i.e. hL is a bijection. On the other hand, it also means that there is another isomorphism
g : 〈G′,Φ′〉 → 〈G,Φ〉 such thatg◦h andh◦g are identities. But, then, we haveD |= Φ′⇒ h(Φ)
andD |= Φ⇒ g(Φ′) but, sincehL andgL are bijections (i.e. bijective variable renamings) we
have thatD |= Φ′⇔ h(Φ).

The fact that isomorphisms are M-morphism means that, if we prove that M-morphisms are
closed under composition, then M-morphisms would also be closed under isomorphism. So,
let us see that M-morphisms are closed under composition. Letg : 〈G,Φ〉 → 〈G′,Φ′〉 andh :
〈G′,Φ′〉→ 〈G′′,Φ′′〉 be two M-morphisms. Obviouslyh◦g is a monomorphism and also(h◦g)L

is a bijection. Moreover, ifD |= Φ′⇔ g(Φ) andD |= Φ′′⇔ h(Φ′) thenD |= Φ′′⇔ h(g(Φ)).
Finally, let us see that M-morphisms are closed under decomposition. Letg : 〈G,Φ〉→ 〈G′,Φ′〉

andh : 〈G′,Φ′〉 → 〈G′′,Φ′′〉 be two monomorphisms whereh andh◦g are M-morphisms. Obvi-
ously, this implies thatg is a monomorphism and thatgL is a bijection. Moreover, ifD |= Φ′′⇔
h(Φ′) andD |= Φ′′ ⇔ h(g(Φ)), since bothhL and (h◦ g)L are bijections then this means that
the three formulasΦ,Φ′ andΦ′′ are equivalent modulo the corresponding variable renamings.
Therefore,D |= Φ′⇔ g(Φ).

Before proving Proposition1 we will present to auxiliary results characterizing pushouts and
pullbacks inSymbGraphsD.

Proposition 6 Diagram(1) below is a pushout if and only if diagram(2) is also a pushout and
SPD |= Φ3⇔ (g1(Φ1)∧g2(Φ2)).

〈G0,Φ0〉

(1)

h1 //

h2

��

〈G1,Φ1〉

g1

��

G0
h1 //

(2)h2

��

G1

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉 G2 g2
// G3

Proof. If diagram(1) is a pushout then we have to prove that if

G0
h1 //

h2

��

G1

g′1
��

G2
g′2

// G′3

Proc. GMT 2010

45

ECEASST

commutes then there is a unique morphismh : G3→G′3 satisfying thath◦g1 = g′1 andh◦g2 = g′2.
Now, if this diagram commutes then it will also commute the following diagram:

〈G0,Φ0〉
h1 //

h2

��

〈G1,Φ1〉

g′1
��

〈G2,Φ2〉
g′2

// 〈G′3,{false}〉

But this means that there is a unique morphismh : 〈G3,Φ3〉 → 〈G3,{false}〉 satisfying thath◦
g1 = g′1 andh◦g2 = g′2. Moreover, ifh′ : G3→G′3 is another morphism satisfying thath′ ◦g1 =
g′1 and h′ ◦ g2 = g′2. Thenh′ : 〈G3,Φ3〉 → 〈G3,{false}〉 would also be a morphism such that
h′ ◦g1 = g′1 andh′ ◦g2 = g′2, and the uniqueness ofh in SymbGraphsD would imply h = h′ in
E−Graphs.

Conversely, if diagram(2) is a pushout then we have that

〈G0,Φ0〉
h1 //

h2

��

〈G1,Φ1〉

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉

whereΦ3 = (g1(Φ1)∧ g2(Φ2)), is a commuting diagram inSymbGraphsD, since(g1(Φ1)∧
g2(Φ2))⇒ g1(Φ1) and(g1(Φ1)∧g2(Φ2))⇒ g1(Φ1) are tautologies. Moreover, we know that if

〈G0,Φ0〉
h1 //

h2

��

〈G1,Φ1〉

g′1
��

〈G2,Φ2〉
g′2

// 〈G′3,Φ′3〉

commutes then there is a unique morphismh : G3→G′3 satisfying thath◦g1 = g′1 andh◦g2 = g′2.
But this means thath : 〈G3,Φ3〉 → 〈G′3,Φ′3〉 is a morphism, since ifD |= Φ′3⇒ g′1(Φ1) andD |=
Φ′3⇒ g′2(Φ2) thenD |= (Φ′3)⇒ (g′1(Φ1)∧g′2(Φ2)). But we know thatg′1(Φ1)∧g′2(Φ2) = (h◦
g1)(Φ1)∧ (h◦g2)(Φ2) = h(g1(Φ1)∧g2(Φ2)) = h(Φ3) and this means thatD |= (Φ′3)⇒ h(Φ3).
Finally, if h′ : 〈G3,Φ3〉 → 〈G3,Φ′3〉 is a morphism satisfying thath′ ◦ g1 = g′1 andh′ ◦g2 = g′2
then, by the uniqueness ofh in E−Graphs, we have thath = h′.

Pullbacks inSymbGraphsD can be characterized similarly. However, the proposition below
seems to be stated slightly more restrictively than Proposition6. In particular, we require that
the the variables (labels) inG0 are disjoint with the variables inG1 and G2. The reason for
this condition is that it simplifies substantially the proposition and its proof. However, it must be
noted that this condition is not really a restriction. The reason is that two attributed graphs〈G,Φ〉
and 〈G′,Φ′〉 are isomorphic if〈G′,Φ′〉 can be obtained from〈G,Φ〉 by a variable renaming.
Therefore, if needed, to define the pullback of some attributed graphs we can, first, rename the
variables involved and, then, use the results below.

Volume X (2010)

46

Symbolic Attributed Graphs

Proposition 7 If LG0 is disjoint from LG1∪LG2 then diagram(1) below is a pullback if and only
if SPD |= Φ0⇔

(

∃LG1(Φ1∧eq(h1))∨∃LG2(Φ2∧eq(h2))
)

and diagram(2) is also a pullback,
where∃LGi denotes an existential quantification over the variables in LGi and eq(hi) denotes the
conjunction of equalities

∧

x0∈LG0
x0 = hi(x0)

2.

〈G0,Φ0〉

(1)

h1 //

h2

��

〈G1,Φ1〉

g1

��

G0
h1 //

(2)h2

��

G1

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉 G2 g2
// G3

Proof. The proof is similar to the proof of Proposition6. First, assuming that diagram(1) is a
pullback, we have to prove that if

G′0
h′1 //

h′2
��

G1

g1

��
G2 g2

// G3

commutes then there is a unique morphismh : G′0→G0 satisfying thath1◦h= h′1 andh2◦h= h′2.
Now, if this diagram commutes then it will also commute the following diagram:

〈G′0,{true}〉
h′1 //

h′2
��

〈G1,Φ1〉

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉

But this means that there is a unique morphismh : 〈G′0,{true}〉 → 〈G0,Φ0〉 satisfying thath1 ◦
h = h′1 andh2 ◦h = h′2. Moreover, ifh′ : G′0→ G0 is another morphism satisfying thath1 ◦h =
h′1 and h2 ◦ h = h′2. Thenh′ : 〈G′0,{true}〉 → 〈G0,Φ0〉 would also be a morphism such that
h1 ◦h′ = h′1 andh2 ◦h′ = h′2, and the uniqueness ofh in SymbGraphsD would imply h = h′ in
E−Graphs.

Conversely, if diagram(2) is a pullback, then we can prove thathi : 〈G0,Φ0〉→ 〈Gi ,Φi〉, for i ∈
{1,2}, are morphisms inSymbGraphsD. In particular, we have to prove thatD |= Φi⇒ hi(Φ0),
for eachi ∈ {1,2}. Let us suppose thatσ1 : LG1 → D is a substitution for the variables inLG1

such thatD |= σ(Φ1). We have to show thatD |= σ(h(Φ0)) or, equivalently, thatD |= σ0(Φ0),
whereσ0 = σ1 ◦h1. In particular, it is enough to prove thatD |= σ0(∃LG1(Φ1∧ eq(h1)))), but
this is equivalent to prove that there is a substitutionσ ′1 : LG1 → D for the variables inLG1 such
thatD |= σ ′1(σ0(Φ1∧eq(h1)))). Notice thatσ ′1(σ0(Φ1∧eq(h1)))) = σ ′1(Φ1)∧σ ′1(σ0(eq(h1)))),
sinceΦ1 does not involve any variable fromLG0. Now, if we takeσ ′1 = σ1, we have, on one
hand, thatD |= σ(Φ1) by assumption. On the other hand, ifx0 is a variable inLG0 then, by
definition, σ0(x0) = σ1 ◦h1(x0) = σ1(h1(x0)), which means thatD |= σ1(σ0(x0 = h1(x0))), for
everyx0 ∈ LG0, and thereforeD |= σ1(σ0(eq(h1))). As a consequence,D |= σ1(hi(Φ0)), for each
i ∈ {1,2}. This means that the diagram:

2 Notice that in these equalitieshi(x0) denotes the variable inLGi which is the image ofx0 throughhi

Proc. GMT 2010

47

ECEASST

〈G0,Φ0〉
h1 //

h2

��

〈G1,Φ1〉

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉

is a commuting diagram inSymbGraphsD. Moreover, we know that if

〈G′0,Φ0〉
h′1 //

h′2
��

〈G1,Φ1〉

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉

commutes then there is a unique morphismh : G′0→ G0 satisfying thath1 ◦ h = h′1 and h2 ◦
h = h′2 in E−Graphs. But then we can prove thath : 〈G′0,Φ′0〉 → 〈G0,Φ0〉 is a morphism in
SymbGraphsD. Suppose thatσ0 : LG0→D is a substitution for the variables inG0 such thatD |=
σ0(Φ0), we have to show thatD |= σ0(h(Φ′0)). Now, if D |= σ0(∃LG1(Φ1∧eq(h1))∨∃LG2(Φ2∧
eq(h2))), thenD |= σ0(∃LG1(Φ1∧ eq(h1))) or D |= σ0(∃LG2(Φ2∧ eq(h2))). Without loss of
generality, let us assume thatD |= σ0(∃LG1(Φ1∧eq(h1))) this means that there is a substitution
σ1 : LG1 → D such thatD |= σ1(σ0(Φ1∧ eq(h1))), i.e. D |= σ1(Φ1)∧σ1(σ0(eq(h1))). Now,
sinceh′1 : 〈G′0,Φ′0〉 → 〈G1,Φ1〉 is a morphism andD |= σ1(Φ1) we have thatD |= σ1(h′1(Φ′0)).
But h1◦h = h′1 implies thatD |= σ1((h1 ◦h)(Φ′0)) or, equivalently,D |= σ ′1(h(Φ′0)), whereσ ′1 =
σ1◦h1. On the other hand, sinceD |= σ1(σ0(eq(h1))), we have that for every variablex0 ∈ LG0

we haveσ1(σ0(x0)) = σ1(σ0(h1(x0))). Moreover, sinceσ0 andσ1 are defined over disjoint sets
of variables,σ1(σ0(x0)) = σ0(σ1(h1(x0))) and, sincex0 is not inLG1, h1(x0) is not in LG0 and
σ ′1 = σ1◦h1, we haveσ0(x0) = σ ′1(x0). Therefore,D |= σ0(h(Φ′0)).

Finally, if h′ : 〈G′0,Φ′0〉 → 〈G0,Φ0〉 satisfying thath1 ◦ h = h′1 andh2 ◦ h = h′2 then, by the
uniqueness ofh in LabGraphs, we have thath = h′.

Proof of Proposition1. Direct consequence of Propositions6 and7

Before proving Proposition2, let us first prove an auxiliary property that we use in some
further proofs:

Proposition 8 If h1 : G1→G2 where LG1 and LG2 are disjoint, then D|= ∃LG2(Φ2∧eq(h2))⇒
Φ1

Proof. Let us suppose thatσ1 : LG1 → D is a substitution for the variables inG1 such thatD |=
σ1(∃LG2(Φ2∧eq(h2))), then we have to show thatD |= σ1(Φ1).

If D |= σ1(∃LG2(Φ2∧eq(h2))) thenD |= ∃LG2(Φ2∧σ1(eq(h2))), sinceΦ2 includes no vari-
ables fromLG1. But this is equivalent toD |= σ2(∃(LG2 \L′2)(Φ2)), whereL′2 = {h2(x1) | x1 ∈
LG1} and σ2 : L′2→ D is defined as follows : for everyx1 ∈ LG1 : σ2(h2(x1)) = σ1(x1), i.e.
σ2 ◦h2 = σ1. It must be noticed that the definition ofσ2 is correct, even ifh2 is not necessarily
injective. The reason is that, if we have thath2(x1) = x2 = h2(x′1), for x1,x′1 ∈ LG1 andx2 ∈ LG2

Volume X (2010)

48

Symbolic Attributed Graphs

thenx2 = x1 andx2 = x′1 arepart ofeq(h2). But we are assuming thatD |= σ1(eq(h2))) implying
σ1(x1) = σ1(x′1).

Now, if D |= σ2(∃(LG2 \L′2)(Φ2)), this means that there exists a substitutionσ ′2 : LG2 \L′2→D
such thatD |= σ2(σ ′2(Φ2)). We know thatg2 is an M-morphism, which means thatD |= Φ2⇔Φ3,
and we also know thatD |= Φ3⇒ h2(Φ1) sinceg1 is a morphism and(h2)L = (g1)L. Therefore,
we have thatD |= σ2(σ ′2(h2(Φ1))), which is equivalent toD |= σ2(h2(Φ1)), because inh2(Φ1)
there are no variables inLG2 \L′2. But this impliesD |= σ1(Φ1) since, by definition,σ2 ◦h2 =
σ1.

Proof of Proposition2. If the diagram below is a pushout,

〈G0,Φ0〉
h1 //

h2

��

〈G1,Φ1〉

g1

��
〈G2,Φ2〉 g2

// 〈G3,Φ3〉

then we have to prove thatD |= g#
2(Φ2)⇔ (g#

1(Φ1)∧g#
2(Φ2)). Trivially, D |= g#

2(Φ2)⇐ (g#
1(Φ1)∧

g#
2(Φ2)), therefore we only have to prove thatD |= g#

2(Φ2)⇒ (g#
1(Φ1)∧g#

2(Φ2)), or equivalently
thatD |= g#

2(Φ2)⇒ g#
1(Φ1) andD |= g#

2(Φ2)⇒ g#
2(Φ2). The second implication is again trivial,

so let us prove the first one. Sinceh2 is a morphism, we know thatD |= Φ2⇒ h#
2(Φ0). This

means thatD |= g#
2(Φ2)⇒ g#

2(h
#
2(Φ0)). On the other hand, sinceh1 is an M-morphism, we have

D |= h#
1(Φ0)⇔ Φ1 and, thus,D |= g#

1(h
#
1(Φ0))⇔ g#

1(Φ1). But, since the diagram commutes,
g#

1(h
#
1(Φ0)) = g#

2(h
#
2(Φ0)) implying D |= g#

2(Φ2)⇒ g#
1(Φ1).

Let us suppose that the diagram above is a pullback and, without loss of generality, that the
variables inLG1 are disjoint from the variables inLG2. First we must notice that (for an ade-
quate choice ofLG0 andh1) we have thatLG0 = LG1 and(h1)L is the identity, since pullbacks
in E−Graphs preserve monos. Therefore we have to show thatD |= Φ1⇔ Φ1∨ (∃LG2(Φ2∧
eq(h2))), since∃L′G1

(Φ1 ∧
∧

x1∈LG1
x1 = x′1) is logically equivalent toΦ1, whereL′G1

is a re-
naming apart of the variables inLG1 and x′1 is the corresponding renaming ofx1. Now, the
implication D |= Φ1 ⇒ Φ1 ∨ (∃LG2(Φ2 ∧ eq(h2))) is trivial, therefore we just have to prove
D |= Φ1⇐ Φ1∨ (∃LG2(Φ2∧ eq(h2))). Obviously,D |= Φ1⇐ Φ1, therefore we have to show
D |= Φ1⇐∃LG2(Φ2∧eq(h2)). But this is shown in Proposition8.

Before proving Theorem2, let us characterize van Kampen squares inSymbGraphsD.

Proposition 9 Let us assume that h1 in the diagram below is an M-morphism, then this diagram
is a van Kampen square:

Proc. GMT 2010

49

ECEASST

〈G′0,Φ′0〉
h′1

ttiiiiiiiiiiiiiiiiiiii

h′2

%%K
KKKKKKKKK

f0

��

〈G′1,Φ′1〉
g′1

%%K
KKKKKKKKK

f1

��

〈G′2,Φ′2〉

f2

��

g′2

ttiiiiiiiiiiiiiiiiiiii

〈G′3,Φ′3〉

f3

��

〈G0,Φ0〉

h1
ttiiiiiiiiiiiiiiiiiiii

h2 %%L
LLLLLLLLL

〈G1,Φ1〉

g1
%%L

LLLLLLLLL
〈G2,Φ2〉

g2
ttiiiiiiiiiiiiiiiiiiii

〈G3,Φ3〉

if and only if the diagram below is also a van Kampen square.

G′0
h′1

wwooooooooooooooo

h′2

��@
@

@
@

@
@

@

f0

��

G′1
g′1

��@
@

@
@

@
@

@

f1

��

G′2

f2

��

g′2

wwooooooooooooooo

G′3

f3

��

G0

h1
wwnnnnnnnnnnnnnnn

h2 A
A

A
A

A
A

A
A

G1

g1
 B

B
B

B
B

B
B

B
G2

g2
vvnnnnnnnnnnnnnnn

G3

Proof. If the first diagram is a van Kampen square then the second diagram is also a van Kampen
square, as a consequence of Propositions6 and7.

Conversely, suppose that the diagram inE−Graphs is a van Kampen square, then we have
two prove that if, in the diagram inSymbGraphsD, the square at the bottom is a pushout and the
backfaces are pullbacks then the square at the top is a pushout if and only if the front faces are
pullbacks. So, let us assume that the square at the top is a pushout.

By Proposition5, we know thatg2,h′1 andg′2 areM-morphisms, therefore we may assume
without loss of generality thatLG0 = LG1, LG′0

= LG′1
, LG2 = LG3, andLG′2

= LG′3
and that(h1)L,

(g2)L, (h′1)L, and(g′2)L are the identity. Moreover, to avoid name conflicts, let us assume that,
otherwise, the sets of variables used as labels in the graphs are pairwise disjoint (if necessary,
they may be renamed apart). In addition, we also know thatD |= Φ0⇔ Φ1, D |= Φ2⇔ Φ3,
D |= Φ′0 ⇔ Φ′1, andD |= Φ′2 ⇔ Φ′3. Now we have to prove that the front faces of the first
diagram are pullbacks and, according to Proposition7, this is equivalent to showing that:

a) D |= Φ′1⇔
(

∃LG1(Φ1∧eq(f1))∨∃LG′3
(Φ′3∧eq(g′1))

)

and

Volume X (2010)

50

Symbolic Attributed Graphs

b) D |= Φ′2⇔
(

∃LG2(Φ2∧eq(f2))∨∃LG′3
(Φ′3∧eq(g′2))

)

a) We know thatD |= Φ′1 is equivalent toD |= Φ′0. Moreover, since the back squares are pull-
backs, we haveD |= Φ′0⇔

(

∃LG0(Φ1∧ eq(f0))∨∃LG′2
(Φ′3∧ eq(h′2))

)

. But we are assuming
thath1 andg′2 are M-morphisms and this means that

(

∃LG0(Φ1∧eq(f0))∨∃LG′2
(Φ′3∧eq(h′2))

)

and
(

∃LG1(Φ1∧ eq(f1))∨∃LG′3
(Φ′3∧ eq(g′1))

)

are the same formula. Therefore, we have that
D |= Φ′1⇔

(

∃LG1(Φ1∧eq(f1))∨∃LG′3
(Φ′3∧eq(g′1))

)

.
b) First of all, we may notice that∃LG′3

(Φ′3∧ eq(g′2))
)

is logically equivalent toΦ′3, sinceg′2
is an M-morphism. Moreover, for the same reason, we know thatD |= Φ′2⇔ Φ′3. Therefore,
we have to prove thatD |= Φ′2⇔

(

∃LG2(Φ2∧ eq(f2))∨Φ′2
)

. But this is equivalent to prove
D |= Φ′2⇐∃LG2(Φ2∧eq(f2)), and this is proved in Proposition8.

Now, suppose that the front faces of the above diagram inSymbGraphsD are pullbacks, let us
prove that the square at the top is a pushout. This means provingD |= Φ′3⇔ (g′#1 (Φ′1)∧g′#2 (Φ′2)).
Again, by By Proposition5, we know thatg2,h′1 andg′2 areM-morphisms, therefore we know
that D |= Φ0⇔ Φ1, D |= Φ2⇔ Φ3, D |= Φ′0⇔ Φ′1, andD |= Φ′2⇔ Φ′3, and we may assume
without loss of generality thatLG0 = LG1, LG′0

= LG′1
, LG2 = LG3, andLG′2

= LG′3
and that(h1)L,

(g2)L, (h′1)L, and(g′2)L are the identity. Also, as above, we assume that, otherwise, the sets of
variables used as labels in the graphs are pairwise disjoint.

Hence, we have to prove thatD |= Φ′3⇔ (g′#1 (Φ′1)∧Φ′3), and this means provingD |= Φ′3⇒
g′#1 (Φ′1), but this is a consequence of the fact thatg′1 is a morphism inSymbGraphsD.

Proof of Theorem2. Direct consequence of Propositions5, 1, 2, and9.

Proof of Proposition3.

1. If SG= 〈G,Φ〉 is grounded, by definition we know that Sem(SG) is not empty, since
Φ is satisfiable inD. Moreover, IfAG1,AG2 ∈ Sem(〈G,Φ〉) then this means that there
are substitutionsσ ,σ ′ : LG→ D such thatD |= σ(Φ) andD |= σ ′(Φ). But if 〈G,Φ〉 is
grounded this means thatLG = {xv | v∈D} and for eachv∈D: σ(xv) = v andσ ′(xv) = v.
But this implies thatσ = σ ′ and thereforeAG1 = AG2.

2. Let SG= 〈G,Φ〉 be a grounded graph and letSG′ = 〈G′,Φ′〉 be isomorphic toSG. This
means that there is an E-graph isomorphismh : G→ G′ such thatD |= Φ⇔ h(Φ′). But
this implies thathL : LG→ LG′ is a bijection and ifσ ′ : LG′ →D is a substitution such that
D |= σ ′(Φ′) thenσ ′ ◦h : LG→ D is a substitution such thatD |= σ ′ ◦h(Φ) impliying that
for everyv∈ D σ ′ ◦h(xv) = v. Therefore, if for everyv∈ D we callyv the variableh(xv)
then we have that, for eachv∈D, σ ′(yv) = v, which means thatSG′ is grounded.

3. Let AG= 〈G,D〉 be an attributed graph and letXD be a set of variables consisting of a
variablexv for eachv∈D. We defineGSG(AG) = 〈G′,ΦAG as follows:

• G′= f ∗(G), wheref : D→XD is a substitution defined for everyv∈D as f (v) = xv.

• ΦAG = {xv = v | v∈ D}.

Proc. GMT 2010

51

ECEASST

Now, it should be obvious that, by construction,GSG(AG) is grounded and, moreover,
AG∈ Sem(GSG(AG)).

Now, suppose thatSG0 = 〈G0,Φ0〉 is a symbolic graph such thatAG= 〈G,D〉 ∈Sem(SG).
Let us prove thatSGandGSG(AG) = 〈G′,ΦAG〉 are isomorphic. First of all, we know that
G = σ ∗0(G0) for a substitutionσ0 such thatD |= σ0(Φ0). But, sinceSG0 is grounded,σ ∗0
is an isomorphism. For similar reasons, we know thatf ∗ : G→G′ is also an isomorphism
therefore f ∗ ◦ σ ∗0 : G0→ G′ is an E-graph isomorphism. Finally, it is easy to see that
D |= Φ⇔ f ◦σ0(Φ0). In particular, ifσ is a substitution such thatD |= σ(Φ) we have to
prove thatD |= σ ◦ f ◦σ0(Φ0) or, equivalently, thatσ ◦ f ◦σ0 = σ0. But this is obvious
since, on one hand, by construction,v∈ D: f (v) = xv, and, on the other we know that for
everyv∈D: σ(xv) = v, which means thatf = σ−1. Conversely, ifσ is a substitution such
thatD |= σ ◦ f ◦σ0(Φ0) we can prove similarly that this implies thatD |= σ(Φ).

Proof of Proposition4. First, we will show that GSG can be extended to a functor and, then,
that GSG is full, faithful and essentially surjective. Letf : 〈G1,D〉 → 〈G2,D〉 be an attributed
graph morphism. SinceD is finitely generated,falg is the identity andfgraph is an E-graph
morphism. Hence, iff : D→XD is a substitution defined for everyv ∈ D as f (v) = xv, and
Φ = {xv = v | v∈D} we know thatGSG(〈G1,D〉) = 〈 f (G1),Φ〉 to GSG(〈G2,D〉) = 〈 f (G2),Φ〉.
We defineGSG(f) as follows:

• For everyx∈ {VG,EG,ENL,EEL}: GSG(f)x = fx.

• GSG(f)L is the identity.

Then, it is routine to prove thatGSG(f) is indeed a symbolic graph morphism.
To prove thatGSG is full, we have to show that ifAG1 = 〈G1,D〉 and AG2 = 〈G2,D〉 are

two attributed graphs andh : GSG(AG1)→GSG(AG2) is a symbolic graph morphism then there
exists an attributed graph morphismf : AG1→ AG2 such thatGSG(f) = h. But it is enough to
define f as follows:

• For everyx∈ {VG,EG,ENL,EEL}: fx = hx.

• falg (and, therefore,fL is the identity.

To prove thatGSGis faithful we have to show thatGSGis injective on morphisms, but this is
straightforward by construction. Finally, to prove thatGSGis essentially surjective, we have to
show that for every grounded graphSGthere is another grounded graphSG′, which isomorphic
to SG, and an attributed graphAG such thatGSG(AG) = SG′. But by Prop3 we know that
Sem(SG) is not empty and that ifAG∈ Sem(SG) satisfies thatGSG(AG) = SG.

Proof of Theorem3. Let us assume thatAL = 〈L,TSP|Σ〉,AK = 〈K,TSP|Σ〉,AR= 〈R,TSP|Σ〉), and
r ′ = 〈L′ ←֓ K′ →֒ R′,Φ′〉, and let us consider the following diagram inE−Graphs:

Volume X (2010)

52

Symbolic Attributed Graphs

L′

(3)f ∗−1
L

��

K′

(4)

? _oo � � //

f ∗−1
K

��

R′

f ∗−1
R

��
L

(5)m
��

K

(6)

? _oo � � //

��

R

��
G

(7)g∗L
��

I

(8)

? _

h1

oo � �

h2

//

g∗K
��

H

g∗R
��

G′ I ′? _

h′1

oo � �

h′2

// H ′

where(5) and (6) are the pushouts defining the application ofr to AG with matchm, 〈G′,Ψ〉 =
GSG(AG),〈I ′,Ψ〉 = GSG(〈I ,TSP|Σ〉), 〈H ′,Ψ〉 = GSG(〈H,TSP|Σ〉), g∗L,g

∗
K ,g∗R are, respectively,

the isomorphisms relatingG, I ,H with G′, I ′,H ′, and finally the morphismsh′i , for i = 1,2 are
defined as follows. For every elemente∈ I ′ which is not a label,h′i(e) = hi(e), and for every
label e, h′i(e) = e. It is routine to see that, by definition ofGSGand as a consequence of the
fact thath1 andh2 are M-morphisms,h′1 andh′2 are morphisms and, moreover, diagrams (7) and
(8) not only commute but are pushouts. Therefore, since we know that diagrams (3) and (4) are
pushouts, then diagrams (3)+(5)+(7) and (4)+(6)+(8) are also pushouts. Therefore, if we define
m′ = g∗L ◦m◦ f ∗−1

L and we show thatm′ is a morphism inSymbGraphsD the first part of the
theorem will be proved. Therefore, we have to prove thatD |= Ψ⇒m′(Φ′).

We now that

Φ′ = Φ∪{ya = t | ya ∈Y∧ch(a) = t} andΨ = {xv = v | v∈ D}

We also know that the only substitutionσ such thatD |= σ(Ψ) is defined∀v ∈ D : σ(xv) =
v. Therefore, we have to show thatD |= σ(m′(Φ′)) or, equivalently,D |= σ(m′(Φ)) andD |=
σ(m′({ye = t | ye ∈ Y∧ ch(e) = t})). Finally, by definition, on the one hand, we have that for
everya∈ TSP|Σ we havem′(ya) = xv, wherem(a) = v, which means thatσ(m′(ya)) = m(a), and
on the other, for eachx∈ X, σ(m′(x)) = m(x).

Now, let t1 = t2 be an equation inΦ. Sincemalg is aΣ-homomorphism andTSP satisfies this
equation, we have thatD |= m(t1) = m(t2), implying D |= σ(m′(t1)) = σ(m′(t2)).

Let ya = t andch(a) = t. Then, on the one hand, we have thatσ(m′(ya)) = m(a) and, on the
other, sincech(a) = t we have that ina= |t|, implying σ(m′(t)) = m(a). Therefore,σ(m′(ya)) =
σ(m′(t)).

The proof of the second part of the theorem is similar to the proof of the first part. We only
have to consider the diagram below:

Proc. GMT 2010

53

ECEASST

L

(1)f ∗L
��

K

(2)

? _oo � � //

f ∗K
��

R

f ∗R
��

L′

(9)m′

��

K′

(10)

? _oo � � //

��

R′

��
G′

(11)g∗−1
L

��

I ′

(12)

? _

h′1

oo � �

h′2

//

g∗−1
K

��

H ′

g∗−1
R

��
G I?

_

h1

oo � �

h2

// H

Volume X (2010)

54

Pre-Proceedings GraMoT 2010

55

ECEASST

Graph Modelling and Transformation: Theory meets Practice

Karsten Ehrig1 and Claudia Ermel2

1 Federal Institute for Materials Research and Testing
(Bundesanstalt für Materialprüfung), Berlin, Germany

karsten.ehrig@bam.de

2 Institut für Softwaretechnik und Theoretische Informatik
Technische Universität Berlin, Germany

claudia.ermel@tu-berlin.de

Abstract: In this paper, we focus on the role of graphs and graph transformation
for four practical application areas from software system development. We present
the typical problems in these areas and investigate how the respective systems are
modelled by graphs and graph transformation. In particular, we are interested in
the usefulness of theoretical graph transformation results and graph transformation
tools in order to solve the typical problems. Finally, we characterize concepts and
tool features which are still missing in practice to solve the presented and related
problems even better.

Keywords: graph modelling, graph transformation, graph transformation tools

1 Introduction

Graphs are one of the key concepts for modelling. Since the early days of mankind, graphs are
used to depict the relationship between two or more entities as abstractions of real world systems
and processes. The visual nature of graphs makes them an intuitive language for human beings
to think and discuss about partitioning systems into different components, and about processes
of running systems which can be drawn as related but changing system state graphs. Throughout
the history of software engineering, graph models have been used for software system design,
such as entity-relationship diagrams for databases, class diagrams for static software structure,
and the diagram types offered by the Unified Modeling Language (UML) [OMG07] to model
different static and dynamic system aspects. Yet, when it came to programming, often enough a
yawning gap opened between what the modellers meant when designing their graph models and
what the programmers encoded using standard textual programming languages, where the graph
models played the role of a rough guideline for programmers. Ambitious programming projects
resulted in failure, went over their budgets or proved to be unstable over time.

”Everything is a Model” [Béz05]: It is common knowledge today that the need for a high qual-
ity software production has to be faced from a different perspective: model-driven development
(MDD). The objective of MDD is generating code from a higher-level visual system model. This
means that, for software developers the abstraction level is now raised. No longer do they need
to worry about technical details and features of programming languages but can concentrate on

Volume X (2010)

56

mailto:karsten.ehrig@bam.de
mailto:claudia.ermel@tu-berlin.de

Graph Modelling and Transformation: Theory meets Practice

more creative parts of software engineering: analysis, design and validation, all based on models.
The MDD perspective raises the importance of graph models and calls for rigorous methods to
capture the semantics of models and their evolution over time.

”Mathematics are useful to solve real world problems” [BGL09]: In computer science, using
mathematics means using formal methods, referring to the use of a formal notation to represent
system models during software development. Typically, first a specification is written in a for-
mal notation, then refined step by step into code. Correctness of the refinement steps guarantees
that the code satisfies the specification. In some methods, developers can check correctness of
the refinement steps using a theorem prover for the method’s underlying formal logic, but other
methods remain manual because it is difficult to automate the notation used. Experience shows
that many problems in using formal methods in software development arise because the formal
notation and the problem domain are too far apart. Since any software system is situated in a par-
ticular social context, this context (domain) should be represented also in models based on formal
notations. Here, again, graph models with their visual nature are a good candidate for uniting
the domain-specific and the formal aspects of real-world problems. Domain specific languages
based on graphs use a graphical concrete syntax with adequate intuitive symbols which are ma-
nipulated to model dynamic system aspects. Thus, the system behaviour can be animated in a
domain-specific visualization to validate system properties by domain experts. Furthermore, the
fundamental notions behind graph models have been captured long ago by mathematical terms,
thus allowing for rigorous reasoning at model level with purely abstract objects and structures.

”Graph changes everywhere” [Eng00]: Real world systems evolve, and hence, formal graph
system models need to model evolution as well. Algebraic graph transformation is a formally
defined calculus based on graphs and graph transformation rules [EEPT06]. For ages, rules have
proven to be extremely useful for describing computations by local transformations. Areas like
language definition, logic, functional programming, algebraic specification, term rewriting and
expert systems have rules as key concepts. Graph transformation, also known as graph rewrit-
ing or graph reduction, combines the potential and advantages of both graphs and rules into a
single computational paradigm. For nearly 40 years, graph transformation has been studied in
a variety of approaches, motivated by application domains such as pattern recognition, seman-
tics of programming and visual modelling languages, specification of distributed systems etc.
[EEKR99, EKMR99, BTMS99].

A detailed presentation of different graph transformation approaches, is given in volume 1
of the Handbook of Graph Grammars and Computing by Graph Transformation [Roz97]. The
algebraic approach is based on pushout constructions, where pushouts are used to model the
gluing of graphs. In fact, there are two main variants of the algebraic approach, the double and
the single pushout approach. The double pushout (DPO) approach [EEPT06], is the formal basis
for visual modelling of behavioural models and model transformations considered in this arti-
cle. The DPO approach is based on category theory: a graph transformation rule is a pair of
morphisms in the category of graphs with total graph morphisms as arrows: r = (L← K→ R)
where K→ L is injective. Graph K is called gluing graph. Another graph morphism m : L→ G
models an occurrence of L in G and is called a match. Practical understanding of this is that L is
a subgraph that is matched to G, and after a match is found, the rule can be applied.

Proc. GMT 2010

57

ECEASST

A direct transformation or application of rule r to graph G is de-
fined by two pushout diagrams (see the diagram to the right). Ap-
plying the rule, m(L) is replaced with m∗(R) in graph G, leading
to the transformed graph H. A graph transformation, or, more
precisely, a graph transformation sequence, consists of zero or

L

(1)m
��

K

(2)

loo r //

��

R

m∗

��
G Doo // H

more direct transformations, written G0
∗

=⇒ Gn. A set of graph rules is called graph transfor-
mation system. A type graph defines a set of types which can be used to assign a type to the
nodes and edges of a graph. The typing itself is done by a graph morphism from the graph to the
type graph. A typed graph transformation system GT S = (T G,P) consists of a type graph TG
and a set P of typed graph rules. A (typed) graph grammar GG = (GT S,S) consists of a (typed)
graph transformation system GT S and a (typed) start graph S. The (typed) graph language L of
GG is defined by L = {G | ∃ (typed) graph transformation S ∗

=⇒ G}. The key idea of attributed
graph transformation is to model graphs with node and edge attributes, i.e. an attributed graph is
a pair AG = (G,A) of a graph G and a data type algebra A. Typed attributed graph transforma-
tion, combining process and data modelling proved to be well-suited to define and analyse visual
models and model transformations [EEPT06, MVVK05].

A variety of tools for graph transformation exist [TEG+05] to be used as transformation engine
and for analysis purposes, to reason about issues such as conflicts and dependencies of actions
as well as consistency of object structures.

In this paper we summarize a few selected case studies from recent literature which have been
modelled by graphs and graph transformation. In particular, we focus on four case studies from
different application areas: a medical information system (Section 2), a model transformation
between two different modelling notations (Section 3), a metabolic pathway analysis (Section 4),
and a self-healing system (Section 5). For each application area, we ask the following questions:

1. What are typical problems in these areas?

2. How can they be modelled by graphs or graph transformation?

3. What kind of graph transformation results can be applied to solve these problems?

4. What are missing graph modelling and transformation concepts and results?

In the evaluation (Section 6), we summarize the experiences gained from the case studies and
state what kinds of concepts and results we find still missing.

2 Case Study 1: Medical Information System

Problem
Information systems are very common nowadays in almost all common application areas of soft-
ware systems. In health care, data from different domains like admission, physical examination,
medical record archive, etc. have to be coordinated and presented to the employees. Data ma-
nipulations, like the admission of a new patient, have to be supported intuitively.

Volume X (2010)

58

Graph Modelling and Transformation: Theory meets Practice

Aim of the Model
An interactive visual application with a suitable graphical user interface shall be modelled. In-
stead of complex textual data, visual symbols shall be used to support the necessary information
system operations. Yet, the operations shall be modelled in a precise, unambiguous way.

Technique to solve the problem / realize the aim
We use typed, attributed graphs to model the abstract syntax of the information systems, and
graph transformation rules to model the operations to be performed by the clinical staff. More-
over, we combine the abstract syntax elements with concrete syntax symbols to visualize graphs
in an adequate, domain-specific way. Constraints and application conditions are used to check
the consistency of the model and the operations to be performed.

Overview of the model
Figure 1 shows icons for patients, beds, rooms, admission and discharge (from left to right) used
in our information system. In Figure 2, the current ward patient allocation diagram shows bed
icons inside the room icons to represent the number of available beds in the ward rooms. A pa-
tient icon is connected with a bed if occupied, otherwise the bed is left empty. Patients currently
not associated with a bed are shown next to the admission or discharge symbols. This requires a
user action. Dragging the female icon onto the Admission symbol evokes rule Admission (Fig-
ure 3). Applying this rule, the user can move the female patient figure to her corresponding bed,
unless there are male patients in the same room (modelled by a NAC). With a graphical rule
editor, the information system designer may define new rules and user policies according to the
needs and standards of the hospital.

Figure 1: Graphical Symbols for Medical Information System

Tool Support
Tiger2 [BEEH09] is an EMF-based generator of modeling tool environments for visual domain
specific languages. In the modelling environment, a set of EMF transformation rules called
editing rules define the editing commands of the generated visual editor, i.e. the model syntax;
on the other hand, a set of simulation rules describe a model’s operational semantics.

Figure 4 shows the abstract syntax of the case study modelled in Tiger2. A patient is asso-
ciated with a bed located in a room of the ward numbered with the attribute number of data
type String to allow for combinations of letters and numbers (e.g. ’room A15’). Node patient
is an abstract node, specialized to nodes female patient and male patient. The patient attribute
health record id of is used for unique identification of the current health record in the system

Proc. GMT 2010

59

ECEASST

Figure 2: Sample User Interface Diagram for Medical Information System

Figure 3: Sample Rule Admission

Figure 4: Abstract Syntax in Tiger2

database. One patient may acquire more than one health record ids for different admissions. The
attributes x, y, width, and height are used for icon visualization.

Related Work
While common domain specific languages like the Ecore diagram editor as part of the Graph-
ical Modeling Framework (GMF) [GMF07] and class and activity diagram editors as part of

Volume X (2010)

60

Graph Modelling and Transformation: Theory meets Practice

UML2Tools [Fou09] are already part of the common Eclipse plug-in packages, more sophisti-
cated domain specific language editors are rarely to find.

Starting with an EMF domain model GMF provides a code generation facility for a graphical
editor with basic editor operations for inserting graphical objects and links between them. Apart
from GMF [GMF07], also the TOPCASED modeler generator of the OPENEMBEDD [Ope09]
MDE platform provides graphical patterns for common parts of user specific EMF domain mod-
els and thus allows to easily create a basic graphical editor.

Unsolved Problems
Multi-view graphical editors need a more flexible and user friendly way to define domain spe-
cific editor environments including editor operations, simulation and model transformation tools.
These requirements can be more adequately fulfilled by graph transformation tools [Tae06] pro-
viding a graphical way to define complex operations for editing, simulation, and model transfor-
mation of domain specific languages based on a well-defined theoretical background [EEPT06].
Up to now, a comprehensive generation framework combining graph transformation and EMF-
based meta-modeling for visual environment generation has not yet been implemented.

3 Case Study 2: Business Process Model Transformation

Problem
The Business Process Modelling Notation (BPMN) [Whi04] is a graph-oriented language in
which control and action nodes can be connected almost arbitrarily. It defines a Business Pro-
cess Diagram (BPD), which is a kind of flowchart incorporating constructs tailored to business
process modelling, such as AND-split, AND-join, XOR-split, XOR-join. It is supported by var-
ious modelling tools but so far no systems can directly execute BPMN models. The Business
Process Execution Language for Web Services (BPEL) [IBM03], on the other hand, is a mainly
block-structured language. BPEL is emerging as a de-facto standard for implementing busi-
ness processes on top of web services technology. Numerous platforms support the execution of
BPEL processes.

Aim of the Model
The aim of this case study is to define the BPMN2BPEL model transformation at an adequate
abstraction level. A challenge in formalizing the particular model transformation is the transla-
tion of BPMN And and Xor constructs to the corresponding BPEL language elements Flow and
Switch. Translating those constructs with ordinary graph transformation rules requires a complex
control structure for guidance. We aim for an intuitive, visual description of the model transfor-
mation where arbitrary many branches of And and Xor constructs can be treated in parallel.

Technique to solve the problem / realize the aim
We use typed, attributed graph transformation based on an integrated type graph T GI . This type
graph consists of the type graphs for the source and target language, and, additionally, reference
nodes with arcs mapping source elements to target elements. We express model transformations
directly by T GI-typed graph transformation rules L←K→R where L basically represents source

Proc. GMT 2010

61

ECEASST

model elements, and R represents the corresponding generated target model elements. The model
transformation starts with graph GS typed over T GS. As T GS is a subgraph of T GI , GS is
also typed over T GI . During the model transformation process, the intermediate graphs GS =
G1, ..,Gnare all T GI-typed. To delete all items in Gn

which are not typed over T GT we can construct
a restriction (a pullback in the category Graphs),
which deletes all those items in one step.

T GS
� � incS // T GI T GT? _

incToo

GS

typeGS

OO

r1 +3 ... rn +3 Gn

typeGn

OO

GT

typeGT

OO

oo

In addition to normal graph transformation rules, we also use rule schemes to express par-
allel transformation of arbitrary many similar model element patterns. The application of rule
schemes is defined by the concept of amalgamated graph transformation [BFH87].

Overview of the Model Transformation
The complete model transformation case study is described in [BE09]. The type graph integrat-
ing the BPMN source model (left-hand part), the reference part connecting source and target
model (the node type F2ARef and its adjacent edge types bpmn and bpel), and the BPEL target
model (right-hand part) is shown in Figure 5.

Figure 5: BPMN2BPEL type graph

As an example we consider a BPMN diagram which models a person’s interaction with an
ATM (see Figure 6 where the concrete and abstract syntax of the diagram are depicted). In
the upper part, the ATM machine accepts and holds the card of the person while simultaneously
contacting the bank for the account information. (The language elements AndSplit and AndJoin are
used to model parallel actions.) Afterwards, the display prompts the user for the PIN. Depending
on the user’s input there are three alternative actions possible: (1) the user enters the correct PIN
and can withdraw money, (2) a wrong PIN is entered – a message is displayed, (3) the operation
is aborted – an alarm signal is given.

We give one example for a model transformation rule scheme (in abstract syntax) to translate
And constructs. All other rules and rule schemes can be found in [BE09]. An And construct
(a number of branches surrounded by an AndSplit and AndJoin element) is translated to a Flow
container node which contains a child for each branch emerging from the AndSplit. Since the
number of branches can be arbitrary, a normal graph transformation rule or any finite number of

Volume X (2010)

62

Graph Modelling and Transformation: Theory meets Practice

Figure 6: ATM machine in BPMN in concrete syntax (a) and abstract syntax (b)

rules would not be sufficient to express this situation. Therefore, we here use amalgamated graph
transformation to express parallel execution. A common subaction is modelled by the application
of a common kernel rule of all additional actions (modelled by multi rules). For example, in order
to process an And construct, the common subaction is to process one branch only. Independent of
the number of additional branches, this is the kernel action which will always happen. Hence, we
model this action by the kernel rule in the upper part of Figure 7, where one branch surrounded by
an AndSplit and AndJoin is translated to a BPEL Flow node with one child. Additional subactions
now are modelled by multi rules. Each multi rule contains the kernel rule and specifies an
additional action which is executed as many times as matches for this additional part can be
found in the host graph. The multi rule for processing And constructs is shown in the bottom
part of Figure 7. It extends the kernel rule by one more branch. Formally, the synchronization
possibilities of kernel and multi rules are defined by an interaction scheme consisting of a kernel
rule and a set of rules called multi rules such that the kernel rule is embedded in each of the multi
rules. The subrule embedding morphism from the kernel rule to the multi rule is indicated in
Figure 7 by corresponding numbers of some of the graph objects.

For applying an interaction scheme, first, a match of the kernel rule is selected. Then, multi
rule instances are constructed, one for each new match of a multi rule in the current host graph
that overlaps with the kernel match. At last, all multi rule instances are glued at their correspond-
ing kernel rule objects which leads to a new rule, the amalgamated rule. The application of the
amalgamated rule is called amalgamated graph transformation. For this case study, a theoretical
result is applied which allows us to show parallel independence of amalgamated graph transfor-
mations by analyzing the underlying multi rules. Hence, we may translate the And construct and
the Xor construct in arbitrary order. After applying our transformation rules and schemes starting
with the ATM model in Figure 6, we get the resulting integrated graph shown in Figure 8 (b).

Proc. GMT 2010

63

ECEASST

Figure 7: Interaction scheme CreateFlow

The abstract syntax of the BPEL expression is the red tree with root node Sequence. The concrete
syntax of the BPEL model corresponding to this tree is shown in Figure 8 (a).

Figure 8: ATM machine after transformation: (a) in concrete BPEL syntax, (b) in abstract syntax

Volume X (2010)

64

Graph Modelling and Transformation: Theory meets Practice

Tool Support
We implemented the case study in our tool AGG [AGG09, BEL+10], supporting the definition
of type graphs, typed attributed graph rules and constraints. AGG has been extended recently by
support for defining and applying amalgamated graph transformation. All screenshots in this sec-
tion are taken from the AGG editors for rules and interaction schemes. Moreover, AGG supports
verification of model transformations w.r.t. termination and confluence (functional behaviour).
Further graph transformation tools tuned for domain-specific model transformations are VIA-
TRA2 [BNS+05] and the Graph Rewriting and Transformation Language (GReAT) [SAL+03].

Related Work
A related model transformation approach based on graph transformation are triple graph gram-
mars (TGGs) [Sch94] which transform pairs of related models simultaneously while maintaining
their consistency. TGGs generate languages of triple graphs, consisting of a source graph GS and
a target graph GT , together with a correspondence graph GC “between” them. A triple graph is
typed by a meta-model triple which contains the source and target meta-models, and declares
the types of mappings between the elements of both languages. A triple rule tr consists of triple
graphs L = (SL←CL→ T L) and R = (SR←CR→ T R), and an injective triple graph morphism
tr = (s,c, t) : L→ R, representing a non-deleting rule which adds target elements.

Unsolved Problems
An open problem is the semantical correctness of model transformations. In order to be seman-
tically correct, a model transformation should lead to target models which behave equivalently
w.r.t. the corresponding source models. This is an important property of e.g. code generators
for behavioural models. In the case that a model is more abstract than the code, semantical
properties are defined explicitly, and it has to be shown that these properties are fulfilled by the
respective pairs of source and target models.

4 Case Study 3: Metabolic Pathway Analysis

Problem
Metabolic pathway analysis is one of the tools in biology and medicine in order to understand
chemical reaction cycles in living cells. The problem is that often, reactions are analysed at the
level of structural formulae only, thus summarising the number of atoms of certain types in a
compound without keeping track of their identity.

Aim of the Model
This case study [EHL06] aims at understanding chemical reactions at the level of individual
atoms or component molecules. In particular, we are interested in the analysis of causal depen-
dencies between biochemical reactions. Given a metabolic pathway (a sequence of reactions)
we would like to be able to trace the history of particular atoms or molecules. This is relevant,
for example, when trying to anticipate the outcome of experiments using radioactive isotopes
of such atoms. Such questions have been crucial to the detailed understanding of the nature of
reactions like the citric acid cycle.

Proc. GMT 2010

65

ECEASST

Techniques used to solve the problem / realize the aim
Biological systems and chemical reactions are characterized by their inherent concurrency, al-
lowing reactions to take place simultaneously as long as they involve different resources and to
keep track of causal dependencies and conflicts between them. Graph transformation systems
provide concurrency concepts which are suitable to be applied in this area. For modeling the
metabolic pathway, we propose a new hypergraph model for chemical compounds which refines
the classical representation in terms of structural formulae in two different ways.

• Our representation keeps track of the identity of atoms or molecular components by means
of the identities of hyperedges. In contrast, when writing down chemical reactions with
structural formulae, the identities of the reacting atoms are not explicitly represented in the
notation. In situations where several atoms of the same element are involved, this lack of
information leads to ambiguity as to where a new atom is placed in the resulting molecule.
Our graph transformation-based model allows to track atom identities by graph homomor-
phisms between the graphs representing the compounds before and after the reaction.

• Modelling atoms as hyperedges, each connected to an ordered sequence of nodes, the rela-
tive spatial orientation of different molecular components is recorded through the ordering
of the nodes connected to a hyperedge.

Using this model we are able to trace the dependencies between different steps in the reaction
based on individual atoms and their spatial arrangement.

Formally, given a ranked set of labels A = (An)n∈N, an A -labelled hypergraph (V,E,s, l)
consists of a set V of vertices, a set E of edges, a function s : E → V ∗ assigning each edge a
sequence of vertices in V , and an edge-labelling function l : E→A such that, if length(s(e)) = n
then l(e) = A for A ∈An, i.e., the rank of the labels determines the number of nodes the edge is
attached to. A morphism of hypergraphs is a pair of functions φV : V1→V2 and φE : E1→ E2 that
preserve labels and assignments of nodes, that is, l2 ◦φE = l1 and φ ∗V ◦ s1 = s2 ◦φE . A morphism
thus has to respect the atom represented by an edge and also its chemical valence (number of
bonds). Labelled hypergraphs can be considered as hierarchical graph structures. As shown by
Löwe [Löw93], pushouts can be computed elementwise for all hierarchical graph structures and
therefore the standard graph transformation approaches can be applied.

Overview of the Model
We consider as an example the citric acid cycle, a classical, but non-trivial reaction for energy
utilisation in living cells [ZPV95]. Our approach supports a molecular analysis of the cycle,
tracing the flow of individual carbon atoms based on a simulation. This cycle is a series of
chemical reactions of central importance in all living cells that utilise oxygen as part of cellular
respiration. Starting with acetyl-CoA, one of the resulting products of the chemical conversion
of carbohydrates, fats and proteins, the citric acid cycle produces fast usable energy in the form
of NADH, GTP, and FADH2 which are precursors of the well known adenosine-tri-phosphate
(ATP).

Figure 9 shows reaction 2 of the citric acid cycle. The input agent of reaction 2, citrate, has
two CH2COO− groups, one on the top and one on the bottom.To fit into the enzyme aconitase

Volume X (2010)

66

Graph Modelling and Transformation: Theory meets Practice

catalysing reaction 2 (see Figure 9), only the CH2COO− group marked with 3 is able to fit into
the enzyme due to 3-dimensional spatial relations.

COO

COO

CH2

Isocitrate

CH

COOCH
11

22

33

44

COO

COO

CH2

Citrate

CH2

COOCHO
11

22

33

44

HO

Figure 9: Reaction 2 of the citric acid cycle

In our hypergraph model, we interpret the hyperedges as atoms and the nodes as bonds
between them. The string s(e) of vertices incident to an edge e ∈ E gives the specific or-
der of the bonds to other atoms, coding also their spatial configuration, as we will see. As
ranked set of labels, we use A1 = {H, CH3,OH, . . .}, A2 = {O, CH2,S, . . .}, A3 = {CH, N, . . .},
A4 = {C, S, . . .}, . . . to denote elements of the periodic system or entire chemical groups. The
rank of a label models the valence of an atom. For instance, a carbon atom with l(e) = C always
has s(e) = v1v2v3v4, a word of length 4. Hence, we define C as a label of rank 4. For elements
with more than one possible valence (e.g. sulphur), the corresponding label can belong to several
of the sets An.
Given an organic molecule, we represent the 3-
dimensional configuration of the ligands of a C atom
as a hypergraph by relating it to D-glyceraldehyde,
one of the simplest chiral organic compounds. We
impose a numbering on the ligands of a carbon atom
such that a substitution of ligand 1 by OH, ligand
2 by CHO, ligand 3 by CH2OH, and ligand 4 by H
would result in D-glyceraldehyde.

This convention defines the spatial arrangement of the ligands unambiguously. Substitution of
ligands may change the angles between the ligands, and they often differ from the regular tetra-
hedral angle of 109◦28′, but the so called angle strain [Mos96] does not affect the uniqueness of
the molecule represented by our notation.

As an example, we give the representation of the prochiral molecule citrate as a hypergraph
(see Fig 10):

V = {v1,v2, . . . ,v6},E = {e1,e2, . . . ,e7},

s(e1) = v1,s(e2) = v1v2,s(e3) = v3,s(e4) = v2v3v4v5,s(e5) = v4,

s(e6) = v5v6,s(e7) = v6

l(e1) = COO−, l(e2) = CH2,s(e3) = OH,s(e4) = C,s(e5) = COO−,

s(e6) = CH2,s(e7) = COO−

Proc. GMT 2010

67

ECEASST

Figure 10: Structural formula (left) and hypergraph representation (right) of citrate.

Tool Support
We provide an encoding of the model in terms of attributed bipartite graphs that can be imple-
mented in the AGG system for simulation and analysis [Tae04, AGG09].

Figure 11 shows reaction 2 of the citric acid cycle (see Figure 9) modelled in AGG. The
enzyme aconitase accepts only the source agent citrate with the indicated o edge attribute order
of the 1:C atom in the left-hand side of Figure 11. In this reaction the OH group of the 1:C atom
is exchanged with the OH group of the 3:C atom. This leads to the new agent isocitrate.

Figure 11: Reaction 2 of the citric acid cycle in AGG.

Related Work
The use of graph transformation for biological systems has a long history (see [RV05]), but
early applications were mostly devoted to the field of morphogenesis. Our approach focuses on
biochemistry, a field which gained much importance in the last decades because of the growth of
biotechnology. Providing automated assistance for analyzing biochemical reactions can help in
understanding the principles which govern the processes in living cells.

Volume X (2010)

68

Graph Modelling and Transformation: Theory meets Practice

Unsolved Problems
The citric acid cycle is a very common cycle for energy utilization in living cells. However, bio-
logical systems are very complex and hard to understand, so most of the biological pathways are
still not completely understood. For analyzing more complex pathways, big computer clusters
are needed. Modelling with graph transformations might produce an overhead of data structures
for the internal representation and computation with graphs. In general, the graph transformation
problem is NP-complete. Putting several reactions together, the system might be unsolvable in a
usable time frame.

5 Case Study 4: Self-Healing Automated Traffic-Light

Problem
Self-healing (SH-)systems are characterized by an automatic discovery of system failures, and
techniques how to recover from these situations. The problem is that failures can occur at any
time during system operation. It is very important for such systems that recovery actions can
always be applied after a failure has occurred and that they always lead to a system that works
as expected.

Aim of the Model
The aim of our model is to verify that SH-systems have certain self-healing properties, so that
they are always able to fulfill the system requirements in case that a failure has occurred.

Technique to solve the problem / realize the aim
In this case study, we model SH-systems by typed attributed graph transformation systems en-
riched with graph constraints expressing their consistency w.r.t. their operational properties.
We make use of theoretical results, i.e. sufficient static conditions for self-healing properties,
deadlock-freeness and liveness of SH-systems.

Overview of the Model
The complete case study is given in [EER+10]. We model an automated Traffic Light System
(TLS). The traffic light technology is based upon electromagnetic spires buried some centime-
ters underneath the asphalt of car lanes. The spires register traffic data and send them to other
system components. The TLS is connected to cameras which record videos of the violations and
automatically send them to the center of operations. In addition to the normal behavior, we may
have failures caused by a loss of signals between a traffic light or a camera and the supervisor
component. For each of the failures there are corresponding repair actions which can be applied
after monitoring the failures during run-time.

We define the Traffic Light SH-system TLS by a type graph T G, an initial state, a set of normal
rules Rnorm (modelling the ideal behaviour), a set of failure rules R f ail modelling failures, a set
of repair rules Rrepair, which are the inverse repair rules, and sets of constraints that characterize
properties of states being either consistent or failure states.

In our example, we model a single traffic crossing with two traffic lights in directions north-
south and east-west. In the initial state (see Figure 12), both traffic lights are red and there

Proc. GMT 2010

69

ECEASST

are no cars at the crossing. The TL nodes represent the traffic lights, connected to a crossing
supervisor component, and to cameras which are currently not in use (onCamera=false). The
infraction attribute becomes true in the case that a car runs a red light.

Figure 12: TLS initial state Ginit

Normal rules model the behaviour of cars arriving at the crossing and leaving it, as well as cars
running a red light and being filmed by a camera. Failure rules model the loss of a signal of either
a traffic light (in this case the signal attribute of a TLSup edge changes to false), or of a camera
(here, the signal attribute of a CamSup becomes false). The repair rules model the recovery from
the respective signal loss. In [EER+10], we formalize operational properties, including self-
healing (i.e. each failure state can be repaired), and deadlock-freeness, and we provide static
conditions for them based on rule set analysis.

Tool Support
For the automatic analysis of the static conditions ensuring the self-healing properties we use
AGG, in particular to check dependencies and conflicts of rules. All properties are verified for
our traffic light system.

Related Work
Different related approaches exist, either based on graph transformation [6,14,15,16,17,18,19]
or on temporal logics and model checking [20,21,22]. In many cases, though, the state space of
behavioral system models becomes too large or even infinite, and in this case model checking
techniques have their limitations.

Unsolved Problems
A helpful extension of the formal approach would be the analysis and verification of consistency
properties using the theory of graph constraints and nested application conditions in [EHL10].
Moreover, we will investigate how far the techniques in this paper for SH-systems can be used
and extended for more general self-adaptive systems.

6 Evaluation and Conclusion

The table in Figure 13 summarizes the problem domains and modelling features and results for
our four case studies. In the last line, we state concepts which, from our point of view, are

Volume X (2010)

70

Graph Modelling and Transformation: Theory meets Practice

missing not only for the particular case study presented in this paper but rather in general for the
respective application domain.

 (1) Medical
Information

System

(2) Business
Process Model
Transformation

(3) Self-Healing
Automated Traffic

Light System

(4) Metabolic
Pathway Analysis

Problem Adequate
visualization of

clinical processes

Source-to-Target
model

transformation

System modelling
with failures and

recovery

Molecular ana-
lysis of chemical

reactions
GraTra
Model

Visual language
modelling by typed
attributed GraTra

GraTra based on
source-target type
graph inclusion

TGS → TGI ← TGT

GraTra with
different rule sets

Rnormal, Rfailure, Rrepair
and constraints

Hypergraph
transformations
with simulation

GraTra
Results

Graph constraint
satisfaction after
transformation

Parallel
independence of

amalgamated
GraTra

Static analysis of
self-healing
properties

Simulation,
embedding and

extension

Missing
Concepts

Advanced tool
support for visual

user interfaces

Semantical
correctness of
model trafos

Critical pair
analysis for general

conditions

Scalability of
graph

representation

Figure 13: Comparison of Case Studies

In the area of visual language modelling (e.g. for case study (1)), the concept of typed at-
tributed graph transformation, which is close to meta-modelling, proved to be suitable for defin-
ing syntax and semantics of domain-specific languages. But to be useful in the context of larger
systems, these principles should be integrated in tools that are used in practical applications. In
our case study, a suitable user interface should hide the formal representation of abstract graph
and rule syntax, and the underlying model needs to be linked to the clinic information system.
Here, advanced tool support integrating graph transformation tools to existing tools used in prac-
tice is one aim for graph transformation technology transfer.

Model transformations from domain-specific models to more machine-centric formats (like
case study (2)) have become a necessary step towards unified and standards-based development
environments. Here, important results have been achieved in recent years concerning the syntac-
tical correctness of model transformations and their functional behaviour, i.e. termination and
uniqueness. Also, for triple graph grammars, properties concerning the consistency of source
and target models w.r.t. triple rules can be shown formally. An open problem for model transfor-
mations remains the semantical correctness, i.e. how can be shown in general that the behaviour
of the source and the target model are equivalent (see also [Erm09]).

Often, a validation by simulation is helpful to provide new insights on behavioural system
properties. Case study (3) showed that a simulation by graph transformation, supported by tools,
can help to find a suitable abstraction level and visualize model features (like molecule identities)
which are not easily seen using standard techniques and tools. Here, the problem arises that in
contrast to standard tools, a graph representation might lead to a larger memory consumption
than e.g. the standard format for chemical formulae. The general problem of scalability of the

Proc. GMT 2010

71

ECEASST

graph representation of models and rules has been tackled already by improving the performance
of existing graph transformation engines and experimenting with different data formats. Here,
future work will be necessary for further optimizations.

Many verification results for graph transformation systems are based on critical pair analysis.
This kernel technique is also used in case study (4), where we analyse conflicts and dependen-
cies of rules to show self-healing properties. Recently, general (nested) conditions on graphs
have been defined by Habel and Pennemann [HP09]. These conditions allow for a very flexible
modelling of graph rules. In this context, it remains to provide the formal background for critical
pair analysis of rules with nested application conditions.

Already, some of the “missing concepts” are topics of ongoing research projects1. We are con-
fident that the visibility of graph transformation technology in practice will be further enhanced
and that meetings between theory and practice, aided by good tool support, will be the rule rather
than the exception.

Bibliography

[AGG09] TFS-Group, TU Berlin. AGG. 2009. http://tfs.cs.tu-berlin.de/agg.

[BE09] E. Biermann, C. Ermel. Transforming BPMN to BPEL with EMF Tiger. In Proc.
Graph-based Tools (GraBaTs’09). 2009.
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/submissions/

[BEEH09] E. Biermann, K. Ehrig, C. Ermel, J. Hurrelmann. Generation of Simulation Views
for Domain Specific Modeling Languages based on the Eclipse Modeling Frame-
work. In Automated Software Engineering (ASE’09). IEEE Press, 2009.

[BEL+10] E. Biermann, C. Ermel, L. Lambers, U. Prange, G. Taentzer. Introduction to AGG
and EMF Tiger by Modeling a Conference Scheduling System. Software Tools for
Technology Transfer, 2010. To appear.

[Béz05] J. Bézivin. On the unification power of models. Software and System Modeling
4(2):171–188, 2005.

[BFH87] P. Böhm, H.-R. Fonio, A. Habel. Amalgamation of graph transformations: a syn-
chronization mechanism. Computer and System Sciences (JCSS) 34:377–408, 1987.

[BGL09] K. Biermann, M. Grötschel, B. Lutz-Westphal (eds.). Besser als Mathe: Moderne
angewandte Mathematik aus dem MATHEON zum Mitmachen. Vieweg, 2009.

[BNS+05] A. Balogh, A. Németh, A. Schmidt, I. Rath, D. Vágó, D. Varró, A. Pataricza. The
VIATRA2 Model Transformation Framework. In Proc. European Conference on
Model Driven Architecture (ECMDA’05). 2005.

1 See e.g. our project Behaviour Simulation and Equivalence of Systems Modelled by Graph Transformation (sup-
ported by the German Research Council) at http://www.tfs.tu-berlin.de/menue/forschung/#BehaviourGT.

