Learning and Reasoning in the Physical World

Marc Toussaint

Machine Learning & Robotics Lab – University of Stuttgart

Al Lecture, Stuttgart, Jan 28, 2018

Outline

- · Briefly: Work on
 - robot manipulation learning, learning from demonstration
 - relational MDPs
 - active learning

Learning from Few Samples

- Cooperative Manipulation Learning
- Relational imitation & inverse reinforcement learning

Toussaint, Munzer, Mollard & Lopes: Relational Activity Processes for Modeling Concurrent Cooperation. ICRA'16

Busch, Toussaint, Lopes: Planning Ergonomic Sequences of Actions in Human-Robot Interaction. ICRA'18

Methods involved

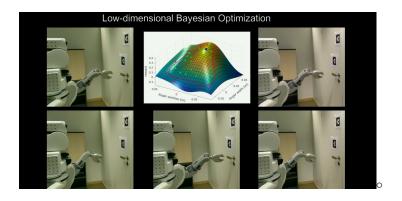
- Relational Activity Processes
 - The current state lists the current activities (relational (1st-order logic)): (object Handle), (free humanLeft), (humanLeft graspingScrew)=1.0, (humanRight grasped Handle), (Handle held), (robot releasing Long1)=1.5,
- This defines a decision process, which initiates, waits, and terminates activities of all agents, and predicts the effects.
- Tree Search to reasons about decisions (for all agents!)
- Reduction to relational semi-MDP to realize Inverse Reinforcement Learning (using Tree Boosted Relational Imitation Learning)

Munzer, Toussaint, Lopes: Preference learning on the execution of collaborative human-robot tasks. ICRA'17

Toussaint, Munzer, Mollard & Lopes: Relational Activity Processes for Modeling Concurrent Cooperation. ICRA'16

Learning from Few Samples

- Combine analytical optimization with black-box BayesOpt
- Invert the KKT conditions to learn from demonstration



Englert, Vien, Toussaint: Inverse KKT: Learning cost functions of manipulation tasks from demonstrations. IJRR 2017

Englert, Toussaint: Learning manipulation skills from a single demonstration. IJRR 2018

Methods involved

- Constrained optimization (KOMO) to generate motions
- Bayesian Optimization to search for good interaction parameters
- Inverting the KKT conditions for Inverse Reinforcement Learning

Englert & Toussaint: Inverse KKT – Learning Cost Functions of Manipulation Tasks from Demonstrations. ISRR'15

Engert & Toussaint: Combined Optimization and Reinforcement Learning for Manipulation Skills. R:SS'16

Learning from Few Samples

- Active Learning of Kinematic Mechanisms
- Bayesian inference over kinematic structures for active learning

Baum et al.: Opening a Lockbox through Physical Exploration. Humanoids'17 Kulick, Otte, Toussaint: Active Exploration of Joint Dependency Structures. ICRA'15

Methods involved

- Graphical Modes to represent what we know about the mechanism
- Probabilistic Inference to estimate information gain for potential next actions (active learning)

•	All three lines of work exploit some understanding of the domain for
	sample efficiency

• But what is the fundamental structure of robot-world interaction?

Physical Reasoning & Manipulation

Battaglia, Hamrick & Tenenbaum, PNAS'13

(Wolfgang Köhler, 1917)

- What are computational models for physical reasoning?
- Reason about anything doable in a Newtonian world

Why is this interesting to study?

Why is this interesting to study?

- Physical Reasoning is under-researched
 - Lots of methodologies for physical modelling, but not reasoning
 - Focus of main-stream RL: specific skills → generalization to anything conceivable in a Newtonian world
 - Robotics: task and motion planning
 - Cognitive Science needs models

Why is this interesting to study?

- Physical Reasoning is under-researched
 - Lots of methodologies for physical modelling, but not reasoning
 - Focus of main-stream RL: specific skills → generalization to anything conceivable in a Newtonian world
 - Robotics: task and motion planning
 - Cognitive Science needs models
- · Core challenge in robotics

Inverting Physics

In analogy to inverting graphics
 Given desired outcomes, what inputs do we have to send to physics?

Inverting Physics

- In analogy to inverting graphics
 Given desired outcomes, what inputs do we have to send to physics?
- Differentiable Physics:
 - Todorov: A convex, smooth and invertible contact model for trajectory optimization. ICRA'11
 - de Avila Belbute-Peres & Kolter: A Modular Differentiable [..] Physics Engine.
 NIPS'17 workshop
 - Mordatch et al: Discovery of complex behaviors through contact-invariant optimization. TOG'12
 - Note: Local(!) differentiation through KKT conditions of constrained optimization
- Gradients are powerful, but can they alone solve our problem?

Inverting Physics

In analogy to inverting graphics
 Given desired outcomes, what inputs do we have to send to physics?

Differentiable Physics:

