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Outline

e Briefly:  Work on
— robot manipulation learning, learning from demonstration
— relational MDPs
— active learning
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Learning from Few Samples

e Cooperative Manipulation Learning

e Relational imitation & inverse reinforcement learning

Toussaint, Munzer, Mollard & Lopes: Relational Activity Processes for Modeling Concurrent
Cooperation. ICRA’16

Busch, Toussaint, Lopes: Planning Ergonomic Sequences of Actions in Human-Robot Interaction.
ICRA’18 3/77



Methods involved

e Relational Activity Processes

— The current state lists the current activities (relational (1st-order logic)):
(object Handle), (free humanleft), (humanLeft graspingScrew)=1.0,
(humanRight grasped Handle), (Handle held), (robot releasing Longl)=1.5,

e This defines a decision process, which initiates, waits, and terminates
activities of all agents, and predicts the effects.

e Tree Search to reasons about decisions (for all agents!)

e Reduction to relational semi-MDP to realize Inverse Reinforcement
Learning (using Tree Boosted Relational Imitation Learning)

Munzer, Toussaint, Lopes: Preference learning on the execution of collaborative human-robot tasks.
ICRA'17

Toussaint, Munzer, Mollard & Lopes: Relational Activity Processes for Modeling Concurrent
Cooperation. ICRA’16
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Learning from Few Samples

e Combine analytical optimization with black-box BayesOpt
e Invert the KKT conditions to learn from demonstration

Low-dimensional Bayesian Optimization

Englert, Vien, Toussaint: Inverse KKT: Learning cost functions of manipulation tasks from
demonstrations. |JRR 2017

Englert, Toussaint: Learning manipulation skills from a single demonstration. IJRR 2018
5/77



Methods involved

e Constrained optimization (KOMO) to generate motions
e Bayesian Optimization to search for good interaction parameters
e Inverting the KKT conditions for Inverse Reinforcement Learning

Englert & Toussaint: Inverse KKT — Learning Cost Functions of Manipulation Tasks from
Demonstrations. ISRR’15

Engert & Toussaint: Combined Optimization and Reinforcement Learning for Manipulation Skills.
R:SS'16
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Learning from Few Samples

e Active Learning of Kinematic Mechanisms
e Bayesian inference over kinematic structures for active learning

\\E

ation strategies: random exploration,
and our prevnously developed

5x Speed

Baum et al.: Opening a Lockbox through Physical Exploration. Humanoids’'17
Kulick, Otte, Toussaint: Active Exploration of Joint Dependency Structures. ICRA’15
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Methods involved

e Graphical Modes to represent what we know about the mechanism

e Probabilistic Inference to estimate information gain for potential next
actions (active learning)
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e All three lines of work exploit some understanding of the domain for
sample efficiency

e But what is the fundamental structure of robot-world interaction?
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Physical Reasoning & Manipulation

Battaglia, Hamrick & Tenenbaum, PNAS’'13
(Wolfgang Kéhler, 1917)

e What are computational models for physical reasoning?

o Reason about anything doable in a Newtonian world 10/27



Why is this interesting to study?
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Why is this interesting to study?

e Physical Reasoning is under-researched
— Lots of methodologies for physical modelling, but not reasoning

— Focus of main-stream RL: specific skills — generalization to anything
conceivable in a Newtonian world

— Robotics: task and motion planning
— Cognitive Science needs models
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Why is this interesting to study?

e Physical Reasoning is under-researched
— Lots of methodologies for physical modelling, but not reasoning

— Focus of main-stream RL: specific skills — generalization to anything
conceivable in a Newtonian world

— Robotics: task and motion planning
— Cognitive Science needs models

e Core challenge in robotics
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Inverting Physics

¢ In analogy to inverting graphics
Given desired outcomes, what inputs do we have to send to physics?
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Inverting Physics

¢ In analogy to inverting graphics
Given desired outcomes, what inputs do we have to send to physics?

o Differentiable Physics:

— Todorov: A convex, smooth and invertible contact model for trajectory optimization.
ICRA'11

— de Avila Belbute-Peres & Kolter: A Modular Differentiable [..] Physics Engine.
NIPS’17 workshop

— Mordatch et al: Discovery of complex behaviors through contact-invariant
optimization. TOG’12

— Note: Local(!) differentiation through KKT conditions of constrained optimization

e Gradients are powerful, but can they alone solve our problem?
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Inverting Physics

¢ In analogy to inverting graphics
Given desired outcomes, what inputs do we have to send to physics?

o Differentiable Physics:

— Todorov: A convex, smooth and invertible contact model for trajectory optimization.
ICRA'11

— de Avila Belbute-Peres & Kolter: A Modular Differentiable [..] Physics Engine.
NIPS’17 workshop

— Mordatch et al: Discovery of complex behaviors through contact-invariant
optimization. TOG’12

— Note: Local(!) differentiation through KKT conditions of constrained optimization

e Gradients are powerful, but can they alone solve our problem?
— would contradict known complexity of task and motion planning
— ’zero gradients’ or local optima
— discrete decisions translate to combinatorics of local optima
12/77



