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Abstract

Model driven engineering as a methodology for designing and implementing systems

and processes is established for years now. The industry on one hand and Open

Source communities on the other hand provide a large variety of frameworks for model

driven development processes. The Eclipse Modeling Framework (EMF) implements a

modeling approach by providing code generation facilities for structural data models.

Although there already exist proposals for EMF model transformations, a graph-

based approach, where model transformations can be defined in a visual, rule-based

manner has not been considered yet.

In this thesis, a formal interpretation of modeling concepts is presented and a

model transformation approach for EMF is introduced, based on formal graph trans-

formation. An implementation is provided in the form of a graphical editor for the

Eclipse platform, that allows the visual definition of in-place transformations for

EMF-compliant models. EMF model instantiations are interpreted as attributed

typed graphs with special containment edges. The order properties of these con-

tainment edges are formalized and conditions are stated, that must be satisfied to

apply transformation rules to this kind of graphs. Further, a concept of consistency

is introduced, that ensures well defined instantiations of EMF models. Applications

of the framework are given through two examples, one for endogenous and one for

exogenous model transformations.
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Zusammenfassung

Modell-getriebene Software-Entwicklung als Methodik um Systeme und Prozesse zu

entwerfen und implementieren, hat sich schon seit Jahren durchgesetzt. Die In-

dustrie auf der einen Seite und Open Source Communities auf der anderen, haben

eine Vielzahl von Modellierungswerkzeugen und -umgebungen hervorgebracht. Das

Eclipse Modeling Framework (EMF) realisiert einen solchen Modellierungsansatz, in-

dem es Codegenerierung für strukturelle Datenmodelle ermöglicht. Zwar existieren

bereits Modell-Transformationsansätze für EMF, ein auf formaler Graph-Transforma-

tion basierender Ansatz, bei dem Transformationen regelbasiert und visuell definiert

werden können, wurde aber bisher noch nicht betrachtet.

In dieser Arbeit wird eine formale Betrachtung von Modellierungskonzepten gegeben

und ein Modell-Transformationsansatz für EMF vorgestellt, basierend auf Graph-

Transformationssystemen. Eine Implementierung liegt in Form eines graphischen Edi-

tors für die Eclipse Plattform vor, der eine visuelle Definition von sogenannten In-place

Transformationen für EMF Modellen ermöglicht. Instanziierungen von EMF Mod-

ellen werden als attributierte, getypte Graphen mit speziellen Containment-Kanten

interpretiert. Es werden die Ordnungseigenschaften dieser Kanten formal definiert

und Bedingungen angegeben, unter denen eine Transformation von solchen Graphen

möglich ist. Weiter wird ein Konsistenz-Begriff eingeführt, der wohldefinierte EMF

Modell-Instanziierungen definiert. Als Anwendung werden zwei Beispiele diskutiert,

eines für endogene und ein weiteres für exogene Modell-Transformationen.
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Chapter 1

Introduction

1.1 Motivation

Model driven development is a methodology for describing and handling complex

systems and processes. Examples for complex systems are not only large distributed

environments, but also rather small systems like the real-time computation units in

a car. Complexity is a general phenomenon. It is neither a domain specific problem

nor limited to technical fields only.

Most approaches that try to solve this problem, describe systems and processes

by defining models for them and use these models for further implementation and

analysis. Modeling approaches in this way are able to handle the great complexity of

large systems. However, the complexity can not really be removed, but only trans-

ferred to another level, because even if these models are able to simplify and state the

structure or behavior of a system in a better way, analyzing and handling dependen-

cies between multiple, often evolving models is a new upcoming complexity. Popular

certified development processes like the Rational Unified Process1 or the V-

Modell2 for instance define a number of phases, each including usually multiple

models defined in multiple languages with a number of tools. In reality these pro-

cesses involve the work of sometimes hundreds of developers, who often communicate

only by exchanging models or specifications.

Therefore it is of great importance to be able to handle models and their relations,

which is a goal of this thesis. By ’relations between models’ the constructive concept

of model transformation is meant, e.g. to automatically generate a so called platform

1http://www.ibm.com/software/awdtools/rup/
2http://www.v-modell.iabg.de/
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2 CHAPTER 1. INTRODUCTION

Figure 1.1: Work flow for a development process based on the V-Modell

specific model from a platform independent model, which is a major problem that

occurs in almost every model driven development process. Another example for model

transformations is the case of refactoring where it is the goal to modify a system’s

structure while keeping its behavior.

In this thesis, a combination of formal methods and popular modeling techniques

is presented by implementing a graph transformation based approach. Since there

is a large variety of modeling languages implementing different modeling paradigms,

which can not simply be mapped to one holistic approach, we choose a concrete

modeling technology, called EMF, and define transformations for this framework with

the aim of being formal. The implementation of the presented approach is on one

hand very intuitive, because its a visual language, and provides on the other hand

reliable assertions about the transformation’s semantics through formal analysis.

1.2 Models and Model Transformation

The term model transformation is used a lot in the context of model driven software

development. The goal of model driven engineering in general is to give a complete

specification for a system by defining a model describing all structural and behavioral

features of the system. Such a model is often given in the form of diagrams repre-

senting views on multiple aspects of the system (structural, behavioral etc.). The

notion of model is central to this approach and so is the one of model transforma-

tion. Since these terms are so important and basically come from the world of model

driven development, it is interesting to see how these notions can be interpreted in a
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formal way. As a motivation for how a connection between the world of model driven

development and formal methods can be established, existing definitions of the term

model / model transformations are compared in the following.

1.2.1 Formal View on Models

Models are usually thought of as some kind of semantic giving functions, e.g. a

grammar of a programming language can be seen as an abstract definition for the

class of valid programs for this language. On the other hand a specific program can

be seen again as a formal definition for the class of all possible applications of this

program (e.g. for different input values), which is called it’s operational semantics.

Formal definitions of the term model are often made in the form of a mapping

from an abstract schema (usually referred to as syntax ) into a semantical domain. In

first order logic the syntax is given by a set of formulas or a theory T , while it’s model

class Mod(T ) is defined as the class of structures fulfilling these formulas - again a

mapping into a semantical space.

In category theory, the notion of model is usually defined as a so called model func-

tor, which is basically a mapping from an abstract schema category into a semantical

category (see [BW99, p. 42-43] for a precise definition). The abstract schema can be

compared to what was referred to as syntax before. This schema is a definition of the

common structure of all models of this schema. It is basically a language definition.

For instance, the category generated by the graph S shown in (1.1) can be seen as

such an abstract schema.

E V
source //
target

// (1.1)

A model functor of the form M : S → Set maps the objects E and V to certain

sets and the arrows source and target to functions from M(E) to M(V ). Since we

interprete S as a language definition, we need to somehow state the static semantics

of this definition. This is the model class, as mentioned earlier. So the static semantics

of this language definition is the class of all functors into some semantical category.

Since M(V ), M(E) are sets and M(source), M(target) : M(E) → M(V ) are

functions, the structure described by this schema are graphs. The set M(V ) can be

interpreted as nodes and M(V ) as edges of a graph. So in essence, the graph S is a

schema whose models in Set are graphs again (!).

This principle, to use a language to define itself is usually referred to as bootstrap-

ping of a structure or a language. Bootstrapping can be found at various points in

computer science. One that will also appear in the presented approach later and that
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turned out to be very important is the definition of a model based language using

a metamodel, e.g. UML 2 is defined through a metamodel that itself is a UML 2

compliant model3.

So in categorical terms, a model can be defined as a functor from an abstract

schema into some semantical space. Category theory is one of the most generic

theoretical frameworks and therefore has a lot of very abstract terminologies. One

of them is the so called natural transformation between funtors, which is some kind

of mapping from one functor to another. This terminology allows to define model

transformations formally as natural transformations between model functors. Such

mapping from one model functor to another can be visualized as shown in (1.2). The

precise definitions would go beyond the focus of this thesis. For details see [BW99,

p. 43] or [EB05].

S

M1(S) M2(S)

M1

����
��

��
��

�
M2

��6
66

66
66

66

α
+3 (1.2)

1.2.2 Model Driven Engineering View

In the terms of model driven engineering, the notion of metamodel is central. A

metamodel is just a usual model, but it is used in a special way. It defines a modeling

language. Such a metamodel can be interpreted formally as an abstract schema in the

way described before. A model is essentially the process of metamodel instantiation,

as shown in Figure 1.2. While there is an endless number of models, the metamodel

is fixed. All models have something in common and this common structure is defined

by the metamodel. The relation between metamodel and model is called instantiation

in one direction and typed by in the other one. While this relation is usually thought

of as vertical, a mapping from one model to another is horizontal (on the same

level). In the terms of model driven engineering, such a mapping is called a model

transformation. Mathematically, it would rather be called a homomorphism in the

simplest case (a mapping that respects certain constraints). Recalling the categorical

interpretation, model transformations were defined as natural transformation between

model functors, which is essentially the same as a homomorphism for the language

defined by the abstract schema / metamodel (see [BW99]).

3The UML 2 metamodel actually is not defined using UML 2 but a language called MOF. Nev-
ertheless, MOF is a part of UML 2 (package merge)
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 1

 1

0..n

Instantiation

Transformation

Metamodel

Models

Figure 1.2: Instantiation as vertical relation between models and their metamodels.
Transformation as horizontal relation between models typed by the same metamodel.

These categorical definitions are just a motivation for a formal point of view on

notions of the world of model driven engineering. The terminology of model driven

engineering is often quiet blurry and it is even harder to define a precise mathematical

view on these notions, but as partially shown, it is possible to define these notions

in a formal, mathematical way. Now why is this important? Because it is the only

way to define terms like correctness or consistency for them. There is simply no

common notion of correctness of a model transformation for instance. This is one

of the biggest issues, when applying model driven engineering to sensitive fields like

real-time environments, e.g. the very complex software of jumbo jets or other areas

where safety and therefore correctness of models and the software that is generated

by them is essential.

1.2.3 Structural Data Models

Structural data models define domain specific languages. EMF is all about these

domain specific languages and therefore is defined by a metamodel for structural

data models. These data models are basically class diagrams. They define a language

through a number of classes and associations between them, that can include certain

constraints, like multiplicities.

Such class diagrams can be formally interpreted as attributed typed graphs with

additional semantical features, like inheritance and multiplicity constraints. Formal
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transformations between such graphs can be either defined using graph homomor-

phisms directly between two data models, or rule-based on the level of model instan-

tiations (in-place transformations). These rule-based transformations turned out to

be very generic and are therefore the central concept in this thesis, forming the basis

for model transformations for EMF.

1.3 Overview

In chapter 2, formal definitions for graphs and graph transformation system are made.

They involve attribution and typing of graphs and the so called gluing condition, that

is required to apply transformation rules wrt. a given match into a graph.

A short introduction to the concepts of the Eclipse Modeling Framework (EMF)

is given in chapter 3. It is pointed out what features of EMF are required to define

languages and how EMF models can be used in actual implementations. Further, a

short comparison to another metamodeling language, called MOF, is given.

In chapter 4, the formal concepts of graphs introduced before are extended with

formal versions of specifical features of EMF and other modeling languages. These are

inheritance, multiplicities and containment associations. Graph transformations are

extended to transformations of EMF model instantiations. A so called containment

condition is stated that is required to have a proper defined transformation result.

Further, it is shown what other constraints must be satisfied for instantiations of EMF

models. This is done by introducing a concept of concistency of transformations.

Afterwards, the provided implementation is discussed. This mainly includes a

graphical editor, that is based on an underlying transformation model.

Applications of the presented approach are given in chapter 6. EMF-Refactoring

as an endogenous transformation on one hand and a mapping from simple class di-

agrams to relational database schema as an example for exogenous transformations

on the other hand are discussed.

A conlusion and proposals for possible future work can be found in the last chapter.

The appendix includes proofs for two theorems that are concerned with the concept

of containment edges. An introductionary user guide for the model transformation

framework can also be found in the appendix.



Chapter 2

Graph Transformation Systems

The basis of the presented model transformation approach are formal graph trans-

formation systems. For that reason, a short introduction to typed attributed graphs,

graph homomorphisms and transformations is given in the following. For details

that go beyond the definitions made here, see [EEPT05] (graph transformation) and

[BW99], [EB05] (category theory).

2.1 Typed Attributed Graphs

The first goal is to state the structure of EMF models and later of EMF model trans-

formations in a formal manner. That is the starting point for describing important

properties like termination, confluence and consistency of model transformations. As

mentioned before, EMF models are interpreted as graphs in our approach.

Definition 2.1.1 (Directed graph). A directed graph G = (V, E, source, target)

consists of a finite set of nodes V (vertexes), a finite set of edges E and two functions

source, target : E → V that assign to each edge a source and a target node.

All kinds of graphs used here are defined in this way and therefore always have

directed edges. This very basic definition can be extended in a couple of ways, e.g.

the nodes and/or edges can be labeled, can have certain constraints or basically can

have some kind of other structure added. In particular, adding algebraic information

to the nodes/edges is usefull, which leads to what is called attributed graphs. Before

adding any structure, it is first necessary to define a concept of mappings between

these graphs.

7
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Definition 2.1.2 (Graph homomorphism). A graph homomorphism h = (hV , hE) :

G1 → G2 is a pair of functions hV : V1 → V2 and hE : E1 → E2 with the property

that hE ◦ source2 = source1 ◦ hV and hE ◦ target2 = target1 ◦ hV , which is the same

as that the following diagrams commute.

E1 V1

E2 V2

=

source1 //

source2

//

hE

��

hV

��

E1 V1

E2 V2

=

target1 //

target2
//

hE

��

hV

��

(2.1)

A graph homomorphism h is injective if both hV and hE are injective. Having these

basic notions we want to extend them by adding type information. Nodes and edges

of a graph can be typed by nodes / edges of a given typing graph. Homomorphisms

for this kind of graphs should preserve the typing information.

Definition 2.1.3 (Typed graph). Given a distinguished typing graph T , a graph G

is typed by T , if there is a graph homomorphism type : G → T . This typing graph

homomorphism assigns to each node and edge in G a node type / edge type.

Definition 2.1.4 (Typed graph homorphism). For a typed graph homomorphism

h : G1 → G2, both graphs G1 and G2 must have the same typing graph T and the

following diagram has to commute.

T

G1 G2

=
type1

<<zzzzz
type2

bbDDDDD

h
//

(2.2)

Attribution of graphs is not given formally here. For each node and edge in a

typing graph, a set of attributes can be declared. For an application in a context of a

modeling language like EMF, attributes of edges are not considered here. In a node

of a typing graph, the attributes are identified through a unique name and have a

specified type. Here we only consider primitive-valued attributes, i.e. strings, integers

etc. Each instantiation of a typing graph (a graph that is typed by it) includes a set

of nodes and edges that have a specific node/edge type. The nodes of the typed graph

can further include values for the attributes as defined in the typing graph. Formal

definitions of attributed graphs are based on an integration of Σ-algebras into graphs

(see [EEPT05]).
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Use case

Actor

involved in

extends

Figure 2.1: Typing graph for Use case diagrams in concrete syntax. There are two
node types (Use case, Actor) and two edges types (extends, involved in).

2.2 Rule based Transformations of Graphs

Graph transformations are defined using transformation rules. These rules consist of

a left-hand side, a right-hand side, a mapping between those two and possible negative

application conditions. A left-hand side (LHS) of a rule is a graph that stands for

the structural preconditions that must be fulfilled to apply the rule. Accordingly a

right-hand side (RHS) is a graph that describes the result (or postconditions) of a

rule. Negative application conditions (NACs) are also graphs, that describe structural

conditions that must not be fulfilled to apply the rule.

Nodes in the LHS of a rule can be mapped to nodes in the RHS and also to

nodes in the NACs. Those nodes in the LHS, which are mapped to the RHS, will be

preserved during transformation. Nodes in the LHS, which have no mapping to the

RHS are being removed. Accordingly, nodes in the RHS without a mapping source

will be created during rule application.

To apply a rule it is necessary to define a match from the LHS into the graph that

should be transformed. Such a match can be given explicitly or can be found using

match finding algorithms. In general, finding a match of two graphs is a problem that

cannot be solved efficiently. However, typing information decreases the complexity

of finding a match a lot and usually the transformation rules are also rather small

(consist of a few nodes and edges). Often there is also at least a partial match given

(see the example of refactoring in chapter 6). Even though the theoretical problem is

very complex, computing matches for typed graph transformations is feasible in all

realistic applications.

In (2.3) it is shown that a rule consists of a left-hand side, a right-hand side

and a partial mapping between these two graphs (plus possible negative application
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conditions). Such a rule together with an input graph and a match from the left-

hand side into the input graph are the necessary information to compute a rule

application, i.e. a direct transformation step. While the solid lines in (2.3) must be

given, the dotted lines represent the actual computation that is performed to derive

the transformation result.

LHS RHS

Input Output

partial mapping //

match

�� ��
//

(2.3)

As already mentioned, the match describes the structural pattern that must be

found in the input graph. Adding the algebraic features of typed attributed graphs,

it is also possible to define pre- and postconditions for attribute values. For this,

primitive-typed variables are used which can be evaluated from a match or given

explicitly as an input value.

In the following, the concept of graph transformation rules and graph transfor-

mations (also called productions) is introduced. We make these definitions on simple

graphs only and do not consider attributes and types. Negative application conditions

are also handled in a informal way. For further details see [EEPT05].

Definition 2.2.1 (Graph transformation rule). A graph transformation rule p =

(L
l← K

r→ R) consists of three (typed) graphs L, K, R together with two injective

(typed) graph homomorphisms l : K → L and r : K → R.

The graph K can be seen as a gluing graph which connects the left-hand side

with the right-hand side. As described before matches between a LHS and a RHS

are in general partial maps. To avoid the difficulties with partial maps the graph K

in combination with injective graph homomorphisms is used. There are basically two

approaches to define transformations in this context, both are concepts coming from

category theory. We use here the latter one of the following two:

• Single-Pushouts (SPOs): rules are partial maps between LHS and RHS, like

shown in 2.3.

• Double-Pushouts (DPOs): rules are a span of injective homomorphisms, like in

definition 2.2.1.
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Definition 2.2.2 (Direct graph transformation). Given a graph transformation rule

p = (L
l← K

r→ R), a direct graph transformation M
p⇒ N consists of two pushouts

in the category of graphs:

L K R

M C N

(PO) (PO)

loo r //

m

��

c

��

n

��goo h //

(2.4)

As a generalized version, a graph transformation M
∗⇒ N is a sequence of direct

graph transformations M = M0
p1⇒M1

p2⇒ ...
pn⇒Mn = N .

The morphism m is the match and can be either (partially) given or being com-

puted by solving a constraint problem. In general, it is not always possible to con-

struct the context graph C in a proper way. Therefore it is necessary to ensure some

properties of the match m in combination with the left mapping l of the transforma-

tion rule, so that the transformation in fact can be computed with a valid and unique

result. The following definitions exactly reflect these constraints.

Definition 2.2.3 (Gluing condition). Given a graph transformation rule p = (L
l←

K
r→ R) and a match m : L→M the gluing condition is defined as follows:

• Gluing points: GP = lV (VK) ∪ lE(EK) = l(K)

• Dangling points: DP = {v ∈ VL|∃e ∈ EM m(EL) : mV (v) = source(e) ∨
mV (v) = target(e)}

• Identification points: IP = {v ∈ VL|∃v′ 6= v : mV (v′) = mV (v)}∪{e ∈ EL|∃e′ 6=
e : mE(e′) = mE(e)}

• Gluing condition: DP ∪ IP ⊆ GP

The sets GP , DP and IP represent certain nodes and edges in the left-hand

side of the rule (graph L). Gluing points are those nodes or edges which are being

preserved during rule application. Dangling points are those nodes, which have an

image in M that is a source or a target of an edge in M , while this edge has not an

origin in L. These dangling edges would produce something like shown in Figure 2.2,

that is not a valid graph anymore. On the other hand, if the match is not injective

it is not always possible to decide whether a node should be deleted or preserved by
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the transformation rule (see Figure 2.3). The set of identification points IP includes

all nodes and edges that are non-injectivly matched to points in M . The gluing

condition states, that dangling points and identification points also must be gluing

points. So these points must be preserved by the rule. Otherwise, the result of the

transformation is not a valid graph. For a more detailed description see [EEPT05].

RL K

v

w

???

Figure 2.2: Gluing Condition: node w is a dangling point, but not a gluing point.

RL K

v

w

???

Figure 2.3: Gluing Condition: node w is a identification point, but not a gluing point.



Chapter 3

Model Driven Engineering

3.1 Eclipse Modeling Framework

EMF is a modeling framework for the Eclipse platform. It can be compared to the

MOF specification (see chapter 3.2). The basis and simultaneously the language

definition of EMF is a metamodel, called Ecore. This metamodel defines all entities

that can appear in a EMF-compliant model. EMF only defines structural features

and no possibilities for specifying behavior. Its strength is not a rich language, but the

possibility to derive implementations that fulfill all (!) semantical features described

in a model. Additionally it includes features like notification and persistence and a

powerful reflective API.

Figure 3.1: EMF as a bridge between modeling (UML/MOF), programming (Java)
and persistence (XML), [BSM+03]
.

It is important to note that the Ecore metamodel again is an EMF model. The

metaclasses EClass, EDatatype, EReference etc. cannot only be interpreted as, but

in fact are classes of an EMF core model. This is of great importance for the presented

13
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Figure 3.2: Ecore metamodel: Kernel

approach, since through that it is possible to use native EMF notions (elements of the

metamodel) for the definition of transformation rules. These notions are interpreted

in terms of graphs, so that the basis for the transformation engine are formal graph

transformations systems.

3.1.1 Ecore Metamodel

The Ecore metamodel defines a language for structural data models. This language

is meaningful enough to describe itself. For that it includes the most common entities

found in almost every (meta-) modeling language, which come from the paradigm of

object-oriented programming languages:
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• Classes (metaclass EClass)

• Associations (metaclass EReference1)

• Attributes (metaclass EAttribute)

• Datatypes (metaclass EDatatype)

Classes together with associations are the most important concept of EMF and are

explicitly discussed in section 3.2.1. As shown in Figure 3.2 a set of classes can

be organized into a package (metaclass EPackage), which can be further organized

hierarchical in the way that a package can have an arbitrary number of subpack-

ages. The abstract metaclass EClassifier summarizes the common properties of

classes and data-types. Further there are the abstract metaclasses ETypedElement,

ENamedElement, EModelElement and EStructuralFeature, which are used in the

same way to avoid duplicate properties of classes. Attributes (metaclass EAttribute)

and methods (metaclass EOperation) are also important features of EMF classes and

classes in object-oriented languages in general.

The metaclass EObject plays a special role in EMF, since all other metaclasses

inherit from EObject. It defines a number of methods, which can be used to compute

derived properties of objects, e.g. its type. This is the starting point for the reflection

mechanisms of EMF in general (see chapter 3.1.3) and the bootstrapping of EMF in

particular.

3.1.2 Code Generation

EMF models can be directly translated to Java code. This code can be seen as a

run-time data model of the structure defined in the class diagrams. Moreover the

code generation provides a complete implementation, that manages the life cycle of

objects (create, delete, set attributes etc.), while ensuring multiplicity and contain-

ment constraints. Further, a persistence API is provided, implementing load / save

operations for model instances. The standard format for EMF models / model in-

stances is XML / XMI. The code generated by EMF can be extended at any point.

It is even possible to add, modify or remove features in the code and to automatically

update the corresponding EMF model (reverse engineering).

An EMF model is translated into a EPackage during code generation. Such a

package contains all information defined in the model. EMF Classes are translated to

1EReference represents association ends.
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EClassifier

instanceClassName : String
instanceClass : EJavaClass
defaultValue : EJavaObject

(from ecore)
EFactory

(from ecore)

EPackage

nsURI : String
nsPrefix : String
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+ePackage
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Figure 3.3: Ecore metamodel: Packages and factories

Java classes, that contain all attributes and references defined in the model. For each

of these properties, getters and setters are generated, which ensure all constraints

defined in the model (multiplicities, containments).

To each package there is a run-time factory, which is used for creating objects.

Further an EPackage is identified using a unique namespace URI, also defined in

the model. However, at run-time there can be more than one implementation of a

package, e.g. the generated classes and a dynamic version of the model (see 3.1.3).

For this matter there exists a package registry which can be used to ensure that a

certain implementation is used. The registry basically maps a package namespace

URI to a corresponding implementation.

3.1.3 Reflective API

EMF provides a complete reflective API, which can be used to determine all features

defined in an EMF model. Given an arbitrary EMF object (instance of EObject) it

is possible to derive its corresponding class using the method eClass(). An EClass

can be further analyzed through a couple of methods. All references, containments,

attributes and even methods (operations) can be computed with all meta information,

like the type of such a feature for instance.

Due to the fact that all metaclasses of EMF inherit from EObject, it is possible

to cope with the Ecore metamodel in the same way, so that the EMF metamodel in

fact can be dealt with like a usual EMF model.
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Figure 3.4: MOF metamodel: Classes and properties

3.2 MOF and EMF

MetaObject Facility (MOF) is an ISO standard initiated by the Object Manage-

ment Group (OMG)2. It is the basis for a number of language specifications includ-

ing CORBA IDL and UML 2. Like EMF, it consists of a metamodel and a number

of so called technology mappings. These technology mappings are basically model

transformation rules where the target model is usually source code or any other kind

of structured textfiles (e.g. XML). Metamodels and there technology mappings are

the essential parts of a Model Driven Architecture as described by the OMG.

3.2.1 Metamodels

The MOF metamodel is divided into two parts, Essential MOF (EMOF) and Com-

plete MOF (CMOF). The underlying metamodel for EMF is called Ecore and is very

similar to the EMOF specification. It includes its own versions of the most common

datatypes (e.g. integers, string etc.) and further entities like classes, associations and

packages.

One of the most important concepts described in the MOF metamodel as well as

in the EMF metamodel are classes. Figure 3.4 shows that in MOF a class can inherit

from a number of superclasses and have properties. These properties are always typed

2http://www.omg.org/
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Figure 3.5: Ecore metamodel: Classes, attributes and references

because they are specializations of the abstract metaclass TypedElement. Further

they can be either seen as simple primitive-valued attributes or as ends of a relation

between two classes. If such a relation is navigable on both sides the opposite-link

points to the other end.

The Ecore model on the other hand includes a metaclass EClass (Figure 3.5). The

correspondence to its counterpart in MOF is obvious. Though there is a difference

in the way how attributes are handled. While in MOF all kinds of attributes are

modeled as instances of Property, there are two concepts for that in Ecore. The first

one is EAttribute which is only used for primitive types. Therefore it has a typing

link to an instance of EDataType. Complex properties of classes are modeled using

EReferences, which contain like properties in MOF a link to the opposite end of the

relation.

Associations can be marked as containment (see EReference) or in the case of

MOF as composite (see Property). These special kinds of associations express that

one object is the owner of another object. These semantics imply a couple of con-

straints that should always be fulfilled, e.g. an object should not be owned by itself.

These constraints are formalized in chapter 4.
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3.2.2 Technology mappings

Both, EMF and MOF define technology mappings to XML. Through them it is pos-

sible to generate a XML schema for a given EMF or MOF model and rules for trans-

forming model instances into XML documents typed by the XML schema. These

mappings are used for persistence in both modeling frameworks. In MOF it is called

XML Metadata Interchange (XMI) which is the standard format for UML 2

models and diagrams. The EMF version is basically the same, but of course refers to

the Ecore model instead of MOF. The mapping to XML is of particular importance,

since it requires to translate the graph-like structure of object structures to the tree-

like structure of an XML file. This is discussed in detail in chapter 4, that introduces

transformations of EMF models.

8

EMF and MetaObject Facility (MOF)

● MetaObject Facility (MOF) consists like EMF of a metamodel 
and technology mappings.

● MOF is the basis for a couple of language definitions by the 
Object Management Group (OMG), including UML 2.

Ecore Essential
MOF

Complete MOF

EMF MOF

Metamodels

Technology
Mappings

XML / XMI, 
Java (Implementations) XMI, CORBA IDL (Interfaces)

≈

Figure 3.6: EMF and MOF metamodels and technology mappings

MOF also includes a mapping to CORBA IDL which can be used to generate

code for classes and their attributes and method stubs. However, this code generation

does not include any implementations. EMF on the other hand is designed for Java

and the Eclipse platform and therefore includes a mapping to Java (code generation)

which is not limited to interfaces, but also includes implementations for managing the

life cycle of objects including validation of multiplicities and uniqueness, notification

mechanisms and (de-)serialization to XML. This mapping is implemented using Java

Emitter Templates (JET), which is a part of EMF.



Chapter 4

EMF Model Transformations

In chapter 2, an introduction to formal graph transformations has been given. The

definitions made there are now transferred to the notions of EMF by interpreting

classes as nodes and associations as edges in a typing graph with attribute definitions

for nodes. In the same way, objects can also be interpreted as nodes and their links

as edges of a typed attributed graph.

As described before, EMF has features that have no representation in formal

graph transformation or at least cause a number of restrictions to the application

of transformation rules. A complete formal interpretation of EMF notions in the

terms of graphs leads to attributed typed graphs with inheritance, multiplicity and

containment constraints. A formalization of attribution has been described already

in a couple of publications about graph transformation systems (see [EEPT05]). It

also has been shown, that multiplicities cause a restrictions in the application of

transformation rules. A property that not has been analyzed before in the context

of graph transformation system are containment edges, which are used in both EMF

and MOF/UML.

4.1 Mapping Notions

Interpreting EMF notions in terms of formal graphs is motivated by the obvious

graph-like structure of EMF models. Classes in an EMF model can be interpreted as

nodes in a typing graph. Associations between classes can be seen as edges in a typing

graph. Objects as instantiations of classes from an EMF model are comparable to

nodes in a graph, that is typed by an EMF model, interpreted as typing graph.

As mentioned before, objects can be linked to each other by setting reference

20
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values. These links can be interpreted as edges in a typed attributed graph. Such a

typed attributed graph is basically just a set of linked objects, because the links can

also be interpreted as properties of the objects. That is why such graphs are referred

to as object structures here.

EMF notion Graph term
Model Typing graph with attribution, inheritance,

multiplicities. Edges can be marked as con-
tainments.

Model instance Typed, attributed graph with containment
edges, inducing a tree-like structure. These
graphs are referred to as object structures.

Class Node in typing graph.
Object Node in typed graph.

Association Edge in typing graph (with possible multi-
plicities or containment marks).

Link Edge in typed graph, that must not violate
certain multiplicity and containment con-
straints.

Table 4.1: Mapping EMF notions to graph terminology.

In the following, the attribution of objects is not discussed in detail. The fo-

cus is rather set on the graph-like structure of EMF model instances. Besides the

attributes of classes, EMF models further contain generalizations of classes, mul-

tiplicity constraints of association ends and containment edges as special kinds of

associations.

4.2 Generalizations

Generalizations are an important property of object-oriented languages. EMF sup-

ports this concept in the way that classes can extend other classes. A subclass inherits

properties of one or more superclasses. EMF allows multiple inheritance. However,

Java supports only single inheritance, so that this is the usual case for EMF models,

even though the metamodel allows more.

A formalization of the generalization concept can be done in various ways. Inter-

preting an EMF model as a typing graph, multiple inheritance can be formalized by

adding a binary relation called extends.
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Definition 4.2.1 (Typing graph with inheritance). A typing graph with inheri-

tance T = (V, E, source, target, extends) is a graph together with a binary relation1

extends ⊆ V × V with the following properties:

• x extends y and y extends z implies x extends z (transitive).

• (x, x) /∈ extends for all x ∈ V (non-reflexive).

This relation is transitive and antisymmetric, similar to the definition of partial

orders. However, extends is not a partial order, because there is no reflexivity in the

concept of inheritance. For a node type x ∈ V this binary relation defines on one

hand all super types (x, ) and on the other hand all subtypes ( , x). This definition

reflects the possible usage of the concept of multiple inheritance in EMF and other

modeling languages. An interesting fact about the EMF implementation is that all

classes and meta classes are a specialization of EObject. This class provides basic

reflective methods for deriving the object’s type and other meta information.

A homomorphism for graphs with inheritance is a usual graph homomorphism

with the additional restriction, that it must preserve the order properties of extends.

Definition 4.2.2. A graph homomorphism h : G1 → G2 is also a valid homomor-

phism for graphs with inheritance, if it has the following property:

• x extends1 y ⇒ hV (x) extends2 hV (y) (order properties are preserved).

This property can be compared to the usual definition of a monotonic function for

(complete) partial orders. Note that this definition does not reflect an instantiation

process, since it only defines homomorphisms between two typing graphs, but not

between a typing and a typed graph.

For the graph transformation approach which is used in this thesis, inheritance is

not really a restriction. Transferring this concept to transformation rules gives rise

to an extended semantics of rule application in the way, that an object of type T in

the LHS of a rule can be matched to an object of a subtype of T . So the definition

of the term match must be extended for that. It is not a plain graph homomorphism

anymore. This more general application scenario comes with no restrictions for the

application of such rules. So there is no ’negative impact’ on the transformation’s

semantics. Rules can be applied in the same way as before. Only the match finding

is being generalized to instances of possible subclasses. For a complete formalization

of inheritance for typed attributed graphs see [EEPT].

1As a short form for (x, y) ∈ extends we write x extends y.
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4.3 Multiplicities

Another important property of modeling languages are multiplicities of associations.

Multiplicities constitute a real restriction to the application of transformation rules.