Volume X (2010)

72

http://tfs.cs.tu-berlin.de/agg
http://is.tm.tue.nl/staff/pvgorp/events/grabats2009/submissions/
http://www.tfs.tu-berlin.de/menue/forschung/#BehaviourGT

Graph Modelling and Transformation: Theory meets Practice

[BTMS99] R. Bardohl, G. Taentzer, M. Minas, A. Schürr. Application of Graph Transformation
to Visual Languages. In [EEKR99].

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation, Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theor. Comp. Science. Springer, 2006.

[EER+10] H. Ehrig, C. Ermel, O. Runge, A. Bucchiarone, P. Pelliccione. Formal Analysis and
Verification of Self-Healing Systems. In Proc. Fundamental Aspects of Software
Engineering (FASE’10). Springer, 2010. To appear.

[EHL06] K. Ehrig, R. Heckel, G. Lajios. Molecular Analysis of Metabolic Pathway with
Graph Transformation. In Proc. Graph Transformation (ICGT’06)). LNCS 4178.
Springer, 2006.

[EHL10] H. Ehrig, A. Habel, L. Lambers. Parallelism and Concurrency Theorems for Rules
with Nested Application Conditions. In Manipulation of Graphs, Algebras and Pic-
tures: Essays Dedicated to Hans-Jörg Kreowski on the Occasion of His 60th Birth-
day. ECEASST, 2010. To appear.

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation. Vol 3: Concurrency, Paral-
lelism and Distribution. World Scientific, 1999.

[Eng00] G. Engels. Graph Changes are Everywhere: The Role of Graph Transformations in
Software Engineering. In Proc. Joint APPLIGRAPH and GETGRATS Workshop on
Graph Transformation Systems (GraTra’00). TU Berlin, TR 2000-2, 2000.

[Erm09] C. Ermel. Visual Modelling and Analysis of Model Transformations based on
Graph Transformation. Bulletin of the EATCS 99:135 – 152, 2009.

[Fou09] Eclipse Modeling Foundation. MDT-UML2Tools. 2009. http://wiki.eclipse.org/
MDT-UML2Tools.

[GMF07] Eclipse Consortium. Eclipse Graphical Modeling Framework (GMF). 2007. http:
//www.eclipse.org/gmf.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems rela-
tive to nested conditions. Mathematical Structures in Comp. Science 19:1–52, 2009.

[IBM03] IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems. Business Process Ex-
ecution Language for Web Services version 1.1. May 2003. http://www.ibm.com/
developerworks/library/ws-bpel/.

[Löw93] M. Löwe. Algebraic Approach to Single-Pushout Graph Transformation. TCS
109:181–224, 1993.

Proc. GMT 2010

73

http://wiki.eclipse.org/MDT-UML2Tools
http://wiki.eclipse.org/MDT-UML2Tools
http://www.eclipse.org/gmf
http://www.eclipse.org/gmf
http://www.ibm.com/developerworks/library/ws-bpel/
http://www.ibm.com/developerworks/library/ws-bpel/

ECEASST

[Mos96] G. Moss (ed.). IUPAC Basic Terminology of Stereochemistry. Volume 68(12). Pure
& Applied Chemistry, 1996.

[MVVK05] T. Mens, P. Van Gorp, D. Varrò, G. Karsai. Applying a Model Transformation
Taxonomy to Graph Transformation Technology. In Proc. Graph and Model Trans-
formation (GraMoT’05). ENTCS 152, pp. 143–159. Elsevier Science, 2005.

[OMG07] OMG. Unified Modeling Language: Superstructure – Version 2.1.1. 2007.
formal/07-02-05, http://www.omg.org/technology/documents/formal/uml.htm.

[Ope09] OpenEmbeDD: Model Driven Engineering open-source platform for Real-Time &
Embedded systems. 2009. http://openembedd.org.

[Roz97] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

[RV05] F. Rosselló, G. Valiente. Graph Transformation in Molecular Biology. In Formal
Methods in Software and System Modeling, LNCS 3393. Pp. 116–133. Springer,
2005.

[SAL+03] J. Sprinkle, A. Agrawal, T. Levendovszky, F. Shi, G. Karsai. Domain model transla-
tion using graph transformations. In Int. Conf. on Engineering of Computer-Based
Systems. Pp. 159–168. 2003.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Tin-
hofer (ed.), WG94 20th Int. Workshop on Graph-Theoretic Concepts in Computer
Science. LNCS 903, pp. 151–163. Springer, 1994.

[Tae04] G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Valida-
tion of Software. In Pfaltz et al. (eds.), Application of Graph Transformations with
Industrial Relevance (AGTIVE’03). LNCS 3062, pp. 446 – 456. Springer, 2004.

[Tae06] G. Taentzer. Characterizing Tools for Visual Modeling Techniques. In Ehrig et al.
(eds.), Lecture Notes of SegraVis Advanced School on Visual Modelling Techniques.
2006.

[TEG+05] G. Taentzer, K. Ehrig, E. Guerra, J. de Lara, L. Lengyel, T. Levendovsky, U. Prange,
D. Varro, S. Varro-Gyapay. Model Transformation by Graph Transformation: A
Comparative Study. In Proc. Workshop Model Transformation in Practice. 2005.
http://tfs.cs.tu-berlin.de/publikationen/Papers05/TEG+05.pdf

[Whi04] S. White. Business Process Modeling Notation (BPMN) Version 1.0. BPMI.org,
2004.

[ZPV95] G. Zubay, W. Parson, D. Vance. Principles of Biochemisty. Volume 2. McGraw-Hill
College, 1995.

Volume X (2010)

74

http://www.omg.org/technology/documents/formal/uml.htm
http://openembedd.org
http://tfs.cs.tu-berlin.de/publikationen/Papers05/TEG+05.pdf

Pre-Proceedings GraMoT 2010

75

ECEASST

A Termination Criterion for Graph Transformations with NACs

Paolo Bottoni, Francesco Parisi Presicce

Dipartimento di Informatica, ”Sapienza” Università di Roma, Italy

Abstract: Termination of graph rewriting is in general undecidable, but it is possible
to prove it for specific systems by checking for sufficient conditions. In the presence
of rules with negative application conditions, the difficulties increase. In this paper
we propose a different approach to the identification of a (sufficient) criterion for
termination based on the construction of a labeled transition system whose states
represent overlaps between the negative application condition and the right hand
side that can give rise to cycles.

Keywords: DPO, termination, label transition system, model transformation

1 Introduction

Model transformations are an essential component of the model-driven approach to software de-
velopment. Graphs are a natural and intuitive way to describe models (e.g., class diagrams in
UML) and graph transformations provide a rule-based approach to their modifications. Some-
times a particular transformation needs to be applied to the target graph/model as long as match-
ings of its left hand side can be found. In such cases, it is necessary to be able to determine that
such a repeated application will eventually reach a state where the transformation is no longer
applicable. More generally, the term termination refers to the problem of determining whether
a set of rules can generate a graph/model to which none of the rules is still applicable. Ad hoc
methods have been applied to show termination of specific rewriting systems (e.g. [KHE03]).

Termination properties can be (and have been) studied for specific rewriting systems, follow-
ing the classical approach – as introduced by Dershowitz and Manna in [DM79] – of proving
termination by constructing a monotone measure function on some multiset associated to the ob-
ject to be rewritten, and showing that the value of such a function decreases with each application
of the rule. Further termination criteria use polynomial orderings, recursive path orderings, etc.
[Der87].

In a previous paper [BHPT05], we have identified an abstract notion of termination criterion
for high-level replacement (HLR) systems, i.e. algebraic rewriting systems operating on ob-
jects and morphisms in adhesive HLR categories [EPPH06], in which rewriting is guided by
control expressions. The approach is based on a generic measure function F : G→ N, called a
(termination criterion) if it satisfies the property F (A+C B) = F (A)+F (C)F (B) for morphisms
C→ A and C→ B in a specific subclass M . A termination criterion for a rule p : L← K→ R is
such a function with F (L) �F (R).
However, we have subsequently shown in [BHP06] how the extension of this notion to rules
with negative application conditions (NACs) encounters several difficulties. In particular, we
have presented examples of pairs of rules for which no application criterion can differentiate
between a terminating and a non-terminating rule.

Volume X (2010)

76

Termination Criterion

In this paper, we propose a different approach to the identification of a (sufficient) termination
criterion for rules with NACs, based on the construction of a Labelled Transition Systems, where
states correspond to classes of matches of a rule with respect to all the possible intermediate
graphs between the left-hand side of a rule and a negative application condition.

2 Formal Background

We use the DPO (Double PushOut) approach to graph transformation [EEPT06], although the
approach can be adapted to the SPO (Single PushOut) approach [EL93] as well.

A graph G = (V,E,s, t) consists of a set of nodes V =V (G), a set of edges E = E(G), a source
and a target function, s, t : E → V . In a type graph T G = (VT ,ET ,sT , tT), VT and ET are sets of
node and edge types, while the functions sT : ET →VT and tT : ET →VT define source and target
node types for each edge type. A typed graph on T G = (VT ,ET ,sT , tT) is a graph G = (V,E,s, t)
equipped with a graph morphism type : G→ T G, composed of two functions typeV : V → VT

and typeE : E → ET , preserving the source sT and the target tT functions, i.e. typeV (s(e)) =
sT (typeE(e)) and typeV (t(e)) = tT (typeE(e)).

A DPO rule consists of three graphs, called left- and right-hand side (L and R), and interface
graph K. Two injective morphisms1 l : K → L and r : K → R model the embedding of K (con-
taining the elements preserved by the rule) into L and R. Figure 1 shows a DPO direct derivation
diagram. Square (1) is a pushout modeling the deletion from G of the elements of L not in K,
while pushout (2) models the addition to G of the elements present in R but not in K. Figure 1
also illustrates the notion of negative application condition (NAC), of the form n : L→ N that a
match m : L→G must satisfy. A rule is applicable with match m : L→G if there is no morphism
q : N→ G such that q◦n = m.

N

q ,,

6=

L
noo

m
��

(1)

K

(2)

loo r //

k
��

R

m∗

��
G Dfoo g // H

Figure 1: DPO Direct Derivation Diagram for rules with NAC.

3 A Termination Criterion

We study termination of single rules with a single NAC; we leave it to future work to extend the
results to the case of multiple NACs and of rule sequences.

As we consider only non-deleting rules, we omit the K component of rules and write a rule
with a single NAC as p : N← L→ R.

Consider the simple example in Figure 2.
The rule is a non-deleting rule, so it is not clear how to apply the standard approach based on

1 In this paper, when we speak of morphisms, we mean injective.

Proc. GMT 2010

77

ECEASST

the ’consumption’ of some finite quantity. Nevertheless, the rule can only be applied a finite
(two) number of times at most, regardless of the matching chosen for the left hand side. What
decreases after each application is the difference between the left hand side and the negative
application condition.

Figure 2: A simple terminating rule.

Consider now the slightly different rule in Figure 3.
In this rule, the edges have a direction and it is no longer true that its application must always
terminate. After the first application, if the roles of the 2 nodes are reversed in the matching,
the remaning part of the negative application condition is generated. But it is also possible to
continue adding edges from node 1 to node 2, without ever generating the NAC to prevent further
applications. Notice that these additional edges do not affect the applicability or not of the rule.

Figure 3: A simple non terminating rule.

In both cases, the rule generates a graph ’between’ the left hand side and the NAC. We now
abstract from the specific examples.

Let p : N n← L r→ R be a rule. Let H p = {H p
1 , . . . ,H

p
k } be the set of all graphs and 〈p =

{hi
j : H p

i → H p
j } be the set of associated morphisms such that

• for each i = 1, . . . ,k, there exist morphisms L
hL

i→ H p
i

hN
i→ N.

• for each i, j = 1, . . . ,k, hL
j = hL

i ◦hi
j and hN

i = hi
j ◦hN

j .

Volume X (2010)

78

Termination Criterion

Note that the set is not empty since it includes L = H p
1 and N = H p

k with the identity morphisms
and h1

k = n.
Let VL be the set of nodes in L. Let ML = {m1, . . . ,mr} be the set of matches of VL into itself,

including the identity idVL = m1.
We now construct a Labelled Transition System L p = (S,Λ,−→) as follows:

1. S contains a state si for each graph H p
i ∈H p. Each si induces a classification function

ci for matches of p such that ci(m j) = true iff m j can be extended to a match on H p
i , but

not to a match on any other H p
j ∈Hp \({H p

1 ,H
p
i }∪{H

p
t |∃ht

i : H p
t → H p

i }), i.e. H p
i is the

biggest graph to which ml can be extended.

2. Λ contains a label pi, i = 1, . . . ,r for each morphism in ML.

3. −→⊂ S× S is such that si
pl

−→ s j if the application of p with match ml on graph H p
i

produces a graph for which c j(ml) = true.

We say that p:

• should terminate simply if there exists a chain from s1 to sk in L p with all transitions
labeled with p1.

• may terminate simply if there exists a chain from s1 to sk in L p with at least one label
different from p1.

• does not terminate simply if there is no chain from s1 to sk in L p.

In the definition above, by chain we mean a path which does not contain the same state twice.

We now consider the variation on the number of possible matches induced by the application
of rule p on its minimal context. To this end, let @ | · |: S→ N be a function which associates
with each state the number of matches for p on the graph H p

i prior to application of p and with
| · |: S→ N the function defining the number of matches on H p

i after the application of p.
We use these functions to identify the effect of each transition from a path in L p on the

number of matches for the graph represented by the state.
We say that p:

• must terminate if it should terminate simply and for all states si in the path | si | < @ | si |.

• may terminate if it may terminate simply and for all states on the path | si | < @ | si | after
each transition on the path.

• does not terminate if it does not terminate simply or it should or may terminate simply,
but there is at least one state on a path from s1 to sk for which | si | ≥ @ | si |, for some
transition on the path.

Proc. GMT 2010

79

ECEASST

4 Examples

We present here some examples to illustrate the different cases which may occur. We use mean-
ingful labels for states to describe the corresponding graph H p

i . The state s1 is indicated with an
arrow, and the state sk with a pair of concentric ovals.

In the Figures, we report the variations of the cardinality of matches for the source states of
the transitions, or for states whose number of matches is affected by the transition, even if the
transition does not involve the state. All other cardinalities are assumed to remain equal.

Figure 4 re-proposes the case (already seen in Figure 2) of a rule which must terminate, since
there is a path with all transitions labeled p1 and for all the states in the path the cardinality of
the matches decreases.

Figure 4: A terminating rule.

Figure 5 also presents the case (already seen in Figure 3) of a rule which may terminate. In this
case, there is a path from s1 to sk and for all the states in the path the cardinality of the matches
decreases if the transition making the path progress is taken. But the loops on the middle 2 nodes
indicate that the application may not terminate (on the loops, the cardinality of the matches does
not decrease).

Figure 6 presents a case of a rule which should terminate simply, as there is a path which
consumes the possibility of rule application on the original match, but does not terminate, as the
number of matches for the rule increases at each application of p.

The same situation occurs in Figure 7. However, it is interesting to notice that in the rule of
Figure 6 there is no relation between R and N, while in the rule of Figure 7 we have N ⊂ R.

However, Figure 8 shows how the existence of an injection of N into R is not sufficient to
discriminate between terminating and non-terminating rule. Indeed, rule p in Figure 8 presents
a situation in which the rule must terminate. It is important to observe how no single function F
from graphs to natural numbers, which is a termination criterion for rules without NACs could
be used to discriminate between the two cases. The difference between the two cases is in fact
that in the rule of Figure 7, the number of matches increases, whereas in Figure 8 it decreases.

A rule which must terminate, where R ⊂ N, is presented in Figure 9. Compare this to the
case in Figure 10, where again R⊂ N, but the rule may terminate, as choosing a different match
after iterating application of the rule with the same match, leads to the state H p

k , labeled here as

Volume X (2010)

80

Termination Criterion

Figure 5: A rule which may terminate.

Figure 6: A rule which should terminate simply, but does not terminate.

TwoLoop.

5 Related Work

Termination of (string) rewriting systems has been studied for over 30 years (see [DM79] for
example). Much more recent is the interest in termination of graph transformation systems.

One of the earlier applications is to program optimization and can be found in [Ass00], (sub-
mitted for publication a few years earlier) where termination criteria are defined for 2 specific
types of rules. One kind is a deleting rule, which must remove at least one item from a specific
subgraph: since graphs are finite, the removal must eventually stop. The other kind is a nondelet-
ing rule that must add at least one edge incident to a node with a specific label: since no pair of
nodes can have more than one edge with the same label, the addition must eventually stop and

Proc. GMT 2010

81

ECEASST

Figure 7: A rule which should terminate simply, but does not terminate, with N ⊂ R.

Figure 8: A terminating rule, with N ⊂ R.

so is the applicability.
The general problem of termination for graph rewriting has been tackled by Detlef Plump in

[Plu98], where he proves that it is an undecidable problem. Although the framework deals only
with ’plain’ transformation rules (i.e., without application conditions), we expect the result to
hold in general, for example by using trivial conditions alwasy satisfied.

Ad hoc sufficient conditions have been analyzed for special cases. In layered graph transfor-
mation systems [HKJ+06] the different types of rules are grouped, establishing an application
order. In each of the 2 kinds of layers (deleting and non-deleting) there are no infinite derivation
sequences with injective matchings. Each rule in a deletion layer must delete at least one item,
but not a newly created one. Each rule in a non-deletion layer cannot delete items, cannot be

Volume X (2010)

82

Termination Criterion

Figure 9: A terminating rule, with R⊂ N.

Figure 10: A rule which may terminate, with R⊂ N.

applied twice with the same match and cannot use a newly created item for the match. A finite
number of layers and a finite initial graphs guarantee termination.

More recent research [DSH+06] uses a similar idea to the one presented here. A Graph Trans-
formation System is abstracted by ignoring certain structure in a graph and used to define a Petri
Net to represent the number of elements of a certain type. Transitions correspond to rule ap-
plication with ’consumption’ of elements (and reduction of tokens). Termination of the GTS
corresponds then to the Petri Net exhausting its tokens.

Comments on some of these approaches and others can be found in [Asz07].

Proc. GMT 2010

83

ECEASST

6 Concluding Remarks

In this paper we have discussed an approach to analyze termination properties of transformations.
We have focused on the termination of a single rule expression of the form asLongAsPossible
R , for a non-deleting rule R. Termination of plain transformation rules (i.e., rules without appli-
cation conditions) usually depends upon a function which measures the consumption of a finite
commodity and whose value decreases at each application of the rule. When application condi-
tions are present, we can also measure the (hopefully decreasing) distance between the context
and the negative application condition. This is what the steps in the LTS represent.

The examples presented in this paper are necessarily small. What we have not investigated
(yet) is the feasibility of the approach to real problems, and in particular the complexity of the
LTS relatively to the size of the negative application conditions. A systematic (hence automatic)
way to construct the LTS would also be necessary.

Although the discussion and the examples are stated in terms of graphs, no specific prop-
erties of graphs are used, but only morphisms and their extensions. The approach can easily
be extended to model transformations in high-level replacement (HLR) systems, i.e. algebraic
rewriting systems operating on objects and morphisms in adhesive HLR categories [EPPH06].
The extension to multiple NACs should also be straigthforward (with appropriate combinations
of the ’measuring’ functions) while we expect rule sequences to require other ideas.

Bibliography

[Ass00] U. Assmann. Graph rewrite systems for program optimization. ACM Trans. Program.
Lang. Syst. 22(4):583–637, 2000.
doi:http://doi.acm.org/10.1145/363911.363914

[Asz07] M. Asztalos. Comparison of Termination Criteria for Graph Transformation Sys-
tems. In Automation and Applied Computer Science Workshop (AACS). Budapest,
Hungary, 2007.

[BHP06] P. Bottoni, K. Hoffmann, F. P. Presicce. Termination of Algebraic Rewriting with
Inhibitors. In Karsai and Taentzer (eds.), Proc. GraMoT 2006. ECEASST 4. 2006.

[BHPT05] P. Bottoni, K. Hoffmann, F. Parisi-Presicce, G. Taentzer. High-Level Replacement
Units and their Termination Properties. Journal of Visual Languages and Computing
16:485–507, 2005.

[Der87] N. Dershowitz. Termination of rewriting. Journal of Symbolic Computation 3(1&
2):69–115, 1987. Corrigendum: 4,3 (Dec. 1987), 409-410.

[DM79] N. Dershowitz, Z. Manna. Proving termination with multiset orderings. Commun.
ACM 22(8):465–476, 1979.
doi:http://doi.acm.org/10.1145/359138.359142

Volume X (2010)

84

http://dx.doi.org/http://doi.acm.org/10.1145/363911.363914
http://dx.doi.org/http://doi.acm.org/10.1145/359138.359142

Termination Criterion

[DSH+06] D.Varro, S.Varro-Gyapay, H.Ehrig, U.Prange, G. Taentzer. Termination analysis of
Model transformations by Petri Nets. In Proc. ICGT 2006. LNCS 4178, pp. 260–274.
Springer, 2006.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. Springer, 2006.

[EL93] H. Ehrig, M. Löwe. Parallel and distributed derivations in the single-pushout ap-
proach. Theor. Comput. Sci. 109(1-2):123–143, 1993.
doi:http://dx.doi.org/10.1016/0304-3975(93)90066-3

[EPPH06] H. Ehrig, J. Padberg, U. Prange, A. Habel. Adhesive High-Level Replacement
Systems: A New Categorical Framework for Graph Transformation. Fundam. Inf.
74(1):1–29, 2006.

[HKJ+06] H.Ehrig, K.Ehrig, J.deLara, G. Taentzer, D.Varro, S.Varro-Gyapay. Termination
Criteria for Model transformation. In Proc. FASE 2005. LNCS 3442, pp. 49–63.
Springer, 2006.

[KHE03] J. M. Küster, R. Heckel, G. Engels. Defining and validating transformations of UML
models. In Proc. HCC 2003. Pp. 145–152. IEEE Computer Society, 2003.

[Plu98] D. Plump. Termination of graph rewriting is undecidable. Fundamenta Informaticae
33(2):201–209, 1998.

Proc. GMT 2010

85

http://dx.doi.org/http://dx.doi.org/10.1016/0304-3975(93)90066-3

ECEASST

Formal Modeling and Analysis of Flexible Processes
using Reconfigurable Systems

K. Hoffmann1∗, T. Modica2, J. Padberg1

Hochschule für angewandte Wissenschaften, Hamburg1

Technische Universität Berlin, Germany2

Abstract: In emergency scenarios we can obtain a more effective coordination
among team members constituting a mobile ad hoc network (MANET) through the
use of reconfigurable systems. This means that cooperative work can be adequately
modeled by low level and high level Petri nets with initial markings and the net
structure can be adapted to new requirements of the environment during run time
by a set of rules. In this paper we give main requirements for flexible processes in
MANETs and show how to realize them using the formal notions of reconfigurable
systems. The main part presents a case study in the area of emergency management
and demonstrates the advantages of our approach which allows the dynamic adap-
tion of processes in mobile environments. In this context we also discuss the main
results achieved for reconfigurable systems and outline some interesting aspects of
future work.

Keywords: mobile ad hoc network, reconfigurable system, Petri net, rule based
transformation, algebraic higher order net

1 Introduction

As the adaptation of systems to changing environments gets more and more important processes
that can be modified at run time have become a significant topic in the recent years especially
in the area of mobile ad hoc networks (MANETs). MANETs are networks of mobile devices that
communicate with one another via wireless links without relying on an underlying infrastructure
e.g. as in emergency/disaster scenarios where an effective coordination is crucial among teams
and team members to stabilize the situation and reduce the probability of secondary damage as
well as to provide emergency assistance for victims.

As noticed in the context of the research project WORKPAD1 the situation in such scenarios is
complicated by the fact that the common goal is reached by different teams belonging to different
organizations. Moreover each team member should carry on specific activities while the different
teams collaborate through the interleaving of all the different processes. Normally processes in
mobile environments are not fixed once and for all at build time but constantly adapted at run
time e.g. to predict situations of disconnection or to restructure specific parts and activities.

For the effective coordination among teams and team members a suitable process definition
language is desirable that supports an adequate modeling of processes and their modifications.
∗ This work has been partly funded by the research project forMAlNET (see tfs.cs.tu-berlin.de/formalnet/) of the
German Research Council.
1 www.workpad-project.eu

Volume X (2010)

86

tfs.cs.tu-berlin.de/formalnet/
www.workpad-project.eu

Formal Modeling and Analysis of Flexible Processes

But as recognized e.g. in the context of the graduate school METRIK2 the workflow oriented
view on processes in emergency/disaster scenarios is a novel line of research and up to now there
exists only a few approaches especially designed for such an application area.

In [HEM05, PHE+07, EHPP07, EKPE07, BHP07] the rule based approach of reconfigurable
place/transition (P/T) systems is introduced, so that the modification of processes is realized at
run time by a set of rules. The formalism of algebraic higher order systems follows the paradigm
”nets and rules as tokens” and represents a meta model for reconfigurable P/T systems where
process execution and process modification is distinguished by the use of specific transitions.

This paper is organized as follows: in Section 2 we give a characterization of main require-
ments for flexible processes in emergency/disaster scenarios in order to review the formal notions
and results of reconfigurable systems in Section 3 and compare them with the listed requirements.
To demonstrate the advantages of our approach we illustrate in Section 4 reconfigurable systems
by a case study in the area of pipeline emergencies. Finally in Section 5 we conclude with a
discussion of some interesting aspects of future work.

2 Flexible Processes in MANETs

This section presents a characterization of main requirements for flexible processes in emer-
gency/disaster scenarios. Based on the fundamental requirements for process definition lan-
guages called perspective in [AWW03] these perspectives are improved to fit in our intended
application area. Summarizing a process definition language should cover the process perspec-
tive, informational perspective, organizational perspective, functional perspective, and opera-
tional perspective [AWW03].

The process perspective concentrates on the control flow, i.e. the start conditions and the
order of activities that have to be executed. The Workflow Management Coalition3 identifies
some basic types of relationship between activities: sequential, parallel, conditional, and iterative
routing. Following the approach in [KFP06] in a completely decentralized system as in MANETs
each activity could be in addition in one of the following states :

• Received: a start conditions has arrived from the previous team member and is waiting
until all conditions are true and the current team member is available to start running it.

• Initiated: a new process instance has just started, this is where the team member starts it
because all start conditions are true.

• Running: the team member is running the activity.

• Aborted: the team member failed to complete the activity either because the team member
is disconnected or for any other reason.

• Completed: the team member completed the activity.

• On-Hold: the activity is completed but the next team member is not available yet to receive
his/her start conditions.

• Rejected: the team member rejects to complete the given activity.

2 metrik.informatik.hu-berlin.de/grk-wiki
3 www.wfmc.org

Proc. GMT 2010

87

metrik.informatik.hu-berlin.de/grk-wiki
www.wfmc.org

ECEASST

Moreover in a mobile environment movement activities concerning the network connectivity
can be separated from activities concerning the intended process.

The informational perspective concentrates on the data flow, so that data dependencies be-
tween activities are characterized by input and output parameters. On the one hand control data
is used for process management purposes and on the other hand production data subsumes in-
formation objects like documents, questionnaires and forms. In MANETs information about the
geographic area is especially important e.g. to localize positions of team members or to predict
situations of disconnection.

The organizational perspective is typically defined by roles, groups and other artifacts clar-
ifying organizational issues. Because in emergency/disaster scenarios different teams belong
to different organizations, the inter-organizational aspect should be respected. In addition, in
MANETs the network topology typically represented as topology graphs [AZ03] both influences
and is influenced by the process.

The functional perspective prescribes the decomposition of a process into smaller units often
represented by a hierarchical structure.

Finally, the operational perspective depends on the technical environment, so that elementary
operations are performed by resources and applications. Based on the observation in [KFP06] in
a mobile environment the team member can be on line, i.e. he/she can receive new work, or off
line, where the team member is not available to receive new work. In this case new activities may
be on hold until the team member returns on line or even allocated to alternative team members.
Team members before permanently leave may notify this otherwise the team leader may decide
to treat any other team member failing to respond as permanent. For activities where the team
member is temporarily off line, the execution of the process will continue, if possible. In this
case when the team member returns some synchronization may be required or alternatively the
execution will have to wait until the team member returns.

From a practical point of view processes in MANETs often have to be restructured e.g. be-
cause of unforeseen events or to maintain the network connectivity resulting in a highly dy-
namical modification of processes. In [AWW03] three issues to dynamic change of processes
are addressed. By constrained flexibility certain properties should be preserved during process
adaption while instance change refers to the modification of process instances at run time. Fi-
nally instance migration are based on simultaneous changes of both process schemes and process
instances.

In addition dynamic changes are grouped into ad hoc changes, i.e. changes are responses to
unforeseen exceptions, and pre-planned and evolutionary changes, i.e. changes are known at
build time (see e.g [AWW03, RRD04]). Besides others in [SMO00, Ros07] a minimal set of
change operations are characterized:

• inserting a new activity where also bridging actions may be used to keep network connec-
tivity,
• removing an existing activity,
• modifying the order of activities, and
• modifying activity properties like data requirements, underlying applications, temporal

constraints, resource allocation, or reassignment of activities from one team or member to
another.

Volume X (2010)

88

Formal Modeling and Analysis of Flexible Processes

Processes have to be analysed (see e.g. [AWW03]) for verification purposes, so that some
form of correctness criteria, i.e. different properties on a syntactical and/or semantical level, has
to be satisfied and can be checked. In contrast validation verifies processes with respect to the
intended and typically informally formalised process and performance analysis is realized by
simulating processes to detect e.g. potential deadlocks or livelocks.

.

3 Reconfigurable Systems

In this section we compare reconfigurable systems with the requirements listed in the last section
and present the results achieved for reconfigurable place/transition (P/T) systems in [HEM05,
PHE+07, EHPP07, EKPE07, BHP07].

A P/T system is a P/T net with an initial marking. P/T nets, P/T systems and their variants
are an established process definition language (see e.g. [Ell79, vdA03]) providing constructs of
the process perspective. While P/T nets represent process schemes, P/T systems describe the
behavior of process instances due to their initial markings. Activities are modeled by transitions
while the control flow is reflected by arcs between places and transitions. Places can be seen as
pre and post conditions for activities and source places with an empty pre domain can be used as
start condition for the process. The Workflow Patterns Initiative4 [AHKB00] presents a number
of patterns for the relationship between activities following not only the basic types identified by
the Workflow Management Coalition but also more advanced constructs.

The concept of reconfigurable P/T systems was introduced for modeling changes of the net
structure by rule based transformations while the system is kept running. For rule based trans-
formations of P/T systems we use the framework of net transformations [EEPT06, EHPP07]
following the double pushout (DPO) approach of graph transformation systems [Roz97]. The
basic idea behind net transformation is the stepwise development of P/T systems by given rules.
Think of these rules as replacement systems where the left hand side is replaced by the right hand
side while preserving a context. In reconfigurable P/T systems not only the follower marking can
be computed but also the net structure can be changed by rule applications and we obtain new
P/T systems that are more appropriate with respect to some requirements of the environment.
In detail a reconfigurable P/T system ((PN1,M1),RULES) consists of a P/T system (PN1,M1),
where PN1 is a P/T net with initial marking M1, and a set of rules RULES.

Rules and transformations in the DPO approach are based on morphisms preserving on the
one hand firing steps and requiring on the other hand that the initial marking at corresponding
places is increasing or even stronger. An application of a rule is called a transformation step and
describes how an object is actually changed by the rule. In general a rule prod = ((L,ML)

l←
(K,MK) r→ (R,MR)) is given by three P/T systems called left hand side, interface and right
hand side, respectively, and a span of two P/T morphisms l and r. We additionally need a
match morphism (L,ML)

m→ (PN1,M1) that identifies the relevant parts of the left hand side

(L,ML) in the P/T system (PN1,M1). Now a direct transformation (PN1,M1)
(prod,m)
=⇒ (PN2,M2)

via prod ∈ RULES and m can be constructed in two steps. We delete in a first step those elements

4 www.workflowpatterns.com

Proc. GMT 2010

89

www.workflowpatterns.com

ECEASST

from (PN1,M1) which are identified by the match m but not preserved by the interface (K,MK)
leading to the intermediate P/T system (PN0,M0). In a second step we glue together the P/T
systems (PN0,M0) and (R,MR) along the interface resulting in the new P/T system (PN2,M2).

The DPO approach does not allow the treatment of unmatched transitions at places which
should be deleted. In this case the so called gluing condition forbids the application of rules.
Furthermore items which are identified by a non injective match must be preserved by rule ap-
plications. Note that a positive check of the gluing condition makes sure that the intermediate
P/T system is well defined.

The rule based approach of reconfigurable P/T systems supports dynamic changes in the sense
that the concept of instance change is formalised by the application of appropriate rules realising
the insertion of new activities, removing of existing activities or changing the order of activi-
ties. Because rules are fixed at build time the concept of reconfigurable P/T system supports
pre-planned and evolutionary changes. To support constraint flexibility the set of rules can be re-
stricted to property preserving rules [PU03], so that safety and liveness properties are preserved
by rule applications.

The main result in [EHPP07] concerns the formal foundation for transformations of P/T sys-
tems based on the framework of adhesive high level replacement (HLR) systems [EEPT06,
EHPP06]. Adhesive HLR systems have been recently introduced as a new categorical frame-
work for graph transformation in the DPO approach. They combine the well known framework
of HLR systems with the framework of adhesive categories introduced in [LS05]. The main
concept behind adhesive categories are the so called van Kampen squares. These ensure that
pushouts along monomorphisms are stable under pullbacks and, vice versa, that pullbacks are
stable under combined pushouts and pullbacks. Note that a pushout can be seen as a gluing
construction of two objects over a specific interface, while a pullback is dual to a pushout in
the sense that a pullback construction extracts the common part of two objects. In the case of
adhesive HLR categories the class of all monomorphisms is replaced by a subclass of monomor-
phisms closed under composition and decomposition.

Within the framework of adhesive HLR systems there are many interesting results concerning
the applicability of rules, the embedding and extension of transformations, parallel and sequen-
tial dependence and independence, and concurrency of rule applications. The concept of parallel
independence states that two transformation steps are not in conflict while two consecutive trans-
formation steps are sequentially independent if they are not causally dependent. Provided that
the relevant conditions are satisfied two alternative transformation steps may be swapped and
each of them can still be applied after the other has been performed. Since we have shown
in [EHPP07] that P/T systems form a weak adhesive HLR category, we can apply these results
to reconfigurable P/T systems.

Based on the observation of parallel and sequential independence of rule applications the main
results in [EKPE07] deals with conflict situations between transformation and token firing. The
traditional concurrency situation in P/T systems without capacities is that two transitions with
overlapping pre domain are both enabled and together require more tokens than available in the
current marking. As P/T systems can evolve in two different ways the notions of conflict and
concurrency become more complex. Assume that a given P/T system represents a certain system
state. The next evolution step can be obtained not only by token firing but also by the application
of one of the rules available. Hence the question arises whether each of these evolution steps

Volume X (2010)

90

Formal Modeling and Analysis of Flexible Processes

p2 : Rules

n transformation

m : Mor
cod m = n
applicable(r,m) = tt

ntoken game

enabled(n, t) =tt
t : Transitions

(AHO SYSTEM-SIG,A)

r

fire(n, t) transform(r,m)

p1 : System

Figure 1: Algebraic higher order system

can be postponed after the realization of the other, yielding the same result, and if they can be
performed in a different order without changing the result.

In [EKPE07] we have presented conditions for (co-)parallel and sequential independence and
we have shown that in specific cases firing and transformation steps can be performed in any or-
der, yielding the same result. We have correlated these conditions, i.e. that parallel independence
implies sequential independence and, vice versa, sequential (coparallel) independence implies
parallel and coparallel (parallel and sequential) independence. The advantage of the presented
conditions is that they could be checked at a syntactical and local level instead of semantical and
global one. Thus they are also applicable in the case of complex reconfigurable P/T systems.

In [HEM05] we have introduced the paradigm ”nets and rules as tokens” by a high level model
with suitable data type part. The model called algebraic higher order (AHO) system exploits
some form of control not only on rule application but also on token firing. In general an AHO
system is defined by an algebraic high level net [PER95] with system places and rule places as
for example shown in Fig. 1 where a marking can be given by suitable P/T systems and rules,
respectively, on these places. For a detailed description of the data type part, i.e. the AHO
SYSTEM-signature and corresponding algebra A, we refer to [HEM05].

In the following we review the behavior of AHO systems according to [HEM05]. With the
symbol Var(t) we indicate the set of variables of a transition t, i.e. the set of all variables
occurring in pre- and post domain and in the firing condition of t. The marking M determines
the distribution of P/T systems and rules in an AHO system which are elements of a given higher
order algebra A. Intuitively P/T systems and rules can be moved along AHO system arcs and can
be modified during the firing of transitions. The follower marking is computed by the evaluation
of net inscriptions in a variable assignment v : Var(t)→ A. The transition t is enabled in a
marking M, if and only if (t,v) is consistent, that is if the evaluation of the firing condition is
fulfilled. Then the follower marking after firing of transition t is defined by removing tokens
corresponding to the net inscription in the pre domain of t and adding tokens corresponding to
the net inscription in the post domain of t.

The transitions in the AHO system in Fig. 1 realize on the one hand firing steps and on the
other hand transformation steps as indicated by the net inscriptions f ire(n, t) and trans f orm(r,m),
respectively. To compute the follower marking of P/T systems we use the transition token game
of the AHO system while the transition transformation is provided for changing the structure of
P/T systems. In this way process execution and process modification is distinguished by these
two transitions.

The pair (or sequence) of firing and transformation steps discussed in [EKPE07] is reflected
by firing of the transitions one after the other in our AHO system. Thus these results are most

Proc. GMT 2010

91

ECEASST

important for the analysis of AHO systems.
Using P/T systems as tokens AHO systems focus on the process perspective. To integrate the

informational perspective we can use high level nets as tokens themselves, i.e. the data type part
is extended by algebraic high level nets and corresponding rules. Analogously the organizational
and operational perspectives can be added following e.g. the approach in [AW01]. So activity
properties like data requirements and the reassignment of activities from one team member to
another can be modified by the applications of suitable rules. For the functional perspective the
formalism of AHO systems can be adapted using the hierarchy concept of Coloured Petri Nets
(see [Jen96]).

To consider ad hoc changes of processes the modification of rule tokens requires an extension
not only of the data type part but also of the net structure as introduced in [HPM05], so that the
definition of new rules by reusing existing rules is supported at run time by different operations
like inheritance [PP01].

While the AHO system in Fig. 1 deals with one layer for reconfigurable P/T systems, in
[PHE+07] we follow the observation that processes in MANETs consists of different aspects.
Thus we separate movement activities from general activities and allow a local view of team
members. This leads to an AHO system with different layers each of them equipped with its own
P/T system and set of rules. Moreover the notion of layer consistent environment states that the
views in each layer fit together realizing one form of instance migration. In [BHP07] we extend
this approach to allow the introduction of new team members by more advanced changes at each
layer.

Because reconfigurable P/T systems and AHO systems are formalized on a rigorous math-
ematical foundation and have a clear formal semantics, several results as described above are
provided to analyse systems in the sense of formal verification. These results present a line of re-
search and there is a large amount of most interesting and relevant open questions directly related
to the work presented here. We plan to develop a tool to support simulation and analysis aspects
for our approach. For the application of net transformation rules this tool will provide an export
to AGG5, a graph transformation engine as well as a tool for the analysis of graph transformation
properties like termination and rule independence. Furthermore the token net properties could
be analyzed using the Petri Net Kernel [KW01], a tool infrastructure supporting different Petri
net classes.

4 Emergency/Disaster Scenario

In this section we illustrate the main idea of reconfigurable systems by a case study of a pipeline
emergency scenario where an unknown source of a natural gas leak is detected in a residential
area6: A postal worker delivering mail in a residential street smells a strong odor of gas. She
immediately notifies the fire department. A single engine company is dispatched by the fire
department with four firefighters leaded by one company officer. At the scene the postal worker
meets the company officer and describes the problem. He calls the gas company and requests
an additional law enforcement officers to control traffic into the area. While three firefighters

5 tfs.cs.tu-berlin.de/agg
6 www.pipelineemergencies.com

Volume X (2010)

92

tfs.cs.tu-berlin.de/agg
www.pipelineemergencies.com

Formal Modeling and Analysis of Flexible Processes

evacuate the homes in the immediate area and afterwards deny entry to this area, another one
reads the gas indicator and detects that the gas is highest in front of a home located on 114
Maple Street. After electricity and gas lines are shut off to each home the fire department stand
by with fully charged hose lines and wait for the arrival of the gas company.

The cooperative process enacted by the firefighter company is depicted as P/T system (PN1,M1)
in Fig. 2. To start the activities of the firefighter team the follower marking of the P/T sys-
tem (PN1,M1) is computed by firing the and-split-transition and we obtain the new P/T system
(PN1,M′1) in Fig. 3.

Next we focus on dynamic changes while the process is running. The three firefighters re-
sponsible for the evacuation process need more detailed information how to proceed. So the
company officer gives the instruction that first of all the residents are notified of the evacuation.
Afterwards the firefighters should assist handicapped persons and guide all of them to the ex-
tend possible. To introduce the refinement of the Evacuate homes-transition into the P/T system
(PN1,M′1) we provide the rule prodevacuate in Fig. 4. The marking ML1 of the P/T system in the
left hand side of prodevacuate demands that the evacuation process is not yet started because there
is one token in the pre domain of the Evacuate homes-transition. The application of the rule is
given as follows: the match morphism m1 is given by the obvious inclusion and identifies the
relevant parts of the left hand side (L1,ML1) of rule prodevacuate in (PN1,M′1); next, the Evacuate
homes-transition is deleted and we obtain an intermediate P/T system (PN0,M0); then, the tran-
sitions Notify residents, Assist handicapped persons and Guide persons together with their (new)
environment are added leading to the P/T system (PN2,M2) in Fig. 5. Thus we obtain the trans-

formation step (PN1,M′1)
(prodevacuate,m1)=⇒ (PN2,M2). Afterwards the firefighter company proceed

with their activities and we obtain the P/T system (PN2,M′2) in Fig. 6 by firing the corresponding
transitions.

After the problem identification the odor of gas grows stronger and the firefighter takes an
additional reading of the gas indicator and informs the company officer about the result, so
that the company officer is able to determine if the atmosphere in the area is safe, unsafe, or
dangerous. To extend our process by these additional activities we use the rule prodanalyse in Fig.
7 where the marking ML2 in the left hand side indicates that the problem location is identified.

By the application of the rule we obtain the transformation step (PN2,M′2)
(prodanalyse,m2)=⇒ (PN3,M3)

where the new P/T system (PN3,M3) is depicted in Fig. 8.
Based on the additional results of the gas indicator the company officer analyses that the atmo-

sphere in this area is over the lower explosive limit and thereby more dangerous than expected.
He determines that the best course of action is to call for additional resources to maintain the iso-
lation perimeter and expand the area of evacuation as a precaution. So, in a next step the follower
marking of the P/T system (PN3,M3) is computed by firing the Additional reading- and Analyse-
transitions leading to the P/T system (PN3,M′3) in Fig. 9. Afterwards the rule prodexpand depicted
in Fig. 10 is applied to the P/T system (PN3,M′3) resulting in the new P/T system (PN4,M4) in
Fig. 11.

Summarizing, at the beginning our reconfigurable P/T system consists of the P/T system
(PN1,M1) in Fig. 2 and the set of rules depicted in Figs. 4, 7 and 10. Let the reconfigurable P/T
system be the initial marking of the AHO system in Fig. 1, i.e. the P/T system (PN1,M1) is on
the place p1 while the marking of the place p2 is given by the set of rules. To compute the fol-

Proc. GMT 2010

93

ECEASST

Reading the
gas indicator

Deny entry Identify the location
gas is highest

Shut off electricity
and gas lines

Stand by with fully
charged hose lines

Waiting for the arrival
of the gas company

Call the gas company

Request to control
traffic into the area

Evacuate homes in
the immediate area

(PN1,M1)

Figure 2: Process (PN1,M1)

Volume X (2010)

94

Formal Modeling and Analysis of Flexible Processes

lower marking of the P/T system we use the transition token game of the AHO system. First the
variable n is assigned to the P/T system (PN1,M1) and the variable t to the and-split-transition
that is enabled, so that the firing condition is fulfilled. Due to the evaluation of the term f ire(n, t)
we obtain the new P/T system (PN1,M′1) in Fig. 2.

For changing the structure of P/T systems the transition transformation is provided in Fig. 1.
Again we have to give an assignment v for the variables of this transition, i.e. variables n, m
and r, where v(n) = (PN1,M′1), v(m) = m1 is a suitable match morphism and v(r) = prodevacuate

(see Fig. 4). The firing condition cod m = n ensures that the codomain of the match morphism
is equal to (PN1,M′1) while the second condition applicable(r,m) checks the gluing condition,
i.e. if the rule prodevacuate is applicable with match m1. Afterwards the transformation step is
computed by the evaluation of the net inscription trans f orm(r,m) and the effect of firing the
transition transformation is the removal of the P/T system (PN1,M′1) from place p1 and adding
the P/T system (PN2,M2) in Fig. 5 to it.

Analogously we proceed with the computation of the follower markings and dynamic adaption
of our process as described above. After several firing steps of the transitions token game and
transformation we obtain the reconfigurable P/T system consisting of the P/T system (PN4,M4)
(see Fig. 11) and the original set of rules.

To analyse the reconfigurable P/T systems we apply the results presented in [EKPE07] and

described in the previous section. For example the transformation step (PN1,M′1)
(prodevacuate,m1)=⇒

(PN2,M2) is parallel independent of the firing step given by the Reading gas indicator-transition
because the transition is not deleted by the transformation step and the marking of the P/T system
(PN1,M′1) is unchanged by the application of the rule prodevacuate. Moreover the pair of transfor-
mation and firing steps is sequentially independent because the Reading gas indicator-transition
is not created by the transformation step. Thus the pair of steps may be swapped and each of
them can be applied after the other has been performed leading to the same result.

In the context of our AHO system in Fig. 1 this observation is reflected by an independent fir-
ing of the transitions token game and transformation, i.e. the sequential firing of these transitions
leading to the same result independent of the order these transitions are fired.

The pair of consecutive steps given by firing the and-split-transition in (PN1,M1) and the

transformation (PN1,M′1)
(prodevacuate,m1)=⇒ (PN2,M2) is sequentially dependent because the marking

of the left hand side of prodevacuate demands a token in the pre domain of the Evacuate homes-
transition.

Further situations of independent and dependent firing and transformation steps are illus-
trated in Fig. 12 where, however, the traditional concurrency situation of transitions and trans-
formations, respectively, is not shown. Note that e.g. the two consecutive transformations

(PN1,M2
1)

(prodevacuate,m1)=⇒ (PN2,M2
2) and (PN2,M2

2)
(prodanalyse,m2)=⇒ (PN3,M2

3) are sequentially inde-
pendent because the overlapping of the right hand side of prodevacuate and the left hand side of
prodanalyse in (PN2,M2

2) is included in the intersection of the interfaces.

Proc. GMT 2010

95

ECEASST

Reading the
gas indicator

Call the gas companyEvacuate homes in
the immediate area

(PN1,M′1)

Figure 3: Relevant part of process (PN1,M′1)

persons

Notify residents
of the evacuation

Guide persons to
the extend possible

the immediate area
Evacuate homes in Assist handicapped

(K1,MK1)(L1,ML1) (R1,MR1)

Figure 4: Rule prodevacuate

Volume X (2010)

96

Formal Modeling and Analysis of Flexible Processes

persons

Reading the
gas indicator

Call the gas company

Identify the location
gas is highest

Deny entry

Shut off electricity
and gas lines

Stand by with fully
charged hose lines

Waiting for the arrival
of the gas company

Request to control
traffic into the area

Notify residents
of the evacuation

Guide persons to
the extend possible

Assist handicapped

(PN2,M2)

Figure 5: Process (PN2,M2)

Proc. GMT 2010

97

ECEASST

gas is highest
Deny entry Request to control

traffic into the area

Shut off electricity
and gas lines

Identify the location

(PN2,M′2)

Figure 6: Relevant part of process (PN2,M′2)

the gas indicator
Additional reading

Shut off electricity
and gas lines

Analyse resultsShut off electricity
and gas lines

(K2 ,MK2
) (R2 ,MR2

)(L2 ,ML2
)

Figure 7: Rule prodanalyse

Volume X (2010)

98

Formal Modeling and Analysis of Flexible Processes

persons

Reading the
gas indicator

Call the gas company

Deny entry Identify the location
gas is highest

the gas indicator
Additional reading

Shut off electricity
and gas lines

Request to control
traffic into the area

Analyse results

Stand by with fully
charged hose lines

Waiting for the arrival
of the gas company

Notify residents
of the evacuation

Guide persons to
the extend possible

Assist handicapped

(PN3,M3)

Figure 8: Process (PN3,M3)

Proc. GMT 2010

99

ECEASST

Deny entry Identify the location
gas is highest

the gas indicator
Additional reading

Shut off electricity
and gas lines

Request to control
traffic into the area

Analyse results

(PN3,M′3)

Figure 9: Relevant part of process (PN3,M′3)

Call for additional
ressources

Expand the area
of evacuation

(L3 ,ML3
) (R3 ,MR3

)(K3 ,MK3
)

Figure 10: Rule prodexpand

Volume X (2010)

100

Formal Modeling and Analysis of Flexible Processes

persons

Reading the
gas indicator

Call the gas companyNotify residents
of the evacuation

Guide persons to
the extend possible

Deny entry

Expand the area
of evacuation

Stand by with fully
charged hose lines

Waiting for the arrival
of the gas company

Identify the location
gas is highest

the gas indicator
Additional reading

Shut off electricity
and gas lines

Request to control
traffic into the area

Analyse results

Call for additional
ressources

Assist handicapped

(PN4,M4)

Figure 11: Process (PN4,M4)Proc. GMT 2010

101

ECEASST

(PN1,M1)

and-split
��

dependent

(PN1,M′1)
(prodevacuate,m1)+3

Reading gas indicator
��

(PN2,M2)

Reading gas indicator
��

(PN2,M1
1)

(prodevacuate,m1)+3

Identify the location
��

(PN2,M1
2) dependent

Identify the location
��

(PN1,M2
1)

(prodevacuate,m1)+3

Call the gas company
��

(PN2,M2
2)

Call the gas company
��

(prodanalyse,m2) +3 (PN3,M2
3)

Call the gas company
��

(PN1,M3
1)

(prodevacuate,m1)+3

Request to control traffic
��

(PN2,M3
2)

Request to control traffic
��

(prodanalyse,m2) +3 (PN3,M3
3)

Request to control traffic
��

(PN1,M4
1)

dependent

(prodevacuate,m1)+3 (PN2,M4
2)

Notify residents
��

(prodanalyse,m2) +3 (PN3,M4
3)

Notify residents
��

(PN2,M5
2)

Assist handicapped persons
��

(prodanalyse,m2) +3 (PN3,M5
3)

Assist handicapped persons
��

(PN2,M6
2)

Guide persons
��

(prodanalyse,m2) +3 (PN3,M6
3)

Guide persons
��

(PN2,M7
2)

Deny entry
��

(prodanalyse,m2) +3 (PN3,M7
3)

Deny entry
��

(PN2,M′2)

dependent

(prodanalyse,m2) +3 (PN3,M3)

Additional reading
��

(PN3,M1
3)

Analyse results
��

dependent

(PN3,M′3)
(prodexpand ,m3) +3 (PN4,M4)

Figure 12: Independence and dependence of Firing and transformation steps

Volume X (2010)

102

Formal Modeling and Analysis of Flexible Processes

5 Conclusion

In this paper we have given main requirements for flexible processes in emergency/disaster sce-
narios in order to show that most of them are realized by reconfigurable systems, a rule based
formalism based on the one hand on low level and high level Petri nets with a suitable marking
and on the other hand on the categorical framework of weak adhesive high level replacement
systems. As future work, it would be important to investigate and verify additional requirements
necessary for flexible processes in emergency/disaster scenarios and mobile environments.

The main part of this paper presents the case study in the area of pipeline emergencies where
dynamic changes of the process are realised at run time by rule applications to express the re-
finement and insertion of activities. Note that our processes focus on the intended activities
and exclude movement activities because the network connectivity is assured due to the lim-
ited perimeter of the affected area and the use of cell phones and radio devices. Nevertheless,
the scenario could be extended in such a way that the problem is located beyond the range of
these equipment and several team members have to follow other ones to avoid a situation of
disconnection.

One aspect of future work is integration of the informational and organizational perspectives
into our formalism because within our case study these aspects become most relevant. In fact
process modifications in our case study depend on the exchange of messages and data concerning
a detailed instruction of the evacuation process, the results of reading the gas indicator and the
final analysis of these results by the company officer. In addition the processes enacted by the
gas company and the law enforcement officer have to be taken into account, so that the different
teams collaborate through the interleaving of all the different processes to achieve the common
goal.

Bibliography

[vdA03] W. van der Aalst. The Application of Petri nets to Workflow Management. Journal
of Circuits, Systems and Computers 8(1):21–66, 2003.

[AHKB00] W. Van der Aalst, A. ter Hofstede, B. Kiepuszewski, A. Barros. Workflow Pat-
terns. In Proc. Cooperative Information Systems (CoopIS). LNCS 1901, pp. 18–29.
Springer, 2000.

[AW01] W. M. P. van der Aalst, M. Weske. The P2P Approach to Interorganizational Work-
flows. In Proc. Advanced Information Systems Engineering (CAiSE). LNCS 2068,
pp. 140–156. Springer, 2001.

[AWW03] W. van der Aalst, M. Weske, G. Wirtz. Advanced Topics in Workflow Management:
Issues, Requirements, and Solutions. Journal of Integrated Design and Process Sci-
ence 7(3), 2003.

[AZ03] D. Agrawal, Q. Zeng. Introduction to Wireless and Mobile Systems. Thomson
Brooks/Cole, 2003.

Proc. GMT 2010

103

ECEASST

[BHP07] E. Biermann, K. Hoffmann, J. Padberg. Layered Architecture Consistency for
MANETs: Introducing New Team Members. In Proc. Integrated Design and Pro-
cess Technology (IDPT). 2007.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. EATCS Monographs in Theoretical Computer Science. Springer,
2006.

[EHPP06] H. Ehrig, A. Habel, J. Padberg, U. Prange. Adhesive High-Level Replacement Sys-
tems: A New Categorical Framework for Graph Transformation. Fundamenta In-
formaticae 74(1):1–29, 2006.

[EHPP07] H. Ehrig, K. Hoffmann, U. Prange, J. Padberg. Formal Foundation for the Recon-
figuration of Nets. Technical report 2007-01, Technical University Berlin, Fak. IV,
2007.

[EKPE07] H. Ehrig, J. P. K. Hoffmann, U. Prange, C. Ermel. Independence of Net Trans-
formations and Token Firing in Reconfigurable Place/Transition Systems. In Proc.
Application and Theory of Petri Nets (ATPN). LNCS 4546, pp. 104–123. Springer,
2007.

[Ell79] C. Ellis. Information Control Nets: A Mathematical Model of Office Informa-
tion Flow. In Proc. Simulation, Measurement and Modelling of Computer Systems.
Pp. 225–240. ACM Press, 1979.

[HEM05] K. Hoffmann, H. Ehrig, T. Mossakowski. High-Level Nets with Nets and Rules
as Tokens. In Proc. Application and Theory of Petri Nets (ATPN). LNCS 3536,
pp. 268–288. Springer, 2005.

[HPM05] K. Hoffmann, F. Parisi-Presicce, T. Mossakowski. Higher-Order Nets for Mobile
Policies. In Workshop on Petri Nets and Graph Transformation (PNGT). Electronic
Notes in Theoretical Computer Science 127, pp. 87–105. Elsvier, 2005.

[Jen96] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical
Use. EATCS Monographs in Theoretical Computer Science. Springer, 1996.

[KFP06] E. Kyriacou, G. Fakas, V. Pavlaki. A Completely Decentralized Workflow Manage-
ment System for the Support of Emergency Telemedicine and Patient Monitoring.
In Proc. IEEE EMBS Annual International Conference. 2006.

[KW01] E. Kindler, M. Weber. The Petri Net Kernel - An Infrastructure for Building Petri
Net Tools. Software Tools for Technology Transfer 3(4):486–497, 2001.

[LS05] S. Lack, P. Sobocinski. Adhesive and Quasiadhesive Categories. Theoretical Infor-
matics and Applications 39(5):511–546, 2005.

[PP01] F. Parisi-Presicce. On modifying high level replacement systems. Electronic Notes
in Theoretical Computer Science 44(2), 2001.

Volume X (2010)

104

Formal Modeling and Analysis of Flexible Processes

[PER95] J. Padberg, H. Ehrig, L. Ribeiro. Algebraic High-Level Net Transformation Systems.
Mathematical Structures in Computer Science 5:217–256, 1995.

[PHE+07] J. Padberg, K. Hoffmann, H. Ehrig, T. Modica, E. Biermann, C. Ermel. Maintaining
Consistency in Layered Architectures of Mobile Ad-hoc Networks. In Proc. Fun-
damental Approaches to Software Engineering (FASE). LNCS 4422, pp. 383–397.
Springer, 2007.

[PU03] J. Padberg, M. Urbasek. Rule-Based Refinement of Petri Nets: A Survey. In Ad-
vances in Petri nets: Petri Net Technologies for Modeling Communication Based
Systems. Lecture Notes in Computer Science 2472, pp. 161–196. Springer, 2003.

[Ros07] F. D. Rosa. Adaptive process management in mobile and dynamic scenarios. PhD
thesis, SAPIENZA - Universita di Roma, Department of Computer Science, 2007.

[Roz97] G. Rozenberg. Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

[RRD04] S. Rinderle, M. Reichert, P. Dadam. Correctness criteria for dynamic changes in
workflow systems - a survey. Data Knowl. Eng. 50(1):9–34, 2004.

[SMO00] S. Sadiq, O. Marjanovic, M. Orlowska. Managing change and time in dynamic
workflow processes. Journal of Cooperative Information Systems 9(12), 2000.

Proc. GMT 2010

105

ECEASST

Second-Order Value Numbering

Tiziana Margaria1, Bernhard Steffen2 and Christian Topnik 2

Chair Service and Software Engineering, University of Potsdam
1margaria@cs.uni-potsdam.de,

ChairProgramming Systems, TU Dortmund
2steffen@cs.uni-dortmund.de

Abstract: We present second-order value numbering, a new optimization method
for suppressing redundancy, in a version tailored to the application for optimizing
the decision procedure of jMosel, a verification tool set for monadic second-order
logic on strings (M2L(Str)). The method extends the well-known concept of value
numbering to consider not merelyvalues, but semantics transformers that can be
efficiently pre-computed and help to avoid redundancy at the 2nd-order level. Since
decision procedures for M2L are non-elementary, an optimization method like this
can have a great impact on the execution time, even though our decision procedure
comprises the analysis and optimization time for second-order value numbering.
This is illustrated considering a parametric family of hardware circuits, where we
observed a performance gain by a factor of 3. This result is surprising, as the design
of these circuits exploits already structural similarity.

Keywords: Program Analysis and Optimization, (second order) Value Numbering

1 Introduction

Value numbering is a well-known compiler optimization technique used to efficiently detect
and eliminate redundant code by identifying equality of values [CS70, AWZ88]. Considering
this (first order) concept there is a natural generalization to second-order (or even higher-order
in general): rather than considering just values, one could lift the analysis to second-order by
consideringsemantics transformers, which may then be efficiently pre-computed and help to
avoid redundancy at the second-order level.

In this paper we introduce second-order value numbering and illustrate its impact by applying
it to improve the decision procedure of jMosel [TWMS06], a verification toolset for monadic
second-order logic on strings (M2L(Str)). M2L [Chu63] is an extremely expressive specification
language with a non-elementary decision procedure. This makes jMosel a good candidate for
our new optimization technique, as there is room even for ambitious optimizations due to the
huge leverage potential. Our experiments support this judgement: we observed a performance
gain of a factor of three when analyzing a parametric family of hardware circuits, despite the fact
that the optimized decision procedure includes the analysis and optimization time for 2nd-order
value numbering as well. This result is surprising, as the design of these circuits exploits already
structural similarity. - Please note that our technique is quite general, and not restricted to the
considered application domain.

Volume X (2010)

106

mailto:margaria@cs.uni-potsdam.de
mailto:steffen@cs.uni-dortmund.de

Second-Order Value Numbering

This paper is organized as follows: Section2 provides an introduction to the jMosel toolset
including the definition of its syntax and semantics. First-order value numbering in the jMosel
context is explained in Section3, while Section4 introduces second-order value numbering
together with a detailed discussion of a minimal example. Subsequently, Section5 illustrates our
new method along a realistic case study, before we conclude with Section6.

2 jMosel

jMosel is a toolset for monadic 2nd-order logic on strings (M2L(Str)) that computes the semantics
of a formula in terms of a finite state automaton. In this sense, it can be seen as a compiler
form this logic into automata models. A detailed presentation of the tool can be found e.g. in
[TWMS06]. Its underlying concepts and the predecessor MoSeL have been presented in [Mar96,
KMMG97]. The following subsections summarize the required background about jMosel and
M2L.

2.1 Syntax

jMosel’s several user-level logics are built on top of the followingMinimal Logic, which already
provides the full expressive power of M2L (on strings):
T ::= Id
A ::= subseteq(T,T) | shifteq(T,T)
F ::= A | ˜ F | F & F | ex Id: F | (F)

In this BNF, the non-terminalT denotes 2nd-order terms in form of (2nd-order) variablesId .
Atomic predicatesA allow comparisons in terms of subset relation and equality after bit-shifting,
while jMosel’s minimal logic formulas, denoted by the non-terminal and start symbolF, may be
constructed using the standard operators of (a minimal) first-order logic.

2.2 Semantics

In (M2L(Str)) formulas are interpreted as sets of (ordered) positions in a string of arbitrary, but
finite length, which can be conveniently described as finite bitvectors, i.e. a finite word over
the alphabet{0,1}. One often refers to the interpretation of these bitvectors as characteristic
functions that describe subsets of a given ordered set. Typical is their interpretation as finite set
of natural numbers, illustrated in Figure1.

10 1 0 1. . .

0, 2, 3, $

X:

set X:

position:

{ }

1

Figure 1: A set of positionsset X and the corresponding bit vectorX.

The bit vector corresponding to a string variableX has value 1 at positionn iff n ∈ N0 is

Proc. GMT 2010

107

ECEASST

included inX , and value 0 otherwise. The figure shows a setX containing the positions 0, 2, 3
and $, its representation as a characteristic set, and its corresponding bit vector. Here, the symbol
$ stands for the last position in the parametric string, and therefore marks the last bit in the bit
vector; a special symbol for this last position is necessary since M2L(Str) allows reasoning about
strings of finite butarbitrary length, a convenient model for parametric hardware components.

The following development will entirely foot on the bit vector interpretation of M2L(Str),
which we formally define below.

Semantics of jMosel formulas

jMosel translates formulas into complete and deterministic finite automata (DFA) in such a way
that the language recognized by one such automaton corresponds to the formula’s interpretation
as a bit vector. The semantics of a formula is defined by the functionJ K : ϕ −→ α , whereϕ is
the set of all jMosel formulas andα is the set of all complete DFAs.

Definition 1 (Boolean Automaton)
A Boolean AutomatonA of α is defined asA = (Σ,S,s0,F,δ), where

• Σ is the set of all edge labels, which themselves denote subsets of the set of free variable
V in the considered formula. They are represented as bitvectors of length|V |.

• S is the set of all states.

• s0 is the initial state,s0 ∈ S.

• F is the set of accepting statesF ⊆ S.

• δ is the transition function defined asδ : S×Σ′ −→ S.

The edge labels determine for every string variable the Boolean value at positionn, whenever
this label is taken asnth step of an accepting run. The number of edge labels is exponential in
the size of the formula’s free variables, since the value of every variablev ∈V has to be checked
for equality with 0 or 1. Therefore, each label consists of a bit vector of length|V |.

Boolean Automata typically have very many edges between two nodes. We therefore con-
struct the following equivalent Symbolic AutomatonAs, whose edges are labelled with Boolean
functions and therefore compactly represent a set of edges of the original automaton.

Definition 2 (Symbolic Automaton)
A symbolic automatonAs is defined asAs = (L ,S ,s0,F ,δ), where

• L is the set of all possible edge labels, consisting of Boolean functions.

• S is the set of all states.

• s0 is the initial state,s0 ∈ S .

• F is the set of all accepting states,F ⊆ S .

