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Outline

• Briefly: Work on

– robot manipulation learning, learning from demonstration

– relational MDPs

– active learning
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Learning from Few Samples

• Cooperative Manipulation Learning

• Relational imitation & inverse reinforcement learning

◦

Toussaint, Munzer, Mollard & Lopes: Relational Activity Processes for Modeling Concurrent
Cooperation. ICRA’16

Busch, Toussaint, Lopes: Planning Ergonomic Sequences of Actions in Human-Robot Interaction.
ICRA’18 3/??



Methods involved

• Relational Activity Processes
– The current state lists the current activities (relational (1st-order logic)):

(object Handle), (free humanLeft), (humanLeft graspingScrew)=1.0,

(humanRight grasped Handle), (Handle held), (robot releasing Long1)=1.5, ..

• This defines a decision process, which initiates, waits, and terminates
activities of all agents, and predicts the effects.

• Tree Search to reasons about decisions (for all agents!)

• Reduction to relational semi-MDP to realize Inverse Reinforcement
Learning (using Tree Boosted Relational Imitation Learning)

Munzer, Toussaint, Lopes: Preference learning on the execution of collaborative human-robot tasks.
ICRA’17

Toussaint, Munzer, Mollard & Lopes: Relational Activity Processes for Modeling Concurrent
Cooperation. ICRA’16
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Learning from Few Samples

• Combine analytical optimization with black-box BayesOpt

• Invert the KKT conditions to learn from demonstration

◦

Englert, Vien, Toussaint: Inverse KKT: Learning cost functions of manipulation tasks from
demonstrations. IJRR 2017

Englert, Toussaint: Learning manipulation skills from a single demonstration. IJRR 2018
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Methods involved

• Constrained optimization (KOMO) to generate motions

• Bayesian Optimization to search for good interaction parameters

• Inverting the KKT conditions for Inverse Reinforcement Learning

Englert & Toussaint: Inverse KKT – Learning Cost Functions of Manipulation Tasks from
Demonstrations. ISRR’15

Engert & Toussaint: Combined Optimization and Reinforcement Learning for Manipulation Skills.
R:SS’16
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Learning from Few Samples

• Active Learning of Kinematic Mechanisms

• Bayesian inference over kinematic structures for active learning

◦

Baum et al.: Opening a Lockbox through Physical Exploration. Humanoids’17

Kulick, Otte, Toussaint: Active Exploration of Joint Dependency Structures. ICRA’15
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Methods involved

• Graphical Modes to represent what we know about the mechanism

• Probabilistic Inference to estimate information gain for potential next
actions (active learning)
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• All three lines of work exploit some understanding of the domain for
sample efficiency

• But what is the fundamental structure of robot-world interaction?
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Physical Reasoning & Manipulation

◦ ◦

Battaglia, Hamrick & Tenenbaum, PNAS’13

(Wolfgang Köhler, 1917)

• What are computational models for physical reasoning?

• Reason about anything doable in a Newtonian world
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Why is this interesting to study?

• Physical Reasoning is under-researched

– Lots of methodologies for physical modelling, but not reasoning

– Focus of main-stream RL: specific skills → generalization to anything
conceivable in a Newtonian world

– Robotics: task and motion planning

– Cognitive Science needs models

• Core challenge in robotics
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Inverting Physics

• In analogy to inverting graphics
Given desired outcomes, what inputs do we have to send to physics?

• Differentiable Physics:
– Todorov: A convex, smooth and invertible contact model for trajectory optimization.

ICRA’11
– de Avila Belbute-Peres & Kolter: A Modular Differentiable [..] Physics Engine.

NIPS’17 workshop
– Mordatch et al: Discovery of complex behaviors through contact-invariant

optimization. TOG’12
– Note: Local(!) differentiation through KKT conditions of constrained optimization

• Gradients are powerful, but can they alone solve our problem?

– would contradict known complexity of task and motion planning

– ’zero gradients’ or local optima

– discrete decisions translate to combinatorics of local optima
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Unstructured Problem Formulation

control costs

goal

physics

– configuration space X = Rn × SE(3)m

– path x : [0, T ]→ X

– x̄(t) = (x(t), ẋ(t), ẍ(t))

– (g, h)path: physics

– (f, h, g)goal: objectives
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Logic-Geometric Program

control costs

goal
sequence of modes

logic of mode transitions

mode transitions

– Logic to describe possible sequences of modes

– Modes are differentiable constraints on the path

– Every skeleton a1:K defines a smooth and tractable NLP

Toussaint, Allen, Smith, Tenenbaum: Differentiable Physics and Stable Modes for Tool-Use and Manipulation
Planning. R:SS’18
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A Logic of Path Constraints

• The core categorical decision: (touch X Y)