Of course, this is only the case for finite multiplicities of association ends. In EMF,

multiplicities are expressed using a upper and a lower bound of EReferences. These

bounds are fixed integers that restrict the number of links between two objects in an

object structure. A lower bound of 0 together with a negative number for the upper

bound of an edge (usually -1) implies that there is no restriction for the multiplicity of

an edge. In this situation there is no restriction in the application of a transformation

rule. In all other cases there might appear a problem, which is a first motivation for

introducing some kind of reasoning on transformation rules. There it is a goal, to

analyze whether a rule might violate multiplicity constraints or not. We will later

define the concept of multiplicity consistent rules, that provides a statical check,

ensuring that transformations respect multiplicity constraints defined in an EMF

model. For a complete theory about graphs with multiplicity constraints see [TR05].

4.4 Containments

Containment relations or aggregations / compositions are a special kind of unidi-

rectional associations2, expressing that an object is contained or owned by another

object. Containment relations are an essential part of EMF models, because they

define how the graph-like structure of an object structure can be mapped to a tree-

like structure in XML files for example. At run-time it is always necessary to ensure

that each object that is created by a transformation rule for instance has a proper

container as defined in the model. Each object can have either no or exactly one

container. It is not allowed that an object is (transitively) contained in itself.

At first glance, it seems valid to restrict the containment edges in a typing graph

/ class diagram already, in the way that there are no cycles, similar to the order

properties of generalizations. This is avoided both in EMF as well as in MOF. Instead,

containment constraints are formulated on the object level. In fact, it makes no sense

to permit containment cycles in class diagrams as it doesn’t allow to define recursive

tree-like structures, e.g. a class Tree with two containment edges: left, right:

Tree → Tree, modeling a binary tree. Another example is the Ecore metamodel,

where the meta class EPackage has a containment edge to itself, representing a set of

2The term unidirectional has nothing to do with the navigability of an association in this context.
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subpackages (see Figure 3.3). Nevertheless, containment constraints are important,

but obviously can only be formulated on the object level. For this purpose, we now

define special kinds of graphs, that have a distinguished set of so called containment

edges. Like all other edges (as defined here), containment edges are directed. The

source node of a containment edge is called container and the target is called contained

node. Following the notation of EMF and MOF, the container ends of such edges are

marked with a black diamond.

Definition 4.4.1 (Graph with containment edges). A graph with containment edges

is a graph G = (V, E, source, target, C) with C ⊆ E a set of so called containment

edges. These containment edges induce the following transitive binary relation:

• contains = {(x, y) ∈ V × V | ∃e ∈ C : (source(e) = x ∧ target(e) = y) ∨
∃z ∈ V : (x contains z ∧ z contains y)}

The containment edges must have the following properties:

• e1, e2 ∈ C : target(e1) = target(e2) ⇒ e1 = e2 (at most one container).

• (x, x) /∈ contains for all x ∈ V (no cycles).

This definition ensures that there are no containment cycles and that an object

has at most one incoming containment edge and therefore also not more than one

container. Accordingly, a homomorphism for graphs with containment edges is a usual

graph homomorphism, that preserves containment edges and their order properties.

Definition 4.4.2 (Homomorphism for graphs with containment edges). Given two

graphs with containment edges G1, G2, a graph homomorphism h : G1 → G2 is a valid

homomorphism for graphs with containment edges, if it has the following property:

• e ∈ C1 ⇒ hE(e) ∈ C2 (containment edges are preserved).

This property of homomorphisms is always satisfied for identities. It is also trivial

to show, that the composition of these special graph homomorphisms again has this

property. Due to that, graphs with containment edges and their homomorphisms

form a category.

It is a goal to define EMF object structures as typed, attributed graphs with

containment edges. The next step is to show, that graph transformations using the

double pushout approach as defined in chapter 2, can also be applied for these special
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kinds of graphs. For this, it has to be shown that the category of graphs with

containment edges has pushouts.

Usual graphs have this property. Given an interface graph G0 and two graph

homomorphisms f1 : G0 → G1 and f2 : G0 → G2 a pushout graph can be constructed

unique up to isomorphisms.

G0 G1

G2 G3

(PO)

f1 //

f2

��

f ′
1

//

f ′
2

��

(4.1)

For graphs with containment edges it has to be shown that the pushout result

satisfies the order properties of the containment edges and that f ′
1, f

′
2 are monotonic

respectively to the contains relation of the graphs.

As shown in Figure 4.1, the resulting graph does not necessarily have the des-

ignated order property. Although the graphs G0, G1 and G2 are valid graphs with

containment edges, a containment cycle occurs in the resulting graph. The second

example in Figure 4.2 shows, that also the ’at most one container for each object’

- property can be violated when constructing a pushout. This gives rise to state a

condition under which a pushout in the category Graphs is also a valid graph with

containment edges, i.e. has no containment cycles and that each node has at most

one container.

Definition 4.4.3 (Newly contained points). For a homomorphism between graphs

with containment edges h : G0 → G1, the set of newly contained points NCP ⊆ V0

is defined as

NCPh = {x ∈ V0 | ∀y ∈ V0 : (y, x) /∈ contains0 ∧ ∃z ∈ V1 : (z, hV (x)) ∈ contains1}

Definition 4.4.4 (Cyclic contained points). For a span of homomorphisms between

graphs with containment edges (G1
f1← G0

f2→ G2), the set of cyclic contained points

CCPf1,f2 ⊆ NCPf1 is defined as

CCPf1,f2 = {x ∈ NCPf1 | ∃y ∈ CCPf2,f1 : f2(x) contains2 f2(y) }



26 CHAPTER 4. EMF MODEL TRANSFORMATIONS

   

   

      

   

   

   

   

      

   

   

G0 G1
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Figure 4.1: Invalid pushout of graphs with containment edges: the resulting graph
G3 has a containment cycle, which can be checked by computing the cyclic contained
points of the span of morphisms.

   

   

      

   

   

   

   

      

   

   

G0 G1

G2 G3

f1

f2

f1’

f2’

Figure 4.2: Invalid pushout of graphs with containment edges: the red node in the
resulting graph G3 has two containers. It is also the only common newly contained
point of f1 and f2.
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For a single homomorphism h : G0 → G1 of graphs with containments, NCPh is

the set of nodes in G0 that don’t have a container in G0, but do have one in G1. A

so called cyclic contained point x ∈ G0 of a span of morphisms (G1
f1← G0

f2→ G2) is

a newly contained point of f1, that corresponds to a newly contained point y of f2 in

a certain way. That is, that x becomes a (transitive) container of y in the image of

f2. The node y must also be a cyclic contained point and therefore corresponds to a

newly contained point of f1 in the same way. However, the corresponding node of y

is not necessarly x again! It is also important to note that the definition of CCPf1,f2

is not symmetric, i.e. the order of f1, f2 matters.

These two definitions of newly contained points and cyclic contained points induce

the condition under which a pushout of graphs with containment edges exists. Before

stating this condition, a complex example for a span of graphs shown in Figure 4.3

is used to show how cyclic contained points are computed. We give an algorithm

for that purpose, because the definition of cyclic contained points is recursive and

through that it is not obvious how to compute them.

Computing cyclic contained points

1. Compute NCPf1 and NCPf2 by checking whether a node has a container in

the image of the morphism, but not in the origin.

2. Initialize the sets of cyclic contained points: CCPf1,f2 = NCPf1 and CCPf2,f1 =

NCPf2 .

3. Enumerate all elements x ∈ CCPf1,f2 . Try to find a node y ∈ CCPf2,f1 with

f2(x) contains2 f2(y). If no such y exists, remove x from CCPf1,f2 .

4. Do the same for CCPf2,f1 .

5. Repeat step 3 and 4 until CCPf1,f2 and CCPf2,f1 do not change.

Example in Figure 4.3

• NCPf1 := {a, c, f, g} and NCPf2 := {b, d, h}.

• CCPf1,f2 := NCPf1 = {a, c, f, g} and CCPf2,f1 := NCPf2 = {b, d, h}.

• Enumerating CCPf1,f2 :

1. Node a: f2(a) contains2 f2(b). Ok.
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2. Node c: No matching contained node in CCPf2,f1 . Removing node c.

3. Node f : f2(f) contains2 f2(h). Ok.

4. Node g: f2(g) contains2 f2(d). Ok.

⇒ CCPf1,f2 = {a, f, g} changed.

• Enumerating CCPf2,f1 :

1. Node b: no matching contained node in CCPf1,f2 . Removing node b.

2. Node d: f1(d) contains1 f1(f). Ok.

3. Node h: f1(h) contains1 f1(g). Ok.

⇒ CCPf2,f1 = {d, h} changed.

• Enumerating CCPf1,f2 again:

1. Node a: no matching contained node in CCPf2,f1 . Removing node a.

2. Node f : f2(f) contains2 f2(h). Ok.

3. Node g: f2(g) contains2 f2(d). Ok.

⇒ CCPf1,f2 = {f, g} changed.

• Enumerating CCPf2,f1 again... no modification.

• Enumerating CCPf1,f2 again... no modification.

• Done. CCPf1,f2 = {f, g} and CCPf2,f1 = {d, h}.

Definition 4.4.5 (Containment condition). Given a span of graphs with containment

edges (G1
f1← G0

f2→ G2), where f1 and f2 are valid homomorphisms for graphs with

containment edges, the containment condition is stated as:

• NCPf1 ∩NCPf2 = ∅ and

• CCPf1,f2 = CCPf2,f1 = ∅
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Figure 4.3: Example for a containment cycle. The newly contained points are
NCPf1 = {a, c, f, g} (green border) and NCPf2 = {b, d, h} (red border) in the graph
G0. The cyclic contained points are CCPf1,f2 = {f, g} (blue) and CCPf2,f1 = {d, h}
(orange) in the graph G0.

The constraint, that the newly contained points of f1 and f2 must be disjoint,

ensures that a node in the resulting graph has at most one container. The second

constraint ensures that a pair of newly contained points, one from f1 and one from

f2 do not form a containment cycle in the resulting graph, i.e. that the sets of cyclic

contained points of f1, f2 are empty. The proof for the following theorem can be

found in appendix A.1.

Theorem 4.4.1 (Pushouts of graphs with containment edges). Given a span of

graphs with containment edges (G1
f1← G0

f2→ G2), where f1 and f2 are valid ho-

momorphisms for graphs with containment edges, the pushout result in the category

of graphs (G1

f ′
2→ G3

f ′
1← G2) forms also a valid pushout in the category of graphs

with containment edges, if and only if the containment condition holds for the span

(G1
f1← G0

f2→ G2).
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4.5 Graph based Model Transformation notions

In section 4.1 an informal mapping of notions from EMF to formal graphs has been

given. Now, a formal definition of object structures is given as a special kind of typed

attributed graphs. Typing graphs, as defined in chapter 2 are used for defining EMF

models formally. The additional features of EMF must be included in this definition.

As shown in the last sections it is possible to formalize these concepts with the result

of a restricted version of the transformation semantics as defined earlier for plain

graphs.

Defining EMF object structures as special kinds of graphs and homomorphisms

between these object structures as special graph homomorphisms leads to a possible

definition of EMF transformations as a special graph transformation using the double

pushout approach:

L K R

M C N

(PO) (PO)

loo r //

m

��

c

��

n

��goo h //

(4.2)

The following definitions are given using the graph based notions introduced so

far. A complete algebraic definition is omitted, since it would involve the integration

of all these notions. The formalization used in the following are based on:

• plain graphs with directed edges,

• attribution of nodes using Σ-algebra,

• multiplicities of edges using an lower/upper bounds,

• node inheritance defined through a binary relation,

• containments as a special kind of edges.

Definition 4.5.1 (Model). A model M is a typing graph with primitive typed at-

tributes, edge multiplicities, inheritance and a special subset of edges, that must be

containment edges in all instantiations of this typing graph. The nodes in a model

are called classes, the edges are called associations.
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Definition 4.5.2 (Object structure). An object structure S is an attributed typed

graph with containment edges as defined in section 4.4 and a typing graph homomor-

phism typeS : S →M , where M is a model. The containment edges of S are defined

through the model. Homomorphisms of object structures are homomorphisms of at-

tributed typed graphs with containment edges. The nodes in an object structure are

called objects, the edges are called links.

Transformations of these object structures can be defined using the double pushout

approach as stated earlier for plain graphs. Given a transformation rule p = (L
l←

K
r→ R) and a match m : L → M , where L, K, R and M are object structures,

a context graph C together with two homomorphisms c, g can be constructed if the

gluing condition holds. This is due to the fact that object structures are defined as

graphs with special properties and homomorphisms between object structures as spe-

cial graph homomorphisms. The attribution does not interfere with the construction.

The question is, whether the constructed graph C is a valid graph with containment

edges, i.e. the order properties of the contains relation is satisfied. The homomor-

phisms c and g must be monotonic respectively.

The same property, that the constructed graphs and homomorphisms respect the

containment relation, must be shown for N , n and h. The context graph C is con-

structed by deleting objects and edges of M . In this step, containment constraints

cannot be violated, because containment cycles or multiple containers for one ob-

ject can only occur if containment edges are added to a valid object structure. This

can only happen in the second step, when the transformation result N is computed.

The constraints, that must be fulfilled for a valid N are stated in the containment

condition defined in section 4.4.

For a valid application of an EMF transformation rule, the gluing condition for

graphs must be satisfied w.r.t. to a given match. If this is the case, the context

structure C can be computed by deleting objects, as defined in the rule. When C is

computed, the containment condition must be verified to construct the transformation

result N through a pushout of graphs with containment edges.

The definition of the containment condition shows in which cases, an EMF trans-

formation cannot be computed as a usual graph transformation. It is not only the

transformation rule itself, that can be considered as invalid. It is rather the com-

bination of the rule and a given match. So it is always the question of where a

transformation rule is applied. Nevertheless, it has been shown that containment

problems (cycles and more than one container for a single object) only can occur, if a

transformation rule adds containment edges between already existing objects or adds
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new containers, which was the motivation for introducing the set of newly contained

points NCPh of a homomorphism h.

The pragmatic way of EMF, to handle these problem situations is to check the

order properties induced by the containment edges every time a reference is being

set. For instance, if the container of an object is being set and the object belonged to

another container before, the old containment edge is simply deleted. This way, the

EMF implementation always ensures at run-time, that all containment constraints

are satisfied. So it is not possible to simulate a transformation step and to check then

whether the result is invalid, e.g. has a cycle. Due to that, the containment condition

is not just a theoretical constraint, but can be used in an actual implementation to

check whether a transformation rule can be applied or not. It is this unpredictable

behavior of EMF that must be avoided, especially for formal semantics. The glu-

ing condition together with the containment condition are the basis for semantical

analysis of EMF model transformation, e.g. termination and confluency (critical pair

analysis).

4.6 Consistency of EMF Transformations

The order properties of the containment edges as defined above are the ones that

are checked by EMF at run-time. Though, these constraints are not sufficient for a

’proper’ object structure. It also must be avoided that an object has no container or

that multiplicity constraints are violated.

4.6.1 Containment Consistency

For serializing an object structure, all referenced objects must be mapped to nodes of

an XML document. As stated earlier, this tree-like structure is defined through the

containment edges in EMF models. What might occur, is that an object is referenced

by another object of a certain structure and therefore belongs to this structure. If

this object is not contained in another object of the structure, a problem occurs,

since the object is referenced but not contained by the structure. Besides a single

root container, all referenced objects of an object structure should have a proper

container and finally are transitively contained in that root container. If an object is

neither a root container nor contained in another object, the structure is considered

to be inconsistent. In fact, EMF forbids these situations and refuses to save such

model instantiations. This gives rise to the notion of containment consistency of
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EMF object structures and transformations.

A proper defined EMF model always includes a single root container class. A root

container class has no incoming contained-edges. Instantiations of such a class are

supposed to transitively contain all other objects that are referenced. When saving

or loading model instantiations to/from XML, this root container class is used as the

most top node in the XML-tree.

In the following, an object structure is defined as containment consistent if every

object that is referenced is correctly contained in this tree-like structure, induced by

the containment edges.

Definition 4.6.1 (Containment consistent object structure). An object structure S,

typed by a model M is called containment consistent if all objects in S are either

transitively contained in a root container object or self are root containers. The set

of root containers in S are those objects, that are typed by a class in M , that has no

incoming containment-edges from a different class.

Definition 4.6.2 (Containment consistent transformation). A direct transformation

of object structures S1 ⇒ S2 is called containment consistent transformation if the

containment consistency of S1 implies the containment consistency of S2.

In a containment consistent transformation S1 ⇒ S2, the object structure S2 has

to be containment consistent if S1 already was containment consistent. In this case,

the notation ”S1 ⇒ S2” for a transformation can be compared to the one of an

implication in logic, in the way that the transformation conserves a certain property,

so that it becomes an invariant of the transformation.

It is a goal to transfer this property to the level of transformation rules. A trans-

formation rule will be called containment consistent if it ensures for any match a

containment consistent transformation. Therefore, it is always necessary to make the

assumption that a structure was already consistent before the transformation. Oth-

erwise (if S1 is not consistent), it cannot be ensured that the transformation result

S2 is consistent (ex falsum quod libet).

The definition of containment consistent transformation also implies that if each

direct transformation in a sequence S1 ⇒ S2 ⇒ ... ⇒ Sn is consistent and the

starting structure S1 is too, the transformation result Sn and of course all steps Si in

the transformation are also containment consistent.
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Definition 4.6.3 (RHS-containment consistent rule). A transformation rule p =

(L
l← K

r→ R) is called RHS-containment consistent, if for all objects o in R at least

one of the following assertions holds:

• o is a root container,

• there is another object o′ in R with o′ contains o, or

• r−1(o) exists and l(r−1(o)) is not contained in another object in L.

With this definition it is ensured that an object in the RHS of a rule does not

violate the containment consistency of the transformation result. This is done by

excluding two cases that produce a problem: a) an object is being created by the

rule and not contained in a container, b) the object was contained before, but is not

contained in another object after rule application.

On the other hand, objects in the LHS of a rule also should fulfill certain con-

straints so that containment consistency of the result can be guaranteed. A problem

might occur if a rule deletes a container object without checking for possible children.

To define LHS-containment consistency it would be necessary to make rather vague

assertions about the LHS and especially also about the NACs. Since it is not obvi-

ous, how this can be done in a formal way, it is avoided here. Instead, we only use

the RHS-containment consistency already defined and restrict the rules in the way

that they should not delete any nodes. If a rule deletes nodes, it must be ensured

that it does not contain any children. This would be involved in the definition of

LHS-consistency and is due to that avoided now.

Figures 4.4-4.6 show different cases of containment consistency checks, imple-

mented in the editor. Objects that violate consistency constraints are highlighted

red. For instance, Figure 4.6 shows a rule where an object :Place is moved to an-

other container and its original container is being deleted. The editor highlights a

problem here, because the original container might still contain other objects - e.g.

another :Place.

The proof for the following theorem can also be found in the appendix.

Theorem 4.6.1 (Containment consistency of transformation rules). A transforma-

tion rule p = (L
l← K

r→ R) produces a containment consistent transformation as

defined in 4.6.2, if p does not delete any objects and is further RHS-containment

consistent.
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4.6.2 Multiplicity Consistency

Multiplicity consistency is a property of a transformation rule, ensuring that it can

only be applied if it does not violate any of the multiplicities defined in the EMF

model.

Definition 4.6.4 (Multiplicity consistent object structure). An object structure S

typed by an EMF model M is called multiplicity consistent object structure, if all mul-

tiplicity constraints defined in M , which are given through lower and upper bounds

of association ends, are fulfilled in S.

Definition 4.6.5 (Multiplicity consistent transformation). A direct transformation

S1 ⇒ S2 of object structures is called multiplicity consistent transformation if the

multiplicity consistency of S1 implies the multiplicity consistency of S2.

If there are finite bounds for an association in a model, a transformation rule

should explicitly check through NACs that multiplicity constraints are not violated.

The implementation of the transformation editor supports static checks for this mul-

tiplicity problems that might occur. Therefore, the rules are analyzed by checking

all edges with finite multiplicities that are created or deleted during rule application.

If an edge is found that is restricted in that way, all NACs of the rule are analyzed

whether they forbid the application of the rule if the upper/lower bounds of the edge

are exceeded during rule application. Possible multiplicity problems are analyzed by

the editor during the editing process and are highlighted.

Proposition 4.6.1. A direct transformation induced by a given rule together with a

match is multiplicity consistent if the following assertions hold:

• For every link, that is created by the rule and that has a finite upper bound there

is a NAC, that explicitly checks if the upper bound is reached already.

• For every link, that is deleted by the rule and has a finite lower bound 6= 0 there

is a NAC, that explicitly checks if the lower bound is reached already.

It is obvious, that this definition ensures multiplicity consistency as defined before.

Another approach is to integrate these checks directly into the interpreter / compiler,

so that this is automatically handled in the way that the rule is only applied if no

constraints are violated. This kind of implementation is used in the AGG3 engine.

3A framework for formal graph transformations, see [AGG].
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Figure 4.4: Highlighting of containment consistency constraints in the editor: An
instance of Place is being created without adding it to a container (an instance of
PetriNet in this case)

Figure 4.5: Highlighting of containment consistency constraints in the editor: The
containment edge :PetriNet→ :Transition is being deleted, so that the transition
instance would not be contained in the Petrinet after rule application.

Figure 4.6: Highlighting of containment consistency constraints in the editor: A
container :PetriNet is deleted without checking whether it still contains any children
e.g. more places or transitions.
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Implementation

The implementation of the EMF model transformation project consists of a graphical

editor, which can be used to define transformation rules, an interpreter, which com-

putes transformations by translating the rules to AGG, and a compiler, that generates

Java code. The interpreter and compiler are discussed introduced shortly in chapter

5.3. The focus here is the graphical editor in combination with the the underlying

transformation model, building the foundation for all related projects.

5.1 Transformation Model

The basis for all components of the model transformation framework is a common

EMF model that describes transformations of EMF model instances. As mentioned

earlier, the transformation model directly uses notions of the Ecore metamodel, which

is only possible because Ecore itself is an EMF model again. Since the transforma-

tion model is used to define relations between EMF models and uses notions of the

metamodel it can be seen as an extension of the metamodel or at least somewhere

between the model and metamodel level (see Figure 5.1).