Volume X (2010)

108

Second-Order Value Numbering

T
t

0 1 2 . . . $−1 $

X x0 x1 x2 . . . x$−1 x$

Y y0 y1 y2 . . . y$−1 y$
...

...
...

...
. . .

...
...

Z z0 z1 z2 . . . z$−1 z$

Figure 2: Values for 2nd order variables

T
t

. . . i . . .

W . . . 0 . . .

X . . . 1 . . .

Y . . . 0 . . .

Z . . . 1 . . .

Figure 3: Representation of edge label˜w & x & ˜y & z

• δ is the transition function defined asδ : S ×L −→ S .

To describe the transformation fromA to As, we observe that values for a jMosel formula’s
2nd order variables can be represented in table form, where a variableX is expressed as bit vector
with position literalsx0,x1, ...,x$−1,x$. The ordering of variables is arbitrary but fixed.

Therows for variablesX in Fig. 2 represent a word of the languageJXK. Every column of the
table specifies one input symbol ofA and must therefore match an appropriate edge label. The
position j in this label corresponds to the variable at positionj in the ordering of variables. To
convertA into an AutomatonAs with Boolean formulas as edge labels, the labels ofA are first
transformed as shown in Fig.3. Subsequently, edges sharing the same source and target state are
merged; the resulting edge is labelled with the disjunction of the merged edges’ labels.

The formulas for the edge labels resulting from this transformation may be large, but their
BDD representations are canonical and typically nice and concise [Bry86]. The jMosel toolset
supports various BDD libraries to optimally exploit this observation.

Semantic Completeness:
Note that a symbolic automatonAs composed this way is typically not complete: its input al-
phabet consists of all Boolean functions, but not every state considers the input of every possible
Boolean function. However, the automaton is completeat a semantical level: the automatonA
with bit vector labels it represents is always complete. It is this semantic notion of completeness
and determinism which we will refer to in the sequel of the paper.

Convention:
In the following sections, the semantics of jMosel formulas will always be given in terms of
symbolic automataAs. In this section we used the index ”s” to better distinguish between the
two types of automata, but we omit it from now on. In the figures depicting automata, the

Proc. GMT 2010

109

ECEASST

following applies: an arrow marks the initial state, accepting states are denoted as double circles,
non-accepting states as plain circles.

In the following, we first present the classical (first-order) value numbering for this application
domain, before we lift to second order in Section4.

3 First-Order Value Numbering

First-order value numbering is an analysis method that allows the detection and removal of re-
dundant computations from a program [CS70]. This goal is achieved by assigning abstract identi-
fication values to computations that imply equality: As soon as an identification value reappears,
it is certain that the corresponding computation has been already performed before, thus the
previously computed result may be reused instead of performing the computation again. This
‘classical optimization is called DAGification in [KMS02].

3.1 Characterization of 1st-order Value Numbering

Given a syntax treeT of a jMosel formula in terms of

• L is the set of all labels for predicates, operators, and variables,
L = {subseteq ,shifteq ,̃ ,&,ex}∪{X ,Y,Z, ...}

• N is the set of nodes of the syntax treeT under consideration

• l : N −→ L maps every syntax node to its label.

the assignment of abstract identification values can be given by any functionv1st : N −→ N0

that satisfies the following two characteristics:

• For all nodesn1,n2 ∈ N of the syntax tree,
v1st(n1) = v1st(n2) implies l(n1) = l(n2),
i.e. the coincidence of their syntactic labels. In addition we require

• for all (internal) nodesn1,n2 ∈N with childrenc1
1, ...,c

1
i ∈N andc2

1, ...,c
2
j ∈N , respec-

tively
i = j ∧ ∀k ∈ {0, ..., i} .v1st(c1

k) = v1st(c2
k)

3.2 Example

As an example for the process of first-order value numbering, we consider the following jMosel
formula:

F = (subseteq(X,Y)&shifteq(A,B))|(subseteq(X,Y)&shifteq(A,B))

Fig. 4 shows its syntax tree after computation of the value numbers.
At compilation, the compiler can benefit from the fact that the subformulas with value numbers

3, 6, and 7 all occur twice by only calculating each of them once, storing the result of the
computation, and referring to it when the corresponding value number occurs for the second
time. We will illustrate the impact of this optimization in in Section5.

Volume X (2010)

110

Second-Order Value Numbering

Figure 4: 1st order value numbering applied to the jMosel formulaF.

4 Second-Order Value Numbering

While first-order value numbering is used to identify redundant computations and replacing them
by previously computed results, the goal of second-order value numbering is to identify redun-
danttransformations - the reason for the use of second-order here. As will be clear below, this
analysis and its corresponding optimizations is only a bit more involved than in the first-order
case, but has a far bigger impact, see Section5.

4.1 Characterization of 2nd-order Value Numbering

The only difference in the characterization of the labelling functionv1st : N −→ N0 concerns
the treatment of atomic predicates, i.e., ofA = {subseteq ,shifteq }. Their labelling does
no longer require the second clause for internal nodes. This results in the following slightly
modified characterization:

• For all nodesn1,n2 ∈ N of the syntax tree,
v1st(n1) = v1st(n2) implies l(n1) = l(n2),
i.e. the coincidence of their syntactic labels. In addition we require

• for all (internal) nodesn1,n2 ∈N with childrenc1
1, ...,c

1
i ∈N andc2

1, ...,c
2
j ∈N , respec-

tively
i = j ∧ ∀k ∈ {0, ..., i} .v1st(c1

k) = v1st(c2
k) unless they are labelled with

A = {subseteq ,shifteq }

After this labelling, nodes sharing the same value number can be replaced by calls to a semantics
transformer. However note that transformers should only be created for subtrees containing at
least one logical operator, as otherwise the effect of the transformation is vacuous.

Proc. GMT 2010

111

ECEASST

4.2 Semantics Transformers

When implementing second-order value numbering for jMosel, the semantics transformers can
be implemented in terms of custom predicates similar to the atomic formulassubseteq and
shifteq . This means that every identification of redundancy results in the automatic definition
of a custom predicate. This process can be seen as an “on-the-fly enhancement” of the logic with
newly identified predicates with multiple occurrences.

For the definition of semantics transformers and calls to these transformers, the syntax of
jMosel is enhanced by thelet -construct

let < predicatename > (< argumentlist >) = < de f inition >
in < f ormula >

that allows one to formulate formulas like:

let pred(X,Y) =subseteq(X,Y) & shifteq(Y,X)
in pred(A,B) <-> pred(S,T).

where a new predicatepred with argumentsXandY is defined by the formulasubseteq(X,Y)
& shifteq(Y,X) and instantiated twice in the formulapred(A,B) <-> pred(S,T) .

Definition 3 (Semantics of thelet-Construct)
For formulas f1, f2 ∈ F and a predicatePred(A1,...,An) ∈ P, the semantics of thelet-
construct is defined as follows:

Jlet Pred(arg1,...,argn) = f1 in f2K =d f J f2 [f1/Pred(x1,...,xn)]K

where· [·/·] : F × ID × ID −→ F denotes the usual syntactic substitution.

We use thelet -construct to implement second-order value numbering for jMosel. There, the
definitions of and calls to semantics transformers are automatically inserted into the considered
formula according to the value numbers assigned to the individual computations.

In the following we first illustrate on a very simple example how a semantics transformer is
identified and inserted into the formula, then we consider a more complex case study in Section5.

4.3 Example

As a short example for the process of second-order value numbering, we consider the following
jMosel formula:

(subseteq(A,B) & shifteq(C,D)) | (subseteq(X,Y) & shifteq(V,W))

This formula is similar to the one of section3.2, but cannot benefit from first-order value
numbering, since the atomic formulassubseteq andshifteq are called with different pa-
rameters. This is a very frequent case in practice: in hardware design, for example, circuits are
composed of a small number of component types, each instance of which has the same abstract
function, but is connected differently. Circuits would thus not be eligible for first order value
numbering, but are an excellent application for second-order value numbering.

Volume X (2010)

112

Second-Order Value Numbering

Figure 5: 2nd order value numbering applied to a jMosel formula.

Theformula’s syntax tree after computation of second-order value numbers is shown in Fig.
5. The nodes of the tree have been divided into two sets,formulas andterms; nodes representing
terms have not been numbered by the 2nd-order value-numbering procedure.

The two nodes labeled with “&” share the value number 3; this means they both perform the
same set of computations and can therefore be replaced by calls to a same semantics transformer
st 3. The nodes with the value numbers 1 and 2 are not taken into account, since they are
labeled with atomic predicates.

The definition of thest 3 transformer is isomorphic to the subtrees labeled with value num-
ber 3, but all occurring variables are replaced by fresh variables ”arg n”. This transformer is
inserted via let-construct into the formula, and the subtrees labeled with 3 are replaced by calls
to st 3 (see the corresponding syntax tree in Fig.6), resulting in the formula:

let st 3(arg 1,arg 2,arg 3,arg 4) =
subse teq(arg 1,arg 2) & shifteq(arg 3,arg 4)

in st 3(A,B,C,D) | st 3(X,Y,V,W)
When compiling this formula, the conjunction of the predicatessubseteq andshifteq

is only computed once and stored as a semantics transformer, opposed to the original formula,
where the conjunction is computed twice. The detailed course of the optimization and compila-
tion is described in the next section.

4.4 The Optimizing Transformation

The optimization of the syntax tree for the formula

(subseteq(A,B) & shifteq(C,D)) | (subseteq(X,Y) & shifteq(V,W))

is performed in the following steps:

• Perform the numbering of the syntax tree, resulting in the labelling shown in Fig.5.

• Identify the good targets for optimization: the nodes labelled with 3 qualify, as their exist
more than once, and the corresponding subtrees contain logical operators.

Proc. GMT 2010

113

ECEASST

Figure 6: Syntax tree after optimization.

• Create a semantics transformerst 3 for the nodes labelled with 3 by duplicating one of
the syntax trees of the corresponding subfunction.

• Replace the two occurrences of syntax nodes labelled with 3 by calls to the newly created
semantics transformerst 3 (Fig. 7).

• Add the definition ofst 3 to the top of the syntax tree (Fig.6).

Thecompiler operates on the modified syntax tree as follows:

• At the ”let” construct it compiles the semantics transformer’s definition, identified by the
subtree of the second child node of ”let”.

• At the nodes representing the atomic predicates
subseteq(arg 1,arg 2) andshifteq(arg 3,arg 4)
it constructs the corresponding basic automataa1 anda2.

Volume X (2010)

114

Second-Order Value Numbering

Figure 7: Syntax tree with calls to the semantics transformer.

• At the node representing the formula

subs eteq(arg 1,arg 2) & shifteq(arg 3,arg 4)

it constructs the product automatona1∧2 representing the conjunction ofa1 anda2.

Proc. GMT 2010

115

ECEASST

• It stores the resulting automaton as a semantics transformer namedst 3 with arguments
arg 1,...,arg 4.

• The compilation continues with the subtree of the third child node of ”let”.

• At the node representing the call of a semantics transformerst 3(A,B,C,D) the pre-
computed definition ofst 3 is copied, replacing the argumentsarg 1, ...,arg 4 in
the edge labels with the termsA,B,C,D to yield the result automatona3.

• At the node representing the call of a semantics transformerst 3(X,Y,V,W) the pre-
computed definition ofst 3 is copied again, this time the argumentsarg 1,...,
arg 4 in the edge labels are replaced with the termsX,Y, V,W to form the result automa-
ton a4.

Volume X (2010)

116

Second-Order Value Numbering

• At the node representing the formula

st 3(A,B,C,D) | st 3(X,Y,V,W)

it constructs the product automatona representing the disjunction ofa3 anda4 and returns
it as the compilation’s result.

5 Application and Performance Measuring

One ofjMosel’s main application areas is the specification and verification of parametric hard-
ware systems. We tested the presented optimization with a ”real-world” example, applying it to
the structural description of a parametric adder that describes the family of adder circuits for bit
vectors of lengthn.

Proc. GMT 2010

117

ECEASST

full_adder full_adder full_adder full_adder

@cin X Y

Result @cout

add

$ $

1 1 1 1 1 1 1 1

1 1 1 1

$

Figure 8: Structure of the parametric adder

Structural Description of a Parametric Adder

Fig. 8 shows the structure for this adder based onn interconnected full adders. The circuit adds
two bit vectorsX andY and stores the result as the new vectorResult. The Boolean variables
@cin and @cout are the carry-in and carry-out bits.

The size of input formula and of the resulting automaton are too large for a detailed discussion
in this paper, so we only present the results in terms of key data at this point. The compilation
times have been measured on an Intel Centrino Duo System (2 x 2.16 GHz) with 1 GB of RAM:

Optimization none 1st-ord. VN 2nd-ord. VN

Nodes in synt. tree 472 469 452
Depthof synt. tree 26 27 32
overall run time 11.50 sec 10.49 sec 3.47 sec
Sem. transformers - 1 6

As we expected, first order value numbering does not contribute significatively to perfor-
mance: the sharing is at the level of subcircuit types, not of fully instanced values.

The increased depth of the modified syntax tree is due to the fact that all definitions of se-
mantics transformers are added to the top of the tree. By identifying 6 semantics transformers,
the size of the tree could be reduced by 20 nodes. This does not seem too exciting at first sight;
however, it has quite some impact: the overall run time of the decision process is accelerated by
a factor of three.

The enormous speedup is quite surprising, since the adder’s structural description already
included user-defined predicates for frequently occurring constructs like the full adder and logical

Volume X (2010)

118

Second-Order Value Numbering

gates. This shows that even a carefully written formula and well structured circuits might still
contain significant potential of redundancy, and therefore could benefit greatly from second-order
value numbering.

6 Conclusion

We have presented second-order value numbering, a new optimization technique for suppress-
ing redundancy, in a version tailored to the application for improving the decision procedure of
jMosel, a verification tool set for monadic 2nd-order logic on strings. Our technique extends the
well-known concept of value numbering to consider not merely values, butsemantics transform-
ers that can be efficiently pre-computed and help to avoid redundancy at a second-order level.
We have illustrated the effect of this optimization for a parametric family of hardware circuits,
where we observed a performance gain by a factor of 3. This result is surprising, as the design
of these circuits exploits already structural similarity.

Currently we are working on a careful experimental analysis of the impact of our technique in
practice using standard benchmarks and libraries. We conjecture that we will observe a growth
of the improvement factor with the size of the system, i.e. a ’felt’ superlinear speedup.

In a more general perspective, second-order value numbering can be regarded as a means
for a specific semantic form of procedural abstraction [SHKN76, DWF+07] in a similar way
as value numbering (or its generalization to Value Flow graphs) is a semantic support for code
motion [SKR90]. Thus besides looking for further application domains for second-order value
numbering, it would also be interesting to investigate how the structural generalization of value
numbering presented in [SKR90] can be raised to second-order in order to achieve a truly se-
mantic notion of procedure abstraction for imperative programs.

Bibliography

[AWZ88] B. Alpern, M. N. Wegman, F. K. Zadeck. Detecting equality of variables in pro-
grams. InPOPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. Pp. 1–11. ACM Press, New York, NY,
USA, 1988.

[Bry86] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation.IEEE
Transactions on Computers 35(8):677–691, 1986.

[Chu63] A. Church. Logic, arithmetic and automata. InProc. Intern. Congr. Math. Pp. 23–
35. Almqvist and Wiksells, 1963.

[CS70] J. Cocke, J. T. Schwartz. Programming Languages and their Compilers. Courant
Institute of Mathematical Sciences, New York University, 1970.

[DWF+07] A. Dreweke, M. Wörlein, I. Fischer, D. Schell, T. Meinl, M. Philippsen. Graph-
Based Procedural Abstraction. In Society (ed.),Proc. of the 2007 CGO. Pp. 259–
270. IEEE Computer Society, Los Alamitos, CA, USA, 2007.

Proc. GMT 2010

119

ECEASST

[KMMG97] P. Kelb, T. Margaria, M. Mendler, C. Gsottberger. MOSEL:A Flexible Toolset
for Monadic Second-Order Logic. InProc. TACAS’97. Lecture Notes in Computer
Science 1217, pp. 183–202. Springer Verlag, 1997.

[KMS02] N. Klarlund, A. Møller, M. Schwartzbach. MONA Implementation Secrets.Inter-
national Journal of Foundations of Computer Science, 2002.

[Mar96] T. Margaria. Fully Automatic Verification and Error Detection for Parameterized
Iterative Sequential Circuits. InProc. TACAS ’96. Lecture Notes in Computer Sci-
ence 1055, pp. 258–277. Springer Verlag, 1996.

[SHKN76] T. Standish, D. Harriman, D. Kibler, J. Neighbors. The Irvine Program Transfor-
mation Catalogue. University of California, Irvine, 1976.

[SKR90] B. Steffen, J. Knoop, O. Rüthing. The Value Flow Graph: A Program Representa-
tion for Optimal Program Transformations. InEuropean Symposium on Program-
ming. Pp. 389–405. 1990.

[TWMS06] C. Topnik, E. Wilhelm, T. Margaria, B. Steffen. jMosel: A Stand-Alone Tool and
jABC Plugin for M2L(Str). InModel Checking Software: 13th International SPIN
Workshop, Vienna (Austria). LNCS 3925/2006, pp. 293–298. Springer-Verlag,
2006.

Volume X (2010)

120

Pre-Proceedings GraMoT 2010

121

ECEASST

Towards Theorem Proving Graph Grammars using Event-B

Leila Ribeiro1∗, Fernando Luís Dotti2, Simone André da Costa3 and
Fabiane Cristine Dillenburg4

1 leila@inf.ufrgs.br
4 fabiane.dillenburg@inf.ufrgs.br

Instituto de Informática
Universidade Federal do Rio Grande do Sul, Brazil

2 fernando.dotti@pucrs.br
Faculdade de Informática

Pontifícia Universidade Católica do Rio Grande do Sul, Brazil

3 simone.costa@ufpel.edu.br
Instituto de Física e Matermática

Universidade Federal de Pelotas, Brazil

Abstract: Graph grammars may be used as specification technique for different kinds
of systems, specially in situations in which states are complex structures that can be
adequately modeled as graphs (possibly with an attribute data part) and in which the
behavior involves a large amount of parallelism and can be described as reactions to
stimuli that can be observed in the state of the system. The verification of properties
of such systems is a difficult task due to many aspects: the systems in many situations
involve an infinite number of states; states themselves are complex and large; there are
a number of different computation possibilities due to the fact that rule applications may
occur in parallel. There are already some approaches to verification of graph grammars
based on model checking, but in these cases only finite state systems can be analyzed.
Other approaches propose over- and/or under-approximations of the state-space, but in
this case it is not possible to check arbitrary properties. In this work, we propose to use
the Event-B formal method and its theorem proving tools to analyze graph grammars.
We show that a graph grammar can be translated into an Event-B specification preserving
its semantics, such that one can use several theorem provers available for Event-B (for
instance, through the Rodin platform) to analyze the reachable states of the original graph
grammar. The translation is based on a relational definition of graph grammars, that was
shown to be equivalent to the Single-Pushout approach to graph grammars.

Keywords: Graph Grammars, Theorem Proving, Event-B

1 Introduction

Graph grammars [Ehr79, Roz97] are a formal description technique suitable for the specification of
distributed and reactive systems. The basic idea of this formalism is to model the states of a system
as graphs and describe the possible state changes as rules (where the left- and right-hand sides are
graphs). The operational behavior of the system is expressed via applications of these rules to graphs
depicting the current states of the system. Graph grammars are appealing as specification formalism
because they are formal and based on simple, but powerful, concepts to describe behavior. At the
same time they also have a nice graphical layout that helps even non-theoreticians to understand a
specification.

∗ This author is partly sponsored by CNPq/Brazil

Volume X (2010)122

mailto:leila@inf.ufrgs.br
mailto:fabiane.dillenburg@inf.ufrgs.br
mailto:fernando.dotti@pucrs.br
mailto:simone.costa@ufpel.edu.br

Towards Theorem Proving Graph Grammars using Event-B

The verification of graph grammar models through model-checking is currently supported by var-
ious approaches. Although model checking is an important analysis method, it has as disadvantage
the need to build the complete state space, which can lead to the state explosion problem. Much
progress has been made to deal with this difficulty, and a lot of techniques have increased the size
of the systems that could be verified [CGJ+01]. Baldan and König proposed [BK02] approximating
the behavior of (infinite-state) graph transformation systems by a chain of finite under- or over- ap-
proximations, at a specific level of accuracy of the full unfolding [BCMR07] of the system. However,
as [DHR+07] emphasizes, these approaches that derive the model as approximations can result in
inconclusive error reports or inconclusive verification reports.

Besides model checking, theorem proving [RV01, CW96] is another well-established approach
used to analyze systems for desired properties. Theorem proving is a technique where both the system
and its desired properties are expressed as formulas in some mathematical logic. A logical description
defines the system, establishing a set of axioms and inference rules. The process consists of finding a
proof of the required property from the axioms or intermediary lemmas of the system. In contrast to
model checking, theorem proving can deal directly with infinite state spaces and it relies on techniques
such as structural induction to prove over infinite domains. The use of this technique may require
interaction with a human; however, the user often gains very useful perceptions into the system or the
property being proved.

Each verification technique has arguments for and against its use, but we can say that model-
checking and theorem proving are very complementary. Most of the existing approaches use model
checkers to analyze properties of computations, that is, properties over the sequences of steps a system
may engage in. Properties about reachable states are handled, if at all possible, only in very restricted
ways. In this work, our main aim is to provide a means to prove structural properties of reachable
graphs using the theorem proving technique.

In previous work [CR09a] we proposed a relational approach to graph grammars, providing an
encoding of graphs and rules into relations. This enabled the use of first-order logic formulas to
express properties of reachable states of a graph grammar. This encoding showed to be equivalent
to the Single-Pushout approach to graph grammars. Verification of infinite-state systems specified as
graph grammars is possible using our approach with theorem proving techniques. This approach was
inspired by Courcelle’s research about logic and graphs [Cou97].

Courcelle investigates in various papers [Cou94, Cou97, Cou04] the representation of graphs and
hypergraphs by relational structures as well as the expressiveness of their properties by logical lan-
guages. In [Cou94] the description of graph properties and the transformation of graphs in monadic
second-order logic is proposed. However, these works are not particularly interested in effectively
verifying the properties of graph transformation systems (GTSs). Since theorem provers, in gen-
eral, work efficiently with specifications in relational style, we extend the relational representation
of graphs to graph grammar models and use such representation for the formal analysis of reactive
systems through the theorem proving technique. On the other hand, other authors have investigated
the analysis of GTSs based on relational logic or set theory. Baresi and Spoletini [BS06] explore the
formal language Alloy to find instances and counterexamples for models and GTSs. In fact, with
Alloy, they only analyze the system for a finite scope, whose size is user-defined. Strecker [Str08],
aiming to verify structural properties of GTSs, proposes a formalization of graph transformations in
a set-theoretic model. His goal is to obtain a language for writing graph transformation programs
and reasoning about them. Nevertheless, the language has only two statements, on e to apply a rule
repeatedly to a graph, and another to apply several rules in a specific order to a graph. Until now, the
work just presents a glimpse of how to reason about graph transformations.

In this paper we will use Event-B to analyze properties of graph grammars. Event-B [DEP] is a
state-based formal method closely related to Classical B [Abr05]. It has been successfully used in
several applications, having available tool support for both model specification and analysis. There
are a series of powerful theorem provers that can be used to analyze event-B specifications. Due to

Proc. GMT 2010123

ECEASST

the similarity between event-B models and graph grammar specifications, specially concerning the
rule-based behavior, in this paper we propose to translate graph grammar specifications in event-B
structures, such that it is possible to use the event-B provers to demonstrate properties of a graph
grammar. This translation is based on the relational definition of graph grammars.

The paper is organized as follows. Section2 presents the relational approach of graph grammars.
Section 3 briefly introduces the event B formalism. Section4 shows how a graph grammar can be
translated into an Event-B program. Section5 contains some final remarks.

2 Relational Approach to Graph Grammars

Graph Grammars are a generalization of Chomsky grammars from strings to graphs suitable for the
specification of distributed, asynchronous and concurrent systems. The basic notions behind this
formalism are: states are represented by graphs and possible state changes are modeled by rules,
where the left- and right-hand sides are graphs.

We use a relational and logical approach for the description of Graph Grammars: graphs and graph
morphisms are described as relational structures [CR09a], that is, they are defined as tuples formed by
a set and by a family of relations over this set. Proofs about the well-definedness of these definitions
were detailed in [CR09b].

Definition 1 (Relational Structures) LetR be a finite set of relation symbols, where eachR ∈ R

has an associated positive integer called its arity, denoted byρ(R). An R-structure is a tupleS =
〈DS,(RS)R∈R〉 such thatDS is a possible empty set called the domain ofS and eachRS is aρ(R)-ary

relation onDS, i.e., a subset ofDρ(R)
S . R(d1, . . . ,dn) holds inS if and only if (d1, . . . ,dn) ∈ RS, where

d1, . . . ,dn ∈ DS.

A relational graph|G| is a tuple composed of a set, the domain of the structure, representing all
vertices and edges of|G| and by two finite relations: a unary relation,vert G, defining the set of
vertices of|G| and a ternary relationincG representing the incidence relation between vertices and
edges of|G|. The uniqueness edge condition assures that the same edge doesn’t connect different
vertices.

Definition 2 (Relational Graph) LetRgr = {vert, inc} be a set of relations, wherevert is unary and
inc is ternary. Arelational graph is aRgr-structure|G| = 〈DG, (RG)R∈Rgr〉, where:

• DG = VG∪EG is the union of sets of possible vertices and edges of|G|, respectively (we always
assume thatVG ∩EG = ∅);

• vertG ⊆VG, with vertG(x) iff x is a vertex of|G|;

• incG ⊆ EG ×VG ×VG, with incG(x,y,z) iff x is a directed edge that links vertexy to vertexz in
|G|.

such that the following condition is satisfied:

• Uniqueness Edge Condition.∀x,y,z,y′,z′,
[incG(x,y,z)∧ incG(x,y′,z′) ⇒ y = y′∧ z = z′].

A relational graph morphism|g| from a relational graph|G| to a relational graph|H| is obtained
through two binary relations: one to relate vertices (gV) and other to relate edges (gE). The type
consistency conditions state that if two vertices are related bygV then the first one must be a vertex of
|G| and the second one a vertex of|H|, and if two edges are related bygE , then the first one must be
an edge of|G| and the second one an edge of|H|. The(morphism) commutativity condition assures
that the mapping of edges preserves the mapping of source and target vertices.

Volume X (2010)124

Towards Theorem Proving Graph Grammars using Event-B

Definition 3 (Relational Graph Morphism) Let|G| = 〈VG ∪ EG,{vertG, incG}〉 and |H| = 〈VH ∪
EH ,{vertH , incH}〉 be relational graphs. Arelational graph morphism |g| from |G| to |H| is defined
by a set|g| = {gV ,gE} of binary relations where:

• gV ⊆VG ×VH is a partial function that relates vertices of|G| to vertices of|H|;

• gE ⊆ EG ×EH is a partial function that relates edges of|G| to edges of|H|;

such that the following conditions are satisfied:

• Type Consistency Conditions.∀x,x′,
[gV (x,x′)] ⇒ vertG(x)∧ vertH(x′); and
[gE(x,x′)] ⇒∃y,y′,z,z′[incG(x,y,z)∧ incH (x′,y′,z′)];

• Morphism Commutativity Condition. ∀x,y,z,x′,y′,z′,
[gE(x,x′)∧ incG(x,y,z)∧ incH (x′,y′,z′) ⇒ gV (y,y′) ∧ gV (z,z′)].

|g| is called total/injective if relationsgV andgE are total/injective functions.

A relational typing morphism is a relational graph morphism that has the role of typing all elements
of a graph|G| over a graph|T |.

Definition 4 (Relational Typing Morphism) Let|G| and |T | be relational graphs. Arelational
typing morphism from |G| over |T | is defined by a total relational graph morphism|tG| = {tG

V , tG
E }

from |G| to |T |.

A relational typed graph is defined by two relational graphs together with a relational typing mor-
phism. A relational typed graph morphism between graphs typed over the same graph is defined by a
relational graph morphism. A(typed morphism) compatibility condition assures that the mappings of
vertices and edges preserve types.

Definition 5 (Relational Typed Graph, Relational Typed Graph Morphism) Arelational typed
graph is given by a tuple|GT | = 〈|G|, |tG|, |T |〉 where|G| and |T | are relational graphs and|tG| =
{tG

V , tG
E } is a relational typing morphism from|G| over |T |. A relational (typed) graph morphism

from |GT | to |HT | is defined by a relational graph morphism|g|= {gV ,gE} from |G| to |H|, such that
the typed morphism compatibility condition is satisfied:

• (Typed Morphism) Compatibility Condition. ∀x,x′,y,
[gV (x,x′)∧ tG

V (x,y) ⇒ tH
V (x′,y)]; and

[gE(x,x′)∧ tG
E (x,y) ⇒ tH

E (x′,y)].

A relational rule specifies a possible behaviour of the system. It consists of a left-hand side|LT |,
describing items that must be present in a state to enable the application of the rule and a right-hand
side|RT |, expressing items that will be present after the application of the rule. We require that rules
do not collapse vertices or edges (are injective) and do not delete vertices.

Definition 6 (Relational Rule) Arelational rule α is given by a tuple〈|LT |, |α |, |RT |〉 where:

• |LT | = 〈|L|, |tL|, |T |〉 and|RT | = 〈|R|, |tR|, |T |〉 are relational typed graphs;

• |α |= {αV ,αE} is an injective relational typed graph morphism from|LT | to |RT |, such thatαV

is a total function on the set of vertices.

A relational graph grammar is composed by arelational type graph, characterizing the types of
vertices and edges allowed in a system, aninitial relational graph, representing the initial state of a
system anda set of relational rules, describing the possible state changes that can occur in a system.

Proc. GMT 2010125

ECEASST

Definition 7 (Relational Graph Grammar) LetRGG = {vertT , incT , vertG0, incG0, tG0
V , tG0

E , (vertLi,
incLi, tLi

V , tLi
E ,vertRi, incRi, tRi

V , tRi
E , αiV , αiE)i∈{1,...,n}} be a set of relation symbols. Arelational graph

grammar is aRGG-structure|GG| = 〈DGG,(r)r∈RGG〉 where

• DGG =VGG∪EGG is the set of vertices and edges of the graph grammar, where:VGG∩EGG = ∅,
VGG = VT ∪VG0∪ (VLi ∪VRi)i∈{1,...,n} andEGG = ET ∪EG0∪ (ELi ∪ERi)i∈{1,...,n}.

• |T | = 〈VT ∪ET ,{vertT , incT }〉 defines a relational graph(the type of the grammar).

• |G0T | = 〈|G0|, |tG0|, |T |〉, with |G0| = 〈VG0 ∪EG0,{vertG0, incG0}〉 and |tG0| = {tG0
V , tG0

E }, de-
fines a relational typed graph(the initial graph of the grammar) .

• Each collection(vertLi, incLi, tLi
V , tLi

E , vertRi, incRi, tRi
V , tRi

E , αiV , αiE) defines arule:

– |LiT | = 〈|Li|, |tLi|, |T |〉, with |Li| = 〈VLi ∪ELi,{vertLi, incLi}〉 and|tLi| = {tLi
V , tLi

E }, defines
a relational typed graph(the left-hand side of the rule).

– |RiT |= 〈|Ri|, |tRi|, |T |〉, with |Ri|= 〈VRi ∪ERi,{vertRi, incRi}〉 and|tRi|= {tRi
V , tRi

E }, defines
a relational typed graph(the right-hand side of the rule).

– 〈|LiT |, |αi|, |RiT |〉, with |αi| = {αiV ,αiE}, defines a relational rule.

Given a relational rule and a state, we say that this rule is applicable in this state if there is a match,
that is, an image of the left-hand side of the rule in the state. The operational behaviour of a graph
grammar is defined in terms of applications of the rules to some state graph.

Definition 8 (Relational Match) Let〈|LT |, |α |, |RT |〉 be a relational rule, with|LT | = 〈|L|,{tL
V ,

tL
E}, |T |〉 and |RT | = 〈|R|,{tR

V , tR
E}, |T |〉. Let |GT | = 〈|G|, |tG|, |T |〉 be a relational typed graph with

tG = {tG
V , tG

E }. A relational match |m| of the given rule in |GT | is defined by a total relational typed
graph morphism|m| = {mV ,mE} from |LT | to |GT |, such that the following conditions are satisfied:

• mE is injective;

• Match Compatibility Condition. ∀x,x′,y
[mV (x,x′)∧ tL

V (x,y) ⇒ tG
V (x′,y)],

[mE(x,x′)∧ tL
E(x,y) ⇒ tG

E (x′,y)].

The application of a given rule to a match in a state essentially removes from the state all elements
that are in the left-hand side of the rule that are not mapped to the right-hand side, and creates in the
state all new elements of the right-hand side of the rule. The rest of the state remains unchanged.

Selected a relational rule〈|LiT |, |αi|, |RiT |〉 of a graph grammar and given a relational match|m| =
{mV ,mE} of this rule in the initial state of the graph grammar, formulasθvertG′ , θincG′ , θtG′

V
, θtG′

E
de-

scribed below define the resulting graph of the rule application. The elements that satisfy the stated
formulasθrel are those that define the relationsrel of the resulting typed graph|G′T |. Table1 presents
the intuitive meaning and the equivalent notation of the formulas used inθ specifications.

θvertG′ (x) = vertG0(x) ∨ nvertRi(x)

θincG′ (x,y,z) = nincG0(x,y,z) ∨ nincRi(x,y,z).

θtG′
V

(x, t) = nvertG0(x, t) ∨

[
nvertRi(x) ∧ tRi

V (x, t)

]
.

θtG′
E

(x, t) = ntG0
E (x, t) ∨ tRi

E (x, t).

This construction is described by a first-order definable transduction (i.e., by a tuple of first-order
formulas) on relational structures associated to graph grammars. Details can be found in [CR09a].

Volume X (2010)126

Towards Theorem Proving Graph Grammars using Event-B

Table 1: Formulas used inθ specifications

Formula Intuitive Meaning Equivalent
Notation

vertG0(x) x is a vertex of graph|G0|. -
tRi
V (x,y) x is a vertex of|Ri| of typey. -
tRi
E (x,y) x is an edge of graph|Ri| of

typey.
-

vertRi(x)∧∄y
(

αiV (y,x)
)

x is a vertex of graph|Ri| that
is not image of the rule|αi|.

nvertRi(x)

incG0(x,y,z)∧∄w
(

mE(w,x)
)

x is an edge of graph|G0|
with sourcey and targetz that
is not image of the match.

nincG0(x,y,z)

∃r,s
[
incRi(x,r,s)∧n(r,y)∧n(s,z)

]
x is an edge of graph|Ri|
with source and target ver-
tices given by binary relation
n.

nincRi(x,y,z)

{
∃v

(
αiV (v,r)∧mV (v,y)

)
if r 6= y

∄v αiV (v,r) if r = y

Vertex r is related to some
different vertexy if it is im-
age of the rule applied to
some vertexv. In this case
r is related with the image of
the match applied tov. Ver-
tex r is related to itself if it is
not image of the rule.

n(r,y)

vertG0(x)∧ tG0
V (x, t) x is a vertex of|G0| of typet. nvertG0(x, t)

∃y,z
(

incG0(x,y,z)
)
∧ ∄w

(
mE(w,x)

)
∧

∧ tG0
E (x, t)

x is an edge of graph|G0| of
typet that is not image of the
match.

ntG0
E (x, t)

Proc. GMT 2010127

ECEASST

3 Event-B

Event-B [DEP] is a state-based formalism closely related to Classical B [Abr05] and Action Systems
[BS89].

Definition 9 (Event-B Model, Event) An Event-B Model is defined by a tupleEBModel = (c,s,P,v,
I,RI,E) wherec are constants ands are sets known in the model;v are the model variables1; P(c,s) is
acollection of axioms constrainingc ands; I(c,s,v) is a model invariant limiting the possible states of
v s.t. ∃c,s,v ·P(c,s)∧ I(c,s,v) - i.e. P andI characterise a non-empty set of model states;RI(c,s,v′)
is an initialization action computing initial values for the model variables; andE is a set of model
events.

Given statesv,v′ an event is a tuplee = (H,S) whereH(c,s,v) is the guard andS(c,s,v,v′) is the
before-after predicate that defines a relation between current and next states. We also denote an event
guard byH(v), the before-after predicate byS(v,v′) and the initialization action byRI(v′).

An event-B model is assembled from two parts, acontext which defines the triple(c,s,P) and a
machine which defines the other elements(v, I,RI ,E).

Model correctness is demonstrated by generating and discharging a collection of proof obligations.
The modelconsistency condition states that whenever an event or an initialization action is attempted,
there exists a suitable new statev′ such that the model invariant is maintained -I(v′). This is usually
stated as two separate proof obligations: a feasibility (I(v)∧H(v) ⇒ ∃v′ · S(v,v′)) and an invariant
satisfaction obligation (I(v)∧H(v)∧ S(v,v′) ⇒ I(v′)). The behaviour of an Event-B model is the
transition system defined as follows.

Definition 10 (Event-B Model Behaviour) GivenEBModel = (c,s,P,v, I, RI,E), its behaviour is
given by a transition systemBST = (BState,BS0,→) where: BState = {〈v〉|v is a state}∪Unde f ,
BS0 = Unde f , and→⊆ BState×BState is the transition relation given by the rules:

start
RI(v′)∧ I(v′)
Unde f → 〈v′〉

transition
∃(H,S) ∈ E · I(v)∧H(v)∧S(v,v′)∧ I(v′)

〈v〉 → 〈v′〉

According to rulestart the model is initialized to a state satisfyingRI ∧ I and then, as long as there
is an enabled event (ruletransition), the model may evolve by firing an enabled event and computing
the next state according to the event’s before-after predicate. Events are atomic. In case there is more
than one enabled event at a certain state, the choice is non-deterministic. The semantics of an Event-
B model is given in the form of proof semantics, based on Dijkstra’s work on weakest preconditions
[Dij76].

An extensive tool support through the Rodin Platform makes Event-B especially attractive [DEP].
An integrated Eclipse-based development environment is actively developed, and open to third-party
extensions in the form of Eclipse plug-ins. The main verification technique is theorem proving sup-
ported by a collection of theorem provers, but there is also some support for model checking.

4 Graph Grammars in Event-B

The behavior of an event-B model is similar to a graph grammar: there is a notion of state (given by
a set of variables in event-B, and by a graph in a graph grammar) and a step is defined by an atomic
operation on the current state (an event that updates variables in event-B and a rule application in a

1 For convenience, as in [Abr05], no distinction is made between a set of variables and a stateof a system.

Volume X (2010)128

Towards Theorem Proving Graph Grammars using Event-B

graph grammar). Each step should preserve properties of the state. In event-B, these properties are
stated as invariants. In a graph grammar, the properties that are guaranteed to be preserved are related
to the graph structure (only well-formed graphs can be generated).

Now, we will present a way to model each structure of a graph grammarGG in event-B such that
it is possible to use the event-B provers to demonstrate properties of a graph grammar.

Graphs: According to Def.2, setsVG andEG contain all possible vertices and edge names that may
appear in graphs of this relational structure. We will define these sets as:

VG = vertT ∪N, wherevertT is the set of names used as vertex types inGG (we assume that
vertT ∩N = ∅);

EG = edgeT ∪N, whereedgeT is the set of names used as edge types inGG (we assume that
edgeT ∩N = ∅).

Moreover, we assume thatvertT ∩ edgeT = ∅.

The type graph is defined in an event-B context as described in Figure1, where we define
all vertex and edge types as constants, as well as the incidence relation relating them. In
the axioms, we define these sets explicitly (for example, axiomaxm1 means thatvertT =
{Vertex1,Vertex2, ...}). Text after a// is a comment.

CONTEXT ctx_GG
SETS

vertT // (Type Graph) Vertices
edgeT // (Type Graph) Edges

CONSTANTS
Vertex1 Vertex2...
Edge1 Edge2...
incT

AXIOMS
axm1 : partition(vertT,{Vertex1},{Vertex2}, ...)
axm2 : partition(edgeT,{Edge1},{Edge2}, ...)
axm3 : incT ⊆ (edgeT × vertT × vertT)
axm4 : partition(incT,{Edge1 7→ Vertex1 7→ Vertex1},{Edge2 7→ Vertex1 7→ Vertex2}, ...)

END

Figure 1: Event-B Type Graph

Instances of vertices and edges that appear in graphs representing states will be described by
natural numbers. It is not necessary to have distinct numbers for vertices and edges: a graph
may have a vertex with identity 1 as well as an edge with identity 1, these elements will be
different because one will be mapped to a vertex type and the other to an edge type. To be
able to manipulate instances easily, we define the functionssource, target andedgeName (see
Figure2).

A graph typed over a type graphT is modeled by a set of variables describing its set of vertices,
incidence relation, and typing functions. It is possible to state the compatibility conditions of
types and source and target of edges (stated in Def.3) as invariants. However, since we will
always generate well-formed graphs (the start graph is well-formed and events implement the
single-pushout construction), we will skip these invariants (each invariant that is used generates
proof obligations and therefore it is advisable to use only the necessary ones).

Proc. GMT 2010129

ECEASST

CONSTANTS
source

target

edgeName

AXIOMS
axm5 : source ∈ (N×N×N)→N
axm6 : ∀a,b,c·a ∈ N∧b ∈ N∧ c ∈ N⇒ source(a 7→ b 7→ c) = b
axm7 : target ∈ (N×N×N)→N
axm8 : ∀a,b,c·a ∈ N∧b ∈ N∧ c ∈ N⇒ target(a 7→ b 7→ c) = c
axm9 : edgeName ∈ (N×N×N)→N
axm10 : ∀a,b,c·a ∈ N∧b ∈ N∧ c ∈ N⇒ edgeName(a 7→ b 7→ c) = a

END

Figure 2: Auxiliary Functions

Figure3 shows the definition of a graphG typed overT . Invariants are used to define the types
of the variables (for example,tG_V is a total function fromvertG to vertT andtG_E is a partial
function from the set of natural numbers toedgeT). The variableslastV andlastE will be used
to store the last number used as identity of vertex and edge, respectively (this will be necessary
to create new fresh elements in the graph).

MACHINE mch_GG
SEES ctx_GG
VARIABLES

vertG // (Graph) Vertices
incG // (Graph) Edges
tG_V // Typing of vertices
tG_E // Typing of edges
lastV

lastE

INVARIANTS
inv_vertG : vertG ∈ P(N)
inv_incG : incG ∈ P(N×N×N)
inv_tG_V : tG_V ∈ vertG→ vertT
inv_tG_E : tG_E ∈ N 7→ edgeT
inv_lastV : lastV ∈ N
inv_lastE : lastE ∈ N

EVENTS
Initialisation

begin
act1 : vertG := {10}
act2 : incG := {20 7→ 10 7→ 10}
act3 : tG_V := {10 7→ Vertex1}
act4 : tG_E := {20 7→ Edge1}
act5 : lastV := 10
act6 : lastE := 20

end

Figure 3: Event-B GraphG

There is a special event in an event-B model that is executed before any other. This is the
initialization event. In our encoding, this event will be used to create the start graph of a graph
grammar. This is done by putting initial values in the variables that correspond to graphG (see
Figure3). In an event, there is no notion of order in the attributions belonging to the same

Volume X (2010)130

Towards Theorem Proving Graph Grammars using Event-B

event. A triple(a,b,c) ∈ N×N×N is denoted bya 7→ b 7→ c in event-B.

Rules: Left- and right-hand sides of rules are graphs, and thus will have representations as defined
previously. Additionally, we have to define the partial morphism(αV ,αE) that maps elements
from the left- to the right-hand side of the rule. A simple rule structure is illustrated in Figure
4. Since rules do not change during execution, their structureswill be defined as constants.

SETS
vertL1

edgeL1

vertR1

edgeR1

CONSTANTS
v1_L1 // vertex of LHS
e1_L1 // edge of LHS
v1_R1 // vertex of RHS
v2_R1 // vertex of RHS
e1_R1 // edge of RHS
sourceL1

targetL1

edgeNameL1

incL1

tL1_V (Rule 1) Typing vertices of LHS
tL1_E (Rule 1) Typing edges of LHS
incR1

tR1_V (Rule 1) Typing vertices of RHS
tR1_E (Rule 1) Typing edges of RHS
alpha1V (Rule 1) Rule morphism: mapping vertices
alpha1E (Rule 1) Rule morphism: mapping edges

AXIOMS
axm11 : partition(vertL1,{v1_L1})
axm12 : partition(edgeL1,{e1_L1})
axm13 : incL1 ⊆ (edgeL1×vertL1×vertL1)
axm14 : partition(incL1,{e1_L1 7→ v1_L1 7→ v1_L1})
axm15 : tL1_V ∈ vertL1→ vertT
axm16 : partition(tL1_V ,{v1_L1 7→ Vertex1})
axm17 : tL1_E ∈ edgeL1→ edgeT
axm18 : partition(tL1_E,{e1_L1 7→ Edge1})
axm17 : partition(vertR1,{v1_R1},{v2_R1})
axm18 : partition(edgeR1,{e1_R1})
axm19 : incR1 ⊆ (edgeR1×vertR1×vertR1)
axm20 : partition(incR1,{e1_R1 7→ v1_R1 7→ v2_R1})
axm21 : tR1_V ∈ vertR1→ vertT
axm22 : partition(tR1_V ,{v1_R1 7→ Vertex1},{v2_R1 7→ Vertex2})
axm23 : tR1_E ∈ edgeR1→ edgeT
axm24 : partition(tR1_E,{e1_R1 7→ Edge2})
axm25 : sourceL1 ∈ (edgeL1×vertL1×vertL1)→ vertL1
axm26 : ∀a,b,c·a ∈ edgeL1∧b ∈ vertL1∧ c ∈ vertL1⇒ sourceL1(a 7→ b 7→ c) = b
axm27 : targetL1 ∈ (edgeL1×vertL1×vertL1)→ vertL1
axm28 : ∀a,b,c·a ∈ edgeL1∧b ∈ vertL1∧ c ∈ vertL1⇒ targetL1(a 7→ b 7→ c) = c
axm29 : edgeNameL1 ∈ (edgeL1×vertL1×vertL1)→ edgeL1
axm30 : ∀a,b,c·a ∈ edgeL1∧b ∈ vertL1∧ c ∈ vertL1⇒ edgeNameL1(a 7→ b 7→ c) = a
axm31 : alpha1V ∈ vertL1→ vertR1
axm32 : partition(alpha1V ,{v1_L1 7→ v1_R1})
axm33 : alpha1E ∈ edgeL1 7→ edgeR1
axm34 : alpha1E = ∅

END

Figure 4: Event-B Rule Structure

Proc. GMT 2010131

ECEASST

The behavior of a rule is described by an event (in the example, event rule1 in Figure5).
Whenever there is a pair(mV,mE) that satisfies the guard conditions, the event may happen.
The guard conditions assure that this pair is actually a match from the left-hand side of the rule
to graphG (see Def.8). The actions update the state graph (graphG) according to the rule. In
this example one loop edge is deleted and a vertex and a new edge are created. VariableslastV
andlastE keep track of the last number used to identify a vertex and an edge, respectively. In
this example, a vertex with numberlastV + 1 is created with typeVertex2, and an edge with
numberlastE +1 with typeEdge2 is also created. The source of this new edge is the image of
the only vertex in the left-hand side of the rule inG and the target is the newly created vertex.

EVENTS
Event rule1 =̂

any
mV
mE

where
grd1 : mV ∈ vertL1→ vertG // total on vertices
grd2 : mE ∈ incL1 incG // total and injective on edges
grd3 : ∀v·v ∈ vertL1⇒ tL1_V(v) = tG_V(mV(v))

// vertex type compatibility
grd4 : ∀e·e ∈ incL1⇒ tL1_E(edgeNameL1(e)) = tG_E(edgeName(mE(e)))

// edge type compatibility
grd5 : ∀e·e ∈ incL1⇒mV(sourceL1(e)) = source(mE(e))∧mV(targetL1(e)) = target(mE(e))

// source/target compatibility
then

act1 : lastV := lastV +1
act2 : lastE := lastE +1
act3 : vertG := vertG ∪ {lastV +1}
act4 : incG := {lastE +1 7→ source(mE(e1_L1 7→ v1_L1 7→ v1_L1)) 7→ lastV +1} ∪ (incG\{mE(e1_L1 7→

v1_L1 7→ v1_L1)})
act5 : tG_V := tG_V ∪ {lastV +1 7→ Vertex2}
act6 : tG_E := (tG_E \{edgeName(mE(e1_L1 7→ v1_L1 7→ v1_L1)) 7→ Edge1}) ∪ {lastE +1 7→ Edge2}

end
END

Figure 5: Event-B Rule Event

Proving Properties: Once the start graph and all rules are represented in the event-B model, the
property to be proved can be stated as an invariant. For example, we could add the invariant
card(incG) ≤ 2, meaning that no reachable graph can have more than 2 edges. For the given
example, this property is true, and this can be easily proven by the Rodin platform.

5 Final Remarks

In this paper we have defined an event-B model that faithfully describes the behavior of a given graph
grammar. To define this model, we used the relational definition of graph grammars, that was proven
to be equivalent to the SPO approach. Now, it is possible to use the existing theorem provers for
event-B to prove properties of graph grammars, for example, using the Rodin platform.

This is an initial work in using event-B to help proving properties of graph grammars. Besides
implementation, case studies are necessary to evaluate and improve the proposed approach. We could
also investigate to which extent the theory of refinement, that is very well-developed in event-B, could
be used to validate a stepwise development based on graph grammars.

Volume X (2010)132

Towards Theorem Proving Graph Grammars using Event-B

Bibliography

[Abr05] J. R. Abrial.The B-Book: Assigning Programs to Meanings. Cambridge University Press,
2005.

[BCMR07] P. Baldan, A. Corradini, U. Montanari, L. Ribeiro. Unfolding semantics of graph trans-
formation.Inf. Comput. 205(5):733–782, 2007.
doi:http://dx.doi.org/10.1016/j.ic.2006.11.004

[BK02] P. Baldan, B. König. Approximating the behaviour of graph transformation systems.
In Proceedings of ICGT ’02 (International Conference on Graph Transformation).
LNCS 2505, pp. 14–29. Springer, 2002.

[BS89] R.-J. Back, K. Sere. Stepwise Refinement of Action Systems. In Snepscheut (ed.),Pro-
ceedings of the International Conference on Mathematics of Program Construction,
375th Anniversary of the Groningen University. Pp. 115–138. Springer-Verlag, London,
UK, 1989.

[BS06] L. Baresi, P. Spoletini. On the Use of Alloy to Analyze Graph Transformation Systems.
In Corradini et al. (eds.),ICGT. LNCS 4178, pp. 306–320. Springer, 2006.

[CGJ+01] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith. Progress on the State Explosion
Problem in Model Checking. InInformatics - 10 Years Back. 10 Years Ahead. Pp. 176–
194. Springer-Verlag, London, UK, 2001.

[Cou94] B. Courcelle. Monadic Second-Order Definable Graph Transductions: A Survey.Theo-
retical Computer Science 126(1):53–75, 1994.

[Cou97] B. Courcelle. The Expression of Graph Properties and Graph Transformations in
Monadic Second-Order Logic. Pp. 313–400 in [Roz97].

[Cou04] B. Courcelle. Recognizable Sets of Graphs, Hypergraphs and Relational Structures: A
Survey. In Calude et al. (eds.),Developments in Language Theory. LNCS 3340, pp. 1–11.
Springer, 2004.

[CR09a] S. A. da Costa, L. Ribeiro. Formal Verification of Graph Grammars using Mathematical
Induction.Electronic Notes Theoretical Computer Science 240:43–60, 2009.
doi:http://dx.doi.org/10.1016/j.entcs.2009.05.044

[CR09b] S. A. da Costa, L. Ribeiro. Relational and Logical Approach to Graph Grammars. Tech-
nical report 359, Porto Alegre: Instituto de Informática/UFRGS, 2009.

[CW96] E. M. Clarke, J. M. Wing. Formal methods: state of the art and future directions.ACM
Computing Surveys 28(4):626–643, 1996.
doi:http://doi.acm.org/10.1145/242223.242257

[DEP] DEPLOY. Event-B and the Rodin Platform. http://www.event-b.org/ (last accessed 8
March 2009). Rodin Development is supported by European Union ICT Projects DE-
PLOY (2008 to 2012) and RODIN (2004 to 2007).

[DHR+07] M. B. Dwyer, J. Hatcliff, R. Robby, C. S. Pasareanu, W. Visser. Formal Software Analysis
Emerging Trends in Software Model Checking. InFOSE ’07: 2007 Future of Software
Engineering. Pp. 120–136. IEEE Computer Society, 2007.
doi:http://dx.doi.org/10.1109/FOSE.2007.6

[Dij76] E. Dijkstra. A Discipline of Programming. Prentice-Hall International, 1976.

Proc. GMT 2010133

http://dx.doi.org/http://dx.doi.org/10.1016/j.ic.2006.11.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2009.05.044
http://dx.doi.org/http://doi.acm.org/10.1145/242223.242257
http://dx.doi.org/http://dx.doi.org/10.1109/FOSE.2007.6

ECEASST

[Ehr79] H. Ehrig. Introduction to the algebraic theory of graph grammars. In1st International
Workshop on Graph Grammars and Their Application to Computer Science and Biology.
Lecture Notes in Computer Science 73, pp. 1–69. Springer-Verlag, Germany, 1979.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations. World Scientific, 1997.

[RV01] J. A. Robinson, A. Voronkov (eds.).Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press, 2001.

[Str08] M. Strecker. Modeling and Verifying Graph Transformations in Proof Assistants.Elec-
tronic Notes in Theoretical Computer Science 203(1):135–148, 2008.
doi:http://dx.doi.org/10.1016/j.entcs.2008.03.039

Volume X (2010)134

http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2008.03.039

Pre-Proceedings GraMoT 2010

135

ECEASST

Expressiveness of graph conditions with variables

Annegret Habel1 and Hendrik Radke2∗

1 habel@informatik.uni-oldenburg.de
2 radke@informatik.uni-oldenburg.de

Carl v. Ossietzky Universität Oldenburg, Germany

Abstract: Graph conditions are most important for graph transformation systems
and graph programs in a large variety of application areas. Nevertheless, non-local
graph properties like “there exists a path”, “the graph is connected”, and “the graph
is cycle-free” are not expressible by finite graph conditions. In this paper, we gen-
eralize the notion of finite graph conditions, expressively equivalent to first-order
formulas on graphs, to finite HR graph conditions, i.e., finite graph conditions with
variables where the variables are place holders for graphs generated by a hyperedge
replacement system. We show that graphs with variables and replacement mor-
phisms form a weak adhesive HLR category. We investigate the expressive power
of HR graph conditions and show that finite HR graph conditions are more expres-
sive than monadic second-order graph formulas.

Keywords: Graph conditions, graphs with variables, hyperedge replacement sys-
tems, monadic-second order graph formulas, weak adhesive HLR categories.

1 Introduction

Graph transformation systems have been studied extensively and applied to several areas of
computer science [Roz97, EEKR99, EKMR99] and were generalized to high-level replacement
(HLR) systems [EHKP91] and weak adhesive HLR systems [EEPT06b]. Graph conditions, i.e.,
graphconstraints and application conditions, studied e.g. in [EH86, HHT96, HW95, KMP05,
EEHP06, HP09], are most important for graph transformation systems and graph programs in
a large variety of application areas. Graph conditions are an intuitive, graphical, yet precise
formalism, well-suited for describing structural properties. Moreover, finite graph conditions
and first-order graph formulas are expressively equivalent [HP09]. Unfortunately, typical graph
properties like “there exists a path”, “the graph is connected”, and “the graph is cycle-free” are
not expressible by first-order graph formulas [Cou90, Cou97b] andfinitegraph conditions. They
only can be expressed byinfinite graph conditions.

In this paper, we generalize the concept of graph conditions [HP09] to HR graph conditions,
i.e. graph conditions with variables where the variables are place holders for graphs generated
by a hyperedge replacement (HR) system. By the HR system, we obtain a finite description of
a, in general, infinite set of graphs, e.g., the set of all paths. We investigate the expressive power
of HR graph conditions and show that monadic second-order (MSO) graph formulas can be ex-
pressed by equivalent HR graph conditions, but also some second-order (SO) graph properties

∗ This work is supported by the German Research Foundation (DFG) under grant GRK 1076/1 (Graduate School on
Trustworthy Software Systems).

Volume X (2010)

136

mailto:habel@informatik.uni-oldenburg.de
mailto:radke@informatik.uni-oldenburg.de

Graph conditions with variables

can be expressed by HR graph conditions.

FO formulas

MSO formulas

SO formulas

conditions

HR conditions

[HP09]

this paper

The usefulness of HR conditions is illustrated by an example of a car platooning maneuver
protocol.

Example1 (Car platooning) In the following, we study “a prototypical instance of a dynamic
communication system”, originally taken from the California Path project [HESV91]. It repre-
sents a protocol for cars on a highway that can organize themselves into platoons, by driving
close together, with the aim to conserve space and fuel. A car platoon is modeled as a directed
graph where the nodes represent the cars and the direct edges the direct following relation. Ad-
ditionally, the leader of a car platoon is marked by a loop.

A car platooning state graph consists of zero or more car platoons.

Car platooning operations like splitting a car platoon in two car platoons, or joining two car
platoons into a single one can be described by graph replacement rules. When performing these
operations, certain car platooning properties have to be satisfied:

(1) Every follower has a unique leader:∀(
1
,∃(

1
)∨ (∃(

1
x2 1)∧∄(

1

x
x

2 1

2
1

)))

(2) Leaders are not connected by a directed path:∄(x1 2)

(3) The car platooning state graph is circle-free:∄(x1

2
)

with x ::=
1 2

|
1 2

x1 2 .
The car platooning properties are described by HR graph conditions. Bauer [Bau06] and

Pennemann [Pen09] model the following relation with respect to the leader, but notthe direct
following relation. HR graph conditions allow to express path conditions as in the car platooning
example.

The paper is organized as follows: In Section2, we introduce graphs with variables. In Sec-
tion 3, we generalize graph conditions to HR graph conditions, i.e. graph conditions with vari-
ables equipped with a hyperedge replacement (HR) system. In Section4, we present a number of
examples for HR conditions. In Section5, we investigate the expressive power of HR conditions.
A conclusion including further work is given in Section6.

Proc. GMT 2010

137

ECEASST

2 Graphs with variables

Graphs with variables consist of nodes, edges, and hyperedges. Edges have one source and one
target and are labeled by a symbol of an alphabet; hyperedges have an arbitrary sequence of
attachment nodes and are labeled by variables.

Definition 1 (Graphs with variables) Let C= 〈CV ,CE,Var〉 be a fixed, finite label alphabet
where Var is a set of variables with a mapping rank: Var→ N0 defining the rank of each vari-
able. Agraph with variablesover C is a systemG = (VG,EG,YG,sG, tG,attG, lvG, leG, lyG) con-
sisting of finite sets VG, EG, and YG of nodes(or vertices), edges, andhyperedges, sourceand
target functionssG, tG : EG→ VG, anattachment functionatt : YG→ V∗G, andlabeling functions
lvG : VG→ CV, leG : EG→ CE, ly : YG→ Var such that, for ally∈ YG, |att(y)| = rank(lyG(y)).
For y∈ YG, rank(y) = |att(y)| denotes therank of y. For YG = /0, G is agraph. Thesizeof a
graphG is the number of nodes and edges, i.e., size(G) = |VG|+ |EG|. GVar denotes the set of all
graphs with variables,G the set of all graphs, andG n the set of all graphs of size≤ n. Forx∈Var
with rank(x) = n, x• denotes the graph with the nodesv1, . . . ,vn and one hyperedge attached to
v1 . . .vn. A pointedgraph with variables〈R,pinR〉 is a graph with variablesR together with a
sequence pinR = v1 . . .vn of pairwise distinct nodes fromR. We write rank(R) for the numbern
of nodes and PinR for the set{v1, . . . ,vn}.

Remark1 The definition extends the well-known definition of graphs [Ehr79] by the concept
of hyperedges in the sense of [Hab92]. Graphs with variables also may be seen as special hyper-
graphs where the set of hyperedges is divided into a set of edges labelled with terminal symbols
(of CE) and a set of hyperedges labelled by nonterminal symbols (ofVar).

We extend the definition of graph morphisms to the case of graphs with variables.

Definition 2 (Graph morphisms with variables) A(graph) morphism (with variables) g: G→
H consists of functionsgV : VG→ VH , gE : EG→ EH , and an injective functiongY : YG→ YH

that preserve sources, targets, attachment nodes, and labels, that is, sH ◦gE = gV ◦sG, tH ◦gE =
gV ◦ tG, attH = attG, lvH ◦gV = lvG, leH ◦gE = leG, and lyH ◦gY = lyG. A morphismg is injective
(surjective) if gV , gE, andgY are injective (surjective), and anisomorphismif it is both injective
and surjective. In the latter caseG andH are isomorphic, which is denoted byG∼= H. The
composition h◦ g of g with a graph morphismh: H → M consists of the composed functions
hV ◦gV , hE ◦gE, andhY ◦gY . For a graphG, the identity idG : G→ G consists of the identities
idGV , idGE, and idGY on GV , GE, andGY , respectively.

Example2 Consider the graphsG andH over the label alphabetC = 〈{A,B}, {2},Var〉 where
the symbol2 stands for the invisible edge label and is not drawn andVar = {x,y} is the set of
variables of rank4 and2, respectively. The graphG contains five nodes with the labelsA and
B, respectively, seven edges with label2 which is not drawn, and one hyperedge of rank 4 with
label x. Additionally, the graphH contains a node, an edge, and a hyperedge of rank 2 with
labely.

Volume X (2010)

138

Graph conditions with variables

A 2

B1 B 3

B5 B 4

x
1

2
3

4

G

→֒

A 2

B1 B 3

B5 B
4

B

x
1

2
3

4
y1 2

H

The drawing of graphs with variables combines the drawing of graphs in [Ehr79] and the drawing
of hyperedges in [Hab92, DHK97]: Nodes are drawn by circles carrying the node label inside,
edges are drawn by arrows pointing from the source to the target node and the edge label is
placed next to the arrow, and hyperedges are drawn as boxes with attachment nodes where the
i-th tentacle has its numberi written next to it and is attached to thei-th attachment node and the
label of the hyperedge is inscribed in the box. Arbitrary graph morphisms are drawn by usual
arrows “→”; the use of “֒→” indicates an injective graph morphism. The actual mapping of
elements is conveyed by indices, if necessary.

In [PH96, Pra04], variables are substituted by arbitrary graphs. In this paper, variables are
replaced by graphs generated by a hyperedge replacement system. It can be shown that sat-
isfiability by substitution and satisfiability by replacement are expressively equivalent. By our
opinion, the second satisfiability notion is the more adequate.

Definition 3 (HR systems) Ahyperedge replacement (HR) systemR is a finite set of replace-
ment pairs of the formx/R wherex is a variable andR a pointed graph with rank(x) = rank(R).
Given a graphG, the application of the replacement pairx/R to a hyperedgey with labelx and
rank(y) = rank(x) proceeds in two steps: 1. Remove the hyperedgey from G, yielding the graph
G−{y}. 2. Construct the disjoint union(G−{y})+R and fuse theith node in attG(y) with the ith

attachment point ofR, for i = 1, . . . , rank(y), yielding the graphH. ThenG directly derives Hby
x/R applied toy, denoted byG⇒x/R,y H or G⇒R H providedx/R∈R. A sequence of direct
derivationsG⇒R . . .⇒R H is called aderivationfrom G to H, denoted byG⇒∗

R
H. For every

variablex, R(x) = {G∈ G | x•⇒∗
R

G} denotes the set of all graphs derivable fromx• by R.

Example3 The hyperedge replacement systemR with the rules given in Backus-Naur form
x ::=

1 2
|

1 2
x1 2 generates the set of all directed paths from node 1 to node 2.

Assumption1 In the following, letR be a fixed HR-system.

Hyperedge replacement systems define replacements. A replacement morphism consists of a
replacement and a graph morphism.

Definition 4 (Replacement morphisms) Areplacementis a finite setρ = {y1/R1, . . . ,yn/Rn}
of pairsyi/Ri where, fori = 1, . . . ,n, yi is a hyperedge,Ri ∈R(ly(yi)) is a pointed graph with
rank(yi) = rank(Ri), andy1, . . . ,yn are pairwise distinct. The application ofρ to a graph with

Proc. GMT 2010

139

ECEASST

variablesG yields the graphρ(G) obtained fromG by applying ly(yi)/Ri ∈R to yi for i = 1, . . .n.
/0 denotes theemptyreplacement. A(replacement) morphism̂g = 〈g, repl〉 : G→ H consists of
a graph morphismg: G→ H ′ and a replacement withρ(H ′) = H. It is injectiveif g is injective.
〈g, /0〉 is agraph morphismand〈idG, /0〉 the identity.

Remark2 For every replacement morphism〈g,ρ〉 : G→ H with graph morphismg: G→ H ′

andρ(H ′) = H, there is a pair〈ρ ′,g′〉 : G→H with replacementρ ′ = {y/R | g(y)/R∈ ρ} and a
graph morphism withg′|G−YG = g andg′|ρ ′(y) = id for all y∈ YG. In the following, we often use
replacement morphisms consisting of a replacement and a morphism.

G H ′

G′ H

g

ρ ′ ρ

g′

Remark 3 For replacement morphisms〈g1,ρ1〉 : G→ H and〈g2,ρ2〉 : H→ I , thecomposition
is defined by〈g′2 ◦g1,ρ2 ◦ρ∗1〉 : G→ I where the graph morphisms and replacements are as in
the figure below.

G H ′

H

I ′′

I ′

I

g1 g′2

g2

ρ1 ρ∗1

ρ2

Fact 1 The composition of replacement morphisms is a replacement morphism.

Notation1 Replacementsρ with ρ(G) = H are denoted byρ : G⇒ H.

In [Pra04], Ulrike Prange sketches that graphs and graph morphisms with variables based
on substitution form a category and that the category with the classM of all injective graph
morphisms is an adhesive HLR category. Similarly, one can show that graphs with variables and
replacement morphisms form a category and the category with the classM of all injective graph
morphisms is a weak adhesive HLR category.

Fact 2 (Category XGraphs) Graphs with variables and replacement morphisms form the cate-
gory XGraphs.

Proof. Consequence of the associativity and identity of replacements and graph morphisms.

Fact3 (XGraphs is weak adhesive HLR)The category〈XGraphs,M 〉 of graphs with variables
with the classM of all injective graph morphisms is a weak adhesive HLR category.

Proof. The proof is given in the AppendixB.

Volume X (2010)

140

Graph conditions with variables

3 HR conditions

Graphconditions are a well-known concept for describing graph properties in a graphical way
by graphs and graph morphisms (see e.g. [EH86, HHT96, HW95, KMP05, EEHP06, HP09]). In
the following, we generalize the concept to HR conditions. HR conditions are conditions in the
category of graphs with variables where the variables may be replaced by graphs generated by a
hyperedge replacement (HR) system. Additionally, HR conditions may contain conditions of the
form P⊑C whereP andC are graphs with variables with the meaning “is subgraph of”. This is
a counterpart to the MSO subformulax∈ X with the meaning “is element in”.

Assumption2 In the following, letM ′ be the class of all injective replacement morphisms.

Definition 5 (HR conditions) Acondition (with variables)over aP is of the form true,P′ ⊑C
or ∃(a,c), whereP′, P, andC are graphs with variables,P′ ⊆ P, a: P→ C a morphism, and
c a condition overC. Moreover, Boolean formulas over conditions overP are conditions over
P. ∃a abbreviates∃(a, true), ∀(a,c) abbreviates¬∃(a,¬c). A HR condition〈c,R〉 consists of a
condition with variablesc and a HR systemR. If R is clear from the context, we only write the
conditionc. A HR condition isfinite, if every conjunction and every disjunction is finite.

P

G

C,a

p̂ q̂
=

c

|=
∃()

Every replacement morphismsatisfiestrue. A replacement morphism ˆp: P→G satisfies P′ ⊑C
if p̂(P′) ⊆ q̂(C), and∃(a,c) if there exists a replacement morphism ˆq in M ′ such that ˆq◦a = p̂
and, if c is a condition overC, q̂ satisfiesc. The satisfaction of conditions by replacement
morphisms is extended to Boolean formulas over conditions in the usual way. Every graph
satisfiestrue and a graphG satisfiesthe conditionc, if c is a condition over /0 and the morphism
/0→G satisfiesc. We write p̂ |= c [G |= c] to denote that all replacement morphisms ˆp [graphs
G] satisfy c. Two conditionsc andc′ areequivalent, denoted byc≡ c′, if, for all replacement
morphisms ˆp, p̂ |= c iff p̂ |= c′.

Remark4 The definition generalizes the definitions of conditions in [HHT96, HW95, KMP05,
EEHP06, HP09]. In the context of graphs, conditions are also calledconstraintsand, in the
context of rules, conditions are also calledapplication conditions. The generalization is twofold:

(1) Variables in HR conditions are allowed. The variables are replaced by graphs generated
by a corresponding HR system. By this generalization, severalinfinite conditions can be
expressed by afinite HR conditions.

(2) Conditions of the formP⊑C are allowed. Typical examples are arex ⊑ X with X ::= /0 |
X and ⊑ X with X ::= /0 | X . By this generalization, there is a transformation

of MSO formulas into equivalent HR conditions.

Example4 Consider the HR conditions

Proc. GMT 2010

141

ECEASST

path(1,2) = ∃(
1 2
→

1 2
x1 2)

connected = ∀(/0→ 1 2 ,path(1,2))
cyclefree = ∄(/0→

1
x1

2
)

hamiltonian = ∃(/0→
1

x1

2
,∄(

1
x1

2
→

1
x1

2
))

with the HR systemx ::=
1 2

|
1 2

x1 2 . A morphism with domain
1 2

satisfies the
conditionpath(1,2) iff there exists a path from the image of1 to the image of2 in the range.
A graph satisfiesconnected iff, for each pair of distinct nodes, there is a nonempty path, i.e.,
the graph is strongly connected. It satisfiescyclefree iff there does not exist a cycle, i.e.,the
graph is cycle-free. A graph satisfieshamiltonian iff there exists a circuit and there is no
additional node outside the circuit, i.e., the graph is hamiltonian.

Notation 2 For a morphisma: P→ C in a condition, we just depictC, if P can be unam-
biguously inferred, i.e. for constraints over the empty graph/0 and for conditions over some
left- or right-hand side of a rule. E.g. the constrainthamiltonian has the short notation
∃(

1
x1

2
,∄(

1
x1

2
)).

In the following, we investigate the model checking problem for HR conditions:

Given: A HR conditionc and a graphG
Question: G |= c?

For finite HR conditions, the model checking problem is decidable.

Theorem 1(Decidability of the model checking problem)For every finite HR condition̂c and
every morphism̂p [graph G], it is decidable whether or not̂p |= ĉ [G |= ĉ].

morphismp̂

conditionĉ
Decidep̂ |= ĉ yes/no

Proof. Let ĉ = 〈c,R〉 be a finite HR condition. Without loss of generality, we may assume that
R is monotone, i.e., for each rulex/R∈R, size(x•)≤ size(R). Otherwise, we transformR into
an equivalent monotone HR system (see [Hab92], Theorem 1.5). Let ˆp = 〈ρ0, p〉 : P→ G be a
morphism. Suppose that size(G) = n for somen≥ 0. Let Repl denote the set of all replacements.

Claim 1 For allx∈ Var, n∈ N0, andC∈ GVar, the sets

Rn(x) = {G∈ G n | x•⇒∗
R

G}
Repln(C) = {ρ ∈ Repl| ρ(y) ∈Rn(ly(y)) for all y∈ YC}
Rn(C) = {ρ ∈ Repln(C) | ρ(C)≤ n}

can be constructed effectively.

Proof. Forx∈Var andk∈N, define setsRn
k (x) recursively as follows:Rn

1(x) = {R∈Gn | x/R∈
R} and, fork≥ 1,Rn

k+1(x) = Rn
k(x)∪{ρ(R) ∈ G n | x/R∈R,ρ ∈Replnk(R)} where Replnk(R) =

{ρ ∈ Repl| ρ(y) ∈Rn
k(ly(y)) for all y∈ YR}. SinceRn

k (x) ⊆ Rn
k+1(x) ⊆ G n for all k ∈ N and

G n is finite, there is somel(x) ∈ N such thatRn
l(x)(x) = Rn

l(x)+1(x). This impliesRn
l(x)(x) =

Volume X (2010)

142

Graph conditions with variables

Rn
l(x)+m(x) for all m≥ 1. Now all Rn

k (x) up to the smallest possiblel(x) can be constructed
effectively. Furthermore,Rn(x) = Rn

l(x)(x) may be verified.Rn(x) =
⋃∞

k=1Rn
k . Since the sets

Rn
k(x) are monotonically increasing subsets ofG n and sinceG n is finite, there is somel(x) ∈ N

such thatRn
l(x)(x) ⊆Rn

l(x)+1(x). By definition,Rn
l(x)(x) = Rn

l(x)+1(x) = Rn
l(x)+2(x) = Thus,

⋃∞
k=1Rn

k = Rn
l(x)(x). The second and third statement follow directly from the first one.

For “existential” HR conditionsd̂ = 〈d,R〉 with d = ∃(a,c) with a: P→C,

p̂ |= 〈d,R〉 ⇐⇒ p |=
∨

ρ∈Rn(C) ρ(d).

p̂ |= d̂ ⇐⇒ ∃q̂ = 〈ρ ,q〉 ∈M ′.q̂◦a = p̂∧ q̂ |= c
⇐⇒ ∃ρ ∈Repl.∃q∈M .q◦ρ(a) = p∧q |= ρ(c)
⇐⇒ p |=

∨

ρ∈Replρ(d)

⇐⇒ p |=
∨

ρ∈Rn(C) ρ(d).

SinceRn(C) is finite,
∨

ρ∈Rn(C) ρ(d) is a finite. For all existential subconditions, satisfiability
can be tested and, for non-existential conditions, satisfiability can be inferred. For a graphG and
a HR condition〈d,R〉 whered is a condition over /0,G |= 〈d,R〉 ⇐⇒ /0→G |= 〈d,R〉.

Remark5 Theorem1 makes use of the monotonicity property of HR systems. Allowing mono-
tone replacement system instead of (monotone) HR systems one would get a corresponding
decidability result.

4 A classification of graph properties

By agraph property, we mean a predicate on the class of graphs that is stable under isomorphism.
In the following, we collect a number of graph properties known to be first order, monadic
second-order, and second order, respectively, and show that most of them can be expressed by
HR conditions.

Fact 4 (classification of graph properties [Cou90]) The following properties of a directed, la-
belled graphG and nodesv andw are first order (FO), monadic second-order (MSO), and second
order (SO), respectively:

Proc. GMT 2010

143

ECEASST

properties of a directed, labelled graphG FO MSO SO
– simple yes yes yes
– k-regular yes yes yes
– degree≤ k yes yes yes
– has a nonempty path fromv to w no yes yes
– (strongly) connected no yes yes
– planar no yes yes
– k-colorable no yes yes
– Hamiltonian no yes yes
– is a tree no yes yes
– is a square grid no yes yes
– has an even number of nodes no no yes
– has as many edges labelleda asb no no yes
– has a nontrivial automorphism no no yes
– card(VG) belongs to a given nonrecursive set no no no

The following monadic second-order graph properties can be expressed by HR conditions.

Example5 (MSO graph properties)For the hyperedge replacement system with the rules
x ::=

1 2
|

1 2
x1 2 , we have the following:

1. Paths.A nonempty pathin G is here a sequence of nodes(v1,v2, . . . ,vn) with n≥ 2 such
that there is an edge with sourcevi and targetvi+1 for all i andvi = v j ⇒ {i, j} = {1,n};
if v1 = vn, this path is acircuit. The HR conditionpath(1,2) = ∃(

1 2
→

1 2
x1 2)

requires that there is a nonempty path from the image of 1 to the image of 2.

2. Connectedness.The HR conditionconnected= ∀(
1 2

,path(1,2)) requires that, for
each pair of distinct nodes, there is a nonempty path, i.e., the graph is strongly connected.

3. Cycle-freeness.The HR conditioncyclefree= ∄(
1

x1

2
) requires that the graph is

cycle-free.

4. Planarity. By Kuratowski’s Theorem (see e.g. [Eve79]) a graph isplanarif and only if
it has no subgraph homeomorphic toK3,3 or K5. Two graphs arehomeomorphicif both
can be obtained from the same graph by insertion of new nodes of degree 2, in edges, i.e.
an edge is replaced by a path whose intermediate nodes are all new. The HR condition
planar= ∄(K∗5)∧∄(K∗3,3) whereK∗5 andK∗3,3 are obtained from the graphsK5 andK3,3

by replacing all edges by hyperedges with labelx, respectively, requires that the graph has
no subgraph homeomorphic toK5 or K3,3, i.e. that the graph is planar.

5. Coloring. A coloring of a graph is an assignment of colors to its nodes so that two ad-
jacent nodes have the same color. Ak-coloring of a graphG usesk colors. By König’s
characterization (see e.g. [Har69]), a graph is 2-colorable if and only if it has no odd
cycles. For undirected graphs, i.e., graphs in which each undirected edge stands for
two directed edges in opposite direction, the HR condition2color = ∄(

1
x1

2
) with

x ::=
1 2

|
1 2

x1 2 requires that there are no cycles of odd length, i.e., the
graph is 2-colorable.

Volume X (2010)

144

Graph conditions with variables

6. Hamiltonicity. A graph isHamiltonian, if there exists a Hamiltonian circuit, i.e. a sim-
ple circuit on which every node of the graph appears exactly once (see e.g. [Eve79]).
For undirected graphs, the HR conditionhamiltonian= ∃(

1
x1

2
,∄(

1
x1

2
)) with

x ::= 1 2 | 1 2
x1 2 requires that there exists a simple circuit in the graph and

there is no additional node in the graph, i.e. every node of the graph lies on the circuit, the
graph is Hamiltonian.

7. Trees. A graphG is a tree if is connected, cycle-free, and has a root. A graphG has a
root v if v is a node inG and every other nodev′ in G is reachablefrom v, i.e. there is a
directed path fromv to v′ (see e.g. [Eve79]). For undirected graphs, the HR condition
tree = uconnected∧ ucyclefree∧ ∃(

1
,∀(

1 2
,upath(1,2))) (with the undi-

rected versions ofconnected, cyclefree, andpath(1,2)) requires that the graph
is connected, cycle-free, and has a root, i.e., the graph is a tree.

The following second-order graph properties can be expressed by HR graph conditions.

Example6 (SO graph properties)

1. Even number of nodes.The HR conditioneven= ∃(x ,∄(x)) with x ::= /0 | x
expresses the SO graph property “the graph has an even number of nodes”.

2. Equal number of a’s and b’s. The HR conditionequal=∃(x ,∄(x a)∧∄(x b))
with x ::= /0 | a b x expresses the SO graph property “the graph has as many nodes
labelleda asb”.

3. Paths of same length.The HR condition2paths1,2=∃(1 2
→

1 2
x1

3 4

2
) with x ::=

1 2
3 4 |

1
3

2
4

x
1 2

3 4
expresses the SO graph property “there exist two node-disjoint

paths of same length from the image of 1 to the image of 2”.

5 Expressiveness of HR conditions

We are interested in classifying HR conditions, i.e. we want to classify the kind of graph prop-
erties that can be expressed by HR conditions. To this effect, we compare HR conditions and
monadic second-order formulas on graphs [Cou90, Cou97a]. We show that there is transfor-
mations from MSO formulas into equivalent HR conditions. Vice versa, there is no such a
transformation: HR graph conditions can express second-order graph properties.

Let Rel be a finite set of relation symbols. Let Var contain individual variables and relation
variables of arity one. Since a relation with one argument is nothing but a set, we call these
variablesset variables. A monadic second-order formulaover Rel is a second-order formula
written with Rel and Var: the quantified and free variables are individual or set variables; there
is no restriction on the arity of symbols in Rel. In order to get more readable formulas, we shall
write x∈ X instead ofX(x) whereX is a set variable.

Definition 6 (MSO graph formulas) Let Var be a countable set of individual and set variables.
The set of allmonadic second-order (MSO) graph formulas(over Var) is inductively defined:

Proc. GMT 2010

145

ECEASST

For b∈ C andx,y,z,X ∈ Var, lb(x), inc(x,y,z), x = y, andx∈ X are formulas. For formulasF,
Fi (i ∈ I) and variablesx,X ∈ Var, ¬F, ∧i∈I Fi, ∃xF, and∃XF are formulas. For a formulaF,
Free(F) denotes the set of allfreevariables ofF. A formula isclosed, if Free(F) 6= /0 does not
contain free variables. Thesemantic GJFK(σ) of a formulaF in a non-empty graphG under
assignmentσ : Var→ VG+EG is inductively defined as follows. The semantics of the formulas
lb(x), inc(x,y,z), x = y, ¬F, ∧i∈I Fi, and∃xF in G underσ is defined as usual (see [HP09]).
GJx ∈ XK(σ) = true iff σ(x) ∈ σ(X) and GJ∃XFK(σ) = true iff GJFK(σ{X/D}) = true for
someD⊆ VG or D⊆ EG whereσ{X/D} is the modified assignment withσ{X/D}(X) = D and
σ{X/D}(x) = σ(x) otherwise. A graphG satisfiesa formulaF, denoted byG |= F, iff for all
assignmentsσ : Var→ DG, GJFK(σ) = true.

Notation3 The expression∨i∈I Fi abbreviates the formula¬∧i∈I ¬Fi, F⇒G abbreviates¬F ∨
G, ∀xF abbreviates¬∃x¬F, and∀XF abbreviates¬∃X¬F.

Example7 The MSO formulaF0(x1,x2) = ∀X[{∀y∀z(y∈X∧edg(y,z)⇒ z∈X)∧∀y(edg(x1,y)
⇒ y∈ X)}⇒ x2∈X] [Cou97a] expresses the property “There is a nonempty path fromx1 to x2”.
The formulaF1 = (x = y)∨F0(x,y) expresses the property “x = y or there is a nonempty path
from x to y” and the formulaF2 = ∀x,y[F1(x,y)] expresses the property “the graph is strongly
connected”.

MSO graph formulas can be transferred in equivalent finite HR graph conditions.

Theorem 2 (From MSO formulas to HR conditions)There is a transformationCondM from
MSO formulas to HR conditions, such that, for all MSO graph formulas F and all graphs G,
G |= F ⇔G |= CondM (F).

Proof. Let F be a MSO formula. Without loss of generality, we may assume thatF is closed and
rectified, i.e. distinct quantifiers bind occurrences of distinct variables; otherwise, we build the
universal closure ofF and rename the variables. SinceF is rectified, the variables ofF can be
represented by isolated nodes, edges, and hyperedges in the graphs of a constructed condition.
Let P be a graph with variables. If the setD′P = IsoP + EP + YP], the set of all isolated nodes,
edges, and hyperedges inP, is a subset of the set Var of variables, then every morphism ˆp: P→G
into a non-empty graphG induces an assignmentσ : Var→DG such that ˆp= σ [D′P], i.e., p̂(x) =
σ(x) for eachx ∈ D′P. Vice versa, an assignmentσ : Var→ DG induces a mappingD′P→ DG

that may be extended to a graph morphism ˆp: P→G with p̂ = σ [D′P].

PD′PVar

Free(F)

DG G

p̂σ

⊆

⊇

The HR condition is given by Cond(F) = Cond(/0,F), where /0 denotes the empty graph. For a
MSO formulaF and a graphP with Free(F) ⊆ D′P⊆ Var, the HR condition Cond(P,F) is con-
structed as follows: For the expressions known from first-order theory, we use the construction

Volume X (2010)

146

Graph conditions with variables

in [HP09]. For the atomic MSO expressionsx∈ X and∃XF, wherex is an individual variable
andX a set variable, we define the transformation as follows:

Cond(P,x∈ X) =

{

x ⊑ X if x∈ VP
x
⊑ X if x∈ EP

Cond(P,∃XF) =
∨

i〈∃(P→C,Cond(C,F)),Ri〉 where
C = P+ X ,R1 : X ::= /0 | X andR2 : X ::= /0 | X

The following claim is based onA ′-satisfiability obtained from the usual satisfiability by
replacing all occurrences ofM ′ by A ′, the class of all replacement morphisms. We write|=A

to denoteA ′-satisfiability.

Claim 2 For all rectified MSO graph formulasF, all graphsG, all assignmentsσ : Var→ DG,
and all morphismŝp: P→G with σ = p̂[D′P], GJFK(σ) = true⇔ p̂ |=A Cond(P,F).

Proof. The proof makes use of the proof of the corresponding statement for rectified FO formulas
given in [HP09] and is done by structural induction.
Basis. For the atomic formulas lb(x), inc(x,y,z), andx = y, the proof is as in [HP09]. For atomic
formulas of the formx∈ X, the statement follows directly from the definitions:

GJx∈ XK(σ) = true
⇔ σ(x) ∈ σ(X) (Semantics ofx∈ X)
⇔ p̂(x)⊆ p̂(X) (p̂ = σ [D′P], x,X ∈ Free(x∈X) ∈ Free(x∈X)⊆ D′P)
⇔ p̂ |=A x ⊑ X (Semantics of x ⊑ X)
⇔ p̂ |=A Cond(P,x∈ X) (Definition of Cond)

Hypothesis.Assume, the statement holds for rectified formulasF .
Step. For formulas of the form¬F, ∧i∈I Fi, ∃xF, the proof is as in [HP09]. For formulas of
the form ∃XF, graphsG, and assignmentsσ , the statement follows from the definitions and the
induction hypothesis:

GJ∃XFK(σ) = true
⇔ ∃D⊆ DG.GJFK(σ{X/D}) = true (Semantics of∃XF)
⇔ ∃D⊆ VG.GJFK(σ{X/D}) = true or
∃D⊆ EG.GJFK(σ{X/D}) = true (Assignment)

⇔ ∃q̂: C→G∈A .p̂ = q̂◦a∧ q̂ |=A Cond(C,F) (Hypothesis, ˆq = σ{X/D}[D′P])
⇔ p̂ |=A ∃(P→C,Cond(C,F)) (Definition |=A , p̂ = σ [D′P])
⇔ p̂ |=A Cond(P,∃XF) (Definition Cond)

wherea: P→C with C = P+ X .

A -satisfiability is closely related to the satisfiability of monadic second-order graph formulas.
As in [HP09], there is a transformation fromA ′- to M ′-satisfiability.

Claim 3 (from A ′- to M ′-satisfiability [HP09]) There is a transformationMsatsuch that, for
every conditionc over /0 and every graphG, G |=A ′ c⇔G |=M ′ Msat(c).

Proc. GMT 2010

147

ECEASST

Proof. Let 〈ρ , p〉 be a replacement morphism,〈p′,ρ ′〉 the corresponding pair consisting of a
morphism and a replacement, and ˆc = 〈c,R〉 a HR condition. By the corresponding theorem
in [HP09], p′ |=A c⇔ p′ |= Msat(c). By the definition of the classes of replacement mor-
phismsA ′ andM ′, 〈p′,ρ ′〉 |=A ′ c⇔〈p′,ρ ′〉 |= Msat(c) and, for the corresponging pair〈p∗,ρ∗〉,
〈p∗,ρ∗〉 |=A ′ c⇔ 〈p∗,ρ∗〉 |= Msat(c). As a consequence, for every graphG, G |=A ′ c⇔ G |=
Msat(c).

Now, for all graphsG and all closed, rectified MSO formulasF, we have:

G |= F ⇔ ∀σ : Var→ DG.GJFK(σ) = true (Definition |=)
⇔ /0→G |=A Cond(/0,F) (Claim 2)
⇔ G |=A Cond(F) (Definition |=A , Cond)
⇔ G |= Msat(Cond(F)) (Claim 3).

Now, the HR condition CondM (F) = Msat(Cond(F)) has the wanted property.

Example8 The closure of the MSO graph formula

F(x1,x2) = ∀X[{∀y∀z(y∈ X∧edg(y,z)⇒ z∈ X)
︸ ︷︷ ︸

G1

∧∀y′(edg(x1,y
′)⇒ y′ ∈ X)

︸ ︷︷ ︸

G2

} ⇒ x2 ∈ X
︸ ︷︷ ︸

G3

]

is transformed into the HR condition

Cond(∀x1∀x2F(x1,x2))
= Cond(/0,∀x1∀x2F(x1,x2))
≡ ∀(x1 x2

,Cond(/0,∀X[G1∧G2⇒G3])))
≡ ∀(x1 x2

X , [Cond(X ,G1∧G2⇒G3])
= ∀(x1 x2

X , [Cond(X ,G1)∧Cond(X ,G2)⇒ Cond(X ,G3)])
≡ ∀(x1 x2

X , [∀(x1 x2
X y z ,(y ⊑ X ∧∃(x1 x2

X y z)⇒ z ⊑ X)∧
∀(x1 x2

X
y′
,∃(x1 y′ x2

X
y′
)⇒

y′
⊑ X)⇒ x2

⊑ X])

with X ::= /0 | X using the equivalence∀(x(∀(y,c)) ≡ ∀(y◦x,c)) in [HP05].

Inspecting the proof of Theorem2, one may see that only rules of the formX ::= /0 | X of
X ::= /0 | X are used. A HR condition with rules of this form is calledHR0 condition.

Corollary 1 There is a transformationCondM from MSO formulas to HR0 conditions, such
that, for all MSO graph formulas F and all graphs G, G|= F ⇔G |= CondM (F).

In Example6, second-order graph properties are expressed by finite HR conditions. As a
consequence, we obtain the following.

Corollary 2 There is no transformation from finite HR conditions to equivalent MSO formulas.

6 Conclusion

In this paper, we have generalized the notion of graph conditions to the one of HR graph condi-
tions. The variables in the graphs can to be replaced by graphs generated by a assigned hyperedge

Volume X (2010)

148

Graph conditions with variables

replacement system. It is shown that there is a transformation from MSO formulas to HR con-
ditions, but HR conditions are more powerful: they can express certain SO formulas. It remains
the question whether or not there are transformations from HR0 conditions to MSO formulas
and from HR conditions to SO formulas, respectively.

FO formulas

MSO formulas

SO formulas

conditions

HR0 conditions

HR conditions

[HP09]

this paper

???

Graphs with variables and all replacement morphisms form a category. Distinguishing the
class of all injective replacement morphisms, we obtain a weak adhesive HLR category. As a
consequence, we have

• conditions with variables,

• rules with variables as in [PH96],

• ruleswith application conditions based on graphs with variables.

We can adapt all results known for weak adhesive HLR categories.

Bibliography

[AHS90] J. Adámek, H. Herrlich, G. Strecker.Abstract and Concrete Categories. John Wiley,
New York, 1990.

[Bau06] J. Bauer.Analysis of Communication Topologies by Partner Abstraction. PhD thesis,
Universität Saarbrücken, 2006.

[Cou90] B. Courcelle. Graph Rewriting: An Algebraic and Logical Approach. InHandbook
of Theoretical Computer Science. Volume B, pp. 193–242. Elsevier, Amsterdam,
1990.

[Cou97a] B. Courcelle. The Expression of Graph Properties and Graph Transformations in
Monadic Second- Order Logic. InHandbook of Graph Grammars and Computing
by Graph Transformation. Volume 1, pp. 313–400. World Scientific, 1997.

[Cou97b] B. Courcelle. On the expression of graph properties in some fragments of monadic
second-order logic. In Immerman and Kolaitis (eds.),Descriptive complexity and
finite models. Pp. 33–62. DIMACS Series in Discrete Mathematics and Theoretical
Computer Sciences, 1997.

Proc. GMT 2010

149

ECEASST

[DHK97] F. Drewes, A. Habel, H.-J. Kreowski. Hyperedge Replacement Graph Grammars. In
Handbook of Graph Grammars and Computing by Graph Transformation. Volume 1,
pp. 95–162. World Scientific, 1997.

[EEHP06] H. Ehrig, K. Ehrig, A. Habel, K.-H. Pennemann. Theory of Constraints and Applica-
tion Conditions: From Graphs to High-Level Structures.Fundamenta Informaticae
74(1):135–166, 2006.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.).Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 2: Applications, Lan-
guages and Tools. World Scientific, 1999.

[EEPT06a] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamental Theory of Typed Attributed
Graph Transformation based on Adhesive HLR-Categories.Fundamenta Informati-
cae74(1):31–61, 2006.

[EEPT06b] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer.Fundamentals of Algebraic Graph
Transformation. EATCS Monographs of Theoretical Computer Science. Springer,
Berlin, 2006.

[EH86] H. Ehrig, A. Habel. Graph Grammars with Application Conditions. In Rozenberg
and Salomaa (eds.),The Book of L. Pp. 87–100. Springer, Berlin, 1986.

[EHKP91] H. Ehrig, A. Habel, H.-J. Kreowski, F. Parisi-Presicce. Parallelism and Concurrency
in High Level Replacement Systems.Mathematical Structures in Computer Science
1:361–404, 1991.

[Ehr79] H. Ehrig. Introduction to the Algebraic Theory of Graph Grammars. InGraph-
Grammars and Their Application to Computer Science and Biology. LNCS 73,
pp. 1–69. Springer, 1979.

[EKMR99] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg (eds.).Handbook of Graph
Grammars and Computing by Graph Transformation. Volume 3: Concurrency, Par-
allelism, and Distribution. World Scientific, 1999.

[Eve79] S. Even.Graph Algorithms. Computer Science Press, Rockville, Maryland, 1979.

[Hab92] A. Habel. Hyperedge Replacement: Grammars and Languages. LNCS 643.
Springer, Berlin, 1992.

[Har69] F. Harary.Graph Theory. Addison-Wesley, Reading, Mass., 1969.

[HESV91] A. Hsu, F. Eskafi, S. Sachs, P. Varaiya. The Design of Platoon Maneuver Protocols
for IVHS. Technical report, Institute of Transportation Studies, University of Cali-
fornia at Berkeley, 1991.

[HHT96] A. Habel, R. Heckel, G. Taentzer. Graph Grammars with Negative Application Con-
ditions.Fundamenta Informaticae26:287–313, 1996.

Volume X (2010)

150

Graph conditions with variables

[HP05] A. Habel, K.-H. Pennemann. Nested Constraints and Application Conditions for
High-Level Structures. InFormal Methods in Software and System Modeling.
LNCS 3393, pp. 293–308. Springer, 2005.

[HP09] A. Habel, K.-H. Pennemann. Correctness of High-Level Transformation Sys-
tems Relative to Nested Conditions.Mathematical Structures in Computer Science
19:245–296, 2009.

[HW95] R. Heckel, A. Wagner. Ensuring Consistency of Conditional Graph Grammars—
A Constructive Approach. InSEGRAGRA ’95. ENTCS 2, pp. 95–104. 1995.

[KMP05] M. Koch, L. V. Mancini, F. Parisi-Presicce. Graph-based Specification of Access
Control Policies.Journal of Computer and System Sciences71:1–33, 2005.

[LS04] S. Lack, P. Sobociński. Adhesive Categories. InFoundations of Software Science and
Computation Structures (FOSSACS’04). LNCS 2987, pp. 273–288. Springer, 2004.

[Pen09] K.-H. Pennemann.Development of Correct Graph Transformation Systems.
PhD thesis, Universität Oldenburg, 2009. http://formale-sprachen.informatik.uni-
oldenburg.de/skript/fs-pub/disspennemann.pdf.

[PH96] D. Plump, A. Habel. Graph Unification and Matching. InGraph Grammars and
Their Application to Computer Science. LNCS 1073, pp. 75–89. Springer, 1996.

[Pra04] U. Prange. Graphs with Variables as an Adhesive HLR Category. Technical report,
Technische Universität Berlin, Falultät IV — Elektrotechnik und Informatik, 2004.

[Roz97] G. Rozenberg (ed.).Handbook of Graph Grammars and Computing by Graph Trans-
formation. Volume 1: Foundations. World Scientific, 1997.

A Weak adhesive HLR categories

We recall the notions of weak adhesive HLR categories, i.e. categories based on objects of
many kinds of structures which are of interest in computer science and mathematics, e.g. Petri-
nets, (hyper)graphs, and algebraic specifications, together with their corresponding morphisms
and with specific properties. Readers interested in the category-theoretic background of these
concepts may consult e.g. [EEPT06b].

Definition 7 (Weak adhesive HLR category) A categoryC with a morphism classM is aweak
adhesive HLR category, if the following properties hold:

1. M is a class of monomorphisms closed under isomorphisms, composition, and decom-
position, i.e., for morphismsf and g, f ∈M , g isomorphism (or vice versa) implies
g◦ f ∈M ; f ,g∈M impliesg◦ f ∈M ; andg◦ f ∈M , g∈M implies f ∈M .

2. C has pushouts and pullbacks alongM -morphisms, i.e. pushouts and pullbacks, where at
least one of the given morphisms is inM , andM -morphisms are closed under pushouts

Proc. GMT 2010

151

ECEASST

and pullbacks, i.e.given a pushout (1) as in the figure below,m∈M impliesn∈M and,
given a pullback (1),n∈M impliesm∈M .

3. Pushouts inC alongM -morphisms are weak VK-squares, i.e. for any commutative cube
(2) inC with pushout (1) withm∈M and (f ∈M orb,c,d∈M) in the bottom and where
the back faces are pullbacks, the following statement holds: the top face is a pushout iff
the front faces are pullbacks.

A

B

C

D

m n(1)

A′

A C

C′

f

cB′

B D

D′

b d
m

(2)

Fact 5 (Graphs is weak adhesive HLR [EEPT06b]) The category〈Graphs, Inj〉 of graphs with
classInj of all injective graph morphisms is a weak adhesive HLR category.

Further examples of weak adhesive HLR categories are the categories of hypergraphs with
all injective hypergraph morphisms, place-transition nets with all injective net morphisms, and
algebraic specifications with all strict injective specification morphisms.

Weak adhesive HLR-categories have a number of nice properties, called HLR properties.

Fact 6 (HLR-properties [LS04, EEPT06b]) For a weak adhesive HLR-category〈C ,M 〉, the
following properties hold:

1. Pushouts alongM -morphisms are pullbacks.

2. M pushout-pullback decomposition.If the diagram (1)+(2) in the figure below is a
pushout, (2) a pullback,D→ F in M and (A→ B or A→ C in M), then (1) and (2)
are pushouts and also pullbacks.

3. Cube pushout-pullback decomposition. Given the commutative cube (3) in the figure be-
low, where all morphisms in the top and the bottom are inM , the top is pullback, and the
front faces are pushouts, then the bottom is a pullback iff the back faces of the cube are
pushouts.

A C E

B D F

(1) (2)

A′

A C

C′

B′

B D

D′
(3)

4. Uniqueness of pushout complements. Given morphismsA→C in M andC→ D, then
there is, up to isomorphism, at most oneB with A→ B andB→ D such that diagram (1)
is a pushout.

Volume X (2010)

152

Graph conditions with variables

B Constructions and proofs

In this section, show that the category〈XGraphs,M 〉 of graphs with variables with the classM

of all injective graph morphisms is a weak adhesive HLR category. For this purpose, we show
thatM is a class of monomorphisms closed under isomorphisms, composition, and decomposi-
tion (Lemma1), the category has pushouts and pullbacks alongM -morphisms (Lemma2), and
pushouts alongM -morphisms are weak VK squares (Lemma3).

Lemma 1 In XGraphs, the following properties hold:

1. M -morphisms are monomorphisms.

2. M -morphisms are closed under composition and decomposition.

Proof. Straightforward

In the following, we have to show the existence of pushouts and pullbacks alongM -morphisms.
Since every morphism consists of a replacement and a graph mophisms, we first give a construc-
tion for an injective graph morphism and a replacement. The remainder construction can be done
as usual for graph morphisms.

Lemma 2 (Pushouts and pullbacks alongM -morphisms) For every morphism m: A →֒ B in
M and every replacementρ : A⇒C, there is an object D, a morphism m′ : C →֒ D in M and
a replacementρ ′ : B⇒ D forming a pushout. Vice versa, for every morphism m′ : C →֒ D in M

and every replacementρ ′ : B⇒ D, there is an object A, a morphism m: A →֒ B in M , and a
replacementρ ′ : A⇒C and forming a pullback.

A

B

C

D

m

ρ

ρ ′

m′(1)

Proof. The pushout objectD, m′, andρ ′ are constructed as follows.

• VD = VB +(VC−VA)

• ED = EB +(EC−EA)

• YD = YB +(YC−YA)−mY(Dom(ρ))

• sD(e) = if e∈ EB then sB(e) else ife∈ EC and sC(e) ∈ VC−VA then
sC(e) elsemV(sC(e)) for e∈ ED. tD(e) and attD(y) are defined analogously.

• lvD(v) = if v ∈ VB then lvB(v) else lvC(v) for v ∈ VD. leD(e) and lyD(y) are defined
analogously.

• m′ : C→D is given by〈m′V ,m′E〉where m′V is defined by m′V(v)= if v∈VA thenmV(v) elsev
for all v ∈ VC, andm′E is defined analogously.ρ ′ : B⇒ D is defined byρ ′ = {m(y)/R |
y/R∈ ρ}.

Proc. GMT 2010

153

ECEASST

Thenm′ : C →֒D is a morphism inM , ρ ′ : B⇒D is a replacement, and the constructed diagram
is a pushout. The pullback objectA, m, andρ are as follows.

• VA = VB∩{m′V(v) | v∈ VC}

• EA = EB∩{m′E(e) | e∈ EC}

• YA = YB∩{m′Y(y) | y∈ YC}∪YC

• sA(e) = sB(e) for all e∈ EA. tA(e) is defined analogously.
attA(y) = if y∈C then attC(y) else attB(y) for all y∈ YA.

• lvA(v) = lvB(v) for all v∈ VA. leA(e) and lyA(y) are defined analogously.

• m: A→ B is restriction ofm′ : C→ D to A andρ : A→C is defined byρ = {y/R | y ∈
YA,(mY(y)/R) ∈ ρ ′}.

Then m: A→ B a graph morphism inM , ρ : A⇒ C is a replacement, and the constructed
diagram is a pullback.

Lemma 3 In XGraphs, pushouts alongM -morphisms are weak VK squares.

Proof. By case analysis, similar to the proof in [EEPT06a]. In the following, we will use the
notation ABCDto designate the square fromB←A→C to B→D←C. In the commutative cube
below, letABCDbe a pushout withm∈M and the back facesA′AB′B andA′AC′C be pullbacks.
Assume thatf ∈M or b,c,d ∈M .

A′

A C

C′

B′

B D

D′

m

f ∗

f
m∗

a
n

g∗

g

n∗

b

c

d

B′

B D

D′

B2

f ∗

g∗

b d
u g∗2

b2

We proceed by case distinction.
Case 1. f ∈M and one of the back arrows, i.e.a,b,c, is in M . By Lemma2, all morphisms
except the “vertical” morphismsa,b,c,d are in M . Because the back sides of the cube are
pullbacks, all ofa,b,c are inM . By commutativity of the cube,d ∈M . The proof proceeds as
for the category of hypergraphs in [EEPT06a].
Case 2. b,c,d ∈M and one ofg, f , f ∗ is in M . Analogous to Case 1.
Case 3. f is in M and none of the back arrowsa,b,c are inM . Because the back sides are
pullbacks,f ∗,g∈M .
Case 3.1.Assume the top is a pushout. Theng,g∗ ∈M . Assume a pullback objectB2 with
morphismsg∗2 : B2→ D′ andb2 : B2→ B. Then, there is a uniqueu : B′→ B with g∗ = g∗2u and
b = b2u. Similar to [EEPT06a], we can show thatu is bijective and thereforeB′ ∼= B2.
Case 4.b,c,d ∈M andg, f , f ∗ 6∈M . The proof is analogous to Case 3.

Volume X (2010)

154

Graph conditions with variables

Proof of Theorem3. 1.M is a class of monomorphisms closed under isomorphisms, composi-
tion and decomposition: The class of all injective graph morphisms in XGraphs is a class of
monomorphisms. It suffices, then, to show thatg◦ f is in M for morphismsg, f ∈M , and that
g◦ f ∈M implies f ∈M . Both propositions are true due to [AHS90, Proposition 7.34].
2. XGraphs has pushouts and pullbacks alongM -morphisms: ForA →֒ B in M , the pushout of
B ←֓ A→ E is constructed by splitting the morphismA→ E into a replacementρ : A⇒C and
a morphismC→ E, constructing (1) as pushout ofB ←֓ A⇒C accoring to Lemma2 and (2) as
pushout of D ←֓ C→ E as usual (e.g. in the category of hypergraphs [EEPT06b]). Then (1)+(2)
is a pushout.

A C E

B D F

(1) (2)

For E →֒ F in M , the pullback ofB →֒ F ← E is constructed by splitting the morphismB →֒ F
into a replacementρ : B⇒D and a morphismD→ F, constructing (2) as usual as pullback (e.g.,
as in the category of hypergraphs [EEPT06b]) and (1) as pullback according to Lemma2. Then
(1)+(2) is a pullback.

Proc. GMT 2010

155

ECEASST

From Stochastic Graph Transformations to Differential Equations

Mayur Bapodra and Reiko Heckel

Department of Computer Science, University of Leicester, UK
{mb294, reiko}@le.ac.uk

Abstract: In a variety of disciplines models are used to predict, measure or explain
quantitative properties. Examples include the concentration of a chemical substance
produced within a given period, the growth of the size of a population of individuals,
the time taken to recover from a communication breakdown in a network, etc.

The models such properties arise from are often discrete and structural in nature.
Adding information on the time and/or probability of any actions performed, quan-
titative models can be derived. In the first example above, commonly referred to as
kinetic analysis of chemical reactions, a system of differential equations describing
the evolution of concentrations is extracted from specifications of individual chem-
ical reactions augmented with reaction rates.

Recently, this construction has inspired approaches based on stochastic process
specification techniques aiming to extract a continuous, quantitative model of a sys-
tem from a discrete, structural one. This paper describes a methodology for such an
extraction based on stochastic graph transformations.

The approach is based on a variant of the construction of critical pairs and has been
implemented using the AGG tool and validated for a simple reaction of unimolecular
nucleophilic substitution (SN1).

Keywords: stochastic graph transformations, chemical reactions, law of mass ac-
tion, ordinary differential equations

1 Introduction

In chemistry, understanding the kinetics of reactions, i.e, the evolution of concentrations of chem-
ical agents over time, is essential for a variety of purposes ranging from the interpretation of ex-
periments in the lab to the planning of large scale industrial systems. Analogies between chem-
ical reactions and rewriting have inspired approaches like CHAM [2] where chemical reactions
serve as a paradigm for concurrency, or Kappa [8] focussing on modelling biological systems.
In graph rewriting the modelling of chemical reactions has been studied in [7]. The idea is to
present molecules as graphs (or graph expressions) and to formalise reaction equations as graph
or term rewrite rules. Such an encoding offers opportunities for cross-fertilisation, transferring
concepts, problems, and ideas between chemistry and computer science.

In this paper, we will exploit this in order to rephrase chemical reaction kinetics in terms of
stochastic graph transformations. More precisely, we want to derive the ordinary differential
equations (ODEs) that describe the evolution of concentrations of chemical species over time.
While in simple cases these equations can be derived by hand using the law of mass action

Volume X (2010)

156

From Stochastic Graph Transformations to Differential Equations

[15], for large, complex reaction networks automation is required. We provide the formalisa-
tion necessary for automating the approach and conduct a feasibility study based on a prototype
implementation. More generally, we hope to contribute to bridging the gap between discrete
modelling techniques focusing on change of structure and continuous ones modelling quantita-
tive changes. While focussing on chemical reactions, the technique is a general one and could
be applied to other systems that can be described in a similar way.

Specifically, our approach is based on stochastic graph transformations [11] which combine
rules to capture the reactive behaviour of the system with a specification of rate constants govern-
ing the speed at which the reactions occur. We have studied (and continue to do so) the problems
of stochastic simulation and model checking of such specifications [13, 16]. These analysis ap-
proaches suffer from scalability issues in terms of the size of the populations considered (such
as the number of starting molecules allowed in the system). Ordinary differential equations are
an alternative level of abstraction less prone to this problem.

This paper is organised as follows. First, a treatment of background and related work is given,
focusing on recent rule-based approaches by Faeder et. al [8] and Feret et. al [9]. This is
followed by an overview of the methodology employed, including how the derivation of ODEs
is enabled by well-known constructions of graph transformation theory. Then our case study of
the SN1 reaction is introduced, and the results obtained by the analysis are given, followed by a
short discussion of tool support. Finally, the conclusion contains a discussion of required further
work, and ways to evolve the current methodology.

2 Background and Related Work

In this section, we review a number of approaches to the derivation of ODEs from process cal-
culi, biological modelling languages, net-based and rewriting approaches. In the first category,
Cardelli [4] converts expressions in the Chemical Ground Form (CGF) process algebra (a close
formalisation of chemical reaction rules) into ODEs. PEPA [14], a stochastic process algebra
that incorporates rate information into communication activities, can express a reaction system
as a set of interacting sequential components. These interactions can be expanded to a state
representation of the reaction system, from which an activity matrix bearing a resemblance to
the stoichiometric matrix can be extracted. The stoichiometric matrix describes the consumption
or production of chemical species by individual reactions and is a necessary ingredient to the
derivation of ODEs (see Section 3).

This matrix bears a close similarity to the incidence matrix of a Petri net, so it comes as no
surprise that nets have been utilised to the same end. Each place represents a distinct chemical
species (starting material, product or intermediate) in the reaction process and each transition
is an elementary reaction which transforms and converts these species. Transitions are labelled
with rates. In [10] it is described how a discrete Petri net can be converted into a continuous one
by allowing places to have a positive real number of tokens representing the concentration of
that particular chemical species in the system. Firing transitions is carried out continuously, the
speed dependent on the token values at the input places. This models the fact that the speed of a
reaction is dependent on the concentrations of the species required. The ODEs can be deduced
from the incidence matrix for such a Petri net.

Proc. GMT 2010

157

ECEASST

Both the process algebraic methods above and the Petri net method are limited in that the
specification of reactions requires the molecules involved to be defined in their entirety. For an
extremely large reaction network comprising hundreds of reactions between molecules, such a
specification becomes unfeasible. This is widely known as the combinatorial explosion problem.
In contrast, we follow the work of Faeder et. al [8] and Feret et. al [9] in using a rule-based
approach. Here, we model reactions at the level of functional groups rather than entire molecules.
Reactions are described by local context, depicting only those elements that are directly involved
in the reaction [5]. In this way, a fully defined set of concrete reactions between all reacting
species is reduced to a smaller set of reaction rules that can be contextualized to fit possibly
numerous specific pairs of reactants.

The BioNetGen Language (BNGL) [8] is a versatile rule-based modelling language, developed
with biochemical networks in mind. The language can be used to specify rules and starting
reactants as terms, which can be visualised graphically. To give a continuous numerical solution
for the ODEs representing the system, the BioNetGen software constructs the entire reaction
network via the systematic and exhaustive application of rules to a set of seed species, and their
subsequent derivatives, until no further change occurs.

In contrast to measuring the concentration of species, [9] introduces the concept of “coarse-
graining”, where so-called fragments are an alternative unit of dynamics. Fragments are sub-
graphs of species and can be envisioned as the smallest units at which the system can make
distinctions on the dynamics. This reduces the ODEs necessary to describe a system to a much
smaller set, as one fragment encapsulates a number of species, including their reactivity. Frag-
ments are constructed directly from the rules according to a number of constraints. The mod-
elling language used is Kappa, which again has an algebraic and a graphical representation.

We aim to follow these two approaches, rephrasing their constructions in terms of graph trans-
formation theory to understand the relationship between the two fields and explore possible mu-
tual benefits. Specifically, we attempt the derivation of ODEs via critical pair analysis of graph
transformation rules. This is essentially a combination of the static analysis approach in [9] with
the BNGL method in [8] which requires an enumeration of the chemical species in the system.
However, where BNGL requires execution of the rules on a set of seed species (which may
require numerous instances of each starting reactant), our method only requires the starting ma-
terials to be defined more generally, without considering repeated instances. The adherence to a
graphical representation is particularly useful in reducing the semantic gap between the model
and real chemistry [3, 18], since graphical representations potentially bear a conceptual similar-
ity to structural formulae used in Chemistry. Atoms (or molecular species, for a higher level of
abstraction) can naturally be seen as nodes in a graph, with the bonds between them represented
as bi-directional edges.

We differ slightly from both the approaches in that we attempt to define a more general con-
sideration of rate constants. In Chemistry, the reactivity of a site in a molecule (and therefore
the rate constants for reactions involving that site) can be affected by additional context, possibly
several positions away in the carbon chain. This additional context may not be a defining part
of the functionality of that site, and therefore would not necessarily be included in the rule that
captures that functionality. In both the coarse-grained and BNGL approaches, to account for this
additional rate-altering context, a general rule must be expanded to include that context, so that
a different rate constant can be assigned. This can be seen as an instantiation of the general rule

Volume X (2010)

158

From Stochastic Graph Transformations to Differential Equations

so that it is applicable in a more specific instance. In both approaches, the instantiation must be
done manually. In our approach, we automatically instantiate all general rules to apply to spe-
cific, singular molecular context so that a distinct rate constant can be applied to each of these
instantiated reactions. We make the assumption that additional context always has an effect on
the rate constant. Also, this instantiation may be important in systems outside the chemical and
biological realms. As our aim is to avoid restricting the application domain, we incorporate this
generalisation into the methodology presented here.

While the fragment approach in [9] is an innovative way of reducing the number of ODEs
necessary to describe the dynamics of a system, it is more difficult to describe the dynamics of
a specific chemical species since fragments are essentially patterns that encapsulate a group of
species exhibiting the same behaviour. Defining dynamics in terms of classically recognisable,
individual species may be more favourable to chemists or biologists that are interested in the ac-
tual population levels. A further limitation of the fragment approach is that disjoint components
in the same rule cannot represent two reactive sites of the same molecule. This means that any
intramolecular reactivity, although already functionally captured by another general rule, must
be specified separately. This limitation arises since fragments are constructed from rules, and any
such intramolecular reactivity not specified as intramolecular by a rule could potentially lead to
an infinite number of fragments (see [9] for further details).

3 Stochastic graph transformation rules to ODEs

This section explains the fundamental ideas behind the methodology. We start out with a descrip-
tion of the standard approach to derivation of ODEs from chemical reactions and illustrate by
the same example the correspondence with place-transition nets. The problem of deriving ODEs
from a stochastic graph transformation system is thereby reduced to encoding it into a suitable
net.

3.1 ODEs from Chemical Reactions and PT Nets

Our derivation of ODEs follows from the law of mass action. In order to state the dynamics
of a chemical system in terms of ODEs, the complete set of possible reactions in the system
must be known. For each reaction, we must also know how many molecules of each species are
consumed and produced by that reaction. We build up what is known as a stoichiometric matrix
which relates each elementary reaction to each molecular species in the system by the aggregate
effect the reaction has on that species’ population. Consider the following 3 elementary reactions
which comprise an example reaction mechanism.

A k1−→ B
B k2−→ A

A + B k3−→ C

The kx values are rate constants for each of these reactions. The rate law of any elementary
reaction is defined as the product of a rate constant for that reaction (e.g. k1 for the first reaction)

Proc. GMT 2010

159

ECEASST

with the concentrations of any reactants needed in the initiation of that reaction (e.g. the concen-
tration [A] of A for the first reaction). The rate law gives us an indication of the “speed” at which
that elementary reaction goes. The rate laws for the reactions above are given respectively as

k1[A]
k2[A]

k3[A][B]

To obtain an ODE for this reaction system with respect to a particular reactant we consider
how each elementary reaction affects the population of that reactant. For example, A is con-
sumed once by k1, produced once by k2, and consumed once by k3. To get an ODE for A, we
multiply how many net molecules of A are produced by a reaction (negative values indicate net
consumption) by the rate law for that reaction, and sum over all of the rate laws. For A, this
gives:

d[A]/dt = k1[A] + k2[A] - k3[A][B]

From the procedure above, it is clear that all that is needed to derive these ODE’s is an indica-
tion of what effect each reaction has on each chemical species in the system. This information is
entirely contained in the stoichiometric matrix described above. The rate laws are extracted by
multiplying the rate constant for each reaction by the concentrations of every molecule needed
to initiate the reaction. If we do this for every elementary reaction, we can produce a rate law
vector of length n, where n is the total number of elementary reactions. A multiplication of this
vector and the stoichiometric matrix produces a system of ordinary differential equations:

d[X]/dt = S ·R (1)

where d[X]/dt is the differential with respect to time, t, of a chemical species, X , in the
system, S is the stoichiometrix matrix, and R is the rate law vector. Thus, the derivation of ODEs
is straightforward once the stoichiometric matrix is established.

A B C
k1 -1 1 0
k2 1 -1 0
k3 -1 -1 1

Table 1: Example stoichiometric matrix

The stoichiometric matrix for our simple example reaction mechanism is given in Table 1.
This can be seen as an incidence matrix for a simple net with places A,B,C and transitions
k1,k2,k3, shown in Figure 1. As discussed in Section 2, a Petri net whose transitions are labelled
by rate constants can be translated into a system of ODEs in much the same way as a system
of reaction equations [10]. In fact, starting out from the incidence matrix of the net, the ODEs
can be written out immediately following the matrix equation (1) above. It therefore suffices to
encode the graph transformation system into a place transition net, which is the aim throughout
the rest of this section.

Volume X (2010)

160

From Stochastic Graph Transformations to Differential Equations

Figure 1: Place Transition Net representing reaction mechanism of Table 1

3.2 Nets From Graph Transformation Systems Modelling Chemical Reactions

A fundamental step in modeling chemical reactions is deciding how to represent molecular
species. A hypergraph approach is given in [7]. Hypergraphs are explained formally in [6].
Edges in hypergraphs (known as hyperedges) can connect multiple vertices, and the connections
are ordered. Atoms can be modelled as hyperedges, and we can restrict the valency of an ele-
ment by specifying the minimum and maximum number of nodes each hyperedge can connect to.
Bonds between atoms are then nodes connected by hyperedges. An example of a water molecule
in the hyperedge approach is given in Figure 2. The ordering of connections can be used to re-
semble 3D configurations around a central atom. We follow a similar approach, but instead use

Figure 2: Hypergraph representing H2O. e1 is a hyperedge of type Oxygen (O), while e2 and e3
are of type Hydrogen (H). Nodes v1 and v2 represent O-H bonds. The O hyperedge is connected
to 2 nodes.

bipartite graphs in which atoms (formerly hyperedges) are now represented as special types of
nodes. Bonds between atoms can be represented as first an edge from the atom node to one of
that atom’s bonding nodes (formally nodes in the hypergraph approach). Secondly, an edge from
that bonding node to another bonding node, itself connected to an atom node, represents a bond.
The example for water is given in Figure 3.

A graph transformation rule, or production, is given by a span of graph morphisms and is used
to specify how a graph can change. The top line of Figure 4 shows this diagrammatically. The
complete diagram is known as the double pushout (DPO) construction [6]. L is the left-hand side
(LHS) of the rule and specifies the preconditions for the application of a rule. K is the gluing
graph and specifies which graph elements in L are unchanged by the rule (i.e. “read” only). R
is the right-hand side (RHS) of the rule and specifies the postconditions in the application of the
rule. Nodes and edges in L have an identity and these are mapped to nodes and edges in K and
R. In order to perform a transformation on a given graph, G, there must be a match for the nodes
and edges in L within G. In other words, there must be an injective morphism such that every

Proc. GMT 2010

161

ECEASST

Figure 3: Graph representing H2O. Atoms are square nodes (with their chemical symbol given
by the node label), while round nodes represent bonding capacity for that element. The square
O node has 2 O round nodes, hence representing that oxygen can have two bonds.

member in L is mapped to a unique member in G. There can be more than one such match, in
which case one is non-deterministically chosen for the transformation. Once a match is found,
the nodes and edges not in K are deleted to give D, and the new nodes and edges in R are copied
into the graph, finally giving H. A graph transformation system G = (T G,R) consists of a type
graph T G and a set of rules R.

L

m
��

K
loo

k
��

r // R

n
��

G D
f

oo
g

// H

Figure 4: Definition of graph transformation (DPO)

As anticipated, the approach consists in deriving from a graph transformation system the in-
cidence matrix of a PT net which, when seen as stoichiometric matrix, gives rise to the system
of ODEs required. Not all graph transformation systems can be translated into PT nets without
loss of information. We first identify a class of accountable systems where this translation is
straightforward, then show how to map a wider class of GTS into accountable ones.

Given a graph p called pattern, the number of occurrences of p in a graph G, denoted #p(G),
is the number of injective graph morphisms from p to G. A graph transformation system G =
(T G,R) consisting of a type graph T G and a set of rules R is accountable to a set of graphs P if
there exists an accounting function acc : R×P→Z such that for all transformations G r=⇒H and
p ∈ P, acc(r, p) = #p(H)−#p(G) is the (possibly negative) growth of the number of occurrences
of p in G to H. As a consequence, the number of occurrences of each pattern in P created/destroid
by each rule in R must be fixed, in particular independent of the graph and match the rule is
applied to.

Given a GTS G accountable to P, we obtain a PT net with set of transitions R, set of places
P and incidence matrix I given by I(r, p) = acc(r, p). The main challenge is therefore to derive
from an existing GTS one with the same rewrite relation that satisfies the accountability property.
We will do so by replacing rules of the system by sets of instantiated rules, adding context to
determine their effect on occurrences of patterns in P.

Rules allow us to specify general reactivity by including in the LHS of the rule only the local
molecular context necessary for a reaction to occur, as stated in Section 2. While a graph trans-

Volume X (2010)

162

From Stochastic Graph Transformations to Differential Equations

formation system describes the structural aspects of a system, adaption of this to a stochastic
graph transformation system can inform us of non-functional, quantitative properties. The inher-
ent speed at which reactions occur is one such non-functional property, which is captured in a
chemical system by the rate constant. The rate constant is a direct measure of the reactivity of
a certain pair of reactants via a reaction. Each GT reaction rule can be assigned a rate constant
value just as we would if we were defining a reaction mechanism manually. This introduces
stochasticity to the graph transformation system and indicates in basic terms how likely a tran-
sition is to occur from one state to another via a rule (see [11] for a more formal treatment of
stochastic graph transformation systems).

While general reaction rules help us to concisely specify the functional behaviour of the sys-
tem, they can not (generally) be assigned a rate constant and therefore can not be used in the
stoichiometric matrix. Rate constants can not be assigned based on local context alone, since
atoms even several positions away in a hydrocarbon chain can have some effect, however minor,
on the reactivity of a site participating in a rule. There may be applications other than Chemistry
where this additional context becomes important when assigning the probability of that rule be-
ing applied. Instantiation of a rule expands the rule to include the necessary context to assign a
specific rate constant, and ensures each rule acts on a specific set of complete molecules only.
Each general rule will therefore result in one or more instantiated rules.

Consider the construction in Figure 5. L, K and R are the span of a general reaction rule. M
is a pattern graph representing a chemical species. Let us consider some possible matches in
graph G for L (the LHS of the reaction rule) and M as l and m respectively. G is essentially one
possible overlap, or union, of M and L. In this union, some of the graph elements of M and L
may intersect.

A match for M in G simply identifies that the molecule given by M exists in G. The general
reaction rule, however, by definition must force some change in graph G. As molecules in our
model are constrained to always have a set number of bonds, any change must involve the initial
breaking of a bond. In our graph representation, this translates to the deletion of at least one
graph element i.e. node or edge. If this deleted node or edge is in the set of graph elements given
by the intersection of M and L in G, application of the rule at the given matches will cause the
molecule defined by the match for M in G to change. We can therefore conclude that the general
reaction rule can be applied to M and consumes it. If the deleted node or edge is not in the set of
graph elements given by the intersection of M and L in G, the application of the reaction rule at
the specific matches given by l and m is independent of M and does not affect it. By extending
the graph in the LHS, gluing graph and right-hand side (RHS) of the general rule to incorporate
the molecule given by M, we can instantiate the general reaction rule to apply only to this specific
molecule. The specific and singular applicability of the newly instantiated rule allows it to be
assigned an elementary reaction rate constant.

In a similar fashion, we can look at the RHS of the general rule, with a match r in H, and M,
with a match m in H, as per the right side of Figure 5. This time we consider which nodes and
edges are newly created in R that are not in K and L. If any of these graph elements are in the
intersection of M and R in H, we can conclude that the application of the general reaction rule
produces the molecule in M. We would not be able to pattern match for M before applying the
general reaction rule. In the same way that the general rule reducing M was instantiated, we can
do the same for general rules that produce the pattern. Combining the results of the consumption

Proc. GMT 2010

163

ECEASST

and production analysis gives us a net value of how each reaction affects each species, and allows
us to populate our required stoichiometric matrix.

M
m

 @
@@

@@
@@

L

l����
��

��
�

Koo

��

// R

��
G Doo // H

L

��

Koo

��

// R

r
��?

??
??