Unstructured Problem Formulation

control costs

goal
Inll’l / path dt + fgoal

) = 0, (hgoa (£(T)) = 0, ggom (x(T)) <0
Vt €[0,T]: Ppath (Z(£)) = 0, gpatn(Z(t)) <0
physics

— configuration space X = R" x SE(3)™
—pathz:[0,7] = X

- z(t) = (=(t), 2(t), £(t))

— (g, h)pan: physics

— (f, h, 9)goal: Objectives
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Logic-Geometric Program

control costs

. T |_ goal
min /0 (foatn (2 (1)) dt +[fgoal(3’(T))}// sequence of modes

T,01:1,51:
s.t. 2(0) = wo, (hgoal(I(T)) =0, ggoal(l’(T)) < OJ )
Yt € [0,T] : (hpatn (Z(t), sk(t)) = 0, gpatn(T(t), sx@r)) <0,
Vk € {1,.., K} i hswiten(2(t), ar) = 0, Gswiten(2(tx), ax) <0,
( Sk € succ(sk_l,ak))

mode transitions
logic of mode transitions

— Logic to describe possible sequences of modes
— Modes are differentiable constraints on the path
— Every skeleton a;.x defines a smooth and tractable NLP

Toussaint, Allen, Smith, Tenenbaum: Differentiable Physics and Stable Modes for Tool-Use and Manipulation
Planning. R:SS’'18 14/77



A Logic of Path Constraints

e The core categorical decision: (touch XY)
¢ Finite types of interaction:

— Stable relation

— Inertial dynamics

— Impulse or force exchange

— etc
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e Symbols to impose modes & constraints:

(staFree X Y) | create stable free (7D) joint from Xto Y
@ (staOn X Y) | create stable 3D zy¢ joint from Xto Y
3 (dynFree X) create dynamic free joint from world to X
E (dynOn X Y) | create dynamic 3D zy¢ joint from X to Y
[impulse X Y] | impulse exchange equation
o (touch X Y) | distance between X and Y equal 0
g (inside X'Y) | point X is inside object Y — inequalities
§ (above X Y) | Y supports X to not fall — inequalities
(=]

impulse
dynFree, dynOn

.. . I —p1xR=0 + =0
M(q)dq + F(q,4) =0 P T

Iows +p2 x R=0 (IfccT)RZO
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e Decision operators to sequence modes:

decisions effects
grasp(X'Y) [touch X Y] (staFree X Y)
handover(X Y Z) | [touch Z Y] (staFree ZY) I(staFree XY)
place(XY Z) [above Y Z] (staOn ZY) [(staFree XY)
throw(X'Y) (dynFree Y) [(staFree XY)
hit(X'Y) [touch X Y] [impulse X Y] (dynFree Y)
hitSlide(X Y 2) [touch X Y] [impulse X Y] (above Y Z) (dynOn Y Z)
hitSlideSit(X Y Z) | “hitSlide(X Y Z)” “place(X Z)”
push(X, Y, Z2) komo(push X Y Z)

More predicates for preconditions: gripper, held, busy, animate, on, table
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Multi-Bound Tree Search

e A NLP P describes min, f(z) s.t. g(z) <0, h(z) =0

e Definition: P < P (is lower bound) iff [P feas. = Pfeas. A f* < f*]
e Every symbolic (sub-)sequence si.; defines an NLP P(sy.;)

e Definition: ? seq. bounds itself iff [sx.; C s1.x = P(sk1) = P(s1.x)]

e Definition: (P4, ..,P.) is a multi-bound iff V; : P; < P41 and P; seq.
bound

e Best-first search alternating over Py, .., P,

:Ppose((ll:’l)

« Concrete bounds we use: ;p“‘:;12>)
Po | sym | symbolically feasible < 10msec
P1 | pose | pose for last decision ~ 20 — 200msec
P2 | seq | sequence of key poses for whole skeleton ~ 0.2 — 2sec
P3 | path | full fine path for whole skeleton ~ 10sec
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MBTS properties

e Optimality Guarantees? Yes, if...

— we could solve the NLPs exactly (instead: mostly uni-modal, but no
convexity guarantee)

e Possibilities to improve

— cooperation with Erez Karpas (Technion)

Karpaz et al: Rational deployment of multiple heuristics in optimal state-space search. Al 2018
— integration with Fast Downward planning (STRIPS-stream; Garrett)
— integration with Angelic Semantics (Marthi; Vega-Brown)
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time -2/70
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0.1: 03114857 1.10575 2.07728 | 0.710069
(grasp baterR stck)

(hitSlide stickTip redBall table1)

(grasp paxterl redBal)

31. 03114302 110464 254955 | 0.611458
(grasp haxter stick)

(hitslide stickTip redBall table1)

(grasp3iide baxterl recBall tablel)

1. 0.3 1.02846 166055 2.42943 | 000344367
(grasp baxterR stick)

(push StkTIp radBal tablel)

(grasp haxterL redBall)