The kernel of the transformation model is shown in Figure 5.2. The complete

model further includes layout information (e.g. positions of nodes) used by the graph-

ical editor. The transformation model makes extensive use of the Ecore metamodel.

In Figure 5.2 this is visualized through the different coloring of classes: all classes

highlighted blue are parts of Ecore and are only referenced by the rest of the actual

transformation model.

37
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14

Transformation Model for EMF

● Ecore metamodel also 
is an EMF model !

● Transformation model 
uses native EMF 
notions, interpreted in 
terms of graphs.

● It is possible to define 
transformation rules for 
the Ecore metamodel 
and the Transformation 
model itself !

Ecore
Metamodel

EMF Model

instance of is a

is a

defines relations between

uses notions of

instance of

Transformation
Model

Figure 5.1: Ecore metamodel, EMF models and the Transformation model

5.1.1 The Kernel

The class Transformation is the root container in the transformation model. All

other parts, that do not explicitly belong to another model (so called imports of the

transformation) are transitively contained in this class. The imports of a transfor-

mation appear in the model as instances of the metaclass EPackage (see Figure 5.2).

These packages are the actual models on which the transformation should be defined.

They are loaded dynamically at run-time using the EMF concept of package registries.

Already introduced earlier, the abstract class ObjectStructure represents a set

of possibly linked and/or attributed objects. This concept can be directly compared

to an attributed typed graph. The class ObjectStructure has two references to the

Ecore class EObject. All root containers in the set of objects are referenced by the link

objects. Through that, object structures (or subclasses) become a root container

for all objects in the structure. Objects which are somehow transitively contained

in another object can not be directly accessed using this containment reference only.

For that reason, there is a second, derived reference, called allObjects, which can

be used to easily access all objects in a structure.

Since ObjectStructure is an abstract class and cannot be used directly through

that, there are specializations of it, which also constitute the most important parts

of a transformation rule:

• LHS: left-hand side of a transformation rule (one per rule),

• RHS: right-hand side of a transformation rule (one per rule),
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Figure 5.2: Transformation model: Kernel

• NAC: negative application conditions (n per rule),

• StartStructure: start structures of an ’EMF grammar’ (n per transformation).

The class NAC contains an extra attribute, called name, which can be used to easily

distinguish negative application conditions from each other. Start structures are not

interesting for model transformations, but are needed for defining (visual) languages

in terms of graph grammars. In the case of model transformations there are not used,

because model transformations usually are applied to a given model instance, taking

the place of a start structure in this case.

A rule further contains a number of 1:1 mappings between the LHS and the RHS

on one side and the LHS and the NACs on the other side. A mapping is not a container

for the objects, that are mapped, because they are already (transitively) contained in

an object structure (LHS, RHS or NAC). An integer value can be assigned to rules
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to organize rules linearly into layers.

Variables are used for calculations on the attributes of objects. A variable can

be marked as an input variable, which means that the user has to assign values

to them before the transformation rule can be applied to an instance. They are

mainly used if a transformation needs more information than are given in the source

model. Variables are assigned to a rule and can be used to define primitive valued

expressions to object’s attributes, which are evaluated at run-time. An instance of the

class Property contains such an expression using a simple string and further must be

assigned to some object in one of the object structures. To determine which attribute

of an object is meant the class Property also contains a link to an instance of the

Ecore class EStructuralFeature, which is used to represent a class’ attribute of an

imported package.

5.1.2 Layout Information

Transformation rules can be edited using a graphical editor. For this purpose layout

information must be kept in order to visualize the EMT models in a diagram form.

In general there are two ways to implement such views on a model: include the layout

information directly in the model or keep all information in a separate layout model.

The former case is easier to implement but can be considered as bad software design.

The latter approach decouples model information and layout information, which espe-

cially is an advantage if there are multiple editor implementations, requiring different

kind of layout information.

In the presented implementation, the layout information are included in the trans-

formation model. However, this extra data is relatively decoupled in the transforma-

tion model. As shown in Figure 5.4 the visual information is organized in diagrams.

These diagrams are contained in the root container of the transformation model

(Transformation). Further, the actual layout information (positions of objects /

classes / bendpoints) is modeled as a hashmap (EObjectToPointMapEntry), where

the keys are the abstract model entities and the values are the positions of these

entities. This way, the layout information keeps references to the abstract model en-

tities. The abstract part of the transformation model doesn’t know anything about

the layout information.

This is a good compromise between the two approaches of how to keep layout

information as described before. Even though a separation of abstract and concrete

syntax (with and without layout information) is a good thing, it comes with a couple

of major implementation problems. The abstract model and the layout model must
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Figure 5.3: Transformationmodel: Diagrams

be kept synchronized. Further, implementing an editor with GEF means, to follow

a Model-View-Controller pattern. In this MVC architecture the model must be in

concrete syntax, so that the layout model must be used for this purpose. Moreover

the View in MVC must be kept synchronized to this layout model. So in essence,

it is necessary to keep the abstract and the concrete model on one hand and the

concrete model and the view on the other hand synchronized. The first case alone is

already not trivial to implement, because of the behaviour of EMF. Multiplicity and

containment constraints are checked by EMF at run-time. If anything violates these

constraints, EMF tries to solve the problem, which e.g. can lead to the deletion of

edges that were not even directly a part of the problem. This behavior must be either

reimplemented or it must always be ensured, that all modifications, caused not only

by the editor, but also by EMF itself must be recognized and translated correctly.

These problems can be avoided using an implementation that consists of a trans-

formation model in pure abstract syntax and a separate model in concrete syntax,

including the complete abstract model with additional layout information, similar to

the current implementation. The graphical editor is defined on top of the model in

concrete syntax and should provide an import / export functionality to the abstract

model syntax. The current editor implementation is based on such a combined model

which includes layout information and the abstract entities. The last step: a sep-

arated abstract transformation model and an import / export functionality in the

editor is not implemented yet. This is has been omitted so far since the layout infor-

mation do not interfere with any other components of the transformation framework
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(interpreter, compiler) and the fact that so far only one editor implementation exists

up to now (the one described here). However, the necessary modifications are straight

forward and involve only modifications in the editor and the transformation model

itself.

5.2 Graphical Editor

The graphical editor for EMF model transformations is implemented on top of the

transformation model (in concrete syntax). The graphical user interface includes a

diagram view including separate diagrams for the LHS, RHS and NACs of a trans-

formation rule and a palette, including tools for adding objects to the diagrams and

for connecting or mapping the objects.

Transformation rules and their components are also shown in a tree-like outline

view, that is connected to the diagram view and also to the property view of Eclipse,

so that object can be added to diagrams using drag’n’drop and properties of objects

or rules can be edited in the property view. A user guide for the editor is attached in

the appendix of this paper. A more detailed description of the complete framework,

including the interpreter and the compiler can be found at the EMT project homepage

[EMT].

As mentioned earlier, the editor is implemented using the Graphical Editing

Framework (GEF) of the Eclipse platform. GEF includes a big number of features,

which are not described in detail here. The most important fact about GEF is,

that it implements a special version the Model-View-Control pattern, which can also

be found in a number of other middle-ware platforms, e.g. Java Swing1 or Apache

Struts2. The MVC pattern distinguishes between a Model, so called Controllers and

Views. Views are visualizations of the model. In general, there can be multiple views

for one model. The model and its views are decoupled, as much as they do not know

about each other. For keeping the model and its views synchronized, the controller

is used. For each view there must be a controller that updates the model if there

are changes in the view and vice versa. To avoid such bidirectional synchronizations

issues, GEF makes the restriction, that modifications can only be made in the model,

so that the controller only needs to update the view accordingly. The view is in the

notions of GEF a set of figures. The controller must be implemented using so called

editparts. For a more detailed information on the MVC pattern in GEF see [KK05].

1http://java.sun.com/products/jfc/index.jsp
2http://struts.apache.org
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5.3 Interpreter and Compiler

An interpreter and a compiler have been implemented already and is discussed in

[BK06]. The interpreter translates EMF object structures into equivalent graphs in

the AGG format. The actual transformation step is performed using AGG. Further

it is possible to apply tools of the AGG engine for formal analyzes, e.g. critical pairs.

Current work on the editor involves the implementation of a debugger tool for the

graphical editor, allowing the simulation of transformation rules. For this purpose,

the interpreter is being integrated into the editor, which is discussed in more detail

in the last chapter.

Figure 5.4: Code generation wizard for EMF model transformations.

In the compiler approach, model transformation rules are translated to Java code.

A single rule can be applied or the whole transformation can be computed. The

generated code does not involve the AGG engine and can easily be integrated into

existing projects. The compiler is integrated into the editor in the way that it can be

invoked from an entry within the context menu of the editor.
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Examples

In this chapter, two examples for EMF model transformations are discussed. A

possible categorization of model transformations is to distinguish between endogenous

and exogenous transformations. While endogenous transformations are defined on one

model only, exogenous transformations define a conversion from one language two

another. As an example for endogenous transformations, refactoring rules for EMF

models are discussed in the following. The second example deals with simplified

UML 2 Class diagrams and relational database schema, representing a exogenous

model transformation.

6.1 Endogenous Transformations: EMF-Refactoring

The aim of refactoring in general is to modify the structure of a system by keeping

the behavior, or in general: some semantics. The Java Editor of the Eclipse platform

implements such refactoring rules for easily modifying large Java projects, where a

small change can cause the need of change the source code in a lot other files, too.

An example for such a refactoring is renaming or moving a class.

In the following, refactoring rules are presented for EMF itself, so that the model

on which the rules are defined, is the Ecore (meta-) model. This example is also

discussed in [TEB+06b].

6.1.1 Moving a class

The first example is shown in Figure 6.1. A class, which is matched through its

name is being moved from one package to another. For that the containment edge

44



6.1. ENDOGENOUS TRANSFORMATIONS: EMF-REFACTORING 45

Figure 6.1: EMF-Refactoring: Rule MoveClass

eClassifiers is moved from one package to the other. The match finding relies on

two input parameters: n: the name of the class to be moved and p: the name of

the package, where class c is moved to. The negative application condition ’Class

exists’ is used to ensure that there does not exist already a class with the same

name in the target package.

6.1.2 Creating super classes

The refactoring rule CreateSuperClass in Figure 6.2 can be used to create a new

class in a specified package, which automatically becomes the new super class of a

given other class. As an input parameter, the name of the new super class must be

given.

Further it can be interesting to connect more classes to the newly created super-

class. The rule ConnectSuperClass in Figure 6.3 suits for this task. As a restriction,

we allow only classes to be connected to the superclass, which have no attributes and

no references to other classes.
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Figure 6.2: EMF-Refactoring: Rule CreateSuperClass

Figure 6.3: EMF-Refactoring: Rule ConnectSuperClass
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6.1.3 Pulling up an attribute

In most cases a structural simplification of a classes can be achieved if a certain

property (e.g. an attribute) is pulled up into a class’ superclass. This is only possible

if the attribute exists in all other subclasses as well, e.g. in the Ecore model the

abstract metaclass ENamedElement is used as a superclass of all metaclasses that

contain an attribute name with the type EString.