• Finite types of interaction:

– Stable relation

– Inertial dynamics

– Impulse or force exchange

– etc
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• Symbols to impose modes & constraints:

m
od

es
(staFree X Y) create stable free (7D) joint from X to Y

(staOn X Y) create stable 3D xyφ joint from X to Y

(dynFree X) create dynamic free joint from world to X

(dynOn X Y) create dynamic 3D xyφ joint from X to Y

[impulse X Y] impulse exchange equation

ge
om

et
ri

c (touch X Y) distance between X and Y equal 0

(inside X Y) point X is inside object Y→ inequalities

(above X Y) Y supports X to not fall→ inequalities

(push X Y Z)

dynFree, dynOn

M(q)q̈q + F (q, q̇) = 0

impulse

I1ω1 − p1 ×R = 0 m1v1 +m2v2 = 0

I2ω2 + p2 ×R = 0 (I − cc>)R = 0
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• Decision operators to sequence modes:

decisions effects

grasp(X Y) [touch X Y] (staFree X Y)

handover(X Y Z) [touch Z Y] (staFree Z Y) !(staFree X Y)

place(X Y Z) [above Y Z] (staOn Z Y) !(staFree X Y)

throw(X Y) (dynFree Y) !(staFree X Y)

hit(X Y) [touch X Y] [impulse X Y] (dynFree Y)

hitSlide(X Y Z) [touch X Y] [impulse X Y] (above Y Z) (dynOn Y Z)

hitSlideSit(X Y Z) “hitSlide(X Y Z)” “place(X Z)”

push(X, Y, Z) komo(push X Y Z)

More predicates for preconditions: gripper, held, busy, animate, on, table
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Multi-Bound Tree Search

• A NLP P describes minx f(x) s.t. g(x) ≤ 0, h(x) = 0

• Definition: P̂ � P (is lower bound) iff [P feas. ⇒ P̂ feas. ∧ f̂∗ ≤ f∗]

• Every symbolic (sub-)sequence sk:l defines an NLP P(sk:l)

• Definition: P seq. bounds itself iff [sk:l ⊆ s1:K ⇒ P(sk:l) � P(s1:K)]

• Definition: (P1, ..,PL) is a multi-bound iff ∀i : Pi � Pi+1 and Pi seq.
bound

• Best-first search alternating over P1, ..,PL

• Concrete bounds we use:

P0 sym symbolically feasible � 10msec

P1 pose pose for last decision ∼ 20− 200msec

P2 seq sequence of key poses for whole skeleton ∼ 0.2− 2sec

P3 path full fine path for whole skeleton ∼ 10sec
18/??



MBTS properties

• Optimality Guarantees? Yes, if...

– we could solve the NLPs exactly (instead: mostly uni-modal, but no
convexity guarantee)

• Possibilities to improve

– cooperation with Erez Karpas (Technion)
Karpaz et al: Rational deployment of multiple heuristics in optimal state-space search. AI 2018

– integration with Fast Downward planning (STRIPS-stream; Garrett)

– integration with Angelic Semantics (Marthi; Vega-Brown)
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◦
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◦
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◦
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◦
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Run times

∼ 20− 200sec

For 5 runs, cost of the best solution found, for bounds P2 and P3, over time

24/??



Other interaction types – all differentiable

◦ ◦

◦ ◦
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Relations to other areas

• Mixed-Integer Programming in Hybrid Control:

→ bridge to AI planning

• Differentiable Physics:

→ exploit differentiable modes; but introduce “logic of local optima”

• Dexterous Robot Manipulation:

→ represent manipulation modes to become AI-plannable

• Classical (sample-based) Task and Motion Planning:

→ optimization & physics

• Cognitive Science & Intuitive Physics

→ computational paradigm beyond MCMC
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Human Experiments

◦
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Human Experiments

LGP as a model of human manipulation choice

Yildirim, Gerstenberg, Saeed, Toussaint, Tenenbaum: Physical problem solving: Joint planning with
symbolic, geometric, and dynamic constraints. CogSci’17
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What’s next?
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Planning → Execution

• So far, LGP only describes how to compute plans – execution of these
plans is a different beast

◦
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Planning → Execution

• A plan is only a guess of what might be possible
(more rigorously, a lower bound of real-world execution)

• Learn from failures:

– We have a clear notion of failure; much more informative than reward

– Sample-efficient RL to learn so choose, discard, and switch between plans
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IntCDC

• Excellence Cluster in Integrated Computational Design and
Construction
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IntCDC

• Formalize the whole process (multi-robot construction, design, physics,
etc) in a way so we can jointly reason over everything

– Design so as to make it easier to construct

– Design things that you didn’t know could be constructed

– Leverage simulations for large-scale exploration of designs
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