4. 04 0.92368 201941 349634 | 0.0585839
(grasp baxter stick)

(handaver haxterR stick haxterL)

(push StickTip redBall tablel)

(grasp baxterR redBal)

21; 04116111 115196 248215 | 00207501
(grasp baterR Sick)

(handover baxterR stick haxtarL)

(hitSlice stickTip redBall table)

(graspSlide haxterR redBall tanlel)

5:1. 0.371.14371 114327 2.7609 | 119
(grasp3lide haxterR stick table1)

(nitslice stickTip redBall table)

(grasp haxterL redBally




0:92: 0.6 0628468 0602936 0 1.02361 | 0211704
(grasp pIZR obj0)

¢

(place przR obj0 ray)

(place przL ohj] tray)
P )

592 0.6 0626442 0602993 0 1.08665 | 0417457
(grasp piZR obj0)

¢
(place przR ohjo tray)
(place przL obj1 tray)

192 0.6 0.633722 0.603255 0 1.05089 | 0197327 2:92: 0.6 0.633158 0.603161 0 1.06938 | 0.252015
(grasp prR ahj0) (grasp przR abj0)y
(grasp preL obj1) (grasp preL abj1)
(place przR ahj0 tray) (place przR b0 ray)
(grasp prR ahj2) (grasp IR abj2y
bjl tra & I7R objZ tray)

4:92; 0.6 0644428 0.603428 0110363 | 0.0894607 5:92: 0.6 0.617341 0.603234 0 1.18015 | 0.71908
(grasp preR ahj0) (grasp preR obj0)

(grasp prel. ohjt) (grasp prel. ohj1)

(place preL obj1 tray) (place preL obj1 tray)

(arasp preL abjz) (grasp preL objz)
i E obj0,ira, &

| objz tray)



057 0.3 0.350308 0301862 0 0.469769 | 0.0812076
(grasp pre objg)

(arasp preL obj3)

{place przR obj0 tray)

357 04 0414375 0401737 0056091 | 0244107
(arasp preR obj3)

{arasp preL. obj0)

(place przR obj3 tablez)

(place przL obj0 tray)

157 0.3 0.307726 0.30273 0 0508466 | 0.21674
(grasp prz obj3)

(arasp przL. abj0)

(place przL obj0 tray)

4:57. 0.4 0409768 0401655 0 0.564126 | 0469622
(grasp prel. objo)

(arasp pr2R objd)
(place przk obj3 table2)
(place przL. abj0 tray)

257 0.3 0311509 0.302527 0 0.547901 | 0226081
(grasp preL obj3)

(qrasp prZR abjd)

(place przR obj0 tray)

557. 0.4 0403976 0401518 0 0.56905 | 0.267901
(grasp przL objty

(grasp preR abj3)

(place przR abj3 tray)

(place przL obj0 tray)




Run times

~ 20 — 200sec

6 T T T T T 6 T T
best costseq = - - - best costseq - - - -
best costpath best costpath ——
#solutions #solutions
5 b 5k
4t 4t 4

cost #solutions
w
T

cost #solutions
w
T

0 50 100 150 200 250 300 0 50 100 150 200 250 300
cpu time [sec] cpu time [sec]

For 5 runs, cost of the best solution found, for bounds P> and Ps, over time
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Other interaction types — all differentiable

KOMO planne trajectory (config /20 0.5 u:0.05) - press ENTER KOMO planned Uisjectory (canfig /45 51 1au.0260173) - press EN

KOMO planned trejectory (conflg /20 0.3 1au:0.05) - press ENTER KOMO plamned tisjectory (config 15118 0.6 aui0.05) - press ENTE




Relations to other areas

e Mixed-Integer Programming in Hybrid Control:
— bridge to Al planning

Differentiable Physics:
— exploit differentiable modes; but introduce “logic of local optima”

Dexterous Robot Manipulation:
— represent manipulation modes to become Al-plannable

Classical (sample-based) Task and Motion Planning:
— optimization & physics

e Cognitive Science & Intuitive Physics

— computational paradigm beyond MCMC
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Human Experiments
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Human Experiments

A

Problem 1 Problem 2

LGP as a model of human manipulation choice

Yildirim, Gerstenberg, Saeed, Toussaint, Tenenbaum: Physical problem solving: Joint planning with
symbolic, geometric, and dynamic constraints. CogSci'17
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What’s next?
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Planning — Execution

e So far, LGP only describes how to compute plans — execution of these
plans is a different beast
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Planning — Execution

e Aplanis only a guess of what might be possible
(more rigorously, a lower bound of real-world execution)

e Learn from failures:

— We have a clear notion of failure; much more informative than reward

— Sample-efficient RL to learn so choose, discard, and switch between plans
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IntCDC

e Excellence Cluster in Integrated Computational Design and
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IntCDC

e Formalize the whole process (multi-robot construction, design, physics,
etc) in a way so we can jointly reason over everything

— Design so as to make it easier to construct
— Design things that you didn’t know could be constructed
— Leverage simulations for large-scale exploration of designs
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