Realizing this kind of refactoring as an EMF model transformation is only possible

with a set of four distinguished transformation rules, which have to be applied in

sequence. The parameters for these rules are on one hand the name of the attribute

to be pulled up (a) and the name of the super class (c), that should contain the

attribute afterwards. In order to ensure that all subclasses of c have an attribute

Figure 6.4: EMF-Refactoring: Rule CheckAttribute

a, the rule (CheckAttribute in Figure 6.4) is used. If there exists a class that is a

subclass of c and has no such attribute, an instance of EAnnotation is used to label

that class. This rule can only be applied to a given match, since the NAC ’Labeled

already’ forbids multiple application.
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Figure 6.5: EMF-Refactoring: Rule PullUpAttribute

Figure 6.6: EMF-Refactoring: Rule DeleteAttribute
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Figure 6.7: EMF-Refactoring: Rule DeleteAnnotation

After this first check, the actual pulling up of the attribute can be computed with

the rule PullUpAttribute shown in Figure 6.5. If there is no subclass being labeled

by CheckAttribute before and there is no attribute named a in the superclass, the

attribute can be pulled up. Note that EMF would automatically update derived ref-

erences like eAllAttributes (attributes in this and all superclasses) in the subclass.

This is not shown in Figure 6.5, because its automatically done by EMF, triggered

by the modification of the reference eStructuralFeatures.

After successfully applying the rule PullUpAttribute the attributes with the

name a in all sublasses must be removed. This is done by the rule DeleteAttribute

shown in Figure 6.6. This rule is applied as long as possible, so that the attribute is

deleted in all subclasses.

In Figure 6.6 the attribute is drawn red, indicating that a containment consistency

check has failed. This is due to the fact, that it is not ensured that the attribute

contains no annotations that would be not contained in any resource after rule appli-

cation. We assume here that such annotations do not exist so that we don’t need to

worry about that problem. To make sure that this problem might not occur, an NAC

could be added forbidding such annotations or a rule could be added that explicitly

deletes them.

As a last step, the annotations ”no attribute” in all sublasses are removed. Here

the same containment problem occurs, which we ignore again. This rule is applied as

long as possible, so that all annotations are really deleted.
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6.2 Exogenous Transformations: Class diagrams

to RDBMS

Transforming simplified UML class diagrams to relational database schema (RDBMS)

is a standard example for exogenous model transformations, especially in QVT-related

approaches. A graph transformation based approach for this particular example has

already been discussed in [TEG+06]. We refer here to the first, simplified version of

[TEG+06], that has been modeled there using the AGG engine for graph transforma-

tion. The following models and transformation rules are essentially the same like the

one from [TEG+06], only that the EMF approach has some more additional seman-

tics through its containment edges and - for this particular example - more restricted

multiplicities.

The (meta-) model used for the class diagrams is shown in Figure 6.8. Classes

can be marked as persistent, which are mapped to tables with all its attributes and

associations being translated to columns in this table. If another persistent class

occurs as the type of an attribute or an association, a foreign key (Fkey) to this table

is established.

Figure 6.8: Class diagrams to RDBMS: Model for class diagrams

The original version of this example also includes a requirement that class hier-

archies are handled in a special way. Only the topmost classes should be mapped

to tables. Additional attributes or associations in the subclasses are translated into

columns in the table representing the topmost class. To implement this behavior with
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Figure 6.9: Class diagrams to RDBMS: Model for RDBMS

the EMF transformation approach it is necessary to compute the topmost class and

to somehow establish a direct connection to all subclasses so that associations and

attributes of the subclasses can be recognized. This is omitted here and discussed in

detail in [TEG+06].

Non-persistent classes are not mapped to tables. Instead, their attributes and

associations should be distributed in the tables which represent the persistent classes

that access the non-persistent classes. The (meta-) model for class diagrams shown

in 6.8 distinguishes between primitive typed attributes and associations.

Figures 6.8-6.10 show the Ecore models, that are used in this example. While the

model for simple class diagrams is the source and the RDBMS model is the target,

the so called tracking model in Figure 6.10 is the bridge between the source and the

target model.

6.2.1 Models and Classes

The first rules are quiet simple. In Figure 6.11 a root container :RDBMSModel is created

for an existing :ClassModel. These objects contain all entities being translated. The

rule Classes translates a persistent class into a table. Whenever an RDBMS object

is being created, a link to its counterpart in the class model is established as defined

in the tracking model.
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Figure 6.10: Class diagrams to RDBMS: Tracking model

6.2.2 Attributes and Associations

In Figure 6.13 it is shown how primitive typed attributes are translated to columns of

a table corresponding to the class that is the owner of the attribute. The column has

the same name and type as the attribute. Complex attribute (not primitive typed)

are translated by creating a foreign key, as shown in Figure 6.14. A new column

is created, where the name is a combination of the class’ name and the attribute’s

name1.

Rule Set primary key translates establishes an extra edge for primary columns.

Figure 6.15 is a little misleading, since the edges are overlapping. What this rule

does, is that it creates an edge pkey, it does not delete the containment edge cols.

The last rule translates associations into foreign keys. This is essentially the same as

rule Complex attributes.

An advanced version of this model transformation where also generalisations are

considered, can be found in [TEG+06].

1In Figure 6.14 the name of the column is used, but this is actually the same as the class’ name
(see rule Primitive attributes)
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Figure 6.11: Class diagrams to RDBMS: Rule Class models

Figure 6.12: Class diagrams to RDBMS: Rule Classes



54 CHAPTER 6. EXAMPLES

Figure 6.13: Class diagrams to RDBMS: Rule Primitive attributes

Figure 6.14: Class diagrams to RDBMS: Rule Complex attributes
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Figure 6.15: Class diagrams to RDBMS: Rule Set primary key

Figure 6.16: Class diagrams to RDBMS: Rule Associations
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Conclusion

Future work in the EMF Model Transformation project will involve technical devel-

opments as well as theoretical investigations. Further it would be interesting to apply

the presented approach to a wider range of examples, especially in more complex

scenarios as the ones described here.

7.1 Separation of Layout Information

From an engineering point of view, the layout information in the transformation

model should be moved to a separate model, which keeps only references to the

actual transformation model.

The decision to include the layout information in the transformation model has

been made, because it simplifies the implementation of the graphical editor on one

side and does not interfere with the other existing implementations, which involve

the interpreter and the compiler up to now. To achieve this separation of concerns,

some technical difficulties must be solved, but for all future implementations this

reorganization of the underlying components would pay off.

7.2 Visual Debugger

Current work focuses on the integration of the interpreter implementation into the

editor, allowing the stepwise application of rules visualized in a diagram. Different

scenarios are interesting in this context, mostly known from conventional code de-

buggers. This includes the possibility of defining breakpoints, e.g. in the form of a

graph pattern.

56



7.3. METHOD CALLS AND CODE INTEGRATION 57

7.3 Method Calls and Code Integration

The EMF model transformation approach is indeed very generic and has a lot of

possible applications. As described before it tries to be a bridge between formal graph

transformation and technologies like EMF, Java and XML which form the basis for

the model transformation language presented here. Even though the approach is very

generic, it is restricted to the pattern based creation / deletion of objects / references

and primitive valued calculations on the attributes, expressed in Java syntax. What

is not considered yet is the possibility of defining methods in EMF models, allowing

to include behavioral aspects to the structural models, by implementing them in Java.

Although an EMF model itself does not include a description of the behavior of a

class, it can be used to define its functionality (name, type, parameters of methods).

These functional aspects of EMF models can and properly should be also consid-

ered in the transformation approach, since they allow the explicit usage of behavioral

features in EMF models or more precise, in implementations of EMF models. This

extension would also allow to bootstrap the EMF model transformation approach,

i.e. to define its semantics with itself. It is already possible to define transformations

on the transformation model. However, it is necessary to not only be able to access

attributes or references of a given object (which must be typed to do that), but also

to invoke methods and work with the resulting objects. As an example one can think

of a set of transformation rules defining the semantics of the interpreter described

earlier. There could be a transformation rule, which states how a transformation

rule is applied with respect to a given match. Also the editing operations that are

available within the GUI can be bootstrapped. Figure 7.1 shows a rule that creates

a mapping between two objects, one in the LHS, the other one in the RHS of a rule.

The same way it could be possible to define the interpreter’s semantics with its own

language. However, for defining a rule that captures the case of object creation for

instance, it is at first necessary to retrieve the type (the corresponding EClass) of an

arbitrary :EObject and then to instantiate this class using a package factory. Just

for retrieving the type of such an object it is necessary to call the reflective EMF

method eClass() of the class EObject.

Investigations on how such method calls could be integrated into the current

approach are still in a very early stage. Nevertheless, it seems important to have that

kind of feature, allowing a real extension of the current application scenarios.
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Figure 7.1: Transformations on the transformation model. The screenshot shows a
rule that illustrates an editing operation of the graphical editor: a mapping between
the LHS and the RHS of a rule is created.

7.4 Bidirectional Model Transformations

The QVT request for proposals includes requirements for high-level definitions of

bidirectional 1:1 translations of models / languages. This includes on one hand the

complete generation of a target model instance given an arbitrary source model in-

stance (and vice versa) and the ability of translating only parts of a given instance

on the other hand (incremental updates). For the latter case it is necessary to keep

some sort of tracking references between the source and the target model1.

At a first glance, the presented model transformation approach for EMF is not

restricted to exactly two or any other number of models. Therefore it is correct to

say that bidirectional transformations are only a special case of model transformation

1The differentiation between source and target model is misleading in as much as both models
are equitable.
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that can be expressed. In fact, in section 6.1 it was shown how the framework can

be used for endogenous model transformations, where there is only one imported

model. So instances of that language are being transformed to instances of the same

language.

For the same reason there is no explicit entity for tracking references in the trans-

formation model, which are usually needed in bidirectional transformations. Also

this is not a restriction of our approach, since bidirectional transformations are only

a special case of transformations and tracking references are simply additional enti-

ties, which can be defined in a separate model, which forms the bridge between the

source and the target model (in both directions).

Further it is not possible to simply revert arbitrary transformation rules as re-

quested in the QVT approach. This is due to the fact, that attribute calculations

cannot be inverted in general and because negative application conditions must be

considered, too. The graph transformation based approach is unidirectional, because

transformations are defined in a constructive way. That means, it is specified how to

transform a given model instance, not only how the transformation result should look

like. Therefore, each source-target model transformation must be inverted manually

at this point of development.

Again, it is important to point out that these are not restrictions of the transfor-

mation approach, but only side-effects that occur with the reason that the approach

can be applied to any kind of model transformation and not only to bidirectional

transformations.

Nevertheless, bidirectional and endogenous transformations are the most impor-

tant ones in practical applications. While endogenous transformations already can

be modeled smoothly with the presented approach, there are some more high-level

features missing for the definition of bidirectional 1:1 transformations. This scenario

requires additional information in transformation rules, so that they can be also

applied reversely. Further it seems beneficial to include explicit entities describing

tracking references between a source and a target model instance. These are necessary

for incremental updates as required for the QVT request for proposals.

Since bidirectional transformations are only a special case of model transforma-

tions that can be defined using the EMF transformer, it should be possible to define a

special bidirectional transformation model, that is either an extension of the existing

model or is defined on top of it, as an high-level layer for this special application

case. This new transformation model would introduce a new vocabulary for defining
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bidirectional transformations and simultaneously restrict the possible model transfor-

mations.