??
M

m
~~~~

~~
~~

~~

G Doo // H

Figure 5: Rule instance consuming M (left) and rule instance creating M (right)

Before any instantiation can take place, we must generate the complete set of species that arise
in a reaction network. We can use the same analysis as above to achieve this. Whenever a general
rule is found to consume a molecule given by graph M, we can use the union of L and M to derive
any new arising species. We can apply the GT general reaction rule in the forward direction to
the union at the match given by the critical overlapping between the two graphs. The result can
then be checked for any disjoint graphs that represent fully-formed molecular species that have
not been noted as yet. By fully-formed, we mean that the minimum and maximum valency con-
straints for each atomic node are preserved. This ensures we do not consider invalid subgraphs
that represent only partial molecules. Similarly, for sequential dependencies, examining the ap-
plication of the reverse of the general rule to a union of M and R, gives us the species that produce
M via this reaction rule. Any new molecules must themselves be added as new molecular pattern
graphs. The critical overlappings analysis between rules and molecular pattern graphs is then
repeated to see if the application of general rules to the new molecular pattern graphs produces
any further new species. This procedure is iterated until no further change occurs. At this point,
we can progress to the instantiation stage.

The analyses above can be implemented using critical pair analysis information. The pattern
graph, M, can be seen as an identity rule. An identity rule is one in which the LHS, gluing
graph and RHS of the rule are identical. It can be applied to a graph, G, if there is an injective
mapping of the LHS of the rule in G. Since the application does not alter G, identity rules can be
used to check for the presence of a pattern (represented by the LHS of the rule) within graphs.
We can then conduct a critical pair analysis between pairs of rules to deduce possible conflicts
or dependencies among them. Figure 5 depicts this for the case of conflicts (consumption of
patterns). If the identity rule cannot be applied after the application of the reaction, we have a
conflict. In our case, one rule is a general reaction rule, while the other is a molecular identity
rule. The conflict analysis creates all possible graphs G through all possible unions of M and L.
If in any of these, the intersection of the deleted nodes and edges in L (i.e. the nodes and edges
in L but not in K) and the nodes and edges in M is not an empty set, we have a parallel conflict,
since the application of the general rule disables the application of the identity rule. Note that
we only do the check in one direction; as the identity rule does not affect the graph, we do not
need to consider what would happen if the identity rule were applied first. A parallel conflict
pair between a reaction rule and identity rule then informs us that that reaction rule consumes
the molecule represented by the identity rule.

Similarly, the right part of Figure 5 shows the sequential dependence critical pair check. Now,
we consider whether the order in which rules are applied affects the overall outcome. The se-
quential dependence analysis creates all possible graphs H through all possible unions of R and

Volume X (2010)

164



From Stochastic Graph Transformations to Differential Equations

M. If in any of these, the intersection of the newly created nodes and edges in R and the nodes and
edges in M is not an empty set, we have sequential dependence between the reaction and identity
rules. The identity rule cannot be applied before the reaction rule, enabling us to conclude that
the reaction rule produces the molecule represented by the identity rule. Again we only need to
perform the check in one direction.

A systematic critical pair analysis between all instantiated reaction rules and identity rules
yields the stoichiometric matrix needed to derive ODEs. The methodology is better illustrated
using the case study, which is described in the next section.

4 Case Study - the SN1 reaction

In applying the methodology described in the preceding section, we start with a rule-based GTS
approach and define all possible general reactivity as general reaction rules. This is followed by
an instantiation procedure such that the GTS satisfies the accountability property. Although, we
can then translate this GTS into a PT-net, we do this by deriving the incidence matrix for the PT-
net rather than representing the full net graphically. Since the incidence matrix is a representation
of the stoichiometric matrix for the reaction system, we can derive the ODEs directly from this.

SN1 stands for unimolecular nucleophilic substitution. It involves the replacement of a good
leaving group on a carbon atom (e.g. a chlorine atom) with a group that is less able to support
negative charge (e.g. a hydroxyl group, OH). Unimolecular refers to the fact that the rate deter-
mining step involves only one molecule, the halocarbon. The reaction occurs readily once the
Cl- group leaves the molecule. The reaction was chosen for its simplicity as a fundamental step
in testing and demonstrating the basics of our methodology.

4.1 The Graph Transformation System

Figure 6 shows the type graph used for this simple reaction. The nodes in the graph are labelled
with a ”*” indicating that this is a type specification. The type graph captures the necessary
conditions to restrict the bonding of atoms, their valencies (the total number of bonds a particular
atom is allowed to have) and any other idiosyncrasies of molecular chemistry. In Figure 6, atoms
are represented as square nodes, each distinct species of reactive interest having its own node
type. The round nodes are atom-specific bonding nodes. A bond between atoms is represented
by an edge (arrows with filled arrowheads) between two of these bonding nodes. Each bonding
node is connected to only one atom node. Each atom node has an exact number of bond nodes
it can connect to, which is established using cardinalities between the two types of nodes (the
numbers alongside the edges). For example, an O atom can only have two bonds. In this way,
the valency of each species is established.

The type graph also exhibits inheritance (arrows with unfilled arrow heads). All bonding nodes
are subtypes of the generic BondNode type. This enables us to more easily specify the allowed
edges between each pair of bonding node types. Inheritance is only used in the type graph and
constraints. The type graph and constraints are mechanisms which check the validity of a start
graph or a produced graph before committing the applied transformation, in much the same way
that database constraints are evaluated in a transaction. The use of supertypes in rules may cause

Proc. GMT 2010

165



ECEASST

Figure 6: Type graph for SN1 reaction, produced in AGG

unwanted overlappings during critical pair analysis, since every supertype node or edge can be
substituted by its subtypes.

Note that C and C+, for example, have the same bonding node type (C) associated with them.
If a reaction rule changes the charge of an atom, the atom node must first be deleted, and then
a new charged one introduced in its place, so no mapping can exist between the neutral and
charged atom on the LHS and RHS of the rule respectively. By maintaining that both node types
can be connected to the same bonding node, the mapping for the bonding node of the changing
atom can remain constant. This allows us to indirectly track the identity of atoms even if their
charge changes throughout a reaction.

While the type graph contains C, C+, and H node types, our model abstracts the methyl group
to a single CH3 node type, with its charged version to CH3

+. Since the critical pair analysis con-
structs an overlap between the graphs on the LHS and RHS of rules, a lower number of nodes in
these graphs results in a lower number of overall overlappings, and a smaller number of nodes
and edges in each overlapping. This in turn results in a quicker and more efficient analysis.
A single CH3 node, if expressed in terms of C atom nodes, H atom nodes, C bonding nodes, H
bonding nodes and the edges between them, would consitute a total of 10 nodes. This abstraction
of atomic structure into groups is carried out in Chemistry also, in the drawing of structural for-
mulae, and is valid if and only if no reaction rules can be applied to the full atomic representation
of the abstracted group. This can be statically checked using the analysis technique described
in the previous section i.e. creating a molecular identity rule from the full atomic representation
and analysing whether there are any critical overlappings with any of the reaction rules. If there
are, any abstraction of this group which affects the presence of the critical pairs is invalid.

In addition to the type graph, constraints may be used to specify conditions on graphs (and
rules) within the system. As edges are directional, a convention is needed to ensure that edges
between a specified pair of atoms are always facing the same direction. To this end, it was de-
cided that edges would go from the less electronegative atom to the more electronegative one
e.g. for a bond between C and O, the edge would always go from the C bonding node to the
O bonding node. A further constraint was necessary to prevent multiple incoming edges to the

Volume X (2010)

166



From Stochastic Graph Transformations to Differential Equations

carbon/hydrocarbon and oxygen round bond nodes. So that all of the carbon/hydrocarbon bond-
ing possibilities need not be enumerated for the constraint, the type graph utilises inheritance to
create an R supertype for all carbon/hydrocarbon node types. The constraint then only requires
a single combination, between 2 R nodes. Finally, a constraint was needed to prevent CH3

+

from being able to bond to anything. Figure 7 shows all five of these constraints, with “not”
representing the fact that graphs containing these structures should be considered invalid.

Figure 7: Additional graph constraints

Note that we have used negative constraints in our model to restrict the behaviour of bond
nodes. If the overlap of M and L in the consumption evaluation described in the previous section
(or M and R in the production evaluation) creates a graph G or H respectively that violates one
of these negative constraints, we can deduce that the overlap is invalid and can be discarded,
since the overlap is a minimal union of the two graphs. Any violation here is still present if this
union were embedded into a larger graph. If the negative constraint is not violated, the overlap is
maintained as valid. A positive constraint, however, specifies the required presence of a certain
configuration of nodes and edges somewhere in the graph. If violated in the minimal union, it
may still be fulfilled once the union is embedded into a larger graph. Positive constraints are
therefore avoided in our graph representation (or if they were present, would not impact on the
analysis).

An example of a graph typed over the type graph in Figure 6 is given in Figure 8. These are
the starting materials for the SN1 reaction, namely water and chloromethane.

Figure 8: Graph depicting starting materials for SN1 reaction, produced in AGG. Left: CH3
+,

Right: H2O

The first step in our methodology is to capture all possible general rules for a reaction system.
This involves the definition of reactions at the level of functional groups only i.e. local molec-

Proc. GMT 2010

167



ECEASST

ular context. Figure 9 depicts the general rules governing the reactivity for this small reaction
mechanism. The top rule dictates that if a chloromethane molecule is found in a graph, it can be
broken to form charged carbocation (CH3

+) and Cl− ions. The middle rule captures the attack
of the positively charged carbocation by a lone pair of electrons on the O of an OH group. In the
lower rule, the positively charged O+ accepts electrons from the O+-H bond in the presence of
the Cl− created in the the very first step of the reaction. This yields hydrochloric acid (HCl), and
an alcohol product, containing an OH group. The reverse of each of these three rules were also
added as potential reactions (by simply reversing the LHS and RHS of the rule). These reverse
reactions may be unlikely but this will eventually be designated by a negligible rate constant
for that particular reaction. For generality and a complete specification of possible activity, it is
important to include them.

Figure 9: Steps 1 (top), 2 (middle) and 3 (bottom) of SN1 reaction, general reaction rules

We formulate the two known starting materials in Figure 8 as two molecular identity rules,
where the LHS and RHS are the same and contain only the graph of a particular molecule. To
discover unknown intermediates and products in the reaction, a critical pair analysis is conducted
between each general reaction rule and each molecular identity rule. This is an iterative process
as described in Section 3. The results of the first iteration are given in Table 2. Each entry
signifies how many of the overlappings were critical for each pair, remembering that critical pair
analysis checks all possible unions of L and M for parallel conflict analysis, and R and M for
sequential dependence analysis.

There are 2 critical overlappings wherever there is a conflict with H2O. Due to the nature of
our molecular representation, some of the critical overlappings returned may be spurious overlap-
pings. One critical overlapping of the Step2-H2O rule pair is given in Figure 10. The shaded grey
area covers all of the critical nodes and edges in this overlapping. The other critical overlapping
is structurally identical in that the types of the edges and nodes covered are the same. The two

Volume X (2010)

168



From Stochastic Graph Transformations to Differential Equations

CH3Cl H2O
PC SD PC SD

Step1 1 0 0 0
Step-1 0 1 0 0
Step2 0 0 2 0
Step-2 0 0 0 2
Step3 0 0 0 0
Step-3 0 0 0 0

Table 2: Results of first pass critical analysis - parallel conflicts (PC) and sequential dependencies
(SD)

overlappings arise, however, due to the symmetry around the critical O atom node (with mapping
id 1). In real chemistry, however, these configurations have no significance to the selection of a
reaction or to the outcome of the reaction. We can treat them as equivalent, formally captured by
the obvious notion of isomorphism between the corresponding transformations. Therefore this
entry in the table can be reduced to 1. To evaluate two overlappings for chemical equivalence,
the results of applying the reaction rule to the overlappings at their respective critical matches
can be compared. If the results are isomorphic, the two overlappings can be considered to be
chemically equivalent, since they react in the same way to give the same products up to isomor-
phism. For the SN1 reaction studied, the molecules involved were small, possessing only one
reactive site per instantiated reaction, therefore in all cases these overlappings were reduced to 1.
If there were two asymmetric reactive sites in a molecule for an elementary reaction step, there
would be 2 chemically distinct overlappings, since application of the reaction rule would lead to
alternative products. In this case, we would have discovered two possible instantiations of the
same reaction rule.

Figure 10: One critical overlapping between general reaction rule Step2, and H2O (critical graph
elements are contained within the shaded area)

New intermediates in the system can be discovered by the systematic application of the general
rule to the molecules it has an impact on. Where a parallel conflict is apparent, the application
of the general rule to that molecule at the match given by the critical overlapping gives us a
chemical species that is produced by this reaction. Similarly, for sequential dependencies, the
application of the reverse of the general rule to the molecule, gives us the species that undergoes
this general reaction to give the molecule in the pattern graph in question. For example, new

Proc. GMT 2010

169



ECEASST

molecules arising from the critical overlappings in Table 2 are Cl− and CH3
+. We add these

new molecules as molecular identity rules and repeat the critical pair analysis as these new in-
termediates may produce further intermediates under the rule-defined behaviour of the system.
After five iterations of the critical pair analysis, the total set of chemical species for this case
study can be derived as molecular identity rules. The graphs representing these intermediates are
given in Figure 11, along with their chemical formulae. The result of the last iteration, of the
critical pair analysis is given in Table 3, with a reduction to only chemically distinct numbers of
overlappings.

Figure 11: Complete set of chemical species for SN1 reaction, derived through iterations of
critical pair analysis

CH3Cl H2O CH3
+ Cl− CH3O+H2 HCl CH3OH CH3O+HCH3 CH3OCH3

PC SD PC SD PC SD PC SD PC SD PC SD PC SD PC SD PC SD

Step1 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
Step-1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Step2 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 0 0
Step-2 0 0 0 1 0 6 0 0 1 0 0 0 0 1 1 0 0 0
Step3 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0 0 1
Step-3 0 0 0 0 0 0 0 1 0 1 1 0 1 0 0 1 1 0

Table 3: Results of iterative critical pair analysis - parallel conflicts (PC) and sequential depen-
dencies (SD)

Volume X (2010)

170



From Stochastic Graph Transformations to Differential Equations

4.2 From Graph Transformation System to Place Transition net

To achieve the accountability condition necessary to translate our GTS to a PT net, we need to
instantiate the general rules using the results of Table 3.

An interesting general reaction in our case study is that of Step2. There are entries in the par-
allel conflicts part of the table for H2O, CH3

+ and CH3OH. Closer manual examination reveals
that this encapsulates two reactions; the reaction of H2O with CH3

+, and a secondary reaction
of the methanol product, CH3OH, with CH3

+. This general rule can therefore be instantiated
twice, as per Figure 12. This analysis can be carried out methodically for an even larger number
of instantiation candidates than just the three we have here. Essentially, the overlap of M1 with L
in Figure 5 forms a graph into which a second overlap with another molecular pattern graph, M2,
can take place directly. The order in which the overlaps are constructed is inconsequential. This
is possible since the type graph cardinalities ensure that molecules are always defined in their
entirety. As such, there is no possible intersection of graph elements between the two separate
molecules in the combined overlap, unless the two molecules are identical (in which case the
overlap is meaningless and discarded).

Figure 12: Instantiation of step2 for reaction with water (top) and methanol (bottom)

To identify whether a pair of molecules are indeed valid instantiation candidates, we can ex-
amine the construction in Figure 13. M1 forms a union with L to give G1, while M2 forms a
union with L to give G2. G1 and G2 can be combined to give a final overlap, which is used to
instantiate the rule fully. Since l1 and l2 identify the two different reactivity sites needed for the
reaction, for a valid combination of G1 and G2, their intersection should be empty. Formally, this
condition is represented as:

l−1
1 (m1(M1))∩ l−1

2 (m2(M2)) = φ

For each unique, valid set of instantiation species, we instantiate the general rule to include the
full molecules in its context. All instantiated reaction rules are then named with rate constants,
specific to the reaction they refer to. For this case study, step3 can also be instantiated twice to

Proc. GMT 2010

171



ECEASST

M1
m1

!!B
BB

BB
BB

B L

l1~~~~
~~

~~
~~ l2

  @
@@

@@
@@

@ M2

m2~~||
||

||
||

G1

  A
AA

AA
AA

G2

~~~~
~~

~~
~~

G

Figure 13: Combination of critical overlappings for instantiation of general rules

mark the deprotonation of CH3O+H2, and of CH3O+HCH3. Finally then, k1 refers to the first
step of the reaction (the Cl− leaving the chloromethane molecule), k2a is the attack of water on the
resulting carbocation, k2b the attack of methanol on the same carbocation, k3a the deprotonation
of the result of the water attack, and k3b the deprotonation of the result of the methanol attack.
The reverse reactions are represented by k−x for each of these forward reactions.

With the complete set of instantiated rules and their impact on each molecular pattern graph,
we can build the incidence/stoichiometric matrix for the PT net for this reaction (see Table 4) by
subtracting the total parallel conflict critical overlappings (how many molecules are consumed)
from the total sequential dependence critical overlappings (how many molecules are produced)
for a particular instantiated reaction molecular pattern graph pair. This then gives us the impact
each elementary reaction has on each chemical species. To reiterate, the reactions that the entries
in the stoichiometric matrix refer to are given below:

k1 : CH3Cl
 CH3
+ + Cl− : k−1

k2a : CH3
+ + H2O
 CH3O+H2 : k−2a

k2b : CH3
+ + CH3OH
 CH3O+HCH3 : k−2b

k3a : CH3O+H2 + Cl−
 CH3OH + HCl : k−3a

k3b : CH3O+HCH3 + Cl−
 CH3OCH3 + HCl : k−3b

CH3Cl H2O CH3
+ HCl Cl− CH3O+H2 CH3OH CH3O+HCH3 CH3OCH3

k1 -1 0 1 0 1 0 0 0 0
k−1 1 0 -1 0 -1 0 0 0 0
k2a 0 -1 -1 0 0 1 0 0 0

k−2a 0 1 1 0 0 -1 0 0 0
k2b 0 0 -1 0 0 0 -1 1 0

k−2b 0 0 1 0 0 0 1 -1 0
k3a 0 0 0 1 -1 -1 1 0 0

k−3a 0 0 0 -1 1 1 -1 0 0
k3b 0 0 0 1 -1 0 0 -1 1

k−3b 0 0 0 -1 1 0 0 1 -1

Table 4: Stoichiometric matrix resulting from final pass critical pair analysis and chemical equiv-
alence analysis

Volume X (2010)

172

From Stochastic Graph Transformations to Differential Equations

4.3 ODEs from the PT net

ODE extraction from the results in Figure 4, following the procedure outlined at the beginning of
Section 3 led to the ODEs shown in Figure 14. These results agree with ODEs derived manually
for this simple system using the law of mass action.

d[CH3+]/dt = -k-1[CH3+][Cl-] +k-2a[CH3O+H2] +k-2b[CH3O+HCH3]
+k1[CH3Cl] -k2a[CH3+][H20] -k2b[CH3+][CH3OH]

d[CH3Cl]/dt = +k-1[CH3+][Cl-] -k1[CH3Cl]

d[CH3O+H2]/dt = -k-2a[CH3O+H2] +k-3a[CH3OH][HCl] +k2a[CH3+][H20]
-k3a[CH3O+H2][Cl-]

d[CH3O+HCH3]/dt = -k-2b[CH3O+HCH3] +k-3b[CH3OCH3][HCl]
+k2b[CH3+][CH3OH] -k3b[CH3O+HCH3][Cl-]

d[CH3OCH3]/dt = -k-3b[CH3OCH3][HCl] +k3b[CH3O+HCH3][Cl-]

d[CH3OH]/dt = +k-2b[CH3O+HCH3] -k-3a[CH3OH][HCl] -k2b[CH3+][CH3OH]
+k3a[CH3O+H2][Cl-]

d[Cl-]/dt = -k-1[CH3+][Cl-] +k-3a[CH3OH][HCl] +k-3b[CH3OCH3][HCl]
+k1[CH3Cl] -k3a[CH3O+H2][Cl-] -k3b[CH3O+HCH3][Cl-]

d[H20]/dt = +k-2a[CH3O+H2] -k2a[CH3+][H20]

d[HCl]/dt = -k-3a[CH3OH][HCl] -k-3b[CH3OCH3][HCl] +k3a[CH3O+H2][Cl-]
+k3b[CH3O+HCH3][Cl-]

Figure 14: Result of ODE extraction for SN1 reaction

4.4 Tool support

AGG, which can be found at [19] is a widely used graph transformation tool that was crucial to
our implementation. It allows the construction of a graph grammar, namely type graph, rewriting
rules, start graph and constraints. AGG also has its own critical pair analysis (CPA) engine,
accessible through GUI and command line. The GUI gives a summary table similar to Table
3 and a graph for each critical overlap, specifying which graph elements are critical and their
identities in each of the two rules.

AGG is open source and is implemented in Java with its own API. Adaptation of the standard
implementation allowed us to schedule only relevant pairs for critical pair computation. Standard
analysis would analyse every rule with every other rule. Since we only need to examine criti-
cal overlappings between reaction rules and identity rules this was a first step towards a more
efficient implementation. Methods and classes from the API were also used for the Java com-
ponent that performed the chemical equivalence reduction described in Section 4. CPA saves
results in an XML file that can be reloaded using API methods. The ODE extraction module was
also implemented with the aid of these methods. Finally, a script was created which piped the
results of the CPA through the chemical equivalence program and ODE extraction program in
turn. Currently, the overall program produces the ODEs as a text file, but the output could easily

Proc. GMT 2010

173

ECEASST

be changed to LaTex syntax, or a format recognized by a math solver for example. Figure 15
shows the basic architecture of the tool chain used.

Figure 15: Basic tool chain architecture (arrow labels show input and output file extensions)

It is worth noting that the abstraction of the CH3 group to a single node, described in Section
4, was prompted by implementation issues for the fully detailed atomic representation. It is
obvious that the critical pair analysis requires more resources the larger the rules become, since
the overlap that must be constructed is larger (meaning more checks to be made for critical graph
elements). Also, it is likely there will be more possible overlappings overall. Every CH3 group
represented as C, H atom nodes and C, H bonding nodes, with edges between them introduces
9 extra nodes and 9 extra edges to the graph. This early implementation, after several hours,
eventually ran out of memory during CPA (assigning 1.5GB to the Java Virtual Machine), with
the largest number of overlappings to check for any one pair of rules exceeding 35,000. There
were also far more spurious, chemically equivalent overlappings for every critical pair, due to the
extra symmetry and permutability introduced by the additional nodes and edges. In the abstracted
case, this number was reduced to just over 11,000 for any pair and the instantiation round of
the critical pair analysis along with critical overlapping structural equivalence testing and ODE
extraction took less than 8 minutes (assigning 1.0GB to the Java Virtual Machine). While a
more general model with a lower level of detail would have been an interesting representation
to consider, it was equally important to use valid abstraction techniques to ensure a workable
implementation.

5 Conclusion

This paper has presented a graph transformation encoding of existing rule-based approaches
to defining molecular reaction mechanisms, that remains comparative to the visual approach
adopted by Chemists themselves. We have shown how this approach can be used to develop a
system of general reactivity, and determine fully the intermediates and products possible under

Volume X (2010)

174

From Stochastic Graph Transformations to Differential Equations

this reactivity. The GTS can then be translated to a PT-net by ensuring that it satsifies the ac-
countability condition. Through the use of static critical pair analysis, we can instantiate the GTS
to represent the complete set of elementary reactions in the system. We have demonstrated how
the set of ODEs that describe the overall reaction can be extracted from the incidence matrix of
such a PT-net. This was demonstrated by the application of this methodology to the simple SN1
reaction using relevant tool support. The results of our study match the ODEs we would obtain
through manual derivation.

The methodology and implementation are based on existing theory of graph transformation,
predominantly that of constraints, critical pairs, and isomorphism of transformations, and their
compatibility with the construction of pullbacks and pushouts. However, a full formalisation of
the approach and a formal statement of its assumptions and limitations is still outstanding. As it
is described in this paper, the approach can be fully automated, but for the assignment of reaction
rates, if

• molecules are represented by disjoint subgraphs of fixed structure, described by patterns,
M

• the graph model (type graph and negative constraints) is sound and complete with respect
to the molecules represented, that is, each molecule can be represented and every graph
represents a legal collection of molecules

Apart from formalising this statement, future directions for research include the study of un-
bounded systems such as polymerisation and free radical reactions, in which elementary reac-
tions can potentially go on forever. Currently, our methods require much manual observation
and human interaction. For such reactions, it becomes imperative to be able to instantiate rules
and generate molecular identity rules from newly discovered intermediates in an automated way.
This is an important implementation challenge.

Other areas of research include a desire to carry out ODE extraction alongside stochastic
model checking and simulation, to determine how the results compare and complement each
other. Far more ambitiously, there is planned research into the automatic derivation of rate con-
stant data based on molecular orbital composition. If this is achieved, a fully self-contained
kinetic model of reactions is possible, in which ODEs and numerical rate constants can be de-
duced to give quantitative predictions on the progress of a reaction without the need for external
data.

Bibliography

[1] Bapodra, M., (2009): Chemical Reaction Rate Analysis Using Graph Transformations. BSc
Computer Science with Management Project, Final Report Available at http://www.cs.le.ac.
uk/people/mb294/docs/BScFinalReport.pdf.

[2] Berry, G., Boudol, G., (1989): The Chemical Abstract Machine. Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages pp. 81–94
Available at http://portal.acm.org/citation.cfm?id=96717.

Proc. GMT 2010

175

http://www.cs.le.ac.uk/people/mb294/docs/BScFinalReport.pdf
http://www.cs.le.ac.uk/people/mb294/docs/BScFinalReport.pdf
http://portal.acm.org/citation.cfm?id=96717

ECEASST

[3] Benko, G., Flamm, C., Stadler, P.F., (2003): A Graph-Based Toy Model of Chemistry.
Journal of Chemical Information and Computer Sciences 43, pp. 1085–1093. Available at
http://pubs.acs.org/doi/abs/10.1021/ci0200570.

[4] Cardelli, L., (2008): From Processes to ODEs by Chemistry. IFIP International Federation
for Information Processing 273, pp. 261–281. Available at http://www.springerlink.com/
content/8g12ph2857372xm2/.

[5] Danos, V., Feret, J., Fontana, W., Harmer, R., Krivine, J., (2007): Rule-based modelling of
cellular signalling. 18th International Conference on Concurrency Theory, Lisbon, Portugal,
September, 2007, Lecture Notes in Computer Science 4703, pp. 17-41. Available at http:
//www.pps.jussieu.fr/∼danos/.

[6] Ehrig, H., Ehrig, K., Prange, U., Taentzer, G., (2006): Fundamentals of Algebraic Graph
Transformation. EATCS Monographs, Springer

[7] Ehrig, K., Heckel, R., Lajios, G., (2006): Molecular Analysis of Metabolic Pathways with
Graph Transformation. International Conference on Graph Transformations 2006, Lecture
Notes in Computer Science 4178, pp. 107–121. Available at http://www.springerlink.com/
content/6r637jx517320v02/.

[8] Faeder, J.R., Blinov, M.L., Hlavacek, W.S., (2009): Rule-Based modelling of Biochemical
Systems with BioNetGen. Methods in Molecular Biology, Systems Biology 500, pp. 113–
167. Available at http://www.springerlink.com/content/nn1v343vw2kmj00w/.

[9] Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W., (2009): Internal coarse-graining
of molecular systems. Proceedings of the National Academy of Sciences of the United States
of America 106(16), pp. 6453–6458. Available at http://www.pnas.org/content/106/16/6453.

[10] Gilbert, D., Heiner, M., (2006): From Petri Nets to Differential Equations - An Inte-
grative Approach for Biochemical Network Analysis. ICATPN 2006, Lecture Notes in
Computer Science 4024, pp. 181–200. Available at http://www.springerlink.com/content/
l85l6147038t012j/.

[11] Heckel, R., Lajios, G., Menge, S., (2004): Stochastic Graph Transformation Systems.
International Colloquium on Theoretical Aspects of Computing 2005, Lecture Notes in
Computer Science 3256, pp. 210–225. Available at http://iospress.metapress.com/content/
c7ha18g96nbm7g2e/.

[12] Heckel, R., (2006): Graph Transformation in a Nutshell. Electronic Notes in Theoretical
Computer Science 148, pp. 187–198.

[13] Heckel, R., (2005): Stochastic Analysis of Graph Transformation Systems: A Case Study
in P2P Networks. International Colloquium on Theoretical Aspects of Computing 2005,
Lecture Notes in Computer Science 3722, pp. 53–69. Available at http://www.springerlink.
com/content/u54h1w273875u67r/.

Volume X (2010)

176

http://pubs.acs.org/doi/abs/10.1021/ci0200570
http://www.springerlink.com/content/8g12ph2857372xm2/
http://www.springerlink.com/content/8g12ph2857372xm2/
http://www.pps.jussieu.fr/~danos/
http://www.pps.jussieu.fr/~danos/
http://www.springerlink.com/content/6r637jx517320v02/
http://www.springerlink.com/content/6r637jx517320v02/
http://www.springerlink.com/content/nn1v343vw2kmj00w/
http://www.pnas.org/content/106/16/6453
http://www.springerlink.com/content/l85l6147038t012j/
http://www.springerlink.com/content/l85l6147038t012j/
http://iospress.metapress.com/content/c7ha18g96nbm7g2e/
http://iospress.metapress.com/content/c7ha18g96nbm7g2e/
http://www.springerlink.com/content/u54h1w273875u67r/
http://www.springerlink.com/content/u54h1w273875u67r/

From Stochastic Graph Transformations to Differential Equations

[14] Hillston, J., (2005): Fluid Flow Approximation of PEPA models. Proceedings of the Second
International Conference on the Quantitative Evaluation of Systems, IEEE Computer Society
Press pp. 33–43. Available at http://www.dcs.ed.ac.uk/pepa/features/.

[15] Keeler, J., Wothers, P., (2008): Chemical Structure and Reactivity, An Integrated Approach,
Oxford: Oxford University Press.

[16] Khan, A., Torrini, P., Heckel, R., (2008): Model-based Simulation of VoIP Network
Reconfigurations using Graph Transformation Systems, ECEASST 16, Available at
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/251.

[17] Palacz, W., (2008): Practical Aspects of Graph Transformation Meta-Rules. Intelli-
gent Computing in Engineering pp. 70–77. Available at http://www.eg-ice.org/Workshops/
ICE08/papers%20pdf/P002V03.pdf.

[18] Rossello, F., Valiente, G., (2005): Graph Transformation in Molecular Biology. Formal
Methods (Ehrig Festschrift), Lecture Notes in Computer Science 3393, pp. 116–133. Avail-
able at http://iospress.metapress.com/content/c7ha18g96nbm7g2e/.

[19] http://tfs.cs.tu-berlin.de/agg/: The AGG Homepage. Last Visited October 2008.

Proc. GMT 2010

177

http://www.dcs.ed.ac.uk/pepa/features/
http://eceasst.cs.tu-berlin.de/index.php/eceasst/article/view/251
http://www.eg-ice.org/Workshops/ICE08/papers%20pdf/P002V03.pdf
http://www.eg-ice.org/Workshops/ICE08/papers%20pdf/P002V03.pdf
http://iospress.metapress.com/content/c7ha18g96nbm7g2e/

ECEASST

Reaction Systems - a Formal Framework for Biochemical Reactions

Grzegorz Rozenberg

Leiden Center for Natural Computing
Leiden University
Niels Bohrweg 1
2333 CA Leiden
The Netherlands

rozenber@liacs.nl

Abstract

The functioning of a living cell consists of a huge number of individual reactions that interact
with each other. These reactions are regulated, and the two main regulation mechanisms are facil-
itation/acceleration and inhibition/retardation. The interaction between individual biochemical
reactions takes place through their influence on each other, and this influence happens through
the two mechanisms mentioned above.

In our lecture we present a formal framework for the investigation of biochemical reactions
- it is based on reaction systems. We motivate them by explicitly stating a number of assump-
tions/axioms that (we believe) hold for a great number of biochemical reactions - we point out
that these assumptions are very different from the ones underlying traditional models of com-
putation, such as, e.g., Petri nets. We illustrate the basic notions by both biology and com-
puter science oriented examples. We demonstrate some basic properties of reaction systems, and
demonstrate how to capture and analyze in our framework some biochemistry related notions.

The lecture is of a tutorial character and self-contained. In particular, no knowledge of bio-
chemistry is required.

Volume Pre-Proceedings GraMoT (2010)

178

Pre-Proceedings GraMoT 2010

179

ECEASST

Model Transformations to Mitigate the Semantic Gap in Embedded
Systems Verification

Björn Bartels, Sabine Glesner, Thomas Göthel

Software Engineering for Embedded Systems Group
www.pes.tu-berlin.de

Berlin Institute of Technology (TU Berlin)

Abstract: In this paper, we present results from the VATES project. It addresses
the problem of verifying embedded software by employing a novel combination of
methods that are well-established on the level of declarative models, in particular
process-algebraic specifications, as well as of methods that work especially well on
the level of executable code. In the VATES approach, we consider code given in
an intermediate compiler representation. From this code, we (automatically) extract
a model in the form of a process-algebraic system description formulated in CSP.
For this low-level CSP description, we can prove that it refines a high-level CSP
specification which was previously developed. To relate the LLVM code with the
low-level CSP model we designed an operational semantics of LLVM. In ongoing
work we investigate the extraction algorithm with respect to semantics preservation.
Thereby, we are finally able to prove that given LLVM code formally conforms to
its high-level CSP-based specification. In this paper we show that this approach has
the potential to seamlessly integrate modeling, implementation, transformation and
verification stages of embedded system development.

Keywords: (Timed) CSP, LLVM, Model Extraction, Theorem Proving

1 Introduction

Embedded systems are often employed in safety-critical areas. Their correctness is therefore
extremely important in order not to endanger human lives or risk high financial losses. How-
ever, the correctness of these systems is difficult to ensure. A particular challenge is that they
are highly concurrent and that non-functional properties such as the satisfaction of real-time
constraints play an important role. Although there exist well-established techniques to verify
abstract specifications of such systems, the verification of their actual implementations, e.g. in
C++, is still an open problem.

The VATES1 project investigates exactly these questions. It starts from the hypothesis that
software in embedded systems can be characterized by certain structures (distinguished e.g. by
the processes and their pattern of communication) that characterize its mode of operation and
that need to be retained when transformed into executable code. We investigate these structures
by taking the BOSS [MBK06] operating system as an example. BOSS is a relatively small oper-

1 VATES=Verification and Transformation of Embedded Systems, funded by the German Research Foundation
(DFG).

Volume X (2010)

180

www.pes.tu-berlin.de

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

Figure 1: The Satellite BIRD

ating system that has been developed at the Fraunhofer Institut FIRST, Berlin. It is operational
since several years within the satellite BIRD2 (see Figure 1) of the DLR3 designed for early
fire detection. It needs to cope with high performance requirements while only featuring small
resources. Such small satellites are very interesting as they have the advantage to be relatively
cheap and nevertheless be very powerful at the same time. Since BOSS has been designed with
the goal of verifying it in mind, it is an ideal case study for the VATES project.

We propose a novel approach that makes well-established formal verification techniques for
declarative process-algebraic specifications applicable to low-level software programs. To this
end, we designed an algorithm that extracts a low-level CSP model from the LLVM compiler
intermediate representation [KH09]. On this basis it can be shown that a given low-level model
refines a high-level model which is also given in a CSP-based formalism. The high-level speci-
fication may be investigated using our formalization of Timed CSP in the Isabelle/HOL theorem
prover. It comprises a formalization of its operational semantics, several variants of bisimula-
tions and an investigation of coalgebraic invariants which can be used to state certain liveness
properties. Currently, we are using this formalization in the context of so-called parameterized
systems to verify infinite-state systems. The semantic gap between the intermediate code and
the low-level CSP model is closed by an investigation of the extraction algorithm. Therefore, we
defined a formal operational semantics of the the Low Level Virtual Machine (LLVM) interme-
diate language [LA04]. The semantics is especially well-suited for the verification of embedded
systems because it includes a memory model and a notion of non-determinism. Furthermore, we
establish a bisimulation relation between LLVM and CSP models. With that, we can prove that a
given LLVM program is a correct implementation of a given CSP model. We plan to verify that
our extraction algorithm preserves the semantics of LLVM using this bisimulation.

This paper gives an overview of our results in the VATES project so far. Its remainder is
structured as follows. In Section 2 we briefly introduce Timed CSP, LLVM and the theorem
prover Isabelle/HOL. These constitute the main formalisms and tools that we use in our work.
In Section 3 we present some of the main results of the VATES project so far: a formalization
of Timed CSP in Isabelle/HOL, the idea of the extraction algorithm giving a low-level CSP
model from a given LLVM program and an operational semantics of LLVM in the Isabelle/HOL
theorem prover. Related work is discussed in Section 4. Finally, Section 5 concludes this paper.

2 Bispectral Infra-Red Detection
3 Deutsches Zentrum für Luft- und Raumfahrt (German Aerospace Center)

Proc. GMT 2010

181

ECEASST

P := STOP | SKIP | a→ P | a : A→ Pa | P;P | P�P

| PuP | P ‖
A

P | P\A | P4P | P
d
B P | P4dP | X

Figure 2: Syntax of Timed CSP

2 Used Formalisms and Tools

2.1 TimedCSP

The development chain, that we consider in the VATES project, starts with a specification for-
mulated in the real-time process calculus Timed CSP. It is an extension of Hoare’s CSP (Com-
municating Sequential Processes) [Hoa85] with timed process terms as well as timed semantics.
Besides the specification and verification of reactive and concurrent systems, this also allows for
the verification of timeliness. In the following, we present some of the aspects of (Timed) CSP
that are most important for understanding this paper. We refer to [Sch99] for a comprehensive
introduction to (Timed) CSP.

The syntax of Timed CSP is given in Figure 2. Timed CSP shares most of the operators with
(untimed) CSP: STOP is a process which cannot do anything, SKIP cannot do anything except
terminating indicated by the communication of the special event

√
, a→ P can first communicate

a and then behave like process P. More convenient process operators are e.g. �, ‖ and \ denoting
Choice, Parallel Composition and Hiding (of communication channels).

Timed CSP extends the CSP calculus with the timed primitives P
d
B Q (Timeout) and P4dQ

(Timed Interrupt). Intuitively, the meaning of a Timeout is that the process P can be triggered by
some (external) event within d time units. If this happens, the Timeout is resolved in favor of P.
If the time expires without P being triggered, process Q handles this situation, i.e., the Timeout
is resolved in favor of Q. The Timed Interrupt construction has a similar meaning. Here, P can
(successfully) terminate within d time units, otherwise Q is started.

There exist two main types of semantics which are typically defined in the context of CSP: The
denotational (Timed) Failures semantics and the operational semantics which interprets (Timed)
CSP as labeled transition system.

For CSP there exist well-established fully-automatic verification tools such as FDR [GRA05]
and ProB [LF08]. FDR is well-suited for refinement checking of specifications based on the
denotational semantics of CSP. ProB is well-suited to check temporal properties on CSP pro-
cesses. For Timed CSP there does not exist comprehensive tool support yet. Therefore, we have
formalized Timed CSP in the Isabelle/HOL theorem prover as briefly explained in Section 3.1.

2.2 LLVM

The LLVM compiler infrastructure provides a modular framework that can be easily extended by
user-defined compilation passes. It also offers a diverse set of predefined analyses, i.e. points-to
analysis by Steensgaard [Ste96], and optimizations that can be used out of the box. This makes
LLVM a great platform for the development of source code transformation and analysis tools.
The heart of the compiler infrastructure project is its intermediate representation (IR). It is a typed

Volume X (2010)

182

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

LLVM
Compiler IR

CSP-based
Specification

C++Extracted
CSP Model

manual

gccllvm2csp

refinement

Figure 3: The VATES Proof Framework

assembler-like language [LA08], which is used internally as the basis for compiler optimizations.
The LLVM framework provides gcc-based frontends for a variety of programming languages,
including C++. The existence of the gcc-based front-end enables us to adapt our approach,
which currently only supports C++, to a couple of other programming languages with little effort
because it is source-language-independent and relies on the LLVM IR only.

2.3 Isabelle/HOL

Isabelle is a generic interactive proof assistant. It enables the formalization of mathematical
models and provides tools for proving theorems that are mechanically checked. Isabelle can
be instantiated with different so-called object logics. One particular instantiation of it is Is-
abelle/HOL [NPW02], which is based on Higher Order Logic. The main advantage of HOL is
its very high expressive power. Theorem provers based on HOL require a high level of expertise
but allow reasoning about models whose state space is too large (or even infinite) to be automat-
ically checked by, say, a model checker. Unlike model checking, proving theorems in a theorem
prover like Isabelle/HOL is highly interactive. Specifications have to be designed carefully to
enable properties about them to be proved.

3 The VATES Approach

The context of our approach is the VATES project [GHJ07]. Its aim is to develop concepts for
verifying the correctness of embedded software. Our goal is to support the verification of crucial
properties on all abstraction levels of such a software system, from the abstract specification
down to executable code.

The structure of our approach is given in Figure 3. We start with a high-level CSP-based spec-
ification where crucial properties are verified. To this end, we have developed a formalization of
Timed CSP in the Isabelle/HOL theorem prover and the proof technique of network invariants to
verify infinite-state models. This is explained in Section 3.1 in more detail.

Since we deal with embedded applications we want to allow manual code optimizations. We
therefore assume that a Software developer implements this high-level specification in a high-
level programming language such as C++. The high-level language can be further translated

Proc. GMT 2010

183

ECEASST

into the LLVM intermediate representation, e.g. by using the gcc compiler. We chose to relate
the abstract CSP-model and the intermediate LLVM representation by automatically extracting
a low-level CSP-model from it. This is done with our tool called llvm2csp which is explained
in Section 3.2. To show the refinement relation between the high-level and the low-level CSP
models, our formalization of Timed CSP or standard tools like FDR2 can be applied.

A crucial part in our approach is to show that the extraction algorithm of llvm2csp preserves
the semantics of LLVM. To this end, we developed an operational semantics of LLVM. Due to
the simplicity of intermediate languages, this is far more easily than defining a comprehensive
formal semantics of e.g. C++. Furthermore, we defined a variant of bisimulation which enables
to semantically compare LLVM programs and CSP models. This is presented in Section 3.3.

Altogether we are thereby able to formally relate the high-level CSP-based specification and
its corresponding implementation in LLVM. Note that following the overall approach we do not
have to formalize the semantics of a high-level programming language like C++ which is known
to be complex task in its own. This becomes even more complicated by the introduction of
concurrency. Since we want to verify the whole development chain, the formalization of some
intermediate representation is inevitable in each case. So by considering only the intermediate
language layer circumvents the complex task of formally defining the semantics of C++.

3.1 Verification with Timed CSP and Network Invariants

In a previous paper [GG09], we proposed a formalization of the operational semantics of the
process calculus Timed CSP in the Isabelle/HOL theorem prover [NPW02].

3.1.1 Formalization of Timed CSP

We combined the advantages of specifying real-time systems concisely and of mechanizing cor-
rectness proofs for properties of their specifications. We transfered the coalgebraic notions of
bisimulation and of invariants to Timed CSP. This allows on the one hand to relate behaviorally
equivalent Timed CSP processes and on the other hand to state invariant behavior of processes.
To this end, we formalized the syntax of Timed CSP as inductive datatype and the operational
semantics as inductively defined set of triples. It is convenient to define (greatest) bisimulations
and (greatest) invariants w.r.t. to state predicates coinductively. We showed that all the consid-
ered kinds of bisimulation (strong, weak and weak timed) fulfill the congruence property with
respect to the structure of Timed CSP processes. Furthermore, we showed that coalgebraic in-
variants are well-suited to express certain liveness conditions and that these special invariants are
closed under bisimulations. This property is useful for verification as shown in [GG09] in the
context of a (rather simple) satellite system specification.

3.1.2 Parameterized Systems and Network Invariants

In ongoing work we extend this theory by so-called network invariants which are suitable to
verify parameterized systems. Our motivation is BOSS’s real-time scheduler which we have
modeled in Timed CSP. The main structure of the model is given in Figure 4. The overall system
includes the scheduler itself and an arbitrarily large number of threads.

Volume X (2010)

184

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

...

Scheduler

1Thread n 2Thread n Thread kn

Figure 4: Structure of our Scheduler Model

The scheduler runs in parallel with arbitrarily many processes representing the threads to be
managed. Each thread is characterized by a name and a priority. In order to verify the scheduler
system, the specific details of the threads should have no relevance. The scheduler system should,
e.g., be deadlock-free in every case, i.e., for every possible list of threads. Thus, an appropriate
“induction” on the length of the list should be enough to state the system’s correctness. On a
certain level of abstraction, all the CSP processes representing threads are homogeneous from
the scheduler’s perspective as they can communicate with the scheduler (e.g., yield control),
and conversely the scheduler with the threads (e.g., give control to a thread). That is why the
scheduler system can be seen as a parameterized system. As a consequence, verification of
parameterized systems appears to be a promising technique to verify real-time operating systems.

Parameterized systems, as considered here, have the form:

Nn = P0�P�·· ·�P︸ ︷︷ ︸
n

where the variable n (representing a natural number) is the parameter of the system. P0 is a
control process and P�·· ·�P a network of homogeneous processes. The operator � is some
kind of parallel composition, which may be equipped with hiding and renaming of communi-
cation channels. Network Invariants can be used to verify parameterized systems by dividing
the infinite-state verification problem into several (ideally finite-state) verification problems such
that automatic verification tools can be used. The long-term goal of our work is to combine
our Isabelle/HOL formalization with automatic verification tools. In this section we focus on
the presentation of the results of [WL90] concerning the inductive verification of parameterized
systems as this is sufficient here. We have formalized these in the Isabelle/HOL theorem prover.
We have, however, also formalized the slightly more general results of [KM89] in Isabelle.

The idea of the “appropriate induction” is formalized in network invariants: To verify whether
the system Nn (regardless of the concrete parameter) implements a specification S, the main idea
is to use an appropriate invariant, which overapproximates each instance such that the abstracted
system is still contained in the specification S. In [WL90], it is shown how network invariants
can be set up in process algebras like CCS and CSP. There, a general technique for verifying
parameterized systems based on network invariants is presented: if one wishes to show that Nn

fulfills a certain specification S with respect to a certain implementation relation, i.e., Nn ≤ S,
it must basically be shown (for some process Inv) that P0 ≤ Inv, that Inv�P ≤ Inv and that
Inv ≤ S. The crucial point is to find an appropriate invariant Inv. By induction on n, one can

Proc. GMT 2010

185

ECEASST

Parameterized System Network Invariant

InvP0¯ P ¯ … ¯ P · S ?

1. P0· Inv
2. Inv¯ P · Inv
3. Inv· S

to show:

proof obligations

invariant generation

Figure 5: Framework for Verifying Parameterized Systems

 Low-level Components

1. Platform-
specific

3. Application-
specific

 Low-level CSPm model

Hardware

Foundation
Libraries

LLVM IR of
program

Automatic synthesis
Parameter synthesis

2. Domain-
specific

Manually modeled

Figure 6: The three Parts of the Low-Level CSP Model

deduce that Nn ≤ Inv. By proving that the invariant is contained in the specification, i.e., Inv≤ S,
one can deduce that Nn ≤ S by transitivity of the implementation relation ≤. There are two
main tasks that have to be performed when working with network invariants for verification. The
first is finding a process which may serve as appropriate “network invariant”. The second task
is showing that the found process is indeed a network invariant. In [CGJ97], for example, a
technique for finding network invariants based on network grammars is presented. This gives a
more general framework than [WL90]. In [GL08], the technique of network invariants is used
in the context of timed systems. The approach adopted there consists of two steps. First, a safe
abstraction is performed on a given timed system. Thereby, safe means that LTL formulas are
preserved under the abstraction. The abstract system is then used as a network invariant, which
allows for the verification of the whole parameterized system.

The overall verification flow that we use is given in Figure 5. It is subject to future work to
integrate invariant generation algorithms and automatic verification tools such as FDR2 into the
existing Timed CSP formalization in Isabelle/HOL.

3.2 Relating High-Level and Low-Level Models

In this section we give a rough idea of the extraction algorithm implemented in our llvm2csp
tool presented in [KH09]. Since we deal with multithreaded programs besides the behavior
of individual threads, the model also needs to include information about the actual execution
platform as explained in the following subsection.

Volume X (2010)

186

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

channel read1, write1, read2, write2, read3, write3, read4, write4 : {0,1}
V1 = let V1’(v) = read1!v -> V1’(v) [] write1?x -> V1’(x)
within read1?x -> V1 [] write1?x -> V1’(x)

V2 = V1[[read1 <- read2, write1 <- write2]]
V3 = V1[[read1 <- read3, write1 <- write3]]
V4 = V1[[read1 <- read4, write1 <- write4]]
WithHeap(P) = (P) [|{|read1, write1, ..|}|] (V1 ||| V2 ||| V3 ||| V4)

Figure 7: CSPM Model of the Heap.

3.2.1 Synthesizing a Low-Level CSP Model

The low-level CSPM
4 model as depicted in Figure 6 contains not only processes, types and chan-

nels that are automatically generated from the LLVM IR of a program but also two predefined
parts which model platform- and domain-specific parts of the system under investigation. The
platform-specific part comprises the environment model and hardware details, while the domain-
specific part encompasses aspects that are common to a domain of applications, e.g. system
startup and scheduling, which are provided as foundation libraries that the program builds on.
These two parts are mostly manually modeled but are parameterized so that they can be reused
by all applications of the domain they have been designed for. Examples of such parameters
are typing information for the channels and the set of thread identifiers. The third part is the
application-specific one, which describes the behavior of the threads of a multithreaded program
with respect to a set of given variable names, function calls and annotations 5. Our llvm2csp
tool was already successfully used to create the low-level model of the scheduler of the BOSS
operating system pico-kernel, which we presented in [KBGG09]. Nevertheless we are constantly
extending it by further features.

3.2.2 Design of the Low-Level CSP Model

As discussed in the previous section, the low-level CSP model is divided into three distinct
parts. The domain- and platform-specific parts are manually modeled but are parameterized. The
parameters and the application-specific part are synthesized from the LLVM IR of the program
under consideration. Since we aim to use FDR2 for establishing the formal refinement relation
between the specification and the low-level model, all models must be designed as efficiently as
possible. The FDR2 manual contains a couple of rules that have to be taken into account when
creating a CSPM model to achieve the best performance with FDR2.

Fig. 7 shows an efficient example of modeling a memory that stores four bit fields, constructed
of parallel processes (V 1, . . . ,V 4) that model a single variable each. These four processes are
structurally equal, so just one of them is modeled manually (V 1), the others being derived from it
by renaming 6. This model of a memory is a process, which is synchronized with the application

4 CSPM is a machine readable form of CSP extended by concepts from functional programming
5 Annotations can be realized using so-called ghost method and ghost variables. A ghost method is a method that
modifies ghost variables only, while a ghost variable is a variable that is used for verification purposes only. Ghost
code is commonly compiled into the IR for verification purposes but is not part of the final binary.
6 One of the rules mentioned before is, for example, that renaming is to be used in preference to the parameterizing
of a process definition.

Proc. GMT 2010

187

ECEASST

specific part later on using the function (WhithHeap). We use this concept to model the heap
and the stacks of the threads. The process allows us to read an arbitrary value from uninitialized
memory cells.

Our approach makes strong use of abstraction to reduce the size of the resulting low-level
model in terms of reachable states. This includes abstracting the ranges of data types and ab-
stracting away regions of code that do not transitively influence any of a given set of variables to
be included in the low-level model. If, for example, concurrent accesses to a shared counter vari-
able have to be proved race-condition-free, it is sufficient to build the model from the accesses
to this shared counter and the locks protecting it.

The expressiveness of CSPM imposes a limiting factor to formalizing the semantics of the
LLVM IR. We therefore restrict ourselves to modeling facilities that are available in CSPM. Our
approach currently supports functions, function calls, conditional and unconditional branching as
well as integer arithmetic. It builds on a memory model that supports integers, arrays and unini-
tialized values. Depending on the properties to be proved on the models, we also use the concept
of error codes to detect such sources of unwanted behavior or to signal situations that were in-
troduced by abstractions during synthesis of the model. An error code is a fresh event a /∈ Σ and
is always used in the pattern a→ STOP. In [KH09], we use this concept to detect integer overflow
that was introduced by abstraction and did not indicate a real error in the low-level model. A
method on the LLVM IR level is translated into a CSPM function by llvm2csp. The function
returns sequential processes, each modeling a single IR operation. These application-specific
processes end up in a domain-specific process modeling the continuation of the application, pos-
sibly including a thread switch. Further details of the application-, domain- and platform-specific
models are given in [KH09].

3.3 Verification on the Intermediate Level

As explained, in our approach we relate process-algebraic system models to their implementa-
tions given in the LLVM intermediate representation. To formally account for the correctness of
this relation, we formally defined the operational semantics of the LLVM intermediate language
in Isabelle/HOL and establish a bisimulation relation between the implied labeled transition sys-
tem (LTS) and the LTS defined by the operational semantics of the process algebraic model.
Using this concept we plan to verify the LLVM2CSP extraction algorithm in future work.

3.3.1 Operational Semantics of LLVM

We model a semantic state or configuration Conf as a tuple consisting of functions S for the
stack, H for the heap and M for the overall memory, as well as an instruction pointer l:

Conf≡ 〈S,H,M, l〉

The crucial part of the semantics is the memory model. Our model is inspired by the model
presented in [BL05]. The functions S and H map non-pointer identifiers to their appropriate
types and values, and pointer variables to their types and addresses. A memory state within a
configuration is modeled by the tuple M = (Addr,B,F,C). We define Addr to be the natural
numbers N. It is however possible to replace it with types that represent memory addresses more

Volume X (2010)

188

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

closely. B yields the block size of a given address, while F marks a memory block as free or
allocated. Finally, C returns the content stored at a certain address.

In the context of embedded (operating) systems, models are often non-deterministic. The
frequent interaction of these systems with the surrounding environment, for example through
a sensor that delivers some kind of information, makes the execution highly non-deterministic.
Since LLVM natively offers no means to handle non-determinism, we decided to realize bounded
non-determinism by annotating the source code.

Sources for non-determinism, e.g. reading from a memory location where a value delivered
from a sensor is stored, need to be annotated in the code. The annotation contains the pos-
sible range of values that the sensor may return. For the formal semantics, this implies that
a transition from a configuration Conf may have more than one successor configuration. For
every identifier that is marked as non-deterministic, the annotations define a function range :
Identi f ier →P(Value). The successor configurations differ from the original configuration
only in the value of register %dest ident, to which the value read from the marked variable
%source ident is stored. The value is non-deterministically chosen from the set defined by the
range function.

3.3.2 Bisimulation Relation

A labeled transition system LT S over the alphabet A is defined as a tuple (S,T), where S is a set
of states and T ⊆ S×A× S is the transition relation. A special label τ ∈ A is used as label for
internal transitions.

We associate the set of states S with the possible configurations Conf from the previous section.
As labels, we use dedicated names that relate LLVM code behavior to events in the process
algebraic specification. We encode information needed for verification purposes on the process
level using this technique. This includes function and system calls, as well as signals to other
threads or user input. The names are annotated to the original source code.

We explain the idea by using the labels of the LTS to encode that and how a certain variable
in a code snippet changes. Since we are interested in changes to variables from a set V , the
only instruction that produces externally visible behavior is the store instruction. For the
store instruction, we label the edge of the LTS with the value %dest ident.S(%source ident),
if %dest ident is one of the variables to be tracked. For all other instructions except for the store
instruction, we use the τ label indicating silent transitions.

The right side of Figure 9 shows the part of the labeled transition system that corresponds to
the code snippet from Figure 8. Here, the set V of variables to be tracked is defined as {%i,%x}.
First, the content of a variable %b, that was marked non-deterministic and that can range over
the values 0 and 1 is loaded to the register %0 and compared with the constant 0. If the value
of %b is greater than 0, the register %1, which holds the boolean value that is evaluated for the
following branching condition, is set to true. In this case, the execution continues at the block
labeled with bb, otherwise the execution continues at label bb1. At label bb, the content of
the variable %c is loaded to register %2, the constant 2 is subtracted and the result is stored to
variable %c. Afterwards, the content of the variable %c is stored to variable %x. Execution then
continues at label bb2. At label bb1, the constant 7 is stored to variable %x and then execution
proceeds at label bb2.

Proc. GMT 2010

189

ECEASST

1 store i32 0, i32* %i, align 4
2 %0 = load i32* %b, align 4 ; <i32> [#uses=1]
3 %1 = icmp eq i32 %0, 1 ; <i1> [#uses=1]
4 br i1 %1, label %bb, label %bb1
5

bb: ; preds = %entry
6 %2 = load i32* %c, align 4 ; <i32> [#uses=1]
7 %3 = sub i32 %2, 2 ; <i32> [#uses=1]
8 store i32 %3, i32* %c, align 4
9 %4 = load i32* %c, align 4 ; <i32> [#uses=1]
10 store i32 %4, i32* %x, align 4
11 br label %bb2

bb1: ; preds = %entry
12 store i32 5, i32* %x, align 4
13 br label %bb2

bb2: ...

Figure 8: LLVM Code

P = i.0→
 (x.5→SKIP
 ∏ x.7→SKIP)

(x.5→SKIP
∏ x.7→SKIP)

i.0

x.5 x.7

SKIP

S[c=9]

S[c=9,i=0]

i.0

x.5

x.7

S[c=7,i=0]

S[c=7,i=0
 x=7]

...

...

...
...

tau

tau

tau

tau

SKIP

x.5→SKIP x.7→SKIP

tau tau

tau

tau

tau

...

...

S[c=9,i=0,
 x=5]

tau

tau

tau

...

...

...

Figure 9: The Bisimulation Relation between the two LTS

Informally, the definition of weak bisimulation says that any possible transitions in a state
P can be associated with a transition α in the corresponding state Q. An arbitrary number
of internal τ transitions is allowed before and after the corresponding α in the evolution of Q
occurs. Two processes P and Q are weakly bisimilar iff there exists a bisimulation relation R
such that (P,Q) ∈ R.

In our case, T is the disjoint union of the transition systems of CSP and LLVM. Using the
previously defined construction rules for the LTS representing LLVM code, we can show that
the LLVM code shown in Figure 8 is bisimilar to the following process term:

P = %i.0→ (%x.5 → SKIP u%x.7 → SKIP).

The process specifies that a variable %i is set to 0 and afterwards it is non-deterministically

Volume X (2010)

190

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

chosen if the variable %x is set to 5 or 7. Figure 9 shows the two labeled transition systems and
sketches the bisimulation relation. Note that for every LLVM instruction that does not change
any of the variables from the predefined set V , the outgoing edges representing the change in
state by the instruction are labeled with τ . The nodes that are identified by the bisimulation
relation are connected by the dashed arrows.

In ongoing work we formalize this notion of bisimulation using the theorem prover Isabelle/HOL
in order to achieve the mechanized verification of the llvm2csp extraction algorithm presented
in the previous section.

4 Related Work

The verification of low-level software systems and embedded operating systems has attracted
several research projects.

Spec# [BLS04] and VCC [CDH+09] are verification methodologies that translate high-level
languages like C# and C to the intermediate language BoogiePL. Necessary verification informa-
tion is annotated to the source code. To discharge verification conditions, the automatic theorem
prover Z3 is used. In contrast to our approach, BoogiePL is not a compiler-intermediate repre-
sentation but a language tailored for verification purposes. Furthermore, we focus on refinement
and transformation of a high-level specification to executable code rather than direct source-code
verification.

The AVACS [BDF+07] project deals with the verification of complex (real-time) systems.
Verification is carried out at the specification level. Transformations to and the verification of
executable code are not considered within the project.

Another project concerned with the verification of a real-time operating system kernel is the
VFiasco project [HT05]. Verification is carried out at source code level by defining the denota-
tional semantics for a subset of C++. One of its results is the verification of Duff’s Device, but
the techniques were not applied to existing operating system components.
The L4.verified project [EKD+07] uses a refinement approach that proves different layers of ab-
straction to be consistent. The lowest level of abstraction is given by C code, which is shown
to be a refinement of a more abstract design. Neither of these approaches covers concurrency.
Furthermore, the transformation to intermediate and executable code is not considered.

Closely related to our work is the verification of a real-time operating system controlling a
space satellite using Timed-CSP-Z [SSC03]. Timed-CSP-Z models are translated into a petri-
net-based formalism and the resulting petri-nets are analyzed. The approach focuses on deadlock
detection. Neither refinement proofs nor transformations to code are within the focus of this
work.

5 Conclusion and Future Work

In this paper we have summarized the main results of the VATES project so far. We briefly
explained the formalization of Timed CSP in the Isabelle/HOL theorem prover and the potential
of verification techniques for parameterized systems, namely network invariants, in the context of
real-time operating systems. We presented the idea of the extraction algorithm which computes

Proc. GMT 2010

191

ECEASST

a CSP model for a given LLVM program. Finally, we explained an operational semantics of
LLVM and how it is possible to formally relate LLVM programs and CSP models with it based
on bisimulation.

We are currently working on the integration of timing behavior into our framework. Since
timing analyses are already possible on the most abstract layer, we need to extend the llvm2csp
tool to generate Timed CSP models. To realize this, it is necessary to augment the LLVM syntax
and semantics with information about timing behavior. This includes accounting for processor-
specific features like pipelining and cache management.

Since the theory underlying our approach is rather complex we plan to mechanize it entirely
using the Isabelle/HOL theorem prover. Thereby we can claim that our transformations are
indeed correct.

The results obtained so far are very promising. In future work, we will apply our verification
approach to more complex systems, starting with the integration of further system components
into the verification of the BOSS operating system.

We are convinced that our approach has the potential to enable a methodology that seamlessly
integrates the modeling, implementation, transformation and verification stages of embedded
real-time system development.

References

[BDF+07] B. Becker, W. Damm, M. Fränzle, E. Olderog, A. Podelski, R. Wilhelm. SFB/TR
14 AVACS – Automatic Verification and Analysis of Complex Systems. it – Infor-
mation Technology 49(2):118–126, 2007. http://it-Information-Technology.de, DOI
10.1524/itit.2007.49.2.118.

[BL05] S. Blazy, X. Leroy. Formal Verification of a Memory Model for C-Like Imperative
Languages. In ICFEM. Pp. 280–299. 2005.

[BLS04] M. Barnett, K. R. M. Leino, W. Schulte. The Spec# Programming System: An
Overview. In CASSIS 2004. Pp. 49–69. Springer, 2004.

[CDH+09] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, S. Tobies. VCC: A Practical System for Verifying Concurrent C. In
Theorem Proving in Higher Order Logics. TPHOLs-09, August 2009, Munich, Ger-
many. Lecture Notes in Computer Science, LNCS 5674, pp. 23–42. Springer, 8
2009.
http://dx.doi.org/10.1007/978-3-642-03359-9 2

[CGJ97] E. M. Clarke, O. Grumberg, S. Jha. Verifying Parameterized Networks. ACM Trans.
Program. Lang. Syst. 19(5):726–750, 1997.

[EKD+07] K. Elphinstone, G. Klein, P. Derrin, T. Roscoe, G. Heiser. Towards a Practical,
Verified Kernel. In HOTOS’07: Proceedings of the 11th USENIX workshop on Hot
topics in operating systems. Pp. 1–6. USENIX Association, Berkeley, CA, USA,
2007.

Volume X (2010)

192

http://dx.doi.org/10.1007/978-3-642-03359-9_2

Model Transformations to Mitigate the Semantic Gap in Embedded Systems Verification

[GG09] T. Göthel, S. Glesner. Machine-Checkable Timed CSP. In Proc. of The First NASA
Formal Methods Symposium. Pp. 126–135. NASA Conference Publication, 2009.

[GHJ07] S. Glesner, S. Helke, S. Jähnichen. VATES: Verifying the Core of a Flying Sensor.
In Proc. Conquest 2007. dpunkt Verlag, 2007.

[GL08] O. Grinchtein, M. Leucker. Network Invariants for Real-Time Systems. Form. Asp.
Comput. 20(6):619–635, 2008.
doi:http://dx.doi.org/10.1007/s00165-008-0089-0

[GRA05] M. Goldsmith, B. Roscoe, P. Armstrong. Failures-Divergence Refinement - FDR2
User Manual. http://www.fsel.com/documentation/fdr2/fdr2manual.pdf, 2005.
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall International,
London, 1985. ISBN: 0-131-53271-5.

[HT05] M. Hohmuth, H. Tews. The VFiasco Approach for a Verified Operating System. In
Proc. 2nd ECOOP Workshop on Programming Languages and Operating Systems.
2005.

[KBGG09] M. Kleine, B. Bartels, T. Göthel, S. Glesner. Verifying the Implementation of an
Operating System Scheduler. In Poster Proceedings of the 3rd IEEE International
Symposium on Theoretical Aspects of Software Engineering. Tianjin, China, July
2009. In press.

[KH09] M. Kleine, S. Helke. Low Level Code Verification Based on CSP Models. In Oliveira
and Woodcock (eds.), Brazilian Symposium on Formal Methods (SBMF 2009).
Springer, August 2009. In press.

[KM89] R. P. Kurshan, K. McMillan. A structural Induction Theorem for Processes. In
PODC ’89: Proceedings of the eighth annual ACM Symposium on Principles of
distributed computing. Pp. 239–247. ACM, New York, NY, USA, 1989.
doi:http://doi.acm.org/10.1145/72981.72998

[LA04] C. Lattner, V. Adve. LLVM: A Compilation Framework for Lifelong Program Anal-
ysis & Transformation. In Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04). Palo Alto, California, Mar 2004.

[LA08] C. Lattner, V. Adve. LLVM Language Reference Manual. http://llvm.org/docs/
LangRef.html, 2008.
http://llvm.org/docs/LangRef.html

[LF08] M. Leuschel, M. Fontaine. Probing the Depths of CSP-M: A new FDR-compliant
Validation Tool. ICFEM 2008, pp. –, 2008.

[MBK06] Dependable Software (BOSS) for the BEESAT Pico Satellite. Data Systems In
Aerospace - DASIA 2006, May 2006, Berlin. 2006.

Proc. GMT 2010

193

http://dx.doi.org/http://dx.doi.org/10.1007/s00165-008-0089-0
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf
http://www.fsel.com/documentation/fdr2/fdr2manual.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/72981.72998
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html

ECEASST

[NPW02] T. Nipkow, L. C. Paulson, M. Wenzel. Isabelle/HOL — A Proof Assistant for Higher-
Order Logic. LNCS 2283. Springer, 2002.

[Sch99] S. Schneider. Concurrent and Real Time Systems: The CSP Approach. John Wiley
& Sons, Inc., New York, NY, USA, 1999.

[SSC03] A. M. Sherif, A. Sampaio, S. Cavalcante. Specification and Validation of the SACI-1
On-Board Computer Using Timed-CSP-Z and Petri Nets. In ICATPN. Pp. 161–180.
2003.

[Ste96] B. Steensgaard. Points-to Analysis in Almost Linear Time. In POPL ’96: Proceed-
ings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. Pp. 32–41. ACM, New York, NY, USA, 1996.
doi:http://doi.acm.org/10.1145/237721.237727

[WL90] P. Wolper, V. Lovinfosse. Verifying Properties of Large Sets of Processes with Net-
work Invariants. In Proceedings of the International Workshop on Automatic Verifi-
cation Methods for Finite State Systems. Pp. 68–80. Springer-Verlag, London, UK,
1990.

Volume X (2010)

194

http://dx.doi.org/http://doi.acm.org/10.1145/237721.237727

Pre-Proceedings GraMoT 2010

195

ECEASST

Specification and Verification of Model Transformations ∗

Frank Hermann1, Mathias Hülsbusch2, Barbara König2

1 Institut für Softwaretechnik und Theoretische Informatik,
Technische Universität Berlin, Germany,
frank(at)cs.tu-berlin.de

2 Abteilung für Informatik und Angewandte Kognitionswissenschaft,
Universität Duisburg-Essen, Germany,

{mathias.huelsbusch,barbara koenig}(at)uni-due.de

Abstract: Model transformations are a key concept within model driven devel-
opment and there is an enormous need for suitable formal analysis techniques for
model transformations, in particular with respect to behavioural equivalence of
source models and their corresponding target models.

For this reason, we discuss the general challenges that arise for the specification
and verification of model transformations and present suitable formal techniques
that are based on graph transformation. In this context, triple graph grammars show
many benefits for the specification process, e.g. modelers can work on an intuitive
level of abstraction and there are formal results for syntactical correctness, com-
pleteness and efficient execution. In order to verify model transformations with
respect to behavioural equivalence we apply well-studied techniques based on the
double pushout approach with borrowed context, for which the model transforma-
tions specified by triple graph transformation rules are flattened to plain (in-situ)
graph transformation rules.

The potential and adequateness of the presented techniques are demonstrated by an
intuitive example, for which we show the correctness of the model transformation
with respect to bisimilarity of source and target models.

Keywords: Model transformation, behavioural equivalence, verification

1 Introduction

In the setting of model driven architecture (MDA), a system is implemented by first speci-
fying an abstract model, which is subsequently refined to executable code. This is done by
model transformations, which transform a source model into a more concrete target model. The
Object Mangaement Group has also introduced a standard for model transformations: QVT
(Query/View/Transformation). A special case is refactoring, where only the internal structure of
the model or system is changed and potentially optimized. Since refactorings are expected not
to modify the functional behaviour of the system, the notion of behaviour preservation is crucial:
how can we specify and verify that a model keeps its original behaviour after several refactoring

∗ Research supported by DFG project Behaviour-GT.

Volume X (2010)

196

Specification and Verification of Model Transformations

steps? The same question is often relevant for model transformations, in order to show that the
implementation matches the original specification.

In this paper we will summarize some results on the specification and verification of model
transformations. As underlying modelling framework we will use graph transformation, which is
well-suited to handle the graph-like structures usually arising in MDA and UML. However, many
existing model transformations in practice are directly encoded as e.g. XSLT-transformations.
As a first contribution of this paper we will discuss the main challenges of model transformations
and present the main benefits of using graph transformation with respect to technical results and
with respect to usability.

The main two aims of the paper are the following. First, we introduce recent results on
triple graph grammars, a formalism that allows to specify model transformations by construct-
ing source and target models simultaneously and recording correspondences. Second, we will
describe a technique for verifying that model transformations preserve the behaviour of a model,
showing that strong bisimilarity is preserved by the transformation with a variation of the so-
called borrowed context technique. For this, we will derive in-situ transformation rules from
triple graph grammars. Both parts of the paper are based on the same example: a model transfor-
mation translating network-like models with different types of (bidirectional and unidirectional)
links.

The structure of the paper is as follows. Section 2 describes the various challenges arising in
the area of model transformation. Sections 3 and 4 subsequently introduce triple graph grammars
for the specification of model transformations and describe several results obtained for triple
graph grammars (e.g., syntactical correctness and completeness). In Section 5 we describe how
to verify the example transformation using the borrowed context technique. Finally, we will
compare with related work in Section 6 and conclude (Section 7).

2 Challenges for Model Transformations

Model transformations appear in several contexts, e.g. in the various facets of model driven
architecture encompassing model refinement and interoperability of system components. The
involved languages can be closely related or they can be more heterogeneous, e.g. in the spe-
cial case of model refactoring the source language and the target language are the same. From
a general point of view, a model transformation MT : VLS V VLT between visual languages
transforms models from the source language VLS to models of the target language VLT . Main
challenges were described in [SK08] for model transformation approaches based on triple graph
grammars. Here, we extend this list and also the scope and describe general challenges for model
transformations.

There are two dimensions, which contain major challenges for model transformations being on
the one hand functional aspects and on the other hand non-functional aspects. The first dimension
of functional aspects concerns the reliability of the produced results. Depending on the concrete
application of a model transformation MT : VLS V VLT , the following properties may have to be
ensured.

1. Syntactical Correctness: For each model MS ∈VLS that is transformed by MT the resulting
model MT has to be syntactically correct, i.e. MT ∈ VLT .

Proc. GMT 2010

197

ECEASST

2. Semantical Correctness: The semantics of each model MS ∈ VLS that is transformed by
MT has to be preserved or reflected, respectively.

3. Completeness: The model transformation MT can be performed on each model MS ∈ VLS.
Additionally, MT can be required to reach all models MT ∈ VLT .

4. Functional Behaviour: For each source model MS the model transformation MT will al-
ways terminate and lead to the same resulting target model MT .

The second dimension of non-functional aspects of model transformations concerns usability
and applicability. Therefore, from the application point of view some of the following challenges
are also main requirements.

1. Efficiency: Model transformations should have polynomial space and time complexity.
Furthermore, there may be further time constraints that need to be respected, depending
on the application domain and the intended way of use.

2. Intuitive Specification: The specification of model transformations can be performed based
on visual patterns that describe how model fragments in a source model correspond to
model fragments in a target model. The components of a model transformation can be
visualized in the concrete syntax of the visual languages.

3. Maintainability: Extensions and modifications of a model transformation need to be easy.
Side effects of local changes shall be handled and analyzed automatically.

4. Expressiveness: Special control conditions have to be available in order to handle more
complex models, which, e.g., contain substructures with a partial ordering or hierarchies.

5. Bidirectional model transformations: The specification of a model transformation should
provide the basis for both, a model transformation from the source to the target language
and a model transformation in the inverse direction.

In the following section we present suitable techniques for the specification of model transfor-
mations based on graph transformation. These techniques provide validated and verified capa-
bilities for a wide range of the challenges listed above.

3 Specification of Model Transformations by Triple Graph Gram-
mars

A promising and well studied approach for the specification of model transformations is based
on triple graph transformation [Sch94]. This section presents its main concepts and Sec. 4 shows
its advantages from the formal and from the application point of view. The most important ad-
vantage of triple graph transformation is the combination of both, its intuitive way of specifying
model transformations and its formal basis, for which correctness and completeness results are
available.

Volume X (2010)

198

Specification and Verification of Model Transformations

Triple graphs combine three graphs - one for the source model, one for the target model and
one in between, together with connecting graph morphisms for the specification of the correspon-
dences between the elements in the source and the target model. This extension of plain graphs
improves the definition of model transformations. Source models are parsed and their corre-
sponding target models are completed without the need of deleting the source model in between.
The correspondences between both models are used to guide the transformation process.

Definition 1 (Category TripleGraphs) Three graphs GS, GC, and GT , called source, connec-
tion, and target graph, together with two graph morphisms sG : GC→GS and tG : GC→GT form
a triple graph G = (GS←sG−− GC −tG−→ GT). G is called empty, if GS, GC, and GT are empty graphs.

A triple graph morphism m = (mS,mC,mT) : G → H between two triple graphs
G = (GS←sG−− GC −tG−→ GT) and H = (HS←sH−− HC −tH−→ HT) consists of three graph morphisms
mS : GS→ HS, mC : GC → HC and mT : GT → HT such that mS ◦ sG = sH ◦mC and mT ◦ tG =
tH ◦mC. It is injective, if morphisms mS, mC and mT are injective. Triple graphs and triple graph
morphisms form the category TripleGraphs. Given a triple graph TG, called type graph, the cat-
egory TripleGraphsTG of typed triple graphs is given by the slice category TripleGraphs\TG.

U D C

DC

UC

Y

TGS TGC TGT

node

X

tgt src

XY

tgt src

Figure 1: Triple Type Graph TG = (T GS← T GC→ T GT)

In the examples of this paper we consider a model transformation MT : BidiDiLang V
UniDiLang between communication structure models. The language BidiDiLang contains mod-
els with bidirectional and undirectional links and these models are transformed to models with
unidirectional connections only in the language UniDiLang. Each pair of corresponding source
and target models is given by a triple graph typed over the triple type graph TG in Fig. 1, which
extensively uses the concept of labeled nodes, i.e. loops of different edge types. This reduces
the amount of node types, which allows us in Sec. 5.2 to verify the semantical correctness of
the model transformation by transforming the triple rules into suitable in situ rules and to ana-
lyze them with respect to rules for the mixed semantics, i.e. a semantics for models that contain
source and target elements at the same time.

In order to improve the intuition of triple graphs typed over TG we present the graphs by a
visualization. The fill colour of the elements in the source model is light red while it is blue for
the correspondence elements and yellow for elements in the target model. Furthermore, the edge
types “X”, “D” (directed link), “U” (undirected link), “Y”, “C” (connection) as well as “XY”,

Proc. GMT 2010

199

ECEASST

“DC” and “UC” for the correspondence component will always be loops at different nodes and
we simply write the label inside the node rectangle resp. hexagon. Note that the visualization of
the type graph in Fig. 2 contains different nodes for the labels “D” and “U” as well as for “DC”
and “UC”. This distinction is not present in the underlying type graph in Fig. 1, but the triple
rules in Fig. 4 ensure that the created models will always respect these restrictions. For instance,
edges of type “src” in the source component will always start at a node labelled with “D” and
end at a node labelled with “X”.

TGS

XY

DC

TGC TGT

X Y

D

U

tgt
node C

tgt

UC

src src

Figure 2: Visualization of the Triple Type Graph TG

XYX Y

XYX Y

U C

node

node

src

tgt

UC C

src

tgt

UC

D

srctgt

DC C

GS GC GT

src tgt

Figure 3: Triple Graph G with source model GS and target model GT

Example 1 (Triple graph) The triple graph in Fig. 3 is typed over TG and shows an integrated
model consisting of a source model GS (left) and a target model GT (right), which are connected
via the correspondence nodes in the correspondence graph GC. The source model specifies a
node with label “X” having a message “m”, a self referring directed link “D” and an outgoing
undirected link “U”. Similarly the target model contains two nodes, but labelled with “Y” and
instead of one undirected link between both nodes there are two connections “C” defining pos-
sibilities for communication in both directions. The corresponding elements of both models are
related by graph morphisms (indicated by dashed lines) from the correspondence graph (light
blue) to the source and target componencts, respectively.

Volume X (2010)

200

Specification and Verification of Model Transformations

A triple graph grammar generates a language of triple graphs, i.e. a language of integrated
models consisting of models of the source and the target language and a correspondence struc-
ture in between. The triple rules of a triple graph grammar specify the synchronous creation
of elements in the source component and its corresponding elements in the target component.
Therefore, triple rules are non-deleting. The triple rules of a triple graph grammar are the basis
for deriving the operational rules of the model transformation from models of one language into
the other.

Definition 2 (Triple Graph Transformation and Triple Graph Grammar) A triple rule
tr = L−tr→ R is an injective triple graph morphisms tr from a triple graph L (left hand side) to
a triple graph R (right hand side). A triple graph grammar TGG = (TG,S,TR) consists of a triple
graph TG (type graph), a triple graph S (start graph) and triple rules TR - both typed over TG.

Given a triple rule tr = (trS, trC, trT) : L→ R, a triple graph G and an injective triple graph
morphism m = (mS,mC,mT) : L→ G, called triple match m, a triple graph transformation step
(TGT-step) G =

tr,m
==⇒ H from G to a triple graph H is given by a pushout in TripleGraphs. The

triple graph language L of TGG is defined by L = {G | ∃ triple graph transformation S⇒∗ G}.

L = (LS

tr �� mS
��

LC
sLoo

mC
��

tL // T L)

mT
��

R = (RS RC
sR

oo
tR

// RT)

Triple Rule

L

m
��

tr // R

n
��

(PO)

G t
// H

Transformation Step

Model transformations based on triple graph transformation are performed by taking the
source model and extending it to an integrated model, where all its corresponding elements
in the correspondence and target component are completed. Thereafter, this integrated model is
restricted to its target component being the result of the model transformation. For this reason,
triple graph transformation rules are non-deleting. This implies that the first step in the DPO
graph transformation approach [EEPT06] can be omitted, because the creation of elements is
performed in the second step.

Example 2 (Triple Graph Grammar) The triple graph grammar TGG = (TG, /0,TR) for the
model transformation MT : BidiDiLang V UniDiLang contains the triple type graph in Fig. 2,
the empty start graph and the rules TR in Fig. 4. Each rule specifies a pattern that describes how
particular fragments of communication structure models shall be related. We present the rules in
compact notation, i.e. the left and the right hand side of a rule are shown in one triple graph and
the additional elements that occur in the right hand side only are marked by green line colour
and a double plus sign.

The rule “nodeX2nodeY” synchronously creates an “X” node in the source model and its cor-
responding “Y” node in the target model. Thus, in this case the left hand side of this rule is
the empty triple graph, because all elements are created. The rule “directed2connection” creates
directed links “D” between two “X” nodes in the source component and their corresponding
connection “C” between the related “Y” nodes in the target component. Finally, the rule “undi-
rected2connection” creates an undirected link “U” in the source component and relates it with
two connections “C” for the communication in both directions between the “Y” nodes that are

Proc. GMT 2010

201

ECEASST

already related to the “X” nodes in the source component.

nodeX2nodeY

++ ++ ++

XYX Y

directed2connection

++ ++

XYX Y

XYX Y

D C

src

tgt

src

tgt

DC

++ ++

undirected2connection

++ ++++

++

++

XYX Y

XYX Y

U C

node

node

src

tgt

UC

++

++++

++

++
C

src

tgt
++

++ ++

UC

++

Figure 4: Triple Rules of the Triple Graph Grammar TGG

Based on the triple rules of a triple graph grammar the operational source and forward rules for
model transformations from models of the source language to models of the target language are
derived automatically [Sch94, KW07, EEE+07]. The source rules will be used to parse the given
source model of a forward model transformation, which guides the forward transformation, in
which the forward rules are applied. Since triple rules have a symmetric character, the backward
rules for backward model transformations from models of the target to models of the source
language can be derived as well.

Definition 3 (Derived Source and Forward Rule) Given a triple rule tr = (trS, trC, trT) : L→ R
the source rule trS : LS → RS is derived by extending the graph morphism trS : LS → RS with
empty graphs and empty morphisms for the remaining correspondence and target components,
i.e. LC

S = LT
S = RC

S = RT
S = /0. The forward rule trF = (trS

F , tr
C
F , tr

T
F) is derived by taking tr and

redefining the following components: LS
F = RS, trS

F = id, and sLF = trS ◦ sL.

L = (LS

tr �� trS ��

LC
sLoo

trC
��

tL // LT)

trT
��

R = (RS RC
sR

oo
tR

// RT)

Triple Rule tr

LS = (LS

trS �� trS ��

/0oo

��

// /0)

��
RS = (RS /0oo // /0)

Source Rule trS

LF = (RS

trF �� id ��

LC
trS ◦ sLoo

trC
��

tL // LT)

trT
��

RF = (RS RC
sR

oo
tR

// RT)

Forward Rule trF

Example 3 (Derived Rules) The derived forward rules and one derived source rule of the triple
graph grammar TGG in Fig. 4 are shown in Fig. 5. The source rule “nodeX2nodeYS” cre-
ates a single “X” node and will be used to parse all nodes with label “X” in a given source
model of a model transformation. Based on the found matches the corresponding forward rule

Volume X (2010)

202

Specification and Verification of Model Transformations

nodeX2nodeYF

++ ++
XYX Y

directed2connectionF

++

XYX Y

XYX Y

D C

src

tgt

DC

++

undirected2connectionF

++++
++

XYX Y

XYX Y

U C

src

tgt

UC

++

++

++
C

src

tgt
++

++ ++

UC

++

src
node

node

tgt

nodeX2nodeYS

++
X

(source rule) (forward rule)

(forward rule) (forward rule)

Figure 5: Some Derived Source and Forward Rules

“nodeX2nodeYF” will be applied and it will insert a “Y” node in the target component for each
found ”X“ node. Similarly, the other two forward rules specify the completion of the correspon-
dence and target structure for communication links in the source component. Directed links “D”
are transformed to directed connections “C” between the already translated and corresponding
“Y” nodes. For undirected links “U” we have the case that two connections in both directions
are created to complete the integrated model fragment.

As introduced in [EEE+07, EHS09] model transformations can be defined based on source
consistent forward transformations G0 =⇒∗ Gn via (tr1,F , . . . , trn,F), short G0 =

tr∗F=⇒ Gn. Source
consistency intuitively means that the source model in G0 can be parsed and all its elements
are translated exactly once into corresponding fragments in the resulting target model. More

precisely, source consistency of G0 =
tr∗F=⇒ Gn requires that there is a source sequence ∅ =

tr∗S=⇒ G0

such that the sequence ∅ =
tr∗S=⇒ G0 =

tr∗F=⇒ Gn is match consistent, i.e. the S-component of each
match mi,F of tri,F(i = 1..n) is uniquely determined by the comatch ni,S of tri,S, where tri,S and
tri,F are source and forward rules of the same triple rules tri. Altogether the forward sequence

G0 =
tr∗F=⇒ Gn is controlled by the corresponding source sequence ∅ =

tr∗S=⇒ G0, which is unique in
the case of match consistency.

Definition 4 (Model Transformation based on Forward Rules) A model transformation se-
quence (GS, G0 =

tr∗F=⇒ Gn,GT) consists of a source graph GS, a target graph GT , and a source

consistent forward TGT-sequence G0 =
tr∗F=⇒ Gn with GS = projS(G0) and GT = projT (Gn),

where “pro jX ” is the projection to the X-component of a triple graph for X ∈ {S,C,T}. A
model transformation MT : VLS0 V VLT 0 is defined by all model transformation sequences

Proc. GMT 2010

203

ECEASST

(GS,G0 =
tr∗F=⇒ Gn,GT) with GS ∈ VLS0 and GT ∈ VLT 0.

Considering the source model in Fig. 3 we can construct the following source consistent
forward transformation: with GS =GS: (GS← /0→ /0)=G0 =

nodeX2nodeYF ,m1
==========⇒G1 =

nodeX2nodeYF ,m2
==========⇒

G2 =
directed2connectionF ,m3
=============⇒ G3 =

undirected2connectionF ,m4
==============⇒ G4 = (GS ← GC → GT) and we derive the

integrated model G = G4 and the target model GT = GT as shown in Fig. 3.

4 Results for Model Transformations Based on Triple Graph Gram-
mars

There are already many important results for model transformations based on triple graph trans-
formation and in this section we compare the available results with respect to the listed challenges
in Sec. 2.

Model transformations based on source consistent forward sequences are syntactically correct
and complete with respect to the triple patterns [EEHP09], i.e. with respect to the language
VL = {G | /0 =⇒∗ G in TGG} containing the integrated models generated by the triple rules. More
precisely, each model transformation translates a source model into a target model, such that the
integrated model that contains both models can be created by applications of the triple rules to
the empty start graph. This means that both models can be synchronously created according to
the triple patterns. Vice versa, a model transformation can be performed on each source model
that is part of an integrated model in the generated triple language VL.

For the more formal view on these results we explicitly define the language of translatable
source models VLS and of reachable target models VLT by VLS = {GS | (GS←GC→GT)∈ VL}
and VLT = {GT | (GS ← GC → GT) ∈ VL}. Based on these definitions there is the correctness
and completeness result below according to Theorems 2 and 3 in [EHS09].

Theorem 1 (Syntactical Correctness) Each model transformation sequence given by

(GS,G0 =
tr∗F=⇒ Gn,GT), which is based on a source consistent forward transformation sequence

G0 =
tr∗F=⇒ Gn with G0 = (GS ← /0→ /0) and Gn = (GS ← GC → GT) is syntactically correct, i.e.

GS ∈V LS and GT ∈V LT .

Theorem 2 (Completeness) For each GS ∈ V LS there exists GT ∈ V LT with a model trans-

formation sequence (GS,G0 =
tr∗F=⇒ Gn,GT) where G0 =

tr∗F=⇒ Gn is source consistent with G0 =
(GS← /0→ /0) and Gn = (GS← GC→ GT).

Concerning the non-functional properties of model transformations in the second list of chal-
lenges in Sec. 2 triple graph transformations show a very promising basis providing already
most of the requested properties while the existing results above are preserved. In order to de-
fine expressive model transformations, the concept of negative application conditions (NACs)
is commonly used and allows the modeler to specify complex model transformations [EHS09].
Furthermore, we have shown that information preserving bidirectional model transformations
can be characterized by source consistent forward transformations based on triple graph gram-

Volume X (2010)

204

Specification and Verification of Model Transformations

mars [EEE+07]. Moreover, we improved the efficiency of the approach by defining an on-the-fly
construction, for which termination is ensured if the source rules are creating, i.e. each triple rule
creates at least one element in the source component. As a second optimization, we defined suit-
able conditions for parallel independence in order to perform partial order reductions [EEHP09].
Finally, model transformations based on triple graph transformations are flexible in the sense
that new rules can be added without changing the existing rules whenever new structures are
introduced into the visual language. For this reason, the efforts for maintainability can be kept
low.

Coming back to the first list of challenges in Sec. 2 we prove in Sec. 5.2 the semantical cor-
rectness of the model transformation presented in this paper and we show how this approach can
be generalized to other model transformations as well. Thus, there remains only one important
challenge being the analysis of functional behaviour of model transformations. Functional be-
haviour of model transformations ensures unique results for any given source model. There are
already several analysis techniques, which can be applied for plain graph grammars and we plan
to lift them to the case with triple graphs. The techniques are based on the analysis of critical
pairs in order to show confluence of the graph transformation system. The presented example
in this paper shows already functional behaviour. However, for the backward direction the be-
haviour is not functional. Consider e.g. two “Y” nodes that are connected by two connections
“C” in opposite direction. They can be transformed to one unidirectional link or to two directed
links.

Summing up, triple graph transformation is an adequate and promising basis for model trans-
formations and the existing results show already its intuitive, expressive, formally well founded
and efficient character.

5 Verification of Model Transformations

5.1 The Borrowed Context Technique

In the following we will describe how to verify model transformations. Before we can even state
what behaviour preservation actually means in our setting, it is necessary to introduce opera-
tional semantics, given by graph transformation rules, for both the source and the target model.
These operational semantics will provide source as well as target models with labelled transition
systems, where transitions correspond to the application of graph transformation rules and are
of the form G1

α⇒ G2. Note that α is the transition label, which is obtained from the applied
production p via a given map-function, i.e., α = map(p). The map-function, assigning a global
label to every rule, is necessary since we compare different operational rules. Now, behaviour
preservation in our setting means that the source model and the corresponding target model are
bisimilar (with respect to the labelled transitions).

We will use the borrowed context technique [EK06, RKE08], which refines a labelled transi-
tion system (or even unlabelled reaction rules) in such a way that the resulting bisimilarity is a
congruence (see also [LM00]). By a congruence we mean a relation over graphs that is preserved
by contextualization, i.e., by gluing with a given environment graph over a specified interface.
This is a mild generalization of standard graph rewriting in that we consider “open” graphs,
equipped with a suitable interface.

Proc. GMT 2010

205

ECEASST

Note that in this section we will not work directly with triple graph grammars, although we
have some preliminary ideas on the verification of model transformation based directly on triple
graph grammars. Instead here we use in-situ transformation rules, where the in-situ rules are
derived from the triple rules of Section 3, in order to be able to exploit the existing congruence
results.

The basic idea behind the borrowed context technique is to describe the possible interactions
of a part of the model with the environment, i.e., with the remaining yet unspecified rest of the
model. In addition to existing labels, we add the following information to a transition: what
is the (minimal) context that a graph with interface needs to evolve? More concretely we have
transitions of the form

(J→ G)
α,(J→F←K)

=⇒ (K→ H)

where the components have the following meaning: (J→G) is the original graph with interface
J (given by an injective morphism from J to G) which evolves into a graph H with interface
K. The label is composed of two entities: the original label α = map(p) stemming from the
operational rule p and furthermore two injective morphisms (J → F ← K) detailing what is
borrowed from the environment. The graph F represents the additional graph structure, whereas
J,K are its inner and the outer interface.

We will now introduce the necessary definitions.

Definition 5 (context, cospan) A graph with interface is a graph morphism J→ G.
A context (also called cospan) consists of two injective graph morphisms J → F ← K. The

composition of two cospans is performed by taking the pushout.

K
}}{{{

{{
!!CCC

CC

J //

11

F
!!CCC

CC PO E
}}{{{

{{
Moo

mmD

Definition 6 (Rewriting with Borrowed Contexts) Given a graph with interface J → G and a
production p : L← I→ R, we say that J→G reduces to K→H with transition label J→ F←K
if there are graphs D, G+, C and additional morphisms such that the diagram below commutes
and the squares are either pushouts (PO) or pullbacks (PB) with injective morphisms. In this
case a rewriting step with borrowed context exists and is written as follows:

(J→ G)
map(p),(J→F←K)

=⇒ (K→ H)

(in words: J→ G reduces to K→ H with transition labels map(p) and J→ F ← K).

D //

�� PO

L
�� PO

Ioo //

�� PO

R
��

G //

PO
G+

PB

Coo // H

J

OO

// F

OO

Koo

OO ??

Volume X (2010)

206

Specification and Verification of Model Transformations

After these preliminaries, we can now define the notion of bisimilation and bisimilarity with
borrowed context labels. Note that under certain conditions and for closed systems this notion
specializes to standard bisimilarity, which ignores the borrowed context label. This will be ex-
plained later in more detail.

Definition 7 (Bisimulation, Bisimilarity) Let P be a set of productions. Let R be a symmetric
relation consisting of pairs of graphs with interfaces of the form (J→ G,J→ G′), also written
(J→ G)R (J→ G′).

The relation R is a bisimulation if whenever we have (J → G)R (J → G′) and a transition

(J→ G)
α,(J→F←K)

=⇒ (K→ H) can be derived from P , then there exists a morphism K→ H ′ and

a transition (J→ G′)
α,(J→F←K)

=⇒ (K→ H ′) such that (K→ H)R (K→ H ′).
We write (J → G) ∼ (J → G′) whenever there exists a bisimulation R that relates the two

morphisms. The relation ∼ is called bisimilarity.

We have shown that (strong) bisimilarity defined in transition systems with borrowed context
labels is a congruence. This holds also if we enrich the labels with α = map(p) as described
above.

Theorem 3 (Bisimilarity is a Congruence [EK06]) Bisimilarity ∼ is a congruence, i.e., it is
preserved by embedding into contexts as specified in Definition 5.

5.2 Using the Borrowed Context Technique for the Verification of Model Trans-
formations

For an in-situ model transformation within the same language, applications of the borrowed
context technique are quite immediate: show for every transformation rule that the left-hand and
right-hand sides L,R with interface I are bisimilar with respect to the operational rules. Then the
source model must be bisimilar to the target model by the congruence result. This idea has been
exploited in [RLK+08] for showing behaviour preservation of refactorings.

To set up the entire machinery, we first need the operational semantics of the two languages
under consideration (BiDiLang and UniDiLang). In Figures 6 and 7 we describe the dynamic
evolution of a system: in both cases messages can be created and deleted at arbitary moments in
time. Furthermore, in language BiDiLang the node labelled D describes a directed connection
over which messages can be passed in only one direction, whereas the node labelled U describes
an undirected connection allowing a movement in any direction (note that the two edges leaving
the U-node have the same label and are hence undistinguishable). In the second language (Uni-
DiLang) we have only one type of connection, working similarly to the directed connection in
the first language.

Now, as announced above, in order to reuse the congruence result we are applying in-situ
transformation rules (given in Figure 8) which are similar to the triple graph grammar rules
given in Section 3.

Note that these in-situ rules will lead to “mixed” (or hybrid) models which incorporate com-
ponents of both the source and the target model. Hence we need a joint type graph (see Figure 9)
that contains node and edge types of both languages.

Proc. GMT 2010

207

ECEASST

← → ← →

← → ← →

Figure 6: BiDiLang, rules of the operational semantics

← → ← →

← →

Figure 7: UniDiLang, rules of the operational semantics

← →

← → ← →

Figure 8: Rules for the in-situ model transformation

Volume X (2010)

208

Specification and Verification of Model Transformations

X

C

U Y

D

m
src
tgt

node

Figure 9: Combined Type Graph TGST for mixed Models

← → ← → ← →

← → ← → ← →

← → ← → ← →

Figure 10: Additional rules of the mixed semantics

Now, since we generate mixed models but still want to exploit the congruence result, it is
necessary to have an operational semantics also for those models, which has to satisfy the fol-
lowing conditions: (i) the mixed rules are not applicable to a pure source or target model; (ii)
it is possible to show bisimilarity of left-hand and right-hand sides of all transformation rules.
Finally, observe that our final aim is to show bisimilarity of closed graphs, i.e., of graphs with
empty interface of the form /0→ G. If the operational rules of the source and target languages
have connected left-hand sides then such a graph will either borrow nothing or borrow the whole
left-hand side. It can be shown that if all left-hand sides are connected, the notion of bisimilarity
induced by borrowed contexts coincides with the standard one.

Hence here we use the mixed operational semantics given in Figure 10. The rules mainly
describe message passing in mixed models, where a message is, for instance, passed from an
X-node to a Y -node over various types of connectors.

Theorem 4 The three rules of the in-situ model tranformation given in Figure 8 form a bisim-
ulation relation R, where each rule L← I→ R is split into a pair (I→ L, I→ R) of the relation.
Since bisimilarity is a congruence and borrowed context bisimilarity coincides with standard

Proc. GMT 2010

209

ECEASST

bisimilarity on source and target models, this implies that whenever a graph GB of the source
language is transformed into a graph GU of the target language via the model transformation,
then GB is bisimilar to GU .

Note that in the proof we make heavy use of the up-to-context technique, which allows us
to somewhat relax the requirements for bisimulation proofs given in 7. More specifically, it is
enough if K → H and K → H ′ are in relation R after the removal of identical contexts. Note
also that in more complex scenarios the bisimulation R might contain additional pairs that are
not model transformation rules (see [HKR+09]).

In this fairly easy scenario one can obtain the rules of the mixed-semantics by applying the
transformation rules to the (original) operational semantics of the source or target languages. In
the general case, it is however currently not clear to us, how to obtain a correct set of mixed
semantic rules. For small examples, the following heuristics usually gives good results:

1. Let S be the set containing all original rules of the the source and target operational se-
mantics.

2. Choose any tranformation rule r.

3. Apply all rules in S to the left-hand side (respectively right-hand side) of r using the
borrowed-context technique. This gives us several borrowed context rewriting steps.

4. If there is a matching answer with a rule in S for the right-hand side (respectively left-hand
side) of transformation rule r, then do nothing.

5. If there is no such matching answer, create a new “mixed” rule, providing such a valid
answer. Add this new rule to S and procede with step 2.

6. If every partial map of every rule in S has been tested for all left-hand and right-hand sides
of the transformation rules, S is the mixed semantics we are looking for.

Using this heuristics one might even create a smaller set of rules for the mixed semantics in
comparison to applying the transformation rules to the rules for the operational semantics in
every possible way (see [HKR+09]).

6 Related Work

There are several other approaches based on triple graph transformation, e.g. using constraint-
patterns [OGLE09]. While these patterns can lead to a more compact specification, there are
fewer results for several of the listed challenges, e.g. the handling of termination and therefore
completeness is more complex and not ensured in general.

As mentioned before, there are already suitable techniques for the analysis of functional be-
haviour of model transformations based on plain graph transformation systems [EEL+05]. How-
ever, plain graph transformation systems do not show some of the important benefits of triple
graph transformation, as, for instance, completeness and the general notion of syntactical cor-
rectness with respect to the triple patterns specified by the intuitive triple rules. Furthermore,

Volume X (2010)

210

Specification and Verification of Model Transformations

plain graph transformation systems are unidirectional while triple graph transformation systems
automatically provide bidirectional model transformations.

The work closest to ours for showing the semantical correctness of model transformations in
the sense of showing behaviour preservation for a transformation between models of different
types is [GGL+06]. They present a mechanised proof of semantics preservation for a transfor-
mation of automata to PLC-code, based on TGG rules. This proof faced some problems since it
was not trivial to present graph transformation within Isabelle/HOL.

As opposed to model transformation between different source and target models, there has
been more work on showing behaviour preservation in refactoring. The methods presented in
[KCKB05, PC07, NK06, GSMD03] address behaviour preservation in model refactoring, but
are in general limited to checking a certain number of models. The employment of a congruence
result is also proposed in [BHE08] which uses the process algebra CSP as a semantic domain. A
number of approaches to showing correctness of refactorings also focus on preserving specific
aspects instead of the full semantics (see [MT04]).

7 Conclusion

In order to provide validated model transformations, which are a main component in model
driven architecture (MDA), there is a strong need for formal analysis and verification. We have
shown that triple graph transformation is an adequate technique providing both, an intuitive way
of specification and a formal basis for which several analysis techniques as well promising exe-
cution algorithms are available. The two lists of challenges for model transformations in Sec. 2
contain many different and important aspects and depending on the concrete model transforma-
tion there may be some of them that cannot be achieved.

Even though, the presented approach in Sec. 3 based on triple graph transformation shows
many capabilities and many of the listed challenges can be achieved or handled adequately,
respectively. The available results discussed in Sec. 4 include for instance syntactical correctness
and completeness and the specification of model transformations is performed in an intuitive and
elegant way. While the general analysis of functional behaviour of a model transformation will
be a part of future work we have exemplarily shown how the specified model transformation
can be analyzed with respect to behaviour preservation and therefore, with respect to semantical
correctness.

For this purpose we transformed in Section 5 the model transformation based on a triple graph
grammar into an in-situ model transformation based on plain graph grammars. In a next step
we introduced a proof technique for showing that a transformation preserves the behaviour of a
model. A similar method was introduced by us in [HKR+09] for a different model transforma-
tion. In [HKR+09] it was even necessary to work with weak, saturated bisimilarity with negative
application conditions due to the higher complexity of the case study. However, the general idea
can just as well be presented and understood with the simpler case study presented in this paper.

Currently we have not yet mechanized the technique, but we have started to work on an imple-
mentation. One drawback is the fact that it is necessary to find a suitable mixed semantics, which
might become quite large and unwieldy. Hence we are currently working on a more straightfor-
ward approach that combines triple graph grammars with borrowed contexts, by asking that each

Proc. GMT 2010

211

ECEASST

borrowed context step of the source model must be answered by a borrowed context step of the
target model (and vice versa) in such a way that the labels can be translated into each other via
the model transformation rules. However there are some remaining technical difficulties (e.g.,
what happens if the label can only be partially translated?) yet to be solved.

Note however that the in-situ transformation rules are not without merits: in the case of system
migration, where we migrate piece by piece of an evolving system from one version to another,
we might well have such mixed intermediate states which have to be handled. Think of a het-
erogeneous LAN, where one wants to replace the mail server, the firewall and the file server.
The complete system must be in working order all the time, but in many cases the exchange of
the components will not happen synchronously. In such a setting we want to show that also the
hybrid models preserve the behaviour and the migration does not disrupt the correct working of
the system.

Acknowledgements: We would like to thank Arend Rensink, Maria Semenyak, Christian
Soltenborn and Heike Wehrheim for joint work on a case study, which gave us the ideas on
which we based Section 5.

Bibliography

[BHE08] D. Bisztray, R. Heckel, H. Ehrig. Verification of Architectural Refactorings by Rule
Extraction. In FASE ’08. LNCS 4961, pp. 347–361. Springer, 2008.

[EEE+07] H. Ehrig, K. Ehrig, C. Ermel, F. Hermann, G. Taentzer. Information Preserving
Bidirectional Model Transformations. In Dwyer and Lopes (eds.), Fundamental Ap-
proaches to Software Engineering. LNCS 4422, pp. 72–86. Springer, 2007.
http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07.pdf

[EEHP09] H. Ehrig, C. Ermel, F. Hermann, U. Prange. On-the-Fly Construction, Correct-
ness and Completeness of Model Transformationsbased on Triple Graph Grammars:
Long Version. In Schürr and Selic (eds.), ACM/IEEE 12th International Conference
on Model Driven Engineering Languages and Systems (MODELS’09). lncs 5795,
pp. 241–255. Springer, 2009. To appear.
http://tfs.cs.tu-berlin.de/publikationen/Papers09/EEHP09.pdf

[EEL+05] H. Ehrig, K. Ehrig, J. de Lara, G. Taentzer, D. Varró, S. Varró-Gyapay. Termina-
tion Criteria for Model Transformation. In Wermelinger and Margaria-Steffen (eds.),
Proc. Fundamental Approaches to Software Engineering (FASE). Lecture Notes in
Computer Science 2984, pp. 214–228. Springer Verlag, 2005.
http://tfs.cs.tu-berlin.de/publikationen/Papers05/EEL+05.pdf

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph Trans-
formation. EATCS Monographs in Theor. Comp. Science. Springer Verlag, 2006.
http://www.springer.com/3-540-31187-4

Volume X (2010)

212

http://tfs.cs.tu-berlin.de/publikationen/Papers07/EEE+07.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers09/EEHP09.pdf
http://tfs.cs.tu-berlin.de/publikationen/Papers05/EEL+05.pdf
http://www.springer.com/3-540-31187-4

Specification and Verification of Model Transformations

[EHS09] H. Ehrig, F. Hermann, C. Sartorius. Completeness and Correctness of Model Trans-
formations based on Triple Graph Grammars with Negative Application Conditions.
ECEASST 18, 2009.
http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/27

[EK06] H. Ehrig, B. König. Deriving Bisimulation Congruences in the DPO Approach to
Graph Rewriting with Borrowed Contexts. Mathematical Structures in Computer
Science 16(6):1133–1163, 2006.

[GGL+06] H. Giese, S. Glesner, J. Leitner, W. Schäfer, R. Wagner. Towards Verified Model
Transformations. In 3rd International Workshop on Model Development, Validation
and Verification (MoDeVa). Pp. 78–93. Le Commissariat á l’Energie Atomique -
CEA, Genova, Italy, 2006.

[GSMD03] P. V. Gorp, H. Stenten, T. Mens, S. Demeyer. Towards automating source-consistent
UML refactorings. In UML 2003. LNCS 2863, pp. 144–158. Springer, 2003.

[HKR+09] M. Hülsbusch, B. König, A. Rensink, M. Semenyak, C. Soltenborn, H. Wehrheim.
Verifying Full Semantic Preservation of Model Transformation is Hard. Unpub-
lished, October 2009.

[KCKB05] M. van Kempen, M. Chaudron, D. Kourie, A. Boake. Towards proving preservation
of behaviour of refactoring of UML models. In SAICSIT ’05. Pp. 252–259. 2005.

[KW07] E. Kindler, R. Wagner. Triple Graph Grammars: Concepts, Extensions, Implementa-
tions, and Application Scenarios. Technical report TR-ri-07-284, Universität Pader-
born, 2007.

[LM00] J. J. Leifer, R. Milner. Deriving Bisimulation Congruences for Reactive Systems. In
Proc. of CONCUR 2000. Pp. 243–258. Springer, 2000. LNCS 1877.

[MT04] T. Mens, T. Tourwé. A Survey of Software Refactoring. IEEE Trans. Software Eng.
30(2):126–139, 2004.

[NK06] A. Narayanan, G. Karsai. Towards Verifying Model Transformations. In GT-
VMT ’06. ENTCS 211, pp. 185–194. 2006.

[OGLE09] F. Orejas, E. Guerra, J. de Lara, H. Ehrig. Correctness, Completeness and Termina-
tion of Pattern-Based Model-to-Model Transformation. In Kurz et al. (eds.), Proc.
of the 3rd Int. Conf. on Algebra and Coalgebra in Computer Science (CALCO’09).
Lecture Notes in Computer Science 5728, pp. 383–397. Springer, 2009.

[PC07] J. Pérez, Y. Crespo. Exploring a Method to Detect Behaviour-Preserving Evolution
Using Graph Transformation. In Third International ERCIM Workshop on Software
Evolution. Pp. 114–122. 2007.

[RKE08] G. Rangel, B. König, H. Ehrig. Deriving Bisimulation Congruences in the Presence
of Negative Application Conditions. In Amadio (ed.), Proc. Foundations of Software

Proc. GMT 2010

213

http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/27

ECEASST

Science and Computational Structures (FOSSACS’08). Lecture Notes in Computer
Science 4962, pp. 413–427. Springer Verlag, 2008.
doi:10.1007/978-3-540-78499-9
http://www.springerlink.com/content/e950520638346408/

[RLK+08] G. Rangel, L. Lambers, B. König, H. Ehrig, P. Baldan. Behavior Preservation in
Model Refactoring using DPO Transformations with Borrowed Contexts. In Proc.
International Conference on Graph Transformation (ICGT’08). Lecture Notes in
Computer Science 5214. Springer Verlag, Heidelberg, 2008.

[Sch94] A. Schürr. Specification of Graph Translators with Triple Graph Grammars. In Tin-
hofer (ed.), WG94 20th Int. Workshop on Graph-Theoretic Concepts in Computer
Science. Lecture Notes in Computer Science 903, pp. 151–163. Springer Verlag,
Heidelberg, 1994.

[SK08] A. Schürr, F. Klar. 15 Years of Triple Graph Grammars. In Proc. Int. Conf. on Graph
Transformation (ICGT 2008). Pp. 411–425. 2008.
doi:10.1007/978-3-540-87405-8 28

Volume X (2010)

214

http://dx.doi.org/10.1007/978-3-540-78499-9
http://www.springerlink.com/content/e950520638346408/
http://dx.doi.org/10.1007/978-3-540-87405-8_28

Pre-Proceedings GraMoT 2010

215

ECEASST

Stepping from Graph Transformation Units to Model
Transformation Units

Hans-Jörg Kreowski1, Sabine Kuske2, Caroline von Totth3∗

1 kreo@informatik.uni-bremen.de
2 kuske@informatik.uni-bremen.de
3 caro@informatik.uni-bremen.de
Department of Computer Science
University of Bremen, Germany

Abstract: Graph transformation units are rule-based entities that allow to transform
source graphs into target graphs via sets of graph transformation rules according
to a control condition. The graphs and rules are taken from an underlying graph
transformation approach. Graph transformation units specify model transforma-
tions whenever the transformed graphs represent models. This paper is based on
the observation that in general models are not always suitably represented as sin-
gle graphs, but they may be specified as the composition of a variety of different
formal structures such as sets, tuples, graphs, etc. which should be transformed
by compositions of different types of rules and operations instead of single graph
transformation rules. Consequently, in this paper, graph transformation units are
generalized to model transformation units that allow to transform such kind of com-
posed models in a rule-based and controlled way. Moreover, two compositions of
model transformation units are presented.

Keywords: graph transformation, model transformation, transformation units, mo-
del transformation units

1 Introduction

Computers are devices that can be used to solve all kinds of data-processing problems – at least in
principle. The problems to be solved come from economy, production, administration, science,
education, entertainment, and many other areas. There is quite a gap between the problems as
one has to face them in reality and the solutions one has to provide so that they run on a computer.
Therefore, computerization is concerned with bridging this gap by transforming a problem into
a solution. Many efforts in computer science contribute to this need of transformation. First of
all, compilers are devices that transform programs in a high-level language into programs in a
low-level language where the latter are nearer and more adapted to the computer than the former.
The possibility and success of compilers have fed the dream of transforming descriptions of
data-processing problems automatically or at least systematically into solutions that are given by

∗ The authors would like to acknowledge that their research is partially supported by the Collaborative Research
Centre 637 (Autonomous Cooperating Logistic Processes – A Paradigm Shift and Its Limitations) funded by the
German Research Foundation (DFG).

Volume X (2010)

216

mailto:kreo@informatik.uni-bremen.de
mailto:kuske@informatik.uni-bremen.de
mailto:caro@informatik.uni-bremen.de

Stepping from Graph Transformation Units to Model Transformation Units

smoothly running programs. In recent years, the term model transformation has become popular
for this idea.

In this paper, graph transformation units are generalized to model transformation units as rule-
based devices to model model transformations in a compositional framework. Our approach has
three sources of inspiration:

1. Following the ideas of model-driven architecture (MDA; cf., e.g., [Fra03]), the aim of
modeltransformation is to transform platform-independent models (PIMs), which allow to
describe problems adequately, into platform-specific models (PSMs), which run properly
and smoothly on a computer. As a typical description of the PIMs, one may use UML
diagrams while PSMs are often just programs in some common higher-level language like
Java or C++. A significant model transformation language within the framework of MDA
is the QVT standard of the OMG [OMG08].

2. Oneencounters quite an amazing number of model transformations in theoretical com-
puter science – in formal language theory as well as in automata theory in particular.
These areas provide a wealth of transformations between various types of grammars and
automata like, for example, the transformation of nondeterministic finite automata into
deterministic ones or of pushdown automata into context-free grammars (or the other way
round) or of arbitrary Chomsky grammars into the Pentonen normal form (to give a less
known example).

3. Graph transformation units (cf., e.g., [KKS97, KK99, KKR08]) are rule-based devices
to model binary relations between initial and terminal graphs. If the initial graphs are
interpreted as input models and the terminal graphs as output models, then such a unit
embodies a model transformation. The transformation of UML sequence diagrams into
UML collaboration diagrams in [CHK04] and the transformation of well-structured flow
diagrams intowhile-programs in [KHK06] are examples of this kind. This observation
supports the idea to use graph transformation units as building blocks for the modeling of
model transformations.

While the models in the MDA context are often diagrammatic or textual, the examples of the-
oretical computer science show that models may also be tuples with components being sets of
something. Accordingly, graphs as well as tuples, sequences, and sets of models are introduced
as models in Section3, while Section2 provides the necessary mathematical preliminaries. The
basicsteps of model transformation are defined in Section4 by actions that are applied compo-
nentwise to tuples of models and consist of rules in case of graph components and of data type
operations in all other cases. Based on models and actions, the notion of a model transformation
unit is introduced in Section5 providing the descriptions of input, working and output models,
a set of actions, and a control condition to regulate the use of actions. The semantics of such
a unit is a transformation of input models into output models. In Section6, the sequential and
parallel compositions of model transformation units are studied. In this way, complex model
transformations can be built up from simple ones in a modular way. While we discuss related
work in Section7, the paper ends with some concluding remarks. As a running example, the
transformation of right-linear grammars into finite state automata is developed in several stages.

Proc. GMT 2010

217

ECEASST

2 Preliminaries

In this section, we recall the notion of a graph rule base providing a class of graphs, a class of
rules and a rule application operator. In the following sections graphs are used as basic visual
models and rules are used for their elementary transformations. Besides graphs, we use iden-
tifiers, truth values, and non-negative integers as smallest atomic models. Moreover, cartesian
products, free monoids, and powersets are recalled because these constructions will be used to
build up composite models in the next section.

2.1 Graph Rule Bases

A graph rule base B= (G ,R,=⇒) consists of a class of graphsG , a class of rulesR, and a rule
application operator=⇒ with =⇒

r
⊆ G ×G for everyr ∈ R. The rule application operator is

used in infix notation, i.e,(G,H) ∈ =⇒
r

is denoted byG=⇒
r

H.

2.2 Graph Classes

There are many different kinds of graph classes, two of which are explored here further: the class
of directed edge-labelled graphs and the class of finite state graphs, the latter being a subclass of
the former.

Directed edge-labelled graphs. The class of directed, edge-labelled graphs with individual,
possibly multiple edges is defined as follows. LetΣ be a set of labels. Agraph over Σ is a
systemG = (V,E,s, t, l) whereV is a set ofnodes, E is a set ofedges, s, t : E →V are mappings
assigning asource s(e) and atarget t(e) to every edge inE, andl : E → Σ is a mapping assigning
a label to every edge inE. An edgeewith s(e) = t(e) is also called aloop. For a nodev∈V the
number of edges which havev as source is denoted byoutdegree(v) and the number of edges that
point tov is theindegreeof v. An edgeewith labelx is called anx-pointer if indegree(s(e)) = 0
andoutdegree(s(e)) = 1. The componentsV, E, s, t, andl of G are also denoted byVG, EG, sG,
tG, andlG, respectively. The set of all graphs overΣ is denoted byGΣ.

For graphsG,H ∈ GΣ, agraph morphism g: G→ H is a pair of mappingsgV : VG →VH and
gE : EG → EH that are structure-preserving, i.e.,gV(sG(e)) = sH(gE(e)), gV(tG(e)) = tH(gE(e)),
andlH(gE(e)) = lG(e) for all e∈ EG.

If the mappingsgV andgE are inclusions, thenG is called asubgraphof H, denoted byG⊆H.
For a graph morphismg: G→ H, the image ofG in H is called amatchof G in H, i.e., the match
of G with respect to the morphismg is the subgraphg(G) ⊆ H.

Finite state graphs. One particular subclass ofGΣ are finite state graphs and finite state graphs
with word transitions. More concretely, letI be some input alphabet such that I∗⊎{start,final}⊆
Σ 1. Then the graph in Figure1 represents a finite state graph with word transitions overI =
{a,b,c}, where the edges labelled withw∈ I∗ represent transitions, and the sources and targets
of the transitions represent states. The start state is indicated with astart-pointer and every final

1 GivensetsX andY,X⊎Y denotes the disjoint union ofX andY.

Volume X (2010)

218

Stepping from Graph Transformation Units to Model Transformation Units

start finala

ccc

a

bb

ccc

Figure 1: A finite state graph with word transitions

start
final

a

bb

c

c

c

c

c

c

a

Figure 2: A finite state graph

state with afinal-pointer. States are depicted as unfilled circles whereas all other nodes are shown
as small filled circles. Figure2 shows a finite state graph where each transition is labelled with a
symbol from I .

2.3 Rules

To be able to transform graphs, rules are applied to the graphs yielding graphs again. One rule
class that can be used to transform graphs inGΣ is defined as follows. Arule r = (L ⊇ K ⊆ R)
consists of three graphsL,K,R∈ GΣ such thatK is a subgraph ofL andR. The componentsL,
K, andR of r are calledleft-hand side, gluing graph, andright-hand side, respectively. A rule
may be depicted asL → R if K is clear from the context (the numbered nodes form the common
gluing graph).

An example of a rule is given in Figure3. The left-hand side of this rule consists of two nodes
v1 andv2 andan edge fromv1 to v2 that is labelled with a wordxyufrom some alphabetI∗ where

refine: 1 2
xyu

1 2

x yu

−→
x,y∈I
u∈I∗

Figure 3: The graph transformation rulerefine

Proc. GMT 2010

219

ECEASST

x andy are symbols ofI . The gluing graph consists of the two nodesv1 andv2; the right-hand
side is obtained from the gluing graph by inserting a new nodevnew and two new edgese1 and
e2 wheree1 points fromv1 to vnew and is labelled withx, ande2 points fromvnew to v2 and is
labelled withyu.

2.4 Rule Application

The application of a graph transformation rule to a graphG consists of replacing a match of the
left-hand side inG by the right-hand side in such a way that the match of the gluing graph is kept.
Hence, the application ofr = (L ⊇ K ⊆ R) to a graphG = (V,E,s, t, l) consists of the following
three steps.

1. A matchg(L) of L in G is chosen.

2. Now the nodes ofgV(VL −VK) are removed, and the edges ofgE(EL −EK) as well as the
edges incident to removed nodes are removed yielding theintermediate graph Z⊆ G.

3. Afterwards the right-hand sideR is added toZ by gluing Z with R in g(K) yielding the
graphH = Z⊎ (R−K) with VH = VZ⊎ (VR−VK) andEH = EZ⊎ (ER−EK). The edges of
Z keep their labels, sources, and targets so thatZ ⊆ H. The edges ofR keep their labels;
they also keep their sources and targets provided that those belong toVR−VK . Otherwise,
sH(e) = g(sR(e)) for e∈ ER−EK with sR(e) ∈VK , andtH(e) = g(tR(e)) for e∈ ER−EK

with tR(e) ∈VK .

The application of a ruler to a graphG is denoted byG=⇒
r

H, whereH is the graph resulting

from the application ofr to G. A rule application is called adirect derivation.

If the rulerefinein Figure3 is applied to a finite state graph, it splits a word transition labelled
with a wordw of length at least two into two consecutive transitions, the first of which takes the
first symbol ofw, while the second one gets labelled with the remainder ofw. In particular, if
refine is applied as long as possible to the finite state graph in Figure1, one gets the finite state
graphin Figure2.

2.5 Example for a Graph Rule Base

Directed edge-labelled graphs overΣ together with the rule class of2.3and the rule application
operator given in2.4form a rule base which will be used in all examples of this paper.

2.6 Further Basic Types

In addition to graph rule bases, we assume a set of identifiersID, the set of truth values BOOL=
{TRUE,FALSE}, and the set of non-negative numbersN. All these sets are equipped with the
usual predicates and operations, i.e. the arithmetic operations like+,−, ·,≤,=, etc. forN, the
Boolean operations like∧,∨,¬,→, etc. for BOOL, and the equality predicate= for ID.

All involved sets may be subject to the following three constructions that yield sets again:

Volume X (2010)

220

Stepping from Graph Transformation Units to Model Transformation Units

1. the cartesian productX1×·· ·×Xk for setsX1, . . . ,Xk,k∈ N;

2. the free monoidX∗ for a setX;

3. the powersetset(X) for a setX that contains all subsets ofX.

Furthermore we assume that the usual operations of these data types are available, like the
projections in the case of the product, concatenation and other string-processing operations in
the case ofX∗ and the usual operations and predicates on sets like∪,∩,∈,⊆, etc.

3 Models and Model Types

Many models used in computer science are of a graphical, diagrammatic, and visual nature, and
they can be represented as graphs in an adequate way in most cases. Moreover, further types of
elementary models such as numbers, values, or identifiers may be useful in addition to graphs.
And models may not occur only as singular items, but also as tuples or as some other collections
of models like sequences and sets. To cover this, we define models and their types in a recursive
way.

Definition 1 (models and their types) Models together with their types are recursively defined
as follows:

1. LetY be a class of graphsG , ID, BOOL, orN. Then eachy∈Y is amodel of type Y.

2. If mi is a model of typeTi for i = 1, . . . ,k for somek∈ N, then thek-tuple (m1, . . . ,mk) is
amodel of type T1×·· ·×Tk.

3. If mi is a model of typeT for i = 1, . . . ,k for somek∈ N, then the sequencem1 · · ·mk is a
model of type T∗.

4. If m is a set of models of typeT, thenm is amodel of type set(T).

Note that in this way every model gets a type which is a set of models, but can serve as a name
on the syntactic level as well. To stress the semantic level we may writeM(T) for T.

Point 1 makes sure that all graphs and – in this way – all diagrams with graph representations
are models. Besides graphs, truth values, numbers and identifiers become available as elementary
models. Point 2 allows one to consider ak−tuple of models as a model and makesk models
simultaneously available in this way. Point 3 and Point 4 also make many models of the same
type available at the same time. While Point 3 provides them as a sequence, Point 4 collects
them as a set.

The types of models as introduced above may be considered as free because they are based
on the free constructions product, free monoid, and power set. But in many cases, it may not be
reasonable to transform all models of a free type without any further restriction. For example, a
Chomsky grammarG = (N,T,P,S) is not just a quadruple of typeset(ID)×set(ID)×set(ID∗×
ID∗)× ID, but N and T should be finite and disjoint,S should be a nonterminal, and a pair
(u,v) ∈ P should consist of two strings of terminals and nonterminals rather than of arbitrary
identifiers. To make such restrictions possible, we introduce constrained types.

Proc. GMT 2010

221

ECEASST

Definition 2 (constrained model types) LetT be a model type.

1. ThenX (T) is a class ofconstraintsif eachx∈ X (T) specifies a set of models of typeT,
i.e. SEM(x) ⊆ M(T).

2. Forx∈ X (T), 〈T with x〉 is called aconstrained model type. The models of this type are
the models ofSEM(x), denoted byM(〈T with x〉).

The definition is used in a recursive way considering the free model types and the con-
strained model types both as model types. Consequently, one can build types of the form
〈〈T with x〉 with y〉 with iterated constraints.

Examples for Constraints

1. For the model typeG , constraintsx with SEM(x) ⊆ G are called graph class expressions
in the framework of graph transformation units and are extensively used there to specify
initial and terminal graphs. Examples of graph class expressions are the following.

(a) Single graphsZ ∈ G with SEM(Z) = {Z} are useful as start graphs of graph gram-
mars.

(b) ForG = GΣ with Σ ⊆ ID, a subsetX ⊆ Σ describesSEM(X) = GX which may serve
as terminal labels.

(c) ForG = GΣ andX ⊆ Σ, the expressionpointers(X) specifies all graphs inGΣ in which
all edges labelled with somex∈ X are pointers (cf.2.2).

(d) For G = GΣ andX ⊆ Σ, the expressionone(X) specifies all graphs in which for each
x ∈ X there occurs exactly onex-labelled edge, i.e.,|{e∈ EG | lG(e) = x}| = 1 for
eachx∈ X.

2. Logical formulas are further typical examples for constraints. They may involve model
variables and the usual predicates and operations of the basic and free types:

(a) Boolean operations in case of BOOL like¬,∧,∨,→;

(b) arithmetic operations and predicates onN like +, ·, mod, =,≤;

(c) string operations and predicates onX∗ for some setX, like concatenation, transposi-
tion, equality;

(d) set operations and predicates like∪, ∩, ⊎, =,⊆, ∈.

Consider, for example, a model(x,y,X,Y,m,n,u,v,G,H) of type ID × ID × set(ID)×
set(ID)×N×N× ID∗ × ID∗ ×GΣ ×GΣ. Then one may add the following constraints:
x = y, x∈ X, y∈Y, X∩Y = /0, m≤ n, length(u) ≥ n, uv 6= vu, u = vtranspos(v), G⊆ H,
G∈ GX. Clearly, all the constraints may be combined by Boolean operations.

3. Another frequently used constraint for graphs and sets is the requirement of finiteness
indicated by the constant model class expressionfiniteness. Instead of〈GΣ with finiteness〉
we may writefin(GΣ), andfinset(ID) instead of〈set(ID) with finiteness〉.

Volume X (2010)

222

Stepping from Graph Transformation Units to Model Transformation Units

Examples for Constrained Model Types

1. Finite state automata with word transitions can be defined as a constrained model type, i.e.
a finite state automaton fsa= (I ,G) is a pair of type〈set(ID)×GΣ with (∆ ⊆ Σ)∧ (G ∈
(∆∩pointers({start,final})∩one({start})))〉 where∆ = I∗⊎{start,final}. The constraint
means that every state graphG is labelled overI∗⊎{start,final}, final- andstart-edges are
pointers, and there is exactly onestart-pointer. In the following, the constrained model
type of finite state automata with word transitions is denoted byFSA∗. The type of finite
state automata the transitions of which are labelled only with single symbols fromI , can
be defined as the finite state automata inFSA∗, but where in the constraintI∗ is replaced
by I , i.e., ∆ = I ⊎{start,final}. The type of all finite state automata with single-symbol
transitions is denoted byFSA.

2. Chomsky grammars can be introduced in the framework above as models nearly in the
same way as they are defined in the literature.

A Chomsky grammar G= (N,T,P,S) is a quadruple of typeset(ID)×set(ID)×set(ID∗×
ID∗)× ID with finite N andT, N∩T = /0, S∈ N, and(u,v) ∈ P impliesu,v ∈ (N∪T)∗,
u /∈ T∗. G is right-linear if, in addition, (u,v) ∈ P impliesu∈ N andv∈ (T+N)∪T∗.

More formally, the constraint of an arbitrary Chomsky grammar iswith N,T ∈ finset(ID)∧
N∩T = /0∧S∈ N∧ ((u,v) ∈ P→ (u,v∈ (N∪T)∗∧u 6∈ T∗)). And in case of right-linear
grammars one must add((u,v) ∈ P → (u ∈ N∧ v ∈ T+N∪ {ε})) whereε denotes the
empty string. The type of right-linear grammars will be denoted byRLG. For explicit
use below we mention here also the typeRLG×GΣ which will be used for transforming
right-linear grammars into finite state automata.

4 Actions and Model Transformation Processes

In this section, the dynamic part of model transformations is introduced. The basic notion is that
of an action that describes an elementary step of model transformations. Then the iteration of
such steps provides more complex transformations.

Each modelmcan be identified with the 1-tuple(m) so that one may consider tuples of models
only without loss of generality. Given such a tuple(m1, . . . ,mk), an action is also ak-tuple
a= (a1, . . . ,ak) of component operations where, fori = 1, . . . ,k, ai specifies howmi is processed
by the action. Ifmi is a graph, thenai is a rule to be applied tomi. If mi is an identifier or truth
value, thenai may replace it by another identifier or the negated truth value respectively. Ifmi

is a number, string or set, thenai may operate on it yielding a modified number, string or set
respectively. Moreover, we employ the void actionai = − meaning thatmi remains unchanged.
If the component actions are performed, then a new tuple(m′

1, . . . ,m
′
k) of models is obtained.

This is made precise in the following definition.

Definition 3 (actions) LetT1×·· ·×Tk be a model type.

1. Then anaction a= (a1, . . . ,ak) is a k-tuple such that one of the following holds fori =
1, . . . ,k:

Proc. GMT 2010

223

ECEASST

(a) ai = −,

(b) ai ∈ R provided thatTi ⊆ G ,

(c) ai = renameprovided thatTi ⊆ ID whererenameis some mapping onTi ,

(d) ai = ¬ provided thatTi = BOOL where¬ is the negation with¬TRUE= FALSEand
¬FALSE= TRUE,

(e) ai is a term of operations with a distinguished variable of typeN and which evaluates
to N provided thatTi = N.

(f) the same as (e) replacingN by T∗ andset(T) for some typeT,

(g) recursively,ai is an action provided thatTi is a product type with more than one
component.

2. Let m= (m1, . . . ,mk) ∈ M(T1×·· ·×Tk). Then the action(a1, . . . ,ak) may be performed
on m yielding m′ = (m′

1, . . . ,m
′
k) ∈ M(T1×·· ·×Tk) denoted bym=⇒

a
m′ if the following

holds fori = 1, . . . ,k:

(a) m′
i = mi if ai = −;

(b) mi =⇒
ai

m′
i if ai ∈ R;

(c) m′
i = ai(mi) if Ti ∈ {BOOL,N,T∗,set(T)}, or Ti ⊆ ID;

(d) mi =⇒
ai

m′
i if ai is an action.

3. LetA be a set of actions. Then amodel transformation processis a sequence of performed
actionsm= m0=⇒

a1
m1=⇒

a2
· · ·=⇒

an
mn = m′ with theaction sequence a1 · · ·an ∈ A∗. Such a

process may be denoted bym
n

=⇒
A

m′ or m
∗

=⇒
A

m′ if the omitted details do not matter. The

set of model transformation processes overA is denoted byMTP(A).

Examples for Actions

Let (N,T,P,S,G) be an arbitrary model of typeRLG×GΣ.

1. An action that removes a nonterminal symbolX from the first component of the right-
linear grammar(N,T,P,S) and then inserts a state labelled withX in the graph component
can be defined as(remove(X),−,−,−,node(X)), whereremove(X) removesX from N
andnode(X) is the graph transformation rule depicted in Figure4.

2. An action that removes a rule with a non-empty right-hand side from the right-linear gram-
mar while inserting a corresponding transition in the graph that contains a state for every
nonterminal of the rule can be defined as(−,−, remove((X,uY)),−,edge(X,u,Y)); the
graph transformation ruleedge(X,u,Y) is given in Figure5.

Model transformation processes are nondeterministic on two levels. On one hand, the rule
applications in graph model components are nondeterministic whereas all the other component

Volume X (2010)

224

Stepping from Graph Transformation Units to Model Transformation Units

node(X) : /0
X

−→

Figure 4: Graph transformation rulenode(X)

edge(X,u,Y) : 1 2

X Y
1 2

X Yu
−→

Figure 5: Graph transformation ruleedge(X,u,Y)

actions are functional. On the other hand, the sequential composition of performed actions are
only regulated by the requirement that a succesive action performs on the model yielded by the
preceeding action, but there may be many actions that can process a current model. Sometimes,
nondeterminism is desired, convenient, or unavoidable. But, in other cases, one would like to
avoid nondeterminism or cut it down at least. This can be achieved by choosing rules and actions
in such a way that only one or a few of them can be applied and performed. But the rules and
actions may become quite complicated. Another possibility is extra regulation which can be
provided by control conditions.

Definition 4 (control conditions) LetA be a set of actions. ThenC is a class ofcontrol condi-
tions if SEM(c) ⊆ MTP(C) for everyc∈ C .

Examples for Control Conditions

In the area of graph transformation, control conditions are frequently used for rules instead of
actions. But many kinds of control conditions are easily carried over from rules to actions.

1. A typical kind of control conditions are regular expressions overA. Each regular expres-
sionr specifies a regular languageL(r). A model transformation processm

∗
=⇒

A
m′ belongs

to SEM(r) if and only if its action sequence belongs toL(r). In the following, the operators
concatenation, union, and Kleene star on languages will be denoted on the level of regular
expressions as a semicolon, a plus and a star, respectively.

2. Another kind of control condition is a priority given by a partial reflexive and transitive
relation≤ on A wherea ≥ a′, but a′ 6≥ a means thata has higher priority thana′. A
model transformation process belongs toSEM(≤) if and only if each performed action
mi−1=⇒

ai
mi has highest priority meaning that there is nomi−1=⇒

a
mwith a≥ ai butai 6≥ a.

3. For any actiona, the control conditiona! requires to applya as long as possible. Hence,
m

∗
=⇒

A
m′ is in SEM(a!) if the application sequence is in{a}∗ and there is nom′′ such that

m′=⇒
a

m′′. This condition can be combined with regular expressions in a straightforward

way. For example, the expressiona1!; a2! requires to apply firsta1 as long as possible and
thena2 as long as possible.

Proc. GMT 2010

225

ECEASST

5 Model Transformation Units

The previous sections provide all the ingredients that are needed to introduce model transforma-
tion units as devices to specify model transformations. Such a unit consists of the type of mdels
to be transformed, of the actions to be performed, and of the control condition that regulates the
transformation process. Moreover, the types of input and output models are specified, including
their relation to the type of working models. The reasons to separate input, output and working
models is that input and output may have different types and that it may be convenient to use
further component models for intermediate processing.

Definition 5 (model transformation unit)

1. A model transformation unitis a systemmtu= (ITD,OTD,WT,A,C) whereWT is a prod-
uct typeT1×·· ·×Tl calledworking type, ITD is theinput type declarationwhich consists
of the constrained product type〈I1 × ·· · × Ik with x〉 and a mappinginitial : [k] → set[l]
such thatinitial (i)∩ initial (j) = /0 for i 6= j and Ii = Tj for i = 1, . . . ,k and j ∈ initial (i),
OTD is theoutput type declarationwhich consists of a constrained product type〈O1 ×
·· · ×On with y〉 and an injective mappingterminal: [n] → [l] with Oi = Tterminal(i) for
i = 1, . . . ,n, A is theset of actionswith respect to the working type andC is thecontrol
condition. The typeI = 〈I1×·· ·× Ik with x〉 is calledinput typeof mtuand the mapping
initial initialization. The typeO = 〈O1×·· ·×Ok with y〉 is calledoutput typeof mtuand
the mappingterminal terminalization.

2. The model transformation modeled by the model transformation unitmtu is a mapping
SEM(mtu) : M(〈I1×·· ·× Ik with x〉) → set(M(〈O1×·· ·×On with y〉)) which is defined
as follows bym′ = (m′

1, . . . ,m
′
n) ∈ SEM(mtu)(m1, . . . ,mk) for everym = (m1, . . . ,mk) ∈

M(〈I1×·· ·× Ik with x〉) if and only if the following holds:

There are working modelsm = (m1, . . . ,ml), m′ = (m′
1, . . . ,m

′
l) ∈ M(T1 × ·· · ×Tl) such

that

(a) mj =

{

mi for i = 1, . . . ,k and j ∈ initial (i)
init(Tj) for j 6∈ initial ([k]) =

⋃

i∈[k]
initial (i) ,

(b) m
∗

=⇒
A

m′ ∈ SEM(C),

(c) m′
i = m′

j for i = 1, . . . ,n andterminal(i) = j,

(d) m′ ∈ SEM(y).

The initial modelinit(Ti) in (a) may be chosen in some appropriate way, like 0 forTi = N,
the empty stringε for Ti = T∗, the empty set /0 for Ti = set(T) or FALSEfor Ti = BOOL.

In other words, an input modelm of type 〈I1 × ·· · × Ik with x〉 is first of all extended to a
working modelm of type T1 × ·· · × Tl by taking the components ofm as components ofm
according to the mappinginitial and by initializing the components ofm that are not covered
by initial by the initial models of the respective component types. Thenm is transformed into

Volume X (2010)

226

Stepping from Graph Transformation Units to Model Transformation Units

m′ performing the given actions such that the model transformation process satisfies the control
condition. Finally, the components ofm′ are selected as components ofm′ due to the mapping
terminal. The type requirements ofterminal together with point (d) make sure that the output
modelm′ is of type〈O1×·· ·×On with y〉.

In examplesinitial will be represented in the formi 7→ j1, . . . , j i if initial (i) = { j1, . . . , j i} and
terminal in the formi 7→ j for terminal(i) = j.

Remark1 Given a model transformation unitmtuwith input typeI = 〈I1×·· ·× Ik with x〉 and
output typeO = 〈O1×·· ·×On with y〉, mtucan be graphically represented by

mtu
I O

emphasizing thatmtuspecifies a transformation of input model into output models.

Examples for Model Transformation Units

A model transformation unit that transforms right-linear Chomsky grammars into finite state
automata is given in Figure6. The components of this model transformation unitRLG2FSA∗ are
the following:

RLG2FSA∗

input: RLG& 1 7→ 1,2 7→ 2,3 7→ 3,4 7→ 4

add: 5:GΣ & init(5) = /0 for Σ = (N∪T)∗⊎{start,final}

actions: a1 = (remove(X),−,−,−,node(X)) for X ∈ N
a2 = (−,−, remove((X,ε)),−,final(X)) for X ∈ N
a3 = (−,−, remove((X,uY)),−,edge(X,uY)) for X,Y ∈ N,u∈ I+

a4 = (−,−,−,−,start(S))
a5 = (−,−,−,−, removeloop(X)) for X ∈ N

cond: a1!; a2!; a3!; a4;a5!

output: FSA∗ & 1 7→ 2,2 7→ 5

Figure 6: The model transformation unitRLG2FSA∗ transforms right-linear Chomsky grammars
(RLG) into finite state automata with word transitions (FSA∗)

• A model of the working type is a quintuple where the first four components of the working
type correspond to the four types of a right-linear grammar; the last component is equal
to GΣ and serves to build up the finite state graph. It is initialized with the empty graph /0.
The alphabetΣ must equal(N∪T)∗⊎{start,final} whereN are the nonterminal symbols

Proc. GMT 2010

227

ECEASST

andT the terminal symbols of the input grammar, andstart andfinal will serve to label
the start and final states of the finite state graph respectively.

• The input type declaration is composed of the constrained model type for right-linear
grammars and the initializationinitial : [4] → set([5]) with initial (i) = {i} for i = 1, . . . ,4.
This means that the four components of the input type are the first four components of the
working type. Hence, the four components of every input model are used as the first four
components in the model the model transformation unit starts working with.

• The output type declaration consists of the constrained model typeFSA∗ and the terminal-
ization terminalwith terminal(1) = 2 andterminal(2) = 5. Hence, every output model of
the unit is the pair consisting of the second and the last component of the model the unit
ends working with, provided that the type of this pair equalsFSA∗.

• The set of actions ofRLG2FSA∗ consists of five actions, each of which contains among
other operations a graph transformation rule depicted in Figures4, 5 and7.

1. Thefirst actiona1 = (remove(X),−,−,−,node(X)) serves to generate a state in the
graph for each nonterminal of the input grammar. More concretely, every application
of this action generates a state with nameX while removing the nonterminalX from
the set of nonterminals.

2. The second actiona2 = (−,−, remove((X,ε)),−,final(X)) inserts final pointers at all
final states of the graph, while removing the corresponding rules from the grammar.

3. The third actiona3 = (−,−, remove((X,uY)),−,edge(X,u,Y)) serves to generate
transitions from those rules of the grammar that have a nonterminal in their right-
hand side. Every application ofa3 removes such a rule from the rule set in the third
component at the same time that a corresponding transition in the graph is generated.

4. Action a4 = (−,−,−,, start(S)) inserts the start pointer at the stateS if S is the start
symbol of the grammar.

5. Finally, the last actiona5 = (−,−,−,−, removeloop(X)) for X ∈ N serves to re-
move all state names in order to obtain a finite state graph.

• The control conditiona1!; a2!; a3!; a4;a5! requires that at first all states be generated. This
is achieved by applyinga1 as long as possible. The application ofa2 as long as possible
inserts for every rule with the empty word as right-hand side afinal-pointer while removing
this rule. Thena3 requires to insert a transition for every remaining rule. Then the start
state is inserted bya4 and afterwards all state names are removed by applyinga5 as long
as possible.

If the input model ofRLG2FSA∗ is the right-linear grammar({S,A},{a,b,c},P,S) with P =
{(S,aSa),(S,aA),(S,bbS),(A,cccA),(A,ε)}, the ouput model is({a,b,c},G) whereG is the
finite state graph with word transitions in Figure1.

Finite state graphs with word transitions can be transformed into finite state graphs with sym-
bol transitions by the model transformation unitFSA∗2FSAgiven in Figure8.

Volume X (2010)

228

Stepping from Graph Transformation Units to Model Transformation Units

start(S) :
S S start

−→

final(X) :
X X final

−→

remove− loop(X) :
X

−→

Figure 7: Graph transformation rules for the actions of model transformation unitRLG2FSA∗

FSA∗2FSA
input: FSA∗ & 1 7→ 1,2 7→2

actions: a = (−, refine)

cond: a!

output: FSA& 1 7→ 2,2 7→ 2

Figure 8: The model transformation unitFSA∗2FSA transforms finite state automata with word
transitions (FSA∗) into finite state automata (FSA)

The input type declaration consists of the constrained model typeFSA∗ of finite state automata
with word transitions and the initializationinitial that maps the two components of every input
model to the first two components of the working type. The working type of the unit is equal to
set(ID)×GΣ (it is assumed thatΣ ⊆ ID); the output type declaration consists of the model type
FSAfor finite state automata and the terminalizationterminal, which is the identity in this case.
The only actiona applies the rulerefineof Figure3 to the graph component of the current model,
while the control condition requires to apply the actiona as long as possible. If the input model
of FSA∗2FSAis equal to the state automaton({a,b,c},G) whereG is the finite state graph of
Figure1, the output is equal to({a,b,c},G′) whereG′ is the finite state graph in Figure2.

6 Sequential and Parallel Composition

Model transformation units can be used as building blocks for more complex model transforma-
tion constructions obtained by sequential and parallel composition. This leads to the notion of
model transformation expressions on the syntactic level. Semantically, the sequential composi-
tion of model transformations is just the usual one of relations. And the parallel composition
uses the fact that all models are considered as tuples of some product types so that the product
of such types yields again models of some product type.

Proc. GMT 2010

229

ECEASST

Definition 6 (compositional expressions)

1. The setC X of compositional expressions is defined recursively:

(a) model transformation units are inC X ,

(b) cx1, . . . ,cxk ∈ CX impliescx1; . . . ;cxk ∈ C X

(sequential composition),

(c) cx1, . . . ,cxk ∈ CX impliescx1 ‖ . . . ‖ cxk ∈ CX

(parallel composition).

2. The semantic relation of a compositional expressioncx∈ CX is defined according to its
syntactic structure:

(a) If cx= mtu for some model transformation unit, thenSEM(cx) = SEM(mtu).

(b) If cx1; . . . ;cxk for some model transformation unitscxi with i = 1, . . . ,k, then
SEM(cx1; . . . ;cxk) = SEM(cx1)◦ . . . ◦SEM(cxk), and

(c) (m′
1, . . . ,m

′
k) ∈ SEM(cx1 ‖ . . . ‖ cxk)(m1, . . . ,mk) if and only if m′

i ∈ SEM(cxi) for
i = 1, . . . ,k.

Examples

The sequential compositionRLG2FSA∗;FSA∗2FSAof the model transformation units in Sec-
tion 5 transforms right-linear grammars into finite state automataso that the language generated
by the input grammar is recognized by the automaton.

The formal language theory offers many examples of sequential compositions of model trans-
formations like the transformation of right-linear grammars into finite state automata followed
by their transformation into deterministic automata followed by the transformation of the latter
into minimal automata.

A typical example of a parallel composition is given by the acception processes of two finite
state automata that run simultaneously. If they try to accept the same input strings, this parallel
composition simulates the product automaton that accepts the intersection of the two accepted
regular languages.

To make the definition of compositional expressions more transparent, one may assign an
input type and an output type to each compositional expression. Then the relational semantics of
an expression turns out to be a relation between input and output types.

Definition 7 (input and output types) The input typein and the output typeout of a composi-
tional expressioncx∈ C X is recursively defined.

1. If cx= mtu for some model transformation unit with input typeI and output typeO, then
in(mtu) = I , out(mtu) = O,

2. If cx = cx1; . . . ;cxk for some model transformation unitscxi with i = 1, . . . ,k, then
in(cx1; . . . ;cxk) = in(cx1) andout(cx1; . . . ;cxk) = out(cxk),

Volume X (2010)

230

Stepping from Graph Transformation Units to Model Transformation Units

3. If cx = cx1 ‖ . . . ‖ cxk for some model transformation unitscxi with i = 1, . . . ,k, then
in(cx1 ‖ . . . ‖ cxk) = in(cx1) ‖ . . . ‖ in(cxk) and out(cx1 ‖ . . . ‖ cxk) = out(cx1) ‖ . . . ‖
out(cxk), where the parallel composition of model types is defined as follows

(a) (T ‖ T ′) = (T ×T′) provided thatT andT ′ are free,

(b) (〈T with x〉) ‖ (〈T ′ with x′〉) = T ‖ 〈T ′ with x∧x′〉,

(c) T ‖ (〈T ′ with x′〉) = 〈(T ‖ T ′) with x′〉 provided thatT is free, and

(d) (〈T with x〉) ‖ T ′ = 〈(T ‖ T ′) with x〉 provided thatT ′ is free.

Due to these definitions, it is easy to see that compositional expressions describe transforma-
tions from input models to output models.

Observation: SEM(cx)(m) ∈ set(M(out(cx))) for all m∈ M(in(cx)).

The compositions can be quite intuitively depicted:

tr1
I1 O1 tr2

I2 O2

tr1; tr2

I1 ‖ I2

tr1
I1

tr2
I2

O1

O2

O1 ‖ O2

tr1 ‖ tr2

The sequential and parallel compositions on the level of model transformation expressions
have the disadvantage that their results cannot be subject to further constraints. This is partic-
ularly problematic with respect to the parallel composition because the composed units run in
parallel, but without any interaction. This is quite all right provided that the components are
meant to run independently of each other. But in many cases of parallel composition one intends
that the components exchange information or process some data simultaneously. Such interre-
lations and interactions could be achieved by adding further constraints. This requires either to
extend the notion of constraints to the level of model transformation expressions or to flatten
such expressions into model transformation units. The latter is done in the following.

Proc. GMT 2010

231

ECEASST

6.1 Sequential Composition

Let mtu1 = (ITDi,OTDi,WTi ,Ai,Ci) for i = 1,2 be two model transformation units with input
types Ii = 〈Ii,1 × ·· · × Ii,ki with xi〉 and output typesOi = 〈Oi,1 × ·· · × Ii,ni with yi〉. By defi-
nition of the semantics of the sequential compositionmtu1;mtu2, the following holds: m′′ =
(m′′

1, . . . ,m
′′
n2

) ∈ SEM(mtu1;mtu2)(m) for m = (m1, . . . ,mk1) ∈ M(I1) if and only if there is an
m′ with m′ ∈ SEM(mtu1)(m) and m′′ ∈ SEM(mtu2)(m′). This means in particular thatm′ ∈
M(O1)∩M(I2) and thereforen1 = k2. To avoid too much technical trouble, we assume in addi-
tion thatWT= WT1 = O1×·· ·×On1 = I1×·· ·× Ik2 = WT2. Then the sequential composition
of mtu1 andmtu2 can be simulated by the model transformation unit

mtu(mtu1;mtu2) = (ITD1,OTD2,WT,A1∪A2,C(C1,C2,y1,x2,A1,A2))

where the control condition is chosen in such a way that a model transformation processm
∗

=⇒
A1∪A2

m′′ is accepted if and only if it decomposes intom
∗

=⇒
A1

m′ ∗
=⇒

A2

m′′ with the following properties:

1. m
∗

=⇒
A1

m′ is accepted byC1,

2. m′ ∈ SEM(y1)∩SEM(x1),

3. m′ ∗
=⇒

A2

m′′ is accepted byC2.

Such a control condition may have the form of a transition system:

s0 s1 s2 s3

A∗
1,C1 −,y1∧x1 A∗

2,C2

requiring that at the beginning the actions ofA1 are iterated regardingC1, that the result must
obeyy1 andx2 and that finally actions ofA2 are iterated regardingC2.

It is not difficult to show that the following correctness result holds.

Observation: SEM(mtu1;mtu2) = SEM(mtu(mtu1;mtu2)).

6.2 Parallel Composition

Let mtui = (ITDi ,OTDi ,WTi ,Ai,Ci) for i = 1,2 be two model transformation units each with
input typeIi = 〈Ii,1×·· ·× Ii,ki with xi〉 and initializationinitial i : [ki] −→ set[l i] as well as output
typeOi = 〈Oi,1×·· ·×Oi,ni with yi〉 and terminalizationterminal: [ni] −→ [l i]. Then the parallel
composition ofmtu1 andmtu2 can be simulated by the model transformation unit

mtu(mtu1 ‖ mtu2) = (ITD,OTD,WT1×WT2,A,C)

where

Volume X (2010)

232

Stepping from Graph Transformation Units to Model Transformation Units

• ITD consists of the input typeI1× I2 andthe initializationinitial i : [k1+k2]−→ set[l1+ l2]
with initial (i) = initial 1(i) for i ∈ [k1] and initial (i) = l1 + initial 2(i − k1) for i = k1 +
1, . . . ,k1 +k2,

• OTD consists of the output typeO1×O2 and the terminalizationterminal: [n1 + n2] −→
[l1+ l2] with terminal(i) = terminal1(i) for i ∈ [n1] andterminal(i) = l1+ terminal2(i−n1)
for i = n1 +1, . . . ,n1 +n2,

• A = A1
′×A2

′ with A1
′ = A1∪{−}l1 andA2

′ = A2∪{−}l2, and

• the control conditionC is chosen in such a way that a model transformation process
(m1,m2)

∗
=⇒

A
(m1

′,m2
′) is accepted if and only if it decomposes intom1

∗
=⇒
A1

′
m1

′ and

m2
∗

=⇒
A2

′
m2

′ so that the former is accepted byC1 and the latter byC2 after removal of

the void steps given by the performance of the void actions(−, . . . ,−).

The construction relies on the cartesian product of types and actions. Because the working type
components 1 tol2 become the componentsl1+1 to l1+ l2, the initialization and terminalization
must be adapted accordingly. The actions ofmtu1 and mtu2 are extended by the void action
(−, . . . ,−) with l1 andl2 components respectively. This is necessary because the actions ofmtu1

andmtu2 may run in parallel, but the model transformation processes are of different lengths in
general so that they cannot run fully simultaneously.

It is again not difficult to show the following correctness result.

Observation: SEM(mtu1 ‖ mtu2) = SEM(mtu(mtu1 ‖ mtu2)).

7 Related Work

In this section we briefly describe a selection of related work concerning model transformation.
Since there exists quite an amount of publications we restrict ourselves to papers that are con-
cerned with model transformations in the context of graph transformation. Moreover, we also
mention some work that is concerned with the composition of model transformation definitions.

Model transformations based on graph transformation. One approach to define model
transformations is by triple grammars [Sch94, KS06, SK08]. Each rule of a triple grammar can
be easily transformed into a forward rule, a source rule, and a backward rule. The source rules
are used to generate source models that – represented as graph triples – have the form(S, /0, /0)
whereSrepresents the source model. The forward rules are used to produce target models from
source models. These target models – represented as graph triples – have the form(S,C,T). Each
application of a forward rule determines a subgraph ofSof the rule application. The backward
rules are used to transform a target model(/0, /0,T) to a source model(S,C,T). In [EEE+07] it
is shown that any source consistent model transformation based on triple grammars is backward
information preserving. This means that the target model (generated by the forward rules of
the grammar) can be transformed into the source model via the backward rules of the grammar.
Roughly spoken, a model transformation MT is source consistent if there is a transformation

Proc. GMT 2010

233

ECEASST

that generates the source model from(/0, /0, /0) and that completely determines the matches in the
source model of the forward rules applied in MT. In [EE08] models are graphs equipped with a
semantics given as a set of simulation rules, and a model transformation is composed of gener-
ating first an integrated model by graph transformation rules and restricting it then to the target
model. It is shown under which conditions semantical correctness and completeness of model
transformations are achieved. In [Küs06] an approach to model transformation is presented that
uses transformation units based on typed attributed graph transformation. It provides criteria for
syntactic correctness as well as for termination and confluence.

Examples of model transformation tools based on graph transformation are VIATRA2 [VB07],
GReAT[BNvBK06] and ATOM3 [dLVA04]. VIATRA2 integrates graph transformation and ab-
stract state machines. Basically, model transformation steps are captured by graph transforma-
tion rules whereas abstract state machines control the order of rule application. GReAT mainly
consists of a pattern specification language, a transformation rule language and a control flow
language. The graph transformation rules of GReAT include for example input and output in-
terfaces where the former can receive graph objects from previous rules and the latter can send
graph objects to another rule. ATOM3 focuses on modeling complex systems composed of var-
ious formalisms and allows to transform them into a single common formalism based on graph
transformation. In [dLT04], ATOM3 is combined with AGG for validation purposes.

In general, the mentioned publications on model transformation with graph transformation are
very close to our approach – they are however restricted to transform mainly graphs, not tuples
of graphs, sets or sequences as proposed in this paper.

Composition of model transformations. In the literature one can find two main types of com-
position techniques for model transformation definitions: external and internal composition. The
first one chains model transformations sequentially whereas the second composes the rules of a
set of model transformation definitions into one transformation definition. In this sense the com-
positions presented in Subsections6.1and6.2can be considered as internal compositions.

In [Wag08] the composition of model transformation definitions via superimposition is de-
scribed, which is a feature of the ATLAS Transformation Language [JK05]. Superimposition of
modules is an internal composition technique where models can be superimposed on top of each
other yielding a module that contains the union of all transformation rules. In [YCWD09] the au-
thorsconsider composition of model transformation definitions that transform high-level models
into low-level models by defining a correspondence model that specifies the relations between the
high-level meta models. The low-level correspondence model is automatically generated so that
the low-level models can be composed homogeneously. In this way, new concerns can be added
to existing model transformation definitions. In [CM08] two approaches for reusing model trans-
formation definitions are proposed. The first one is called factorization and it allows to extract
common parts of model transformation definitions obtaining in this way a base transformation
definition which can be reused. The second concerns composition of transformation defini-
tions which have compatible source metamodels but different target metamodels. Metamodels
are related via small new metamodels and the transformations are integrated via an integration
transformation definition that locates and connects the join points (without knowing the rules but
some kind of trace information) by using so-called refinement rules. One approach towards com-

Volume X (2010)

234

Stepping from Graph Transformation Units to Model Transformation Units

position of model transformations based on graph transformationis studied in [BHE09] where
models are typed graphs that are mapped to semantic domains. The authors define spatial com-
positionality of semantic mappings which roughly spoken means that the semantics of a model is
equal to the semantics that is obtained by embedding the semantics of a piece of the model into
some context. It is assumed that the semantic mappings are graph transformation systems with
a functional behavior and it is shown under which conditions they behave compositionally. In
[KKS07] a first approach towards structured model transformation is proposed that allows pack-
age import, package merge and generalization according to a standardized packaging concept of
the UML. In particular, the authors extend triple graph grammars by the mentioned concepts.

8 Conclusion

In this paper, we have introduced the notion of model transformation units as a generalization
of graph transformation units. Models are tuples of graphs and other data structures like strings,
sets, numbers, etc. Models of this kind cover graphical models like UML diagrams as well as
set-theoretic models like grammars and automata. They are transformed componentwise by rule
applications in the cases of graphs and by applications of data type operations in the other cases.
Besides a set of such actions, a model transformation unit provides descriptions of input, output,
and working models as well as a control condition to regulate the use of actions. Semantically,
a transformation of input models into output models is specified. Moreover, we have studied
sequential and parallel compositions of model transformation units as means to build up complex
transformations from simple ones.

Although the considerations in this paper seem to be promising, more work is needed to un-
derpin the significance of this novel approach, including the following points.

1. As pointed out in Section4, the introduced kind of model transformation is nondeter-
ministic. Therefore, sufficient conditions are of interest that guarantee the completeness
of model transformations on one hand and their functionality on the other hand if these
properties are desired.

2. Concerning our running example, it is known from the literature that a right-linear gram-
mar generates the same language as is recognized by the finite state automaton resulting
from the transformation. One intention of our approach is to support such correctness
proofs. Therefore, notions of correctness and an appropriate proof theory must be studied
in the future.

3. An interesting question in this respect is whether and how these correctness notions are
compatible with the sequential and parallel compositions so that the correctness of the
components yields the correctness of the composed model transformation.

4. Further explicit and detailed examples are needed to illustrate all introduced concepts more
convincingly.

Proc. GMT 2010

235

ECEASST

Bibliography

[BHE09] Dénes Bisztray, Reiko Heckel, and Hartmut Ehrig. Compositionality of model trans-
formations.Electr. Notes Theor. Comput. Sci., 236:5–19, 2009.

[BNvBK06] Daniel Balasubramanian, Anantha Narayanan, Christopher P. van Buskirk, and Ga-
bor Karsai. The graph rewriting and transformation language: GReAT.ECEASST, 1,
2006.

[CHK04] Björn Cordes, Karsten Hölscher, and Hans-Jörg Kreowski. UML interaction dia-
grams: Correct translation of sequence diagrams into collaboration diagrams. In John
l. Pfaltz, Manfred Nagl, and Boris Böhlen, editors,Applications of Graph Transfor-
mations with Industrial Relevance (AGTIVE 2003), volume 3062 ofLecture Notes in
Computer Science, pages 275–291, 2004.

[CM08] Jesús Sánchez Cuadrado and Jesús Garcı́a Molina. Approaches for model transfor-
mation reuse: Factorization and composition. In Vallecillo et al. [VGP08], pages
168–182.

[dLT04] Juan de Lara and Gabriele Taentzer. Automated model transformation and its val-
idation using AToM3 and AGG. In Alan F. Blackwell, Kim Marriott, and Atsushi
Shimojima, editors,Diagrammatic Representation and Inference, volume 2980 of
Lecture Notes in Computer Science, pages 182–198. Springer, 2004.

[dLVA04] Juan de Lara, Hans Vangheluwe, and Manuel Alfonseca. Meta-modelling and graph
grammars for multi-paradigm modelling in AToM3. Software and System Modeling,
3(3):194–209, 2004.

[EE08] Hartmut Ehrig and Claudia Ermel. Semantical correctness and completeness of model
transformations using graph and rule transformation. In Ehrig et al. [EHRT08], pages
194–210.

[EEE+07] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information preserving bidirectional model transformations. In Matthew B.
Dwyer and Antónia Lopes, editors,FASE, volume 4422 ofLecture Notes in Computer
Science, pages 72–86. Springer, 2007.

[EHRT08] Hartmut Ehrig, Reiko Heckel, Grzegorz Rozenberg, and Gabriele Taentzer, editors.
Graph Transformations, 4th International Conference, ICGT 2008, Leicester, United
Kingdom, September 7-13, 2008. Proceedings, volume 5214 ofLecture Notes in
Computer Science. Springer, 2008.

[Fra03] David S. Frankel.Model Driven Architecture. Applying MDA to Enterprise Comput-
ing. Wiley, Indianapolis, Indiana, 2003.

[JK05] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-Michel
Bruel, editor,Satellite Events at the MoDELS 2005 Conference, volume 3844 ofLec-
ture Notes in Computer Science, pages 128–138. Springer, 2005.

Volume X (2010)

236

Stepping from Graph Transformation Units to Model Transformation Units

[KHK06] Hans-Jörg Kreowski, Karsten Hölscher, and Peter Knirsch. Semantics of visual mod-
els in a rule-based setting. In R. Heckel, editor,Proceedings of the School of SegraVis
Research Training Network on Foundations of Visual Modelling Techniques (FoVMT
2004), volume 148 ofElectronic Notes in Theoretical Computer Science, pages 75–
88. Elsevier Science, 2006.

[KK99] Hans-Jörg Kreowski and Sabine Kuske. Graph transformation units with interleaving
semantics.Formal Aspects of Computing, 11(6):690–723, 1999.

[KKR08] Hans-Jörg Kreowski, Sabine Kuske, and Grzegorz Rozenberg. Graph transformation
units – an overview. In P. Degano, R. De Nicola, and J. Meseguer, editors,Con-
currency, Graphs and Models, volume 5065 ofLecture Notes in Computer Science,
pages 57–75. Springer, 2008.

[KKS97] Hans-Jörg Kreowski, Sabine Kuske, and Andy Schürr. Nested graph transformation
units. International Journal on Software Engineering and Knowledge Engineering,
7(4):479–502, 1997.

[KKS07] Felix Klar, Alexander Königs, and Andy Schürr. Model transformation in the large.
In Ivica Crnkovic and Antonia Bertolino, editors,ESEC/SIGSOFT FSE, pages 285–
294. ACM, 2007.

[KS06] Alexander Königs and Andy Schürr. Tool integration with triple graph grammars - a
survey.Electr. Notes Theor. Comput. Sci., 148(1):113–150, 2006.

[Küs06] Jochen Malte Küster. Definition and validation of model transformations.Software
and System Modeling, 5(3):233–259, 2006.

[OMG08] OMG. Meta object facility (MOF) 2.0 query/view/transformation (QVT).
http://www.omg.org/spec/QVT/, 2008.

[Sch94] Andy Schürr. Specification of graph translators with triple graph grammars. In
Ernst W. Mayr, Gunther Schmidt, and Gottfried Tinhofer, editors,Graph-Theoretic
Concepts in Computer Science, volume 903 ofLecture Notes in Computer Science,
pages 151–163. Springer, 1994.

[SK08] Andy Schürr and Felix Klar. 15 years of triple graph grammars. In Ehrig et al.
[EHRT08], pages 411–425.

[VB07] Dániel Varró and András Balogh. The model transformation language of the VIA-
TRA2 framework.Science of Computer Programming, 68(3):187–207, 2007.

[VGP08] Antonio Vallecillo, Jeff Gray, and Alfonso Pierantonio, editors.Theory and Prac-
tice of Model Transformations, First International Conference, ICMT 2008, Zürich,
Switzerland, July 1-2, 2008, Proceedings, volume 5063 ofLecture Notes in Computer
Science. Springer, 2008.

[Wag08] Dennis Wagelaar. Composition techniques for rule-based model transformation lan-
guages. In Vallecillo et al. [VGP08], pages 152–167.

Proc. GMT 2010

237

ECEASST

[YCWD09] Andrés Yie, Rubby Casallas, Dennis Wagelaar, and Dirk Deridder. An approach for
evolving transformation chains. In Andy Schürr and Bran Selic, editors,MoDELS,
volume 5795 ofLecture Notes in Computer Science, pages 551–555. Springer, 2009.

Volume X (2010)

238

Pre-Proceedings GraMoT 2010

239

ECEASST

Test-driven Language Derivation with Graph Transformation-Based
Dynamic Meta Modeling

Gregor Engels and Christian Soltenborn

University of Paderborn
{engels,christian}@uni-paderborn.de

Abstract: Deriving a new language LB from an already existing one LA is a typical
task in domain-specific language engineering. Here, besides adjusting LA’s syntax,
the language engineer has to modify the semantics of LA to derive LB’s semantics.
Particularly, in case of behavioral modeling languages, this is a difficult and error-
prone task, as changing the behavior of language elements or adding behavior for
new elements might have undesired side effects.

Therefore, we propose a test-driven language derivation process. In a first step, the
language engineer creates example models containing the changed or newly added
elements in different contexts. For each of these models, the language engineer also
precisely describes the expected behavior. In a second step, each example model
and its description of behavior is transformed into an executable test case. Finally,
these test cases are used when deriving the actual semantics of LB - at any time, the
language engineer can run the tests to verify whether the changes he performed on
LA’s semantics indeed produce the desired behavior.

In this paper, we illustrate the approach using our graph transformation-based se-
mantics specification technique Dynamic Meta Modeling. This is once more an
example where the graph transformation approach shows its strengths and appro-
priateness to support software engineering tasks as, e.g., model transformations,
software specifications, or tool development.

Keywords: language engineering, semantics, testing, DMM, graph transformation

1 Introduction

In today’s world of software engineering, domain-specific modeling languages (DSLs) have be-
come an important tool. A DSL is a language which has been created for the sake of being used
in a certain, usually narrow domain. The language elements are abstractions of the domain’s im-
portant concepts. As a result, DSLs are usually intuitive to understand and therefore well-suited
as a base for the communication with the stakeholder’s domain experts.

Moreover, the intuitive understandability of well-designed DSLs also results in models of a
higher quality: Abstraction is always a difficult task, also for modelers. In case of DSLs, a (hope-
fully large) part of the necessary abstraction process has been performed at language creation
time and therefore does not need to be performed by the modeler again, who can concentrate on
modeling the actual business logic.

1 / 18 Volume X (2010)

240

Test-driven Language Derivation with Dynamic Meta Modeling

However, defining a DSL from scratch is not an easy task. The language engineer does not
only need to specify the abstract and concrete syntax of the language, but also its semantics. The
latter can be quite difficult, especially for languages describing behavior.

As a result, in case a language exists which has similar properties as the envisioned one, it
would be desirable to reuse that language as a starting base. In this way, the language engineer
can rely on an existing, proven language core, and can concentrate on performing the modifica-
tions needed for the target DSL.

In this paper, we describe a scenario of language derivation in the context of Dynamic Meta
Modeling (DMM), a graph transformation-based semantics specification technique developed at
our research group [EHS99, Hau05]. The idea is to enhance an existing language with domain-
specific concepts, and to add the semantics of the new concepts to the already existing DMM
semantics specification.

DMM aims at two seemingly contrary goals: DMM specifications shall be easily understand-
able and formal. The only prerequisite for the usage of DMM is that the language’s abstract
syntax is defined by means of a metamodel. DMM rules are (annotated) UML object diagrams,
i.e., instances of the language’s metamodel. As a result, due to the visual, familiar notion of
DMM rules, language engineers familiar with that metamodel can easily read DMM specifica-
tions.

Behind the hoods, DMM rules are graph transformation rules [Roz97]. In a nutshell, this
means that a DMM rule manipulates graphs. The idea is that graphs as well as rules are typed
over the language’s metamodel, and that DMM rules are used to describe changes on instances
of that metamodel (and therefore behavior).

Finally, given a certain language’s instance (i.e., a model) and a DMM specification, a transi-
tion system can be computed, where states are states of execution of the model, and transitions
are applications of DMM rules. The transition system reflects the complete behavior of the
model; it can then e.g. be analyzed with model checking techniques [ESW07]. A more detailed
introduction to DMM will be given in Sect. 2.

Now, given a language equipped with a DMM specification, and provided that that language
is suited as base for deriving a new language by enhancement, the language engineer has to add
DMM rules to the existing DMM ruleset which define the new language element’s semantics.
An often occuring problem in object-oriented scenarios is that some behavior defined in the
context of a certain type shall not be applied in the context of a subtype, i.e., behavior has to be
overridden by new behavior. In [EFS09], we have introduced a notion of rule overriding exactly
suited for this situation, which we will use to cope with that problem.

Finally, the goal must be to perform all language changes such that the semantics of the source
language is not hampered, and that the new parts of the semantics correctly reflect the intentions
of the language engineer.

Since a DMM specification is formal, the first and obvious idea is to formalize that notion of
correctness by means of requirements the specification shall fulfill, and then to prove that this
is indeed the case. However, the experiences from software development seem to imply that
proving the correctness of a reasonable complex system is often just not feasible; therefore, the
most important technique in software quality assurance is testing.

In [SE09] we have suggested a pragmatic approach to help creating high-quality semantics,
which is inspired by the well-known approach of Test-Driven Development [Bec02]. It is moti-

Proc. GMT 2010 2 / 18

241

ECEASST

Test

=?

Test

Executable
DMM

Specification

conforms to?

Executable
Software
System

Input

Output

Expected
result

Example
model

Expected
behavior

Transition
system

Executable
DMM

Specification

Executable
Software
System

Figure 1: Comparison of testing of software systems (left) and semantics specifications (right);
the test subject is depicted as an oval.

vated by the fact that a semantics specification basically follows the Input-Process-Output (IPO)
model, where a certain model can be seen as the input, and the semantics of that model is the
output (e.g., represented as a transition system).

Figure 1 shows our approach and its relation to the testing of software systems. In case of
testing software systems, a test case consists of some input for the system and the system’s
expected result. The test succeeds if the actual output of the system is equal to the expected
result.

In contrast to that, we want to test a DMM specification. Therefore, a test consists of an exam-
ple model and its expected behavior. From that model and the DMM specification, a transition
system can be computed which represents the model’s behavior. The test succeeds if the actual
behavior conforms to the expected behavior, i.e., if the expected behavior (and only the expected
behavior) is contained in the transition system.

In this paper, we show how to apply the approach of test-driven semantics specification within
the scenario of language derivation. For this, we will discuss a small example of language
enhancement: We will enhance the language of UML Activities. While doing this, we will
point out some problems, and we will show how DMM rule overriding can help to solve these
problems, and how a test-driven approach can be used that the new language’s semantics has a
certain quality.

Structure of Paper In the next section, we will give an introduction to our semantics specifi-
cation technique Dynamic Meta Modeling. Based on that, in Sect. 3 we will introduce a small
example of language modification, discuss side effects of that modification, introduce our ap-
proach of test-driven semantics specification, and discuss how that approach can be used as a
“safety net” against such side effects when performing language derivation. Section 4 will point
out some work related to ours, and Sect. 5 will conclude and discuss our future plans.

2 Dynamic Meta Modeling

We have argued in Sect. 1 that DMM specifications are formal, but also easily understandable.
This is an advantage to many other formalisms, which can only be used by experts of that formal-

3 / 18 Volume X (2010)

242

Test-driven Language Derivation with Dynamic Meta Modeling

Semantics Definition

Syntax
Definition

Transition System

States

Expression

Model

Operational rules

conforms to

Semantic
metamodeling

conforms to

Metamodel Graph
transformation rules

semantic
 mapping Runtime metamodel

Language

Model (Instance)

conforms to
conforms to

typed
over

Figure 2: Overview of the DMM approach

ism. For instance, the π-calculus [MPW92] is a powerful formalism for semantics specification,
but the average language user can not be expected to understand a π-calculus specification, let
alone use it to specify the semantics of a language.

DMM aims at delivering semantics specifications which indeed can be understood by such
users. It does that by providing a visual language for semantics specification. Additionally, a
DMM specification is based on the metamodel of the according language, allowing users who
are familiar with that metamodel to easily read a DMM specification.

In a nutshell, a DMM specification is created by first extending the language’s metamodel
with concepts needed to express states of execution; the enhanced metamodel is called runtime
metamodel. Then, the behavior is defined by creating operational rules which modify instances
of that runtime metamodel. An overview of DMM is provided as Fig. 2.

Since our goal will be to enhance the language of UML Activities, let us investigate the lan-
guage’s semantics specification as an example: the metamodel provided by the OMG [Obj09]
only contains syntactic information, i.e., it describes the set of valid UML Activities. The lan-
guage’s dynamic semantics is specified using natural language: for instance, the UML specifi-
cation document states that “the semantics of Activities is based on token flow”. However, the
language’s metamodel does not contain the concept of token.

Therefore, the runtime metamodel adds that concept: A class Token is introduced such
that instances of that class are associated to the language elements they are located at (e.g.,
Actions). As a consequence, an instance of the runtime metamodel describes a state of exe-
cution of an Activity by having Token objects sitting at particular elements. Figure 3 shows
an excerpt of the runtime metamodel for UML Activities. The runtime class representing the
concept of tokens is depicted in bold. Its location associations to the ActivityNode and
ActivityEdge classes allow to model a concrete state of execution of an Activity: If a token

Proc. GMT 2010 4 / 18

243

ECEASST

Activ ityNode Activ ityEdge

Activ ityFinalNode Token

Activ ityGroup

GroupFinalNode

target

1

containedEdge

0..*

containedNode

0..*

location

0..1

location

0..1

source

1

Figure 3: DMM runtime metamodel for UML Activities.

:Token

:Activ ityFinalNode:Activ ityEdge

:Token :Token

target

location

{destroy} {destroy}

activityFinalNode.accept()

Figure 4: The original DMM rule describing the ActivityFinalNode’s semantics.

is sitting on a particular Action, the model contains a location link from the token to the
object representing that Action.

Now, the operational rules come into play; a DMM rule is depicted as Fig. 4. Its semantics is as
follows: The rule can be applied if an incoming ActivityEdge of an ActivityFinalNode
carries at least one token. If this is the case, the rule is applied: all tokens flowing through the
Activity are deleted (no matter where they are located), bringing the execution of the whole
Activity to an immediate end.

The underlying formalism of DMM are graph transformations. Using the GROOVE toolset
[Ren04], DMM specifications give rise to transition systems which describe the complete behav-
ior of the according models. The start state of such a transition system is a model (in our case,
an instance of the runtime metamodel, where e.g. InitialNodes are already equipped with
a token). Now, every rule of the DMM specification is checked for applicability; if a rule can be
applied, the application will lead to a new (and different) state (where e.g. the location of tokens

5 / 18 Volume X (2010)

244

Test-driven Language Derivation with Dynamic Meta Modeling

has changed); the resulting transition is labeled with the applied rule. For every newly derived
state, the process starts over again until no new states are found.1

A transition system computed in that way can then be analyzed using model checking tech-
niques. The properties to be verified need to be formulated over the applications of rules. For
instance, if we want to know if a certain Action can ever be executed, we need to check if
the transition system contains a transition which is labeled with the rule corresponding to the
Action’s execution.

More concretely, as there is only one generic, parameterized rule defining the semantics of
Actions, the rule’s parameter has to be the name of this Action. For example, if we want to know
whether the Action with name “A” is ever executed, we have to check whether the transition
system representing the model’s behavior contains a transition labeled action.start(“A”).

Now that we have gotten a precise idea of DMM, we are ready to perform our language
enhancement in the next section.

3 Test-driven Language Derivation

In the last section, we have seen how DMM semantics specifications work in general, and we
have investigated a small part of a semantics specification for UML Activities. Our next step will
be to enhance the Activity language by adding a language element, and to define that element’s
semantics by means of an additional DMM rule in Sect. 3.1. We will discuss possible problems
caused by that language modification.

To cope with such problems, we will then introduce the reader to our approach of test-driven
semantics specification [SE09] in Sect. 3.2. Based on that, we will show in Sect. 3.3 how to reuse
the concepts of that approach when deriving a new language from an existing one: In Sect. 3.4,
we will fix the semantics specification (partly) by using rule overriding, and we will use test
cases as guidance. Finally, Sect. 3.5 shows the tooling involved into the whole process.

3.1 Example: Enhancing UML Activities

UML Activities are a powerful behavioral language which can be used in all kinds of domains,
from specifying low-level algorithms to defining high-level business processes. However, no
language can contain all elements used within all kinds of contexts. As a result, the need for
domain-specific languages arises.

For instance, consider the usage of UML Activities for business process modeling. The Activ-
ity language contains two language elements dedicated for the termination of (parts of) an Ac-
tivity: The ActivityFinalNode terminates the execution of the complete Activity, whereas
the FlowFinalNode can be used to terminate single flows of execution (e.g., in the case of
concurrency).

However, the need might arise for more flexible ways to terminate flows of execution. As
an example, we want to add a GroupFinalNode which—if it consumes a token—brings all
execution within the node’s ActivityGroup to an immediate end (but does not affect flows

1 DMM specifications might give rise to an infinite transition system; in this case, standard techniques from model
checking such as bounded model checking can be applied.

Proc. GMT 2010 6 / 18

245

ECEASST

:Token
:Token

:Activ ityNode

:GroupFinalNode:Activ ityEdge

:Activ ityNode

:Token

:Token
:Token

:Activ ityEdge
:Activ ityEdge

:Activ ityGroup

location
location

containedNodecontainedEdge

containedNode

target

location

{destroy}

{destroy}
{destroy}

groupFinalNode.accept()

Figure 5: The modified DMM rule describing the ActivityFinalNode’s new behavior.

of execution outside the ActivityGroup).
The first step is to enhance the language’s syntax, i.e., to add the GroupFinalNode to

the language’s metamodel. The integration of the new metaclass can be performed in differ-
ent ways. Since the GroupFinalNode’s behavior is pretty similar to the behavior of the
ActivityFinalNode (which consumes all tokens flowing in the Activity as soon as it re-
ceives a token; it has been depicted as Fig. 4 on page 5), and since the language engineer wants
to reuse the concrete syntax of that node, he decides to add the element as a subclass of the
ActivityFinalNode’s metaclass (as depicted in Fig. 3).

The language engineer also has a definition of the GroupFinalNode’s behavior in mind.
An according DMM rule is depicted as Fig. 5. However, as we will see later, the performed
language modification causes a couple of problems.

Now, we suggest to deal with such problems by performing modifications of semantics specifi-
cations in a test-driven way. In a nutshell, the language engineer will first create example models
of the modified language. Such an example model contains one or more of the modified language
elements in a certain context which should be related to the modifications which have been per-
formed. For instance, the modification we have described above implies that the language engi-
neer creates an example model which shows the new behavior of the GroupFinalNode.

Additionally, the language engineer will describe the expected behavior of that model in a
precise, semi-formal way (more on that in the next section). Finally, executable test cases are
generated from the example models and their behavior descriptions. The language engineer can
now perform the modifications of the semantics specification against these test cases: If the
tests all pass, he can take this as a sign that the modifications have been performed correctly.
Otherwise, the failing test cases will hopefully point him to the problematic modifications he
performed.

Since the idea to perform test-driven language derivation is based on our idea of test-driven

7 / 18 Volume X (2010)

246

Test-driven Language Derivation with Dynamic Meta Modeling

Create example models

Create example
model

Discuss
semantics

Describe
semantics

(traces)

Identify
execution

events[else]

[all language elements covered]

Figure 6: Create example models

semantics specification [SE09], we want to shed light on that approach in the next section.

3.2 Test-driven Semantics Specification

We have already seen in the introduction that a semantics specification follows the Input-Process-
Output model in some sense: a model serves as input, and the semantics of that particular model
is the output. In this section, we want to explain this idea in more detail.

“Test-driven semantics specification” means that the semantics of a language is developed
against existing test cases: As soon as all test cases succeed, the semantics specification is fin-
ished (and we have some hope that it indeed has an appropriate quality). In our scenario of
test-driven semantics specification, the input specified by a test case is an example model, i.e., a
model which demonstrates certain behavioral properties of some language elements. Sect. 3.2.1
will deal with the creation of example models and the description of their expected behavior.

Section 3.2.2 will then show how to automatically transform each example model and its
description of behavior into an executable test case. Finally, Sect. 3.2.3 will point out how to
perform the actual semantics specification against the test cases.

3.2.1 Creating Example Models

The starting point is the abstract syntax of the language under consideration. It defines all lan-
guage elements and their relations with each other. In the case of DMM, the abstract syntax must
be given as a metamodel. Based on the abstract syntax, the example models should be created
step by step, systematically going from the most basic to more complex language constructs2.

Then, for each example model the expected behavior needs to be identified, and to be described
in a semiformal way. This is done using so-called traces of execution events. An execution event
in our sense is some interesting event happening during the execution of a model. For instance,
in the example below (which is in the context of UML Activities), we will use execution events
corresponding to the execution of a particular Action.

Such execution events can then be composed to traces. A trace is a sequence of execution
events which occur when a particular model is being executed. It describes one possible way of
executing a particular model. The process of creating example models is depicted as Fig. 6.

2 The example models can of course be created using the language’s concrete syntax

Proc. GMT 2010 8 / 18

247

ECEASST

Decision and Merge

A

B

C

Figure 7: Example Activity containing a simple DecisionNode/MergeNode structure

Let us illustrate the above with a simple example, which is depicted as Fig. 7. Its purpose
is to demonstrate the semantics of the DecisionNode and MergeNode. This example is
interesting because of the fact that it allows for more than one possible execution: a token flowing
through the Activity will—as soon as it has passed Action “A”—be routed either to Action
“B” or to Action “C”.

Obviously, the interesting execution events which occur when that model is executed are the
executions of the contained Actions. As a result, we identify the event ActionExecutes(Name)
which refers to the execution of an Action with name Name.

We have already seen above that due to the involved DecisionNode, there are two ways to
execute the model. Therefore, we will describe the model’s behavior by two traces of execution
events:

ActionExecutes(“A”) ActionExecutes(“B”)

and

ActionExecutes(“A”) ActionExecutes(“C”)

We decided to reduce the semantics of Activities to the possible orders of execution of Actions,
since the Actions are the places where the actual work will be performed. However, it would
also be possible to use more fine-grained traces like InitialNode() ActionExecutes(“A”) DecisionN-
ode() ActionExecutes(“B”) MergeNode() ActivityFinalNode().

With these traces, we have already finished the description of our example model’s behavior.
We can now turn to the transformation into an executable test case in the next section.

3.2.2 Deriving Test Cases

In this section, we want to investigate how to automatically verify that an example model indeed
behaves as we expect it to. This is done in two steps: First, we formalize the traces of execution
events of our example model by translating them into a notion of temporal logic. Second, we
use a model checker to verify whether the transition system raising from the example model and
our semantics specification contains exactly the expected behavior (and nothing else). To make
our test cases executable, the described process is triggered by a small Java framework we have
implemented on top of JUnit [GB].

Let us start with translating the traces of execution events into temporal logic. The idea of the
translation is as follows: We want to express that the transition system contains a path starting

9 / 18 Volume X (2010)

248

Test-driven Language Derivation with Dynamic Meta Modeling

from the start state such that all execution events occur on that path in the desired order, and that
no other execution events occur in between.

We have seen in Sect. 2 that DMM specifications give rise to a transition system where each
transition is labeled with the DMM rule creating that transition. As a result, we have to map
our execution events to the according DMM rules. Having done that, the translation is pretty
straight-forward: From each execution event e, an expression EF(re) is generated, where re is
the DMM rule corresponding to event e. Such an expression is true iff there Exists a path such
that Finally, rule re occurs as a label of one of the transitions.

These expressions are then nested to express the sequence of events to occur: For instance, the
sequence e1e2 is translated into the CTL formula EF(re1 ∧EF(re2)), expressing that there must
be some occurence of re1 , and from that point on, there must be an occurence of re2 .

The fact that there must not be any events in between e1 and e2 is represented by using a CTL
Until expression which makes sure that no unexpected rules occur until the next desired rule
occurs. We do not show this construction here; the interested reader is pointed to [SE09].

Having computed our CTL formulas f1, . . . , fn (one for each trace of execution of the example
model’s behavior), we can check whether all these traces are indeed contained in the resulting
transition system. This is done by using a model checker to verify whether the formulas hold on
our transition system; if this is the case, the behavior is contained as expected.

Finally, we need to make sure that the transition system only contains the expected behavior.
This is verified by a final CTL formula which reads as follows: AF(f1∨ ·· ·∨ fn). It makes sure
that on All paths, one of the expected sequences of events takes places.

If all CTL formulas as described above hold for our transition system, we can be sure that
for our example model, the semantics specification produces exactly the desired behavior. If the
model checker finds out that one of the expressions does not hold, the resulting counter example
will be helpful when fixing the errors of our specification.

3.2.3 Specifying the Semantics

The actual semantics specification can then be performed against the test cases we got from the
last step. We start with specifying the semantics of the most simple language elements of our
language. As soon as our specification contains the semantics description of all elements con-
tained in one of our example models, that model and its description of behavior are transformed
into an executable test case, which can then be verified against the current state of the semantics
specification as described in the last section.

Now, if the derived test case succeeds, we can continue with specifying the more complex
elements’ semantics, until finally all language elements are covered. Otherwise, we need to fix
the specification until the test case succeeds.

Note that all test cases are executed within every iteration of the process described above;
this is to prevent regression errors (i.e., destroying the behavior of an already specified element
by specifying the semantics of a still unspecified element). The whole process is depicted as
Fig. 8. Now that we have seen how to create a semantics specification in a test-driven way, we
can transfer the concepts used into our scenario of deriving a new language from an existing one.

Proc. GMT 2010 10 / 18

249

ECEASST

Specify semantics, derive test cases

Specify
semantics for

element

Formalize traces
of example

Create test
case

Execute all
test cases

Fix semantics

[all tests passed]

[else]

[else]

[all elements of example covered]

[else]

[all language elements covered]

Figure 8: Specify semantics, create test cases from example models

3.3 Test-driven Derivation Process

Recall the language modifications we have in mind: we want to add a language element Group-
FinalNode with the purpose of terminating the execution of a particular ActivityGroup.
To reach this goal, we have added the according metaclass to the metamodel by subclassing an
existing one.

Now, in a test-driven setting, our next step consists of defining a test case against which we
can then specify the language element’s behavior, i.e., an example model.3 How does such an
example model for our language extension look like?

There is one major requirement: The example model needs to demonstrate the behavior of in-
terest. In our case, this means that we need a UML Activity containing our GroupFinalNode,
and the Activity’s structure should be such that the GroupFinalNode’s existence indeed has
an impact.

Despite that, the example model should be as simple as possible. This has one major advan-
tage: In case the test case derived from our example model fails at a later stage, it will be easier
to figure out the cause of the failure, since less language elements can be involved.

Figure 9 shows an example model which suits our needs. Obviously, it is very simple.
Additionally, it demonstrates the behavior of our new language element. To explain this, as-
sume for a moment that the Activity does not contain the ActivityGroup, and that the
GroupFinalNode is a simple ActivityFinalNode as the one above. Then, the semantics
would be as follows: since the whole Activity’s execution is terminated as soon as a token arrives
at one of the ActivityFinalNodes, a possible behavior would be that just the execution of A
(or B) takes place. In this case, one of the tokens has flown all the way down to the upper (lower)
ActivityFinalNode before the execution of B (A) has even started (i.e., the other token is
still sitting on the ActivityEdge in front of that Action). The situation is different in the

3 Of course, there should usually be more than one example model. For instance, in our case the example model
demonstrates that the GroupFinalNode deletes a token within its ActivityGroup only, but does it really de-
stroy all tokens within that group?

11 / 18 Volume X (2010)

250

Test-driven Language Derivation with Dynamic Meta Modeling

Example model

A

B
G

Figure 9: Example model demonstrating the behavior of the GroupfinalNode

case of our real example model containing the ActivityGroup and the GroupFinalNode:
Since the group “encapsulates” the effect of the GroupFinalNode, it will always be the case
that A is executed (however, B might not be executed as discussed above). We will appreciate
this fact by creating our traces of execution events accordingly: There will be no trace where A
is not executed.

Now, being equipped with an example model (or a set of example models) and its expected
behavior, we can continue with specifying the according behavior. This is done by adding the
rule we have seen as Fig. 5 to the DMM ruleset.

We are now ready to execute our test case. As it turns out, the test fails. This is due to an
error we made: We did not take into account that the left-hand’s graph of the rule activityFinalN-
ode.accept() (see Fig. 4 on page 4) basically4 is a subgraph of the new rule’s left-hand graph. As
a result, that rule matches whenever the new rule matches. The consequence is that the transition
system resulting from the example model still contains traces where A is not executed.

This is a problem as described earlier: In our situation, it does not suffice to just add the DMM
rule describing the new element’s behavior. In addition, the modeler has to make sure that the old
behavior does not take place in the context of the new language element GroupFinalNode.
The next section will show how to cope with this problem using DMM rule overriding.

3.4 Using DMM Rule Overriding

We have seen above that the enhancement of our semantics specification is not finished yet: We
need to prevent the ActivityFinalNode’s behavior from being applied in the context of
the new element GroupFinalNode. One way to do this would be to change rule activityFi-
nalNode.accept() such that it only matches if the ActivityFinalNode is not contained in
an ActivityGroup (by adding an according negative application condition to that rule). This
would indeed fix our failing test, since the ActivityFinalNode’s behavior would not take
place any more in that situation.

Fortunately, the language’s semantics has been developed in a test-driven way. In this case, our
already existing test cases will hopefully tell us whether we have broken any existing behavior
with our changes. And this is indeed the case: Obviously, rule activityFinalNode.accept() does
not match any more in case its ActivityFinalNode belongs to an ActivityGroup (this

4 The only difference is the typing of the FinalNodes, but that doesn’t affect the matching here.

Proc. GMT 2010 12 / 18

251

ECEASST

is exactly the change we have performed above). However, the semantics of the Activity-
FinalNode stays the same, no matter whether it belongs to an ActivityGroup or not. In
other words: An ActivityFinalNode which does belong to an ActivityGroup shall
still delete all tokens flowing through the Activity, no matter where they are located. This
does not happen, since rule activityFinalNode.accept() does not match any more in such a sit-
uation. As a consequence, every test case in which an ActivityFinalNode belongs to an
ActivityGroup will now fail, pointing us to the fact that our language modification has had
some side effects.

However, the problem is easily fixable using a more sophisticated DMM construct: Rule
overriding [EFS09]. Before we start to explain that construct, let us first look into DMM rules
more deeply.

Every DMM rule has a so-called context node, and a rule is defined in the context of that node.
Since every node in a DMM rule has a type, the context node implies a type for the rule itself:
the context node’s type can be seen to own the behavior described by the rule (just as a method is
owned by the class it is defined in). Note that this concept strengthens the similarity of DMM and
object-oriented programming languages and therefore increases the understandability of DMM
specifications.

In the rule activityFinalNode.accept(), the context node is the node typed ActivityFinal-
Node; as expected, the context node of the new rule groupFinalNode.accept() is the node typed
GroupFinalNode. As a result, the new rule has two interesting properties: first, as we have
seen above, the rule’s left-hand graph is a subgraph of the left-hand graph of rule activityFinalN-
ode.accept() (this caused our problem at the beginning), and second, the context node’s type
of rule groupFinalNode.accept() is a subtype of the context node’s type of rule activityFinalN-
ode.accept().

The described situation is exactly the prerequisite for using DMM rule overriding. The idea
is as follows: Given two rules r1, r2 such that the two properties mentioned above hold, rule r2
can override rule r1 (in our example, activityFinalNode.accept() would be r1, and groupFinalN-
ode.accept() would be r2).

If a rule is overridden, its matching is affected: An overridden rule r1 only matches a host
graph if there is a morphism from the rule’s left-hand graph into the host graph and if there is
no overriding rule r2.5 It is easy to see that this indeed fixes our problem from above: Letting
groupFinalNode.accept() override rule activityFinalNode.accept() prevents the former rule from
matching in the context of our new type GroupFinalNode, therefore leading to the desired
behavior.

3.5 The Tool Chain

It remains to shed some light on the tools involved in the process of modifying an existing
language (which are depicted as Fig. 10). In the DMM chapter, we have already mentioned
that the Groove toolset [Ren04] is used to compute the transition system used for analysis of a
model’s behavior. However, DMM supports quite sophisticated language features which are not
directly supported by the notion of graph transformation rules Groove supports. For instance,

5 Note that in [EFS09], we have in fact defined two notions of rule overriding; in [EFS09], the notion used within
this paper is called complete overriding.

13 / 18 Volume X (2010)

252

Test-driven Language Derivation with Dynamic Meta Modeling

DMM
Specification

Test Case

Trace of Exe-
cution Events

DMM2Groove

EMF2Groove

Trace2CTL

Example
Model

Groove
Grammar

Groove
Start Graph

Groove
Generator

Trace of Exe-
cution Events

CTL
Formula

Groove
Modelchecker

Graph
Transition
System

Verification result
(ok or counter
example)

Figure 10: The DMM tool chain

DMM rules can explicitly invoke other DMM rules, which is not supported by common graph
transformation tools.

Therefore, an own visual language for DMM specifications has been developed using Eclipse-
based frameworks such as EMF [SBPM08], GMF [Ecl09a], and UML2 [Ecl09b] – part of the
latter project is an EMF implementation of the UML metamodel. As expected, the syntax of
the DMM language is defined by means of a metamodel. The DMM component DMM2Groove
is responsible for translating an instance of the DMM metamodel into a valid Groove grammar
ready to be executed on a proper graph state.

Additionally, the DMM tooling is capable of handling arbitrary EMF models. The according
DMM component EMF2Groove takes such an EMF model (e.g., a concrete UML Activity as
instance of the UML2 metamodel mentioned above) and transforms it into a Groove graph. In
the next step, both the Groove grammar and the start graph are fed into the Groove Generator,
which is then used to compute a transition system representing the complete model’s behavior.

We have seen earlier in this section that a DMM test case not only consists of an example
model, but also of a set of traces of execution events, each describing one possible execution
of the example model. The DMM component Trace2CTL is responsible for generating CTL
formulas from these traces (please refer to [SE09] for the details of the generation).

Finally, the transition system and the generated CTL formulas serve as input for the Groove
model checker, which checks whether the formulas hold for the transition system (and therefore
for the model from which the start graph had been generated). The model checker will either
report that a formula holds, or it will provide a counter example showing under which circum-
stances the CTL property is violated; that counter example can then be used to understand why
the CTL property is violated, and should therefore be very helpful when fixing the semantics
specification.

Proc. GMT 2010 14 / 18

253

ECEASST

4 Related Work

The work most closely related to ours probably is the work by Sadilek et.al. [Sad08]. His goal
is to quickly prototype DSLs. The comparable scenario is as follows: A language’s semantics
might first be specified using a formal language, e.g. Abstract State Machines, for the sake of
proving properties of the DSL’s semantics. Later on, a second, more efficient semantics spec-
ification might be created which shall be semantically equivalent to the first one. Since both
semantics specifications allow for DSL instances to be executed, the language engineer can
now create test models of the DSL, execute them and compare the resulting execution traces.
The main difference to our approach is that Sadilek uses tests to compare two semantics spec-
ifications, whereas we use them to convince ourselves that the semantics specification indeed
produces the behavior the language engineer had in mind.

In the area of language engineering, several approaches for defining DSLs exist. For instance,
MetaCase provides MetaEdit [SLTM91], Microsoft provides the DSL Tools as part of MS Vi-
sual Studio [CJKW07], and the Eclipse foundation provides the Graphical ModelingFramework
[Ecl09a]; all these approaches aim at an easy creation of visual languages. openArchitecture-
Ware [HVEK07] provides a set of tools which allow for the easy creation of textual languages,
including powerful editor support.

To our knowledge, all the above approaches focus on defining DSLs from scratch. Addition-
ally, they do not focus at all on the definition of behavioral semantics: the approaches provide
support for code generation, but they do not provide a means to systematically create high-quality
code generators; the generation is pretty much done ad-hoc.

Quite some work exists on typed graph transformations, on which we defined our notion of
rule overriding. For instance, in [LBE+07], de Lara et.al. show how to integrate attributed graph
transformations with node type inheritance, therefore allowing for the formulation of abstract
graph transformation rules (i.e., rules which contain abstract nodes). The resulting specifications
tend to be more compact, since a rule containing abstract nodes might replace several rules
which would otherwise have to be defined for each of the concrete subtypes. The resulting
formalism does not provide support for refinement of rules (and is therefore comparable with the
expressiveness of the current state of DMM).

In [TR05], Taentzer et.al. show how to formulate structural properties of type graphs with in-
heritance using graph constraints, and they provide a translation into standard graphs. In contrast
to our work, they concentrate on structure, whereas our approach modifies the behavior of rules
participating in an overrides relation.

5 Conclusion

In this paper, we have shown how test-driven approaches from software engineering can be
reused in the field of language derivation. For this, we have first introduced our semantics speci-
fication technique Dynamic Meta Modeling, and we have explained how graph transformations
serve as the backing formalism of DMM. Based on that, we have introduced a simple example
of language enhancement in Sect. 3, and we have discussed the problem of overriding existing
behavior.

15 / 18 Volume X (2010)

254

Test-driven Language Derivation with Dynamic Meta Modeling

We have then shown how to perform language derivation in a test-driven way, following the
approach of test-driven semantics specification. We have also shown how rule overriding can be
used to override already existing DMM graph transformation rules, and we have demonstrated all
that by fixing the flaws we (intentionally) introduced within our language modification example.

Overall, we have presented an example of applying the well-established formalism of graph
transformations [EEKR99] in a typical software engineering scenario. Currently, we are in-
vestigating different notions from software engineering for the sake of using them within our
test-driven semantics specification approach, the most important one being test coverage crite-
ria: for instance, a minimum such criterion is that over all test cases, every DMM rule has been
applied at least once, but more complex coverage criteria are worth investigating.

Additionally, our focus is on developing tool support for test-driven language engineering.
Our tool support has the following goals:

• Easy specification and execution of test cases.

• Back-propagation of the model checker’s counter example in case a test case failed.

• Visual debugging and execution of test cases.

Finally, two of our students are working on complex semantics specifications for behavioral
diagrams of the UML, using test-driven semantics specification. In the course of their work, they
will also have to modify the DMM specification of an existing language. While performing their
work, the students will make use of the existing DMM tooling; we plan to learn from their efforts
about further needed tooling.

Bibliography

[Bec02] K. Beck. Test-Driven Development by Example. Addison-Wesley Longman, Ams-
terdam, The Netherlands, 2002.

[CJKW07] S. Cook, G. Jones, S. Kent, A. Wills. Domain-Specific Development with Visual
Studio DSL Tools. Addison-Wesley Professional, 2007.

[Ecl09a] Eclipse Foundation. Graphical Modeling Framework. http://www.eclipse.org/
modeling/gmf/, 2009. online, accessed 5-5-2009.

[Ecl09b] Eclipse Foundation. UML2 Project. http://www.eclipse.org/uml2/, 2009. online, ac-
cessed 5-5-2009.

[EEKR99] H. Ehrig, G. Engels, H.-J. Kreowski, G. Rozenberg (eds.). Handbook of Graph
Grammars and Computing by Graph Transformation, Vol. 2: Applications, Lan-
guages, and Tools. World Scientific Publishing Co., Inc., River Edge, NJ, USA,
1999.

[EFS09] G. Engels, D. Fisseler, C. Soltenborn. Improving Reusability of Dynamic Meta
Modeling Specifications with Rule Overriding. In R. DeLine (ed.), Proceedings of
the 2009 IEEE Symposium on Visual Languages and Human-Centric Computing

Proc. GMT 2010 16 / 18

255

http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/modeling/gmf/
http://www.eclipse.org/uml2/

ECEASST

(VL/HCC 2009), Corvallis, Oregon (USA). Pp. 39–46. IEEE Computer Society, Pis-
cataway, NJ (USA), 2009.

[EHS99] G. Engels, R. Heckel, S. Sauer. Dynamic Meta Modelling: A Graphical Approach
to Operational Semantics. In Proceedings of the workshop on Rigorous Modeling
and Analysis with the UML: Challenges and Limitations (satellite event of the Con-
ference on Onject-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 1999)), Denver, CO (USA). 1999.

[ESW07] G. Engels, C. Soltenborn, H. Wehrheim. Analysis of UML Activities using Dynamic
Meta Modeling. In Bosangue and Johnsen (eds.), Proceedings of the FMOODS 2007
Conference. LNCS 4468, pp. 76–90. Springer, 2007.

[GB] E. Gamma, K. Beck. JUnit Homepage. http://www.junit.org/. online, accessed 1-2-
2010.

[Hau05] J. H. Hausmann. Dynamic Meta Modeling. PhD thesis, University of Paderborn,
2005.

[HVEK07] A. Haase, M. Völter, S. Efftinge, B. Kolb. Introduction to openArchitectureWare
4.1.2. MDD Tool Implementers Forum (Part of the TOOLS 2007 conference,
Zürich), 2007.

[LBE+07] J. de Lara, R. Bardohl, H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Attributed
Graph Transformation with Node Type Inheritance. Theoretical Computer Science
376(3):139–163, 2007.

[MPW92] R. Milner, J. Parrow, D. Walker. A Calculus of Mobile Processes, I. Information and
Computation 100(1):1–40, 1992.

[Obj09] Object Management Group. OMG Unified Modeling Language (OMG UML) – Su-
perstructure, Version 2.2. http://www.omg.org/docs/formal/09-02-02.pdf, 2 2009.

[Ren04] A. Rensink. The GROOVE Simulator: A Tool for State Space Generation. In Pfaltz
et al. (eds.), AGTIVE 2003 – Revised Selected and Invited Papers. LNCS 3062,
pp. 479–485. Springer, 2004.

[Roz97] G. Rozenberg (ed.). Handbook of Graph Grammars and Computing by Graph Trans-
formation, Vol. 1: Foundations. World Scientific Publishing Co., Inc., River Edge,
NJ, USA, 1997.

[Sad08] D. A. Sadilek. Prototyping Domain-Specific Language Semantics. In Companion
to the 23rd ACM SIGPLAN conference on Object-oriented Programming Systems
Languages and Applications. ACM, New York, 2008.

[SBPM08] D. Steinberg, F. Budinsky, M. Paternostro, E. Merks. EMF: Eclipse Modeling
Framework, Second Edition. Addison-Wesley Professional, 2008.

17 / 18 Volume X (2010)

256

http://www.junit.org/
http://www.omg.org/docs/formal/09-02-02.pdf

Test-driven Language Derivation with Dynamic Meta Modeling

[SE09] C. Soltenborn, G. Engels. Towards Test-Driven Semantics Specification. In
A. Schürr (ed.), Proceedings of the 12th International Conference on Model Driven
Engineering Languages and Systems (MoDELS 2009), Denver, Colorado (USA).
Pp. 378–392. Springer, Berlin/Heidelberg, 2009.

[SLTM91] K. Smolander, K. Lyytinen, V.-P. Tahvanainen, P. Marttiin. MetaEdit: a Flexible
Graphical Environment for Methodology Modelling. In Proceedings of the third in-
ternational conference on Advanced information systems engineering (CAiSE 91).
Pp. 168–193. Springer-Verlag New York, Inc., New York, NY, USA, 1991.

[TR05] G. Taentzer, A. Rensink. Ensuring Structural Constraints in Graph-Based Models
with Type Inheritance. In Cerioli (ed.), FASE. LNCS 3442, pp. 64–79. Springer,
2005.

Proc. GMT 2010 18 / 18

257

 ECEASST

From Separate Formal Specifications to Certified Integrated
Visual Modelling Techniques and Environments

Position Statement

Hartmut Ehrig
TFS-Group

Technische Universität Berlin

Abstract: In this position statement we discuss the state of the art and role of
formal specification and modelling techniques in different periods with special
focus on the work of the TFS-group at TU-Berlin. In the past (1970 – 1990) single
formal specification techniques have been developed with little impact on practical
software development. In the present (1990 – 2010) integrated and visual
modelling techniques have gained more and more importance. For the future
(2010 – 2020) we try to sketch the idea of a Certified Integrated Visual
Modelling Technique and Environment based on an integration of graph theory,
graph transformation and Petri net theory, short Dynamic Graph and Net
Theory.

Keywords: Software system modelling. formal specification, modelling tech-
niques, visual modelling , TFS – group

1 Introduction
This paper is a position statement for the panel discussion at the International
Colloquium on Graph and Model Transformation at TU-Berlin, February 11-12, 2010.
Past, presence and future of formal aspects of system modelling with special focus on
the work of the TFS (Theoretische Informatik : Formale Spezifikation) –group at TU-
Berlin are discussed in the following three sections :

• Formal Software Specification Techniques in the Past (1970 – 1990)
• Formal Software System Modelling in the Present (1990 – 2010)
• Future Aspects of Formal Software System Modelling (2010 – 2020)

2 Formal Software Specification Techniques in the Past (1970 – 1990)
In the beginning software development was just programming of algorithms and data
types, especially implementation of numerical algorithms in FORTRAN and ALGOL.
This means mathematical modelling in programming was mainly numerical
mathematics, although mathematical notions of algorithms had been developed already
in mathematics based on Turing machines, recursive functions, and λ-calculus. These

258

From Separate Formal Specifications to Certified Integrated Techniques

ideas were picked up in theoretical computer science leading to the areas of algorithms
and complexity theory.

The concept of abstract data types – on the other hand – was developed in the early
1970ies by computer scientists like Parnas and Hoare influenced by the debacles of
large software systems in the late 1960ies. At that time it was not at all clear whether
abstract data types and software systems in general could be modeled by mathematical
concepts. On the contrary, the vast majority of practical computer scientists at that
time was convinced that mathematical methods may be useful for numerical analysis
of algorithms, but not at all for software system development.

In addition to automata theory, formal languages, algorithms, and complexity the main
challenge for theoretical computer science was to find mathematical models for
programming language semantics, abstract data types, and concurrency of processes.
The ultimate goal was to define correctness of software systems w.r.t. given
formal requirements and to develop compositional correctness and proof
techniques.

First steps in this direction in the 1970ies were the development of operational and
denotational semantics of programming languages by pioneers like Scott, Stratchey,
and Nivat. The concepts of Petri nets and process calculi have been defined by other
pioneers like Petri, Milner, Hoare, Rozenberg, and Montanari in order to model
concurrent and distributed processes.

The main contributions of the TFS-group in this period were :

1. A categorical approach to automata theory in order to unify different
kinds of deterministic, partial, stochastic, nondeterministic, and
topological automata [EKKK74].

2. Development of the double pushout (DPO) approach for graph
transformation – together with Schneider and Rosen- in order to define
graph languages and to model operational semantics [Ehr79].

3. The fundamentals of algebraic specification of data types and software
modules in the initial algebra approach [EM85/90], based on the
pioneering work of Goguen, Thatcher, Wagner, and Wright [ADJ75].

In order to show how theory and practice of software development can influence each
other the TFS- and SWT-group at TU-Berlin, chaired by H. Ehrig and Ch. Floyd
respectively, created and organized together with M.Nivat (Paris) and J.Thatcher
(Yorktown Heights, USA) the new conference series TAPSOFT (Theory and Practice
of Software Development). It was held with great success at TU-Berlin in 1985

259

 ECEASST

bringing together several pioneers from theoretical and practical computer science and
about 500 researchers for both areas. TAPSOFT was continued successfully as
biannual conference until 1997 at different prominent locations all over Europe. It
certainly helped to bridge the gap between theory and practice in software
development.

Summarizing, the first steps of formal software system specification in the past
have been difficult, but at least several promising formal specification techniques
for data types, modules, and concurrent processes have been developed.

3 Formal Software System Modelling in the Present (1990 – 2010)

Starting in the 1990ies formal methods, especially formal specification techniques,
were supported by several basic research actions and projects launched by the
European Community (EC). The TFS-group was especially involved in COMPASS,
on algebraic specification techniques, and in COMPUGRAPH, GETGRATS,
APPLIGRAPH, and SEGRAVIS on graph transformation techniques.

Graph grammars and transformation systems had been developed in the past mainly
from the language and the process specification point of view [Roz97], but data types
had to be handled separately by algebraic specification techniques. This situation was
typical in the past and there was a need for integrated techniques simultaneously taking
care of data types and processes for software systems. Typical examples of integrated
specification techniques studied by the TFS-group have been LOTOS, High-Level
Nets, and Attributed Graph Grammars (AGG) integrating algebraic specifications with
CCS, Petri nets, and graph transformation systems respectively.

This need for integration was supported by the priority program SoftSpez (Integration
of Software Specification Techniques for Applications in Engineering) of the German
Research Council (DFG). This was initiated by W. Brauer, M. Broy, H. Ehrig
(coordinator),H.-J. Kreowski, H. Reichel and H. Weber from computer science, and E.
Schnieder and E.Westkämper from engineering [Ehr et al 2004].

But the need for integration was not only supported by integrated techniques, but also
by the integration of different views, most prominently supported by UML [UML 2.0].
Today UML is an international standard for object oriented software development and
also a well-known visual modelling technique, which is widely used in practice. The
semantics of UML, however, is mainly informal and various attempts have been made
to provide a formal semantics for specific UML diagram techniques. In the last decade
it turned out that typed attributed graph transformation is an intuitive and powerful

260

From Separate Formal Specifications to Certified Integrated Techniques

visual modelling technique. Moreover it has a precise formal semantics and a rich
mathematical theory [EEPT06], which supports correctness for visual modelling of
software systems. In addition to visual modelling also model transformation becomes
more and more important for efficient construction, correctness , and consistency of
software system modelling. In fact, graph transformation techniques are also most
suitable for model transformations between visual and visual or textual modelling
languages. Syntactical and semantical correctness can be supported by the theory of
algebraic graph transformation [EEPT06] and simulation and analysis techniques by
the tool AGG [AGG] developed by the TFS-group. Especially the concept of triple
graph grammars introduced by A. Schürr [Sch94] is very useful for model
transformation and integration and a promising formal construction and semantics
developed in [EEHP09].

A most prominent forum, where the results of formal software system modelling have
been presented, are the ETAPS conferences. The European Joint Conferences on
Theory and Practice of Software (ETAPS) were created in 1998 as annual conferences,
combining especially the well-established biannual conferences TAPSOFT and ESOP.
After the first ETAPS conferences in Lisbon 1998 and Amsterdam 1999 ETAPS was
continued with great success at TU Berlin organized by H.Ehrig, S. Jähnichen, B.
Mahr (general chair) and P.Pepper, based on the good experience with TAPSOFT in
1985. Today ETAPS is the most prominent joint conference combining theory and
practice of software in Europe, supported by the European associations EATCS,
EAPLS, and EASST. Moreover ETAPS is well-established on the international level
.Especially graph transformations were supported by the international graph grammar
workshops from 1978 until 1998 and the international conference on graph
transformation (ICGT) since 2002 in Barcelona, Rome, Natal, Leicester, and coming
up in Twente and Bremen.

Summarizing the situation today, formal software system modelling – at least for
small systems - is well-accepted in theory and practice, especially visual
modelling using graph transformation techniques. Software system modelling is
mainly based on integration and visualization of models with model
transformations supported by various construction, analysis, and verification
techniques.

4 Future Aspects of Formal Software System Modelling (2010 – 2020)

The ultimate goals for the semantical challenges in the past are mainly valid today, but
we have done important steps to realize them at least for small systems already. Let us
rephrase the goals for the future as follows :

261

 ECEASST

Formal software system modelling should support the modular development and
integration of correct software systems in the large, where construction,
correction and verification are based on visual models and model transformations
using compositional semantics and proof techniques.

In section 3 we have discussed that some of these aspects are realized for small
systems already today. Of course, it is important to make sure that these techniques
scale up for large systems. But what is missing in addition to realize the ultimate goals
in the future? Let us point out the following two aspects concerning theory and
practice of graph transformation systems :

1. Dynamic Graph and Net Theory
2. Certified Integrated Visual Modelling Techniques and Environments

The idea of dynamic graph and net theory is an integration of mathematical graph
theory and optimization of algorithms in the sense of the MATHEON research center
at TU-Berlin with the theory of graph transformations and Petri nets in theoretical
computer science. Part of this integration has been done by the TFS-group leading to
the concept of reconfigurable and higher-order Petri nets. This allows a dynamic
interaction of rule based modification of the Petri net structure with the well-known
token game [PEHP08] on one hand and nets and rules as token on the other hand.
However, the interaction of graphs algorithms with rule based transformations of the
underlying graphs is certainly promising for the evolution of algorithms in a changing
environment, but only little work has been done in this direction up to now.

The idea of a certified integrated visual modelling technique and environment is an
integration of visual modelling techniques inspired by UML with advanced graph and
model transformation techniques. These techniques should be supported by powerful
analysis, model checking, and theorem proving techniques. First steps for such an
integration is first of all the PhD-thesis of L. Lambers [Lam09] concerning
certification of rule based modelling supported by the AGG-system [AGG]. Other
important steps are efficient and correct model transformations based on triple graph
grammars [EEHP09], and the work of A. Habel and K.-H. Pennemann [HP08] on
correctness and verification of nested graph constraints for graph transformations.

References

[ADJ75] ADJ-Group(Goguen,Thatcher,Wagner,and Wright): Abstract Data Types as

Initial Algebras and the Correctness of Data Representation.Proc.Conf. on
Computer Graphics, Pattern Recognition and Data Structures, 1975

262

From Separate Formal Specifications to Certified Integrated Techniques

[AGG] Attributed Graph Grammar Tool AGG : http://tfs.cs.tu-berlin.de/agg/

[Ehr79] Ehrig,H. : Introduction to the Algebraic Theory of Graph Grammars (A

Survey), Springer LNCS 73 (1979), 1- 69

[Ehr et al 04] Ehrig,H. et. al. (Editors) : Integration of Software Specification Techniques

for Applications in Engineering. Final Report DFG Priority Program
SoftSpez, Springer LNCS 3147 (2004)

[EEHP09] Ehrig,H.,Ermel,C.,Hermann,F.,Prange,P.: On the Fly Construction,

Correctness and Completeness of Model Transformations based on Triple
Graph Grammars, Proc. MODELS’09

[EEPT06] Ehrig,H.,Ehrig,K.,Prange,U.,Taentzer,G. : Fundamentals of Algebraic Graph

Transformation, EATCS Monographs, Springer 2006

[EKKK74] Ehrig,H.,Kiermeier,K.-D.,Kreowski,H.-J.,Kuehnel,W. : Universal Theory of

Automata, Teubner 1974

[EM85/90] Ehrig,H.,Mahr,B. : Fundamentals of Algebraic Specification 1 and 2, EATCS

Monographs, Springer 1985/90

[HP08] Habel,A.,Pennemann,K.-H. : Correctness of High-Level Transformation

Systems Relative to Nested Conditions, MSCS 19 (2008), 245-296

[Lam09] Lambers,L. : Certification of Rule Based Modelling by Graph

Transformation, PhD-thesis, TU-Berlin 2009

[PEHP08] Prange,U.,Ehrig,H.,Hoffmann,K.,Padberg,J. : Transformations in

Reconfigurable Place/Transition Nets, Springer LNCS 5065 (2008), 96-113

[Roz97] Rozenberg,G. (Editor) : Handbook of Graph Grammars and Computing by

Graph Transformation.Vol.1 Foundations, World Scientific 1997

[UML2.0] Unified Modelling Language UML 2.0 : http://www.omg.org/uml/ , 2003

263

http://tfs.cs.tu-berlin.de/agg/�
http://www.omg.org/uml/�

ECEASST

Position Paper: Formal Methods and Agile Development

Michael Löwe

FHDW Hannover

Abstract: Modern software development is agile. It accepts that software systems
undergo a lot of changes due to changes in the application context and base technol-
ogy in their life cycle. Thus, most of the activities in the development process are
redesign steps. Even requirements are not stable. They change in time as the con-
text of the system changes. There is no time for complex correctness proofs of the
implementation wrt. the requirements. Automatic (regression) testing has proved to
be sufficient for correct system behaviour. Therefore the agile developer does not
learn and apply formal methods himself. In order to be agile, however, he relies on
tools for automatic refactoring of the system or of certain parts of it. These tools are
able to change the system structure without changing its behaviour. We argue in this
paper that, in order to build such tools, further research in the area of formal system
modelling is urgently needed.

Keywords: Agile Software Development, Graph Transformation

1 Introduction

There have been two major trends in software engineering for the last decade:

1. Raising the level of abstraction for software systems design (vertical development) and

2. Providing (more sophisticated) methods for agile development (horizontal development).

Catch words like ”Model-driven Development”, ”Service-Oriented Architectures”, and ”Busi-
ness Process Modelling” are connected to the first trend. The second trend is characterized by
concepts like ”Software Refactoring”, ”Test-First”, ”Extreme Programming” or ”Dynamic Sys-
tems Development”.

In the first area, formal methods, especially graph transformations, have provided precise se-
mantics for model specifications and transformation concepts from abstract to concrete system
descriptions including correctness notions for static as well as dynamic models (i. e. data struc-
tures and process models respectively). There is little to improve here. The level of abstraction
that is provided to the standard programmer today by software development environments, mod-
ern design and programming languages and especially by program generation tools can hardly
be increased. And the mapping of abstract levels to concrete machine oriented levels can be per-
formed almost automatically and without any interference of the designer. Vertical development
form a very abstract level to the concrete level of execution is a high-level compilation process
nowadays. Research in formal methods has done its job here. Educating the designers such that
they can handle the abstractions is the challenge today.

Volume X (2010)

264

Position Paper: Formal Methods and Agile Development

In the second area, formal methods have not been applied that much, yet. At first glance,
agility andformal preciseness do not go together well. We argue in this position paper against
this first impression and show that there is great potential for graph transformation techniques in
agile contexts.

2 Agile development

The agenda for agile development is provided by the ”Manifesto for Agile Software Devolpment”
by Kent Beck et al.:

We are uncovering better ways of developing software by doing it and helping others do it.
Through this work we have come to value:

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Agile development accepts that nothing is stable in software development. Requirements
might change dramatically if, for example, customers use first rapid system prototypes. They
learn what they want by using what the thought they have wanted. Due to these rapid changes,
there is no time for an orderly formal development process that enforces correctness proofs of
the implemented system wrt. the requirements. If there are such proofs, not only the software
has to be refactorized frequently but also these proofs have to be rewritten over and over again.
Thus, formal methods do not seem to be applicable in agile contexts. And agile developers are
not very likely to appreciate education in these techniques.

But there is a different level, where formal methods can support agile processes. The rapid
redesign of software systems is not chaotic. It is a continuous process that introduces, changes or
removes system structure, mostly without changing the external behaviour of the system. Hence,
what is needed is a catalogue of evolution patterns that improve the system’s structure to a certain
extend and preserve system semantics (incl. proof). The application of these patterns needs to
be automated by a tool (like for example refactorizations in eclipse) and delivered to the agile
developer.

Practical applicability, however, requires that we do not restrict ourselves to the level of static
and dynamic models only. Since agile development aims at quick system development and early
production with the system under development, we have to take into account that the models
are populated. This means that there is (typically giga-bytes of) data typed in the static model
and (lots of) running processes typed in the dynamic model. Thus, evolution patterns have to
provide canonically induced and correct migrations on the instance level as well. Therefore,
formal methods that support agile development shall provide

1. Suitable models for ”populated” systems (model and instance),

2. Formal concepts for model refactorisations and induced instance migrations,

Proc. GMT 2010

265

ECEASST

3. Notions of correctness for such refactorisations/migrations, and

4. A catalogue ofpractically useful and correct patterns.

The existing body of concepts and results within the research area of ”Graph Transformation”
seems to be a good starting point for this programme.

3 Formal Model for Systems: Model and Instance

Agile software development modifiescomplete running systems. It is not only the information,
the operation, or the process model that is changed by refactorisations. This change also com-
prises at least the current system state. This state is made up by all the data that is accessible by
the system (usually in a database) and the current point (or points in the case of multi-threading)
of execution. Therefore, suitable formal models must be able to specify system models together
with system states. A formal model for instance for object-oriented concepts must comprise the
class model, the specification of the operations and methods, the currently existing object world,
and the current execution context, i. e. the already sent but not yet executed messages and their
execution order.

If we include explicite process models (for example specified in the Business Process Mod-
elling Notation BPMN) into our framework, the state can get even more complex. Having the
process model at hand, the current state not only comprises information about the current ex-
ecution context but also the process history that has led to the current state. Additionally, the
indeterministic future of the process (starting at the current point of execution) can be thought of
as part of the current state.

The model and the state cannot be considered separately. The state is always determined by
the model which is usually expressed by a typing relation between state items and elements in
the model. For a formal framework of agile development this typing relation is central, since
model changes must lead to minimal state restructurings that allow correct retypings.

In the context of graph transformation, a suitable model for the typing relation can be given
by a morphism from the state graph into the model graph.

4 Refactorisations and Induced Migrations

Agile development demands automatic refactorizations of whole systems (models and states).
If state migrations have to be calculated or performed manually (or by time consuming batch
jobs), development becomes slow and looses its agility. Since the state continuously changes
in a running system, the only way to initiate general changes is to change the model (which is
constant while the state is changing). Therefore state migrations shall (1) be uniquely induced
by model changes and (2) must be executable without any interactions of the developer.

It depends on the type of system that is developed whether it can be switched off during
migration. Real-time embedded systems in critical applications for example cannot never be
switched off. And service orientation requires minimal down-time also for modern information
systems. Thus, a framework for agile development must provide some means formigration on
demand: The state is not changed completely, it is changed step by step as the execution wrt. the

Volume X (2010)

266

Position Paper: Formal Methods and Agile Development

new model proceeds and requires retyped state structures. This mechanism requires (i) model
versioning, (ii) coexistence of different models within the running system, and (iii) (partial)
typings of the same state into different models.

In the context of graph transformation, model changes can be expressed by simple graph
transformation rules and their application. The canonical extension of the model change to the
existing state requires some kind of universal quantification (perform the model change forall
instances), which is not a standard mechanism in many approaches to graph transformations.

5 Correctness of Migrations

A formal framework for agile development can provide proof methods by which tool designers
can show that their migrations do change the system structure but not its observable behaviour.
Such proofs are valuable since the tool user can rely on the correctness of the transformation
without knowing the formal languages in which the proof was formulated. The basis for such
proof methods is formal semantics for complete systems. (The semantics depends on the chosen
notion of state!) Here well-known notions from for example algebraic specification (observable
equivalence) or process algebra (bisimulation) can be reused. If a transformation cannot be
proven generally correct for all system states but only for a certain class of states, appropriate
tool support shall be provided that checks the required properties of the state.

Graph transformation techniques for proving invariants of the generated graph language can
support the efforts towards such proof methods.

6 Catalog of and Tool Support for Correct Evolution Patterns

All the work that has been sketched in the previous sections has one aim, namely a catalog
of (partially) correct evolution patterns and its implementation within a software development
environment or some software generation tool and - if migration on demand is realized - the
runtime environment of the execution language. This catalog shall - amongst others - comprise
patterns for the

• Introduction of new structure

• Removal of unused structure

• Introduction and removal of abstractions (observer, composite, state, etc.)

• Introduction (and removal) of structural indirection (adapter, proxy, visitor, etc.)

• Introduction (and removal) of operational indirection (command, event, etc.)

• Introduction (and removal) of transaction support

• Introduction (and removal) of locking strategies

• Introduction (and removal) of versioning and historization

Proc. GMT 2010

267

ECEASST

• Introduction and removal of parallelism

• Decomposition of process steps

• Merging of process steps

• Introduction (and removal) of process alternatives

• Introduction (and removal) of remote communication and distribution structure

The documentation of the patterns can be provided as some sort of graph transformation rules.

7 Conclusion

In this position paper, we have argued that formal system modelling and transformation can
support agile software development. It provides urgently needed concepts and tools for the
consistent and correct transformation of complete and running systems. While object-oriented
modelling and programming has become a quasi-standard in the software community, the ap-
proaches, languages, and methods in the research area of graph transformation are still very
different. In order to produce some remarkable effect on the application domain of agile devel-
opment (and other application areas), some standardization towardsthe graph transformation
framework and development environment is needed.

Volume X (2010)

268

Pre-Proceedings GraMoT 2010

269

 ECEASST

Position Statement
Models in Software and Systems Development1

Bernd Mahr

Technische Universität Berlin

Abstract: The development of software and systems is, by its very nature, highly
depending on models. But models also play a role in the software and system’s design,
where they represent the constraining standards as well as the choices of ideas and
perspectives applied in the systems modelling, implementation and technology. The
model of model-being, developed by the author, is briefly explained and is then used to
discuss model interconnections resulting from model compositions and metamodel
applications. It is claimed that the analysis of model interconnections, prerequisite or
underlying software and systems design, can provide new insights into the designs
architecture and may lead to new kinds of development tools.

Keywords: software, design, model, model-being, model interconnections

1 Introduction
The choice of design in software and systems development is naturally constrained by mainly
four factors: first, by the requirements and expectations on the properties and features of the
intended systems future application and use, second, by the norms and standards to be met,
third, by the quality and limitations of resources available for the intended systems modelling,
implementation and technical realization, and fourth, by the reality of the social and technical
environments, in which the intended system is being embedded when applied. However, the
systems future applications, its modelling, implementation, technical realization as well as its
environments are at the time, before the system is being developed, not directly accessible. At
that time these constraining factors can only be identified and addressed by means of
prospective models. And it is not only the fact that these constraints in the development
process are to be mediated by models, it is also the likeliness of change, which affects the
execution of the development task: it is not unusual that expectations and requirements on a
systems application and use are being modified before the system is delivered; it is also
common experience that resources for its modelling, implementation and technical realization

1 This paper builds on and repeats some of the content of Bernd Mahr: Information Science and the
Logic of Models, Journal of Software and Systems Modelling (2009) 8, Springer Verlag 2009, p. 365-
383, (See also the German original: Bernd Mahr: Die Informatik und die Logik der Modelle, Informatik
Spektrum, 32, 3, 2009, pp. 228 – 249)

270

Position Statement: Models in Software and Systems Development

do not stay stable while the system is being developed; and it is certain that the environments
in which the system is being embedded, will not be in a constant state over time2

. All models
involved in the task of development are therefore to some degree unpredictable in regard to
their future adequacy and trustworthiness. And there is yet another difficulty in systems
development: when the system is being modelled and implemented, all matters of its
functionality and design are to be expressed as features and properties of the system itself,
which is to say that the models which capture requirements and expectations of the systems
application and use and of all the other constraining factors in the development task, have to be
encoded as features and properties of the system.

It would, however, be wrong to conclude from these observations, that the development of
software and systems are impossible tasks. There are mainly two reasons why their
development, despite of these difficulties, has a good chance of success: first, the fact that in
practice systems behaviour is rarely judged on a predefined and completely rigorous basis.
Users usually accept to adapt their expectations, activities and patterns of use to what the
system is able to do, at least to a certain degree. And second, more than 60 years of experience
in theory and practice of software development have lead to techniques and tools, which
enable architects and developers to cope with the consequences of mediation and change. In
the widest sense, these techniques and tools concern means of coding, abstraction and
coordination, all being based on models and modelling techniques. It is, however, surprising
that we have little knowledge about the principal conditions for something to be a model and
about the activities constituent for model use, namely the activities implied by modelling and
model application. And we can hardly say what in general counts as a good model and what
does not. These deficiencies may not be severe in modelling disciplines with a high level of
standardisation, but they are definitely present with the general notions of model and
modelling, and are also found in the fields of information and conceptual modelling3

, and in
the many disciplines of computer based modelling.

Having observed this, the question comes up of what benefit it might be to gain deeper
knowledge about the notion of model in general, namely in view of the tasks of software and
systems development. And one might also ask, if there is a chance at all to clear the general
notion of model, which is widely assumed to be indefinable. To respond to the second question
first, there is much more to know about models and modelling than there is known today. But
to acquire this knowledge one has to give up some of the epistemological customs of
explanation: when thinking about models one can no longer avoid to constructively treating
their subject and context dependency; and in order to seek for an answer to the question of
what is a model in ontology or some formal theory, one has to rephrase this question as to
what justifies the judgement that a given object is a model, and answer it in the realm of logic;
and finally one has to focus on the structure of contextual relationships characteristic for
models rather than to try to find the kind of similarity which relates an original with its model4

2 If application and use of a system makes a difference, which is what is intended by its provision, it will
change its environment.

.
To respond to the second question, it has first of all to be observed that it is generally

3 Bernhard Thalheim: Entity Relationship Modeling – Foundations of Database Technology, Berlin und
Heidelberg: Springer, 2000.
4 Herbert Stachowiak: Allgemeine Modelltheorie, Wien / New York: Springer, 1973.

271

 ECEASST

impossible to restrict the notion of model to only certain familiar types or to ask for computer
science owned notions of model and modelling. Software systems are applied in almost any
field of science, engineering and daily life, and the design of software has to deal with the
modelling cultures and disciplines in all these fields. It is therefore unavoidable to either know
about the different conceptions of model and modelling in these fields, or to develop a general
conception of universal applicability. It is claimed here that a model of model-being can be
conceptualized, which not only covers all known conceptions of models as particular
fragments or specializations, but which can at the same time be used as a most sensitive tool
for analysis and design, not only in the case of modelling in general, but also in individual
situations of model use.5

 It is the potential of this analytical tool which is promising to also
yield deeper insights into the structure of model interrelations of software. And from these
insights, one can expect, it will be possible to derive techniques and tools for the tasks of
software and systems development.

2 The epistemic pattern of model-being
The question of what justifies a judgement that a given object is a model, presupposes that the
model-being of this object is the conclusion of a judgement for which there are grounds. If it is
possible to phrase general conditions which are necessary and sufficient for such a judgement
to be acceptable, one might take these conditions as an argument form, which, if properly
instantiated, justifies the judgement of model-being in individual cases. The argument form of
model-being is then seen to be the logic of models in general, while its instantiations determine
the logic of individual models. Since judgements are actions of a subject, the model-being of
an individual object is relativised by the subject dependency of its judgement. And since the
argument form of model-being yields necessary and sufficient conditions for acceptability and
not for defined or objective truth, the notion of model, conceptualized in terms of this
argument form, is relativised by the subject dependency of accepting.

The conditions implied by the argument form for model-being can not be inherent properties
of the object judged to being a model. This is obvious from the fact that any object can be
acceptably judged to being a model if it is only positioned into a proper context, for example
into a context of production in which it takes the role of a prototype. And because there is no
object which is a model by necessity, since it is always possible to position an object into a
context in which there is no meaning of models at all, one has to conclude that the conditions
implied by the argument form of model-being are context dependent.

If an object is judged to being a model, it is necessarily conceived of as a model by the judging
subject. Assuming in general that to conceive of an object means nothing else but to identify

5 The model of model-being, for which this strong claim is made, has been developed in the last decade
in interdisciplinary studies and projects by the author and his co-workers. See for example Bernd Mahr:
Modellieren. Beobachtungen und Gedanken zur Geschichte des Modellbegriffs, in: Sybille Krämer,
Horst Bredekamp (ed.): Bild-Schrift-Zahl, München: Fink, 2004, p. 59-86; Bernd Mahr: Ein Modell des
Modellseins. Ein Beitrag zur Aufklärung des Modellbegriffs, in Ulrich Dirks, Eberhard Knobloch (ed.):
Modelle, Frankfurt am Main: Peter Lang, 2008, p. 187-218; Reinhard Wendler: Die Rolle der Modelle
in Werk- und Erkenntnisprozessen, Dissertation am Kunstgeschichtlichen Seminar der Philosophischen
Fakultät III der Humboldt-Universität zu Berlin, Juli 2008; and (Mahr, 2009).

272

Position Statement: Models in Software and Systems Development

the objects involvement in context relationships6, it seems justified to defining the argument
form for model-being as to being a complex of context relationship types. The pattern of these
relationship types is then taken to characterise the situations, in which an object has the role of
a model. This diagram depicts this pattern7

.

χ

μ

G BA

forof
model

is / as

cargo

transports

The diagram defines the argument form of model-being and is composed of epistemic object
and object relationship types. It is therefore also called the epistemic pattern of model-being.
The term epistemic is used here to indicate that objects and relationships of an instantiated
argument form have existence only as intentional objects, i.e. as being conceived of by the
judging subject. Objects of type A, G and B may be conceived of to be concrete or abstract,
but the objects of type μ and χ as well as all relationships are necessarily abstract, i.e. their
existence is independent from space and time.

The intended meaning of the epistemic pattern of model-being, which guides the instantiation
of its object and relationship types, is the following:

1. In the context of this pattern an object of type G is called model object and an object of
type μ is called model. An object of type G is not by its identity a model. It has to be
distinguished from the model as which it is seen, because different model objects can

6 This assumption forms the basis of the model of conception developed by the author. The first thoughts
on this model have been described in Bernd Mahr: Gegenstand und Kontext – Eine Theorie der
Auffassung, in: K. Eyferth, B. Mahr, R. Posner, F. Wysotzki (Ed.): Prinzipien der Kontextualisierung,
KIT Report 141, TU Berlin, 1997, p. 101 - 119. A set-theoretical study of the model is given Tina
Wieczorek: On Foundational Frames for Formal Modelling – Sets, epsilon-sets and a model of
conception, Aachen: Shaker, 2009. For a philosophical justification of the model see Bernd Mahr:
Intentionality and modelling of conception, 2009, to appear.
7 For justification of this pattern see (Mahr, 2009) and Bernd Mahr: Ein Modell des Modellseins. Ein
Beitrag zur Aufklärung des Modellbegriffs, in Ulrich Dirks, Eberhard Knobloch (ed.): Modelle,
Frankfurt am Main: Peter Lang, 2008, p. 187-218. See also Bernd Mahr: Modellieren. Beobachtungen
und Gedanken zur Geschichte des Modellbegriffs, in: Sybille Krämer, Horst Bredekamp (ed.): Bild-
Schrift-Zahl, München: Fink, 2004, p. 59-86.
.

273

 ECEASST

represent the same model. The fact that an object is seen as a model assigns it the role
of a model object and determines the relationship between it and the model it
represents. Instance: The model, depicted as a particular class diagram, which is its
model object, can have different other diagrammatic representations as model objects.

2. A model is always a model of something, the type of which is here denoted by A. And
the fact that a model is seen to be a model of something, determines the relationship
between the model and that of which it is a model. Instance: the model which has the
above mentioned class diagram as its model object, is a model of the universities
library system.

3. Composing the relationships as-a-model and model-of yields the fact that the model
object is seen to be a model of A. This fact determines the relationship between a
model object and that of which it is a model. Instance: the above mentioned class
diagram is a model of the universities library system.

4. A model is always a model for something, the type of which is here denoted by B.
And the fact that a model is seen to be a model for something, determines the
relationship between the model and that for which it is a model. Instance: the model
which has the above mentioned class diagram as its model object, is a model for the
object architecture of the planned implementation of the universities library system.

5. Composing the relationships as-a-model and model-for yields the fact that the model
object is seen to be a model for something. Instance: the above mentioned class
diagram is a model for the planned implementation of the universities library system.

6. In the context of this pattern an object of type χ is called cargo. For a model to make
sense there must be something, named its cargo, which carries over from that of which
a model object is a model, to that, for which it is a model. The cargo of a model is seen
to be transported by the model object from that of which it is a model to that for which
it is a model. This fact determines the three relationships between objects of type M
and χ, A and χ, and χ and B. Instance: the above mentioned class diagram transports a
structure of components, component relationships and component owned operations,
identified in the universities library system to its implementation.

Looking more carefully at situations of model-being, it becomes apparent that the relationship
types between A and G and between G and B show the same sequential structure. In
combination they form the following sequence of action types:

1. an observation on an initial object of type X, resulting observed facts of type Φ(X),
2. a transformation transforming the facts of type Φ(X) to requirements of type Ψ(G)

imposed on a model object of type G,
3. a realization of the requirements of type Ψ(G) by a model object of type G,
4. an observation on the model object, resulting observed facts of type Φ(G),
5. a transformation transforming facts of type Φ(G) to requirements of type Ψ(Y) on a

terminal object of type Y,
6. a realization of the requirements of type Ψ(Y) by the terminal object of type Y.

An object of type A may now be of type X, Φ(X), or Ψ(G), and an object of type B may now
be of type Φ(G), Ψ(Y), or Y. We can then speak of a model of an object, of an observation, or
of requirements, and of a model for accordingly.

274

Position Statement: Models in Software and Systems Development

χ

μ

G Φ(G) Ψ(Y) YΨ(G)Φ(X)X indind dedded transtrans

BA

forof
model

is / as

cargo

transports
χ χ

In any real circumstance in which a compliant judgement of model-being is made, the
epistemic pattern of model-being is instantiated by the judging subject. The subject8 identifies
objects which instantiate the types X, Φ(X), Ψ(G), Φ(G), Ψ(Y), and Y, and it identifies object
relationships which result from the two observations, say α and β, the two transformations, say
σ and τ, and the two realizations, say π and ρ9

, thereby producing a sequence of actions
(which is to be distinguished from the presupposed sequence of action types):

X – α – Φ(X) – σ – Ψ(G) – π – G – β – Φ(G) – τ – Ψ(Y) – ρ – Y

The judgement of model-being is then acceptable, if this sequence of actions is an adequate
view on a defined or a true situation of model-being.

Assuming that all objects with object types in this sequence are being replaced by their logical
theories10

, one observes that observations are deductions, and that realizations are inductions.
A model object is therefore at the same time the result of an induction and the source of a
deduction. This dual nature of model objects can be seen as one of the most typical
characteristics of objects conceived of as models.

8 The judging subject may be a human individual, but it may also be a group of individuals, a
community or, even more abstract, a culture. On the other hand, a judging subject may also be a
machine or a mathematical definition. Generally speaking, the judging subject is something by the
authority of which the judgement in question is affirmed.
9 These identifications need not necessarily be conscious. They constitute part of the context in which
the model object takes its role as a model. The objects and object relationships identified also need not
to have existence independent from the judging subject, as they may just be thought of or generated in
the moment of judgement. Their identification is assumed to be valid as long as the judgement is valid
in the subject’s eye. Examples show that in practice this may be a fragment of a second or, in the other
extreme, if the subject is not an individual, last for centuries, or even longer.
10 The theory of an object is the set of all sentences which are true of this object. A theory is therefore
language dependent. For reasons of simplicity one might assume that the choice of this language is
determined as part of the subject’s judgement and also that it is the same for all objects involved.

275

 ECEASST

The epistemic pattern of model being is not a formal definition of what a model is. Such a
definition would make sense in certain modelling disciplines, like the disciplines of set
formation or graphs, but it would hardly meet the needs of model use in most of the sciences,
engineering and daily life directly. If a definition was to be given it would have to follow the
structure provided by the pattern, and would have to define object and object relationship types
as well as their possible instantiations as mathematical entities in some foundational theory,
like category theory or the theory of sets. A mathematical definition of models would replace
the judging subject by formal conditions and would have to explicitly determine criteria for
relationships to be observations, transformations and realizations. Namely for transformations
these criteria would either be restrictive, like the notion of homomorphism11

, or they would be
very general and therefore be weak in its expressiveness and determination. But the question
of what the epistemic pattern conceptually is, if it is not a definition, can nevertheless be
answered: it is a model itself, i.e. something which is to be judged on the basis of the same
argument form just like any other model. Its epistemological justification is therefore not
different to that of a mathematical definition.

3 Complexes of interconnected models
Anything constructed can be questioned for what it is, how it was constructed, and by what
means. In the case of software, the question ‘what’ asks for the systems architecture, its
functionality and its technical realization; the question ‘by what means’ asks for the techniques
and tools applied in its modelling, implementation and installation; and the question ‘how’
asks for the concepts and models underlying its design. Though the distinction between the last
two questions is not exclusive, since also models are tools, and tools like formalisms and
languages are representations of descriptive models, the question ‘how’ is here intended to ask
for the conceptual basis on which the system was built as a solution and on the ideas and
perspectives taken when this solution was found. The choices of ideas and perspectives are the
choices of models applied in the systems modelling, implementation and technology. For
example, access to a set of stored data can be implemented as an array, a list, a record, a stack,
a tree, or the like; a system which integrates distributed patient data in a hospital and makes
these data available in a net, can be implemented as an information system, a communication
system, an open distributed system, a service, an agent network or a peer to peer system; and a
component in a component based system can be realized as an object, a module, or a service.
At the end, prerequisite or underlying any software and system is a complex of interconnected
models conceptualizing the ideas and perspectives which together determine its design. These
models are metamodels of the systems design which is finally implemented.

Generally, a judgement of model-being is never isolated. It is always embedded into a network
of intentional relations which determine its meaning12

11 Stachowiak, 1973, p. 140 – 159.

. Examples show that the contextual
environment of a model object is typically not only the complex of objects and object
relationships, which the pattern of its model-being indicates, but that this environment also

12 John R. Searle: Intentionality – An Essay in the Philosophy of Mind, Cambridge: Cambridge
University Press, 2004, p. 20 – 21 and 26.

276

Position Statement: Models in Software and Systems Development

includes other models which are interconnected with the model at hand in particular ways.
There are at least two elementary types of model interconnections, namely model compositions
and metamodel applications. Model compositions capture situations in which, for example, a
model object is the initial object of another action sequence, a terminal object is the initial
object of another action sequence, a model object is related to more than one initial object,
observation or requirement, and the like. And metamodel applications capture situations in
which items in an action sequence are constrained by other models in that the constrained item
result from the application of these other models.

In a formal framework it is possible to define types of complexes of interconnected models in
a systematic way, using the sequence of action types in the pattern of model-being.

X – α – Φ(X) – σ – Ψ(G) – π – G – β – Φ(G) – τ – Ψ(Y) – ρ – Y

The following are just examples for which true situations of model-being can be given:

X–α–Φ(X)–σ–Ψ(G)–π–G–β–Φ(G)–τ–Ψ(Y)–ρ–Y–α’–Φ(Y)–σ’–Ψ(Z)–π’–Z

depicting the situation of a terminal object which is a model object itself,

{(Xi–αi–Φ(Xi)–σi–Ψ(G)i–πi) | i є I }–G–β–Φ(G)–τ–Ψ(Y)–ρ–Y

depicting the situation in which a model object G is a model having a set of initial objects

X–α–Φ(X)–σ–Ψ(G)–π–G–[X’–α’–Φ(X’)–σ’–Ψ(G’)–π’–G’–β’–Φ(G’)–τ’–Ψ(β)–ρ’–β]–Φ(G)–τ–Ψ(Y)–ρ–Y

depicting the situation in which the observation β on the model object G is obtained by
applying a metamodel with model object G’.

If prerequisite or underlying any software or system there is a complex of interconnected
models conceptualizing the ideas and perspectives which together determine its design, this
complex may be seen to being the software or system’s model architecture. The model
architecture of software and systems is most likely a new source of knowledge about the
software and systems design, the conceptualization and identification of which can provide
new insights and lead to new kinds of tools for development.

277

ECEASST

Why Model Transformations Should be Based on Algebraic Graph
Transformation Concepts

Gabriele Taentzer

Philipps-Universität Marburg
Germany

Abstract: Model transformations are key activities in model-driven development
(MDD). A number of model transformation approaches have been emerged for dif-
ferent purposes and with different backgrounds. This paper is a plea for the use of
algebraic graph transformation concepts to specify and verify model transformations
in MDD.

Keywords: model transformation, graph transformation

1 Introduction

Model transformations play a central role in model-driven software development. They are used
to e.g. refactor models, to translate them to intermediate models, and to generate code. We
distinguish endogenous transformations taking place within one model language from exogenous
ones which are translations between model languages [CH06].

Model-to-model transformations are usually distinguished from model-to-text transforma-
tions. (Compare also Eclipse modeling projects at [EMP].) Why does this distinction ex-
ists? While model-to-model transformation approaches such as , QVT, ATL [EMP] and graph
transformation-based approaches [SNZ08] like GrGen, MOFLON, Tiger, and VMTS, transform
models based on their underlying syntax structure only, model-to-text transformations performed
by tools such as Jet and Velocity, are usually mixed approaches. The abstract syntax of an input
model is transformed to some text in concrete syntax, often program text. These approaches
are based on templates considered as “clozes” where gaps are filled with information coming
from the input model. I.e. these transformations are often performed in a weakly structured
and untyped manner. No guarantees are given that that resulting text is syntactically correct. In
contrast, model-to-model transformations offer the chance to transform valid syntax structures
again to valid ones.

Models are often considered to be visual, although this is not an inherent property of models.
It is very natural to consider the underlying structure of a visual model as graph. In case of the
Eclipse Modeling Framework [EMF] which has developed to a quasi-standard modeling tech-
nology, the underlying structure of an EMF model can be considered as graph with a spanning
tree (or spanning forest, i.e. several spanning trees) exposed by containment relations.

Volume X (2010)

278

Why Model Transformations Should be Based on Algebraic Graph Transformation

2 Specification of model transformations by algebraic graph trans-
formations

Several specification paradigms have been applied to model-to-model transformations such as
object-oriented, rule-based, constraint-based, and imperative concepts. See [CH06] for an overview
on various model transformation approaches following these paradigms purely or in combina-
tion. In the following, we highlight some features of the rule-based definition of model transfor-
mations using algebraic graph transformation concepts.

Considering the transformation of visual models, graph transformation seems to be a natural
choice to manipulate their underlying graph structures. A well-defined approach such as the al-
gebraic graph transformation [EEPT06] guarantees that the resulting model has again a graph as
underlying structure and thus, is structure consistent. EMF model transformations can be defined
as a special kind of graph transformations not destroying the spanning tree (forest) property. The
algebraic graph transformation concepts also cover typing concepts. Similarly to object-oriented
inheritance concepts, node type inheritance is offered [EEPT06]. Typed algebraic graph trans-
formations have been shown to always lead to well-typed transformation results.

While graph transformations are strong in pattern matching and replacement using it for e.g.
restructuring of class structures, collections of flexible size such as the set of all features be-
longing to a class, can be handled less obviously. In the algebraic context, we use amalgamated
graph transformation where a kernel rule is applied exactly once and multi-rules being super
rules of the kernel rule are applied as often as possible. All their applications overlap in the
kernel rule application. Usually, each multi-rule application covers one collection element. As
shown in [BET09], this concept can also be extended to EMF model transformation in a straight
forward way. Ordered collections such as parameter lists of operations can also be treated by
amalgamated transformations where the ordering is expressed by edge attributes. However, edge
attributes have to be kept consistent with structure manipulations by the developer.

The usual double-pushout approach to graph transformation [EEPT06] can be interpreted as a
kind of in-place transformation where new parts are directly integrated into the existing graph.
In addition, it is also allowed to delete existing graph parts from the given graph. To keep track
with graph manipulations, the formal definition distinguishes an original graph from a resulting
one. A partial graph morphism in between precisely defines the relation between both graphs.
In contrast to in-place transformation, triple graph grammars (TGGs) [KS06] distinguish three
graphs, namely a source graph, a target graph, and a correspondence graph which is mapped
to each of the other two for establishing a correspondence relation between source and target
graphs. TGGs are useful to specify exogenous model transformations. Recently, Ehrig et.al.
started to build up a theory on TGGs formalized by algebraic graph transformation concepts
where round-trip transformations are in the focus. (Compare e.g. [EP08].)

3 Verification of model transformations

Since model transformations are reused heavily in MDD, they should be of high quality. It
is common practice to extensively test model transformations. Their verification is still in its
infancy. Which properties are interesting to be verified?

Proc. GMT 2010

279

ECEASST

As pointed out in the previous section, it is basic to each model transformation that its results
are structure and type consistent. Transformation approaches such as algebraic graph transfor-
mation guarantee this property already automatically by definition without any additional verifi-
cation effort.

Furthermore, model transformations shall terminate. This property cannot always be shown,
since model transformation approaches are usually Turing-complete. Thus, we are confronted
with the halting problem in general. But there are approaches to develop sufficient termina-
tion conditions for model transformation system, especially for algebraic graph transformation
systems (see e.g. [EEPT06]).

Another general property of model transformations to be discussed is the uniqueness of their
results, i.e. given an input model the transformation result should be unique up to isomorphism.
Actually, this strict property is often not needed. If e.g. a code generator provided two different
programs from one and the same input model, we would expect that they both are semantically
equivalent wrt. the input model. (I.e. both programs exhibit the same observable behavior when
being executed.) Since semantical equivalence is often difficult to show, proving the uniqueness
of transformation results is, although more strict, more practicable. Algebraic graph transfor-
mation offers a rich theory to show that transformation systems are confluent, i.e. yield unique
results only. This theory is based on a result for general rewrite systems which states that a
rewrite system which is locally confluent and terminating, is confluent in general. Local conflu-
ence can be shown based on critical pairs, an approach which has been lifted from term rewriting
systems to graph transformation systems. A critical pair shows a conflicting situation in a mini-
mal context. If all critical pairs can be shown to be confluent, the complete transformation system
is locally confluent.

Additional to these pretty general properties, transformation results also need to be elements
of target languages. This means that they have to be syntactically and semantically correct.
The syntax of modeling languages is usually given by meta models [MOF], i.e. a resulting
model has to be type consistent and has to obey all additional well-formedness rules of the
meta model. As already pointed out, algebraic graph transformations guarantee type consistent
results. Well-formedness rules which can be expressed by graph constraints [HP09] can be used
as post conditions to check transformation results. Furthermore, there is a technique to translate
graph constraints to application conditions of transformation rules, i.e. to translate them to pre
conditions of transformations. That way algebraic graph transformations provide us with an
automatic and efficient procedure to check for syntactical correctness.

Semantical correctness of transformation results is most difficult to verify. We distinguish the
static and dynamic analysis of transformation results. Static analysis can be performed similarly
to the check for syntactical correctness. Additional constraints are specified and verified as
sketched above. Further recent approaches apply model checking to graph transformations e.g.
[RSV04] or to use a theorem prover [Str08]. To analyze the dynamic semantics of transformation
results we assume that dynamic semantics definitions exist for the source and the target language.
Assuming that an operational semantics is given by an algebraic graph transformation system
for both, source and target languages, and the source semantic rules have been translated to
corresponding target semantic rules, then Ehrig et.al have shown in [EE08] that an execution
step of the source model corresponds to an execution step of the target model.

Volume X (2010)

280

Why Model Transformations Should be Based on Algebraic Graph Transformation

4 Outlook

Model transformations form an interesting research field with a lot of new research problems
to be solved. In the following, we spot on a selection of topics where the application of graph
transformation concepts seems to be very promising:

The application of algebraic graph transformation concepts to EMF model transformation as
presented in [BET08] shows that formal concepts can be well applied in a practical setting.
Furthermore, we showed the nice property that resulting EMF models are structure and type
consistent by construction. In addition, the rich theory of algebraic graph transformation can
be easily adapted to this kind of EMF model transformations leading to interesting verification
techniques for EMF model transformations.

As stated above, distinct transformation approaches have been emerged for model-to-model
and model-to-text transformations. We can observe a recent trend where model-to-model trans-
formation approaches such as ATL are also applied to model-to-text transformations. This means
that transformation results, being texts in this case, are computed on the basis of abstract syntax
structures. Approaches like JaMoPP [HJSW09] for example, define meta models for Java and
provide model parser and printer. Thus having a meta model for a textual language, model-to-
model transformation approaches and especially graph transformation approaches can be applied
guaranteeing well-structured and well-typed transformation results. Moreover, even model-to-
text transformations can be verified according to interesting properties. It is up to future work
to test and probably improve the efficiency of model-to-model transformation implementations
compared to model-to-text transformations.

Last but not least, we can observe that the deployment of model transformation techniques in
software engineering increases and more complex forms of model transformations are needed
where not only one input and one output model are considered but a number of models are
involved. Example scenarios are coherent refactorings of several heterogenous models and/or
code, code generation from several interrelated models such as those in the Graphical Modeling
Framework [GMF], yielding a number of code files, model weaving, etc. Algebraic graph trans-
formation seems to be a promising formal basis also for such networks of model transformations,
since it is based on category theory which provides us with rigorous structuring concepts.

Bibliography

[BET08] E. Biermann, C. Ermel, G. Taentzer. Precise Semantics of EMF Model Transforma-
tions by Graph Transformation. In Czarnecki et al. (eds.), Model Driven Engineering
Languages and Systems, 11th International Conference, MoDELS 2008, Toulouse,
France, September 28 - October 3, 2008. Proceedings. Lecture Notes in Computer
Science 5301, pp. 53–67. Springer, 2008.

[BET09] E. Biermann, C. Ermel, G. Taentzer. Lifting Parallel Graph Transformation Concepts
to Model Transformation based on the Eclipse Modeling Framework. In Drewes
et al. (eds.), Manipulation of Graphs, Algebras and Pictures: Essays Dedicated to
Hans-Jörg Kreowski on the Occasion of His 60th Birthday. 2009. Available online
at http://www.informatik.uni-bremen.de/∼hof/hjk60-festschrift d.html.

Proc. GMT 2010

281

http://www.informatik.uni-bremen.de/~hof/hjk60-festschrift_d.html

ECEASST

[CH06] K. Czarnecki, S. Helsen. Feature-based survey of model transformation approaches.
IBM Systems Journal 45(3):621–646, 2006.

[EE08] H. Ehrig, C. Ermel. Semantical Correctness and Completeness of Model Transfor-
mations using Graph and Rule Transformation. In Ehrig et al. (eds.), Proc. Interna-
tional Conference on Graph Transformation (ICGT’08). LNCS 5214, pp. 194–210.
Springer Verlag, Heidelberg, 2008.

[EEPT06] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer. Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series.
Springer, 2006.

[EMF] EMF. Eclipse Modeling Framework. http://www.eclipse.com/emf.

[EMP] EMP. Eclipse Modeling Project. http://www.eclipse.org/modeling/.

[EP08] H. Ehrig, U. Prange. Formal Analysis of Model Transformations Based on Triple
Graph Rules with Kernels. In Ehrig et al. (eds.), Proc. International Conference
on Graph Transformation (ICGT’08). LNCS 5214, pp. 178–193. Springer Verlag,
Heidelberg, 2008.

[GMF] GMF. Graphical Modeling Framework. http://www.eclipse.com/gmf.

[HJSW09] F. Heidenreich, J. Johannes, M. Seifert, C. Wende. JaMoPP: The Java Model Parser
and Printer. Technical report TUD-FI09-10, Technical University of Dresden, Institut
für Software- und Multimediatechnik, 2009. Technical Report.

[HP09] A. Habel, K.-H. Pennemann. Correctness of high-level transformation systems rel-
ative to nested conditions. Mathematical Structures in Computer Science 19:1 – 52,
2009.

[KS06] A. Königs, A. Schürr. Tool Integration with Triple Graph Grammars - A Survey.
Electronic Notes in Theoretical Computer Science 148, 113-150, 2006.

[MOF] MOF. Meta Object Facility (MOF) Core. URL: http://www.omg.org/spec/MOF.

[RSV04] A. Rensink, Schmidt, D. Varró. Model Checking Graph Transformations: A Com-
parison of Two Approaches. In Ehrig et al. (eds.), International Conference on Graph
Transformations (ICGT). Lecture Notes in Computer Science 3256, pp. 226–241.
Springer Verlag, Berlin, 2004.

[SNZ08] A. Schürr, M. Nagl, A. Zündorf (eds.). Applications of Graph Transformations with
Industrial Relevance, Third International Symposium, AGTIVE 2007, Kassel, Ger-
many, October 10-12, 2007, Revised Selected and Invited Papers. Lecture Notes in
Computer Science 5088. Springer, 2008.

[Str08] M. Strecker. Modeling and Verifying Graph Transformations in Proof Assistants.
Electron. Notes Theor. Comput. Sci. 203(1):135–148, 2008.
doi:http://dx.doi.org/10.1016/j.entcs.2008.03.039

Volume X (2010)

282

http://www.eclipse.com/emf
http://www.eclipse.org/modeling/
http://www.eclipse.com/gmf
http://www.omg.org/spec/MOF
http://dx.doi.org/http://dx.doi.org/10.1016/j.entcs.2008.03.039

Pre-Proceedings GraMoT 2010

283

Pre-Proceedings GraMoT 2010

Author Index

Bapodra, Mayur . 156
Bartels, Björn . 180
Bottoni, Paolo . 76
Bruni, Roberto .10

Corradini, Andrea . 10
Costa, Simone . 122

Dillenburg, Fabiane . 122
Dotti, Fernando . 122

Ehrig, Hartmut . 258
Ehrig, Karsten . 56
Engels, Gregor . 240
Ermel, Claudia . 56

Glesner, Sabine . 180
Göthel, Thomas . 180

Habel, Annegret . 136
Heckel, Reiko . 156
Hermann, Frank . 196
Hoffmann, Kathrin . 86
Hülsbusch, Mathias . 196

König, Barbara . 196
Kreowski, Hans-Jörg 216
Kuske, Sabine . 216

Löwe, Michael . 264

Mahr, Bernd .270
Modica, Tony .86
Montanari, Ugo . 10

Orejas, Fernando .26

Padberg, Julia . 86
Parisi-Presicce, Francesco 76

Radke, Hendrik . 136
Ribeiro, Leila . 122
Rozenberg, Grzegorz 178

Soltenborn, Christian 240

Taentzer, Gabriele . 278
von Totth, Caro . 216

284

	CorradiniMontanari.pdf
	Introduction
	An algebra of hierarchical graphs
	Top-view models
	Side-view models
	Well-typedness and extrusion

	A calculus with nested structures and communication: CaSPiS
	Encoding CaSPiS into the algebra of designs
	Transformation rules for CaSPiS reduction semantics

	Conclusions

	Orejas.pdf
	Introduction
	Preliminaries
	Basic algebraic concepts and notation
	E-graphs
	Attributed Graphs

	The category of symbolic graphs
	Symbolic graphs and attributed graphs
	Symbolic graph transformation and attributed graph transformation
	Conclusion

	article.pdf
	Introduction
	Case Study 1: Medical Information System
	Case Study 2: Business Process Model Transformation
	Case Study 3: Metabolic Pathway Analysis
	Case Study 4: Self-Healing Automated Traffic-Light
	Evaluation and Conclusion

	ParisiBottoni.pdf
	Introduction
	Formal Background
	A Termination Criterion
	Examples
	Related Work
	Concluding Remarks

	HoffmannPadbergModica.pdf
	Introduction
	Flexible Processes in manets
	Reconfigurable Systems
	Emergency/Disaster Scenario
	Conclusion

	MargariaSteffen.pdf
	Introduction
	jMosel
	Syntax
	Semantics

	First-Order Value Numbering
	Characterization of 1st-order Value Numbering
	Example

	Second-Order Value Numbering
	Characterization of 2nd-order Value Numbering
	Semantics Transformers
	Example
	The Optimizing Transformation

	Application and Performance Measuring
	Conclusion

	Ribeiro.pdf
	Introduction
	Relational Approach to Graph Grammars
	Event-B
	Graph Grammars in Event-B
	Final Remarks

	HabelRadke.pdf
	Introduction
	Graphs with variables
	HR conditions
	A classification of graph properties
	Expressiveness of HR conditions
	Conclusion
	Weak adhesive HLR categories
	Constructions and proofs

	BapodraHeckel.pdf
	Introduction
	Background and Related Work
	Stochastic graph transformation rules to ODEs
	ODEs from Chemical Reactions and PT Nets
	Nets From Graph Transformation Systems Modelling Chemical Reactions

	Case Study - the SN1 reaction
	The Graph Transformation System
	From Graph Transformation System to Place Transition net
	ODEs from the PT net
	Tool support

	Conclusion

	Glesner.pdf
	Introduction
	Used Formalisms and Tools
	TimedCSP
	LLVM
	Isabelle/HOL

	The VATES Approach
	Verification with Timed CSP and Network Invariants
	Formalization of Timed CSP
	Parameterized Systems and Network Invariants

	Relating High-Level and Low-Level Models
	Synthesizing a Low-Level CSP Model
	Design of the Low-Level CSP Model

	Verification on the Intermediate Level
	Operational Semantics of LLVM
	Bisimulation Relation

	Related Work
	Conclusion and Future Work

	KönigHermann.pdf
	Introduction
	Challenges for Model Transformations
	Specification of Model Transformations by Triple Graph Grammars
	Results for Model Transformations Based on Triple Graph Grammars
	Verification of Model Transformations
	The Borrowed Context Technique
	Using the Borrowed Context Technique for the Verification of Model Transformations

	Related Work
	Conclusion

	Kreowski.pdf
	Introduction
	Preliminaries
	Graph Rule Bases
	Graph Classes
	Rules
	Rule Application
	Example for a Graph Rule Base
	Further Basic Types

	 Models and Model Types
	Actions and Model Transformation Processes
	Model Transformation Units
	Sequential and Parallel Composition
	Sequential Composition
	Parallel Composition

	Related Work
	Conclusion

	EngelsSoltenborn.pdf
	Introduction
	Dynamic Meta Modeling
	Test-driven Language Derivation
	Example: Enhancing UML Activities
	Test-driven Semantics Specification
	Creating Example Models
	Deriving Test Cases
	Specifying the Semantics

	Test-driven Derivation Process
	Using DMM Rule Overriding
	The Tool Chain

	Related Work
	Conclusion

	Hartmut-PositionStatementGraMot2010.pdf
	1 Introduction
	2 Formal Software Specification Techniques in the Past (1970 – 1990)
	3 Formal Software System Modelling in the Present (1990 – 2010)
	4 Future Aspects of Formal Software System Modelling (2010 – 2020)
	References

	Mahr.pdf
	1 Introduction
	2 The epistemic pattern of model-being
	3 Complexes of interconnected models

	Mahr.pdf
	1 Introduction
	2 The epistemic pattern of model-being
	3 Complexes of interconnected models

	Taentzer.pdf
	Introduction
	Specification of model transformations by algebraic graph transformations
	Verification of model transformations
	Outlook

	Hartmut-PositionStatementGraMot2010.pdf
	1 Introduction
	2 Formal Software Specification Techniques in the Past (1970 – 1990)
	3 Formal Software System Modelling in the Present (1990 – 2010)
	4 Future Aspects of Formal Software System Modelling (2010 – 2020)
	References

	Ribeiro.pdf
	Introduction
	Relational Approach to Graph Grammars
	Event-B
	Graph Grammars in Event-B
	Final Remarks