Triple graph grammars as discussed in [KS06] are a graph based approach for

such incremental, bidirectional transformations. They involve a lot of extra theo-

retical assertions that must first be translated to EMF. It is not clear, whether this

approach is really suitable for EMF transformations. This could be the start for

further theoretical work and implementations on top of the existing ones.
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Proofs

A.1 Containment Theorem

Theorem A.1.1 (Pushouts of graphs with containment edges). Given a span of

graphs with containment edges (G1
f1← G0

f2→ G2), where f1 and f2 are valid ho-

momorphisms for graphs with containment edges, the pushout result in the category

of graphs (G1

f ′
2→ G3

f ′
1← G2) forms also a valid pushout in the category of graphs

with containment edges, if and only if the containment condition holds for the span

(G1
f1← G0

f2→ G2).

Proof. At most one container. Let a ∈ NCPf1 ∩ NCPf2 . Then f1(a) ∈ V1 has

an incoming containment edge e1 ∈ C1 and in the same way f2(a) ∈ V2 has an

incoming containment edge e2 ∈ C2. Both, e1 and e2 cannot have an origin in G0

(by definition 4.4.3). The Pushout construction for graphs glues the two node images

together to a new node b := f ′
2 ◦ f1(a) = f ′

1 ◦ f2(a) ∈ V3. Since all morphisms must be

valid homomorphisms for graphs with containment edges, the node b ∈ V3 has two

incoming containment edges: f ′
2(e1) and f ′

1(e2), which is not allowed.

Conversely, if there is a node b ∈ V3 with two incoming containment edges, these

two edges can be written as f ′
2(e1) and f ′

1(e2) with e1 ∈ C1 and e2 ∈ C2, w.l.o.g.

If both edges had an origin in G1 for instance, then G1 was not a valid graph with

containment edges, because it would have a node with two incoming containment

edges. Since these two edges come from different graphs, the node b ∈ V3 must have

been constructed by gluing two nodes from G1 and G2 together, having a common

node origin in the interface graph: a := (f ′
2 ◦ f1)

−1(b) = (f ′
1 ◦ f2)

−1(b) ∈ V0. If the

node a ∈ V0 had an incoming containment edge, this edge would have an image in G1
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and G2 and these two edges would have been glued together to a single containment

edge in G3. So a cannot have an incoming containment edge in G0 and therefore is a

newly contained point, both of f1 and f2.

No containment cycles. Let CCPf1,f2 6= ∅. Then CCPf2,f1 6= ∅ by definition

of cyclic contained points. The morphisms f ′
1 : G2 → G3 and f ′

2 : G1 → G3 must

preserve the containment edges from G1 and G2. So if x, y are nodes in G0 and

f1(x) contains1 f1(y) and conversely f2(y) contains2 f2(x), then the images of x, y

in G3 form a containment cycle. The important fact is, that the order properties of

both, contains1 and contains2 must be preserved in contains3.

Assume that the images of CCPf1,f2 ∪CCPf2,f1 in G3 do not form a containment

cycle. Now, let ai be the nodes in CCPf1,f2 and bj the nodes in CCPf2,f1 . Choose an

arbritrary a1 ∈ CCPf1,f2 and b1 ∈ CCPf2,f1 so that f2(a1) contains2 f2(b1), like the

definition of cyclic contained points states. Since b1 should not form a cycle with a1 in

G3 and the fact that b1 is also a cyclic contained point, there must be a2 ∈ CCPf1,f2

with f1(b1) contains1 f1(a2) and a1 6= a2. If there is no cycle in G3 this step must be

repeated ad infinitum:

CCPf1,f2 : a1 a2 a3

CCPf2,f1 : b1 b2 b3

6= 6= 6=

6= 6= 6=

f2(a1) f1(a2), f2(a2) f1(a3), f2(a3)

f2(b1), f1(b1) f2(b2), f1(b2) f2(b3), f1(b3)

contains2

��

contains1

??������������

contains2

��

contains1

??������������

contains2

��

contains1

??������������

...

...

...

This works only if CCPf1,f2 and CCPf2,f1 are either empty or infinite sets, which

contradicts with our assumptions. So they must form a containment cycle in G3.

Conversely, if there is a containment cycle in G3, it cannot completely come from

either G1 or G2, because then one of these graphs would already violate the order

properties of the containment edges. So one part of the cycle comes from G1 and

the other one from G2, where each of these two parts does not form a containment

cycle on its own. Further, these two parts must have been glued together somehow,

otherwise there wouldn’t occur a cycle in G3. The smallest cycle that can appear

consists of two nodes, one containing the other and vice versa. A cycle with one node

only is not possible, because then the cycle must have been already in G1 or G2. Of

course, the cycle can consist of more than two nodes.
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Choose nodes x3, y3 in G3 with the following properties:

1. The nodes x3, y3 belong to the containment cycle in G3, so that x3 contains3 y3

and y3 contains3 x3.

2. Node x3 has a origin x1 := f ′−1
2 ∈ V1 and node y3 has a origin y2 := f ′−1

1 ∈ V2.

This must be possible because G1 must contain one non-empty part of the cycle

and G2 the other one.

3. Since the two parts from G1, G2 must have been glued together at at least two

points, we can even say that x1 and y2 must have origins x0 := f−1
1 (x1) ∈ V0

and y0 := f−1
2 (x2) ∈ V0 with x0 6= y0.

Lets take the example in Figure 4.3. We choose x0 := e and y0 := f .

4. Let x0 and y0 have no container in G0. This is also no problem. If x0 or y0 is

contained in another node in G0, than choose this container (or the container

of this node etc.). The container must also have an image in G1 / G2 and then

also in G3. The containment relation between these two nodes must also be

preserved from G0 to G3, so that the image also must be a part of the cycle in

G3.

In our example we have to choose x0 := d instead of e. The node y0 = f has no

container.

5. Let them further be newly contained points: x0 ∈ NCPf1,f2 and y0 ∈ NCPf2,f1 .

So the image f1(x0) and f2(y0) should have a container. Neither of f1(x0), f2(y0)

can be isolated nodes without any incoming or outgoing containement edges,

because then they couldn’t be a part of the cycle in G3. If they are contained

in another node in G1 / G2, then they are already NCPs. Otherwise they can

only be containers in G1 / G2. Lets assume f1(x0) is a transitive container for

one or more nodes in G1. At least one of these nodes must have no children in

G1 and have an image in G3 that is part of the cycle, because the containment

order must be preserved from G1 to G3. Take the origin of this node in G0

instead of x0.

We had x0 = d and y0 = f in our example. We have to choose x0 = f and

y0 = h instead.

6. Now we have x0 ∈ NCPf1 , y0 ∈ NCPf2 and the fact that their images form a

cycle in G3. Since x0 ∈ NCPf1 the image f2(x0) ∈ V2 must become a container
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of either f2(y0) or the image of a node y′0 ∈ V0 that has the same properties as y0

(NCP of f2, part of the cycle in G3). Otherwise, newly contained points cannot

become part of a cycle. The same property must hold for y0. Due to this, the

two nodes are cyclic contained points: x0 ∈ CCPf1,f2 and y0 ∈ CCPf2,f1 .

So if there is a containment cycle in G3 there must be at least two cyclic contained

points in G0.

A.2 Containment Consistency Theorem

Theorem A.2.1 (Containment consistency of transformation rules). A transforma-

tion rule p = (L
l← K

r→ R) produces a containment consistent transformation as

defined in 4.6.2, if p does not delete any objects and and is further RHS-containment

consistent.

Proof. Consider a RHS-containment consistent rule p = (L
l← K

r→ R), that does

not delete any objects, together with a match m : L → S1, determining a direct

transformation S1
p⇒ S2, where S1 is a containment consistent object structure, but

S2 is not containment consistent. So there is at least one object o in S2 that is neither

a root container nor contained in another object of S2. The object must fit into one

of the following two cases:

1. o has been created during rule application. In this case there must be a match

origin of o in the RHS of the rule, which has no mapping to the LHS (it is

being created). Further it cannot be a root container and also not contained

in another object of the RHS (violates containment consistency of S2). This

contradicts with the fact that p is RHS-containment consistent.

2. o existed already in S1, but is contained in an object c in S1 and not contained

in any object in S2. Its container cannot have been deleted, since the rule should

not delete any objects. So only the containment edges from its container c to

the object has been deleted. Deletion of a containment edge can only occur if

the container object and the contained object are explicitly given through the

match (like in Figure 4.5). This cannot occur because p is RHS-containment

consistent, which forbids that an object is contained in the LHS, but not in the

RHS of a rule.
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User Guide

This user guide describes a model transformation framework for EMF. The framework

consists of a graphical editor for the visual definition of model transformations, a

compiler that generates Java code and an interpreter that can be used to apply

transformations to EMF model instances.

B.1 Installation

The following softwaare is needed in order to install the model transformation envi-

ronment:

• Java 5 or later

• Eclipse SDK 3.2

• EMF 2.2.0 or later

• GEF 3.2.0 or later

Installing the EMF Model Transformation environment is done using the Eclipse

Update Manager. Click on Help → Software Updates → Find and Install... and

choose Search for new features to install. After that a list of update sites pops up,

were you have to manually add the EMF Model Transformation update site. Click

on New remote site and enter the following data:

• Name: EMF Model Transformation update site

• URL: http://tfs.cs.tu-berlin.de/emftrans/update

65



66 APPENDIX B. USER GUIDE

Figure B.1: Using the EMF Model Transformation update site

Now enable the update site and click on Next. Choose the EMF Model Transformation

feature and finish the installation. After a restart of the Eclipse workbench the feature

is automatically activated.

B.2 Defining Transformations

Transformations for EMF models are defined using transformation rules. These rules

consist of a left-hand side (LHS), a right-hand side (RHS), possible negative appli-

cation conditions (NACs) and mappings between these so called object structures.

These object structures consist of a number of possibly linked objects typed by the

EMF models. They are visulized in the editor by a diagram that contains a number

of object nodes, that can be connected or attributed.

The left-hand side of a rule stands for the structural pre-conditions that must

be fulfilled to apply the rule. Accordingly a right-hand side describes the result (or

post-conditions) of a rule. Negative application conditions are defined in the same

way and describe structural conditions that must not be fulfilled to apply the rule.

Objects in the LHS of a rule can be mapped to objects in the RHS and also to

objects in the NACs. The editor visualizes mappings by coloring the mapped objects

in the same way. Those objects in the LHS, which are mapped to the RHS, will be

preserved during rule application. Objects in the LHS, which have no mapping to the
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Figure B.2: Importing packages.

Figure B.3: A model transformation for Activity diagrams / Petri nets.
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Figure B.4: Basic operations in the graphical editor.

RHS are being removed. Accordingly, objects in the RHS without a mapping will be

created during rule application.

An important property of EMF classes is the possibility of defining primitive-

valued attributes. These attributes are also considered in our transformation ap-

proach. In the editor, attributes of an object can be activated by assigning arbitrary

java expressions, that must have the same type like the attribute as defined in the

EMF class. Further typed variables can be defined for each rule and used in the

expressions. Declaration of variables in the editor can be done through an entry in

the context menu.

B.3 Interpreter and Compiler

Rule application is performed by a provided interpreter or using generated java classes.

Code generation facilities for *.emt files is provided through a context menu entry in

the resource navigator. The interpreter and the generated classes apply transforma-

tion rules by finding a match for the pattern described in the LHS into the object

structure that should be transformed. These matches can be either defined explicitly

or can be computed by the transformation engine.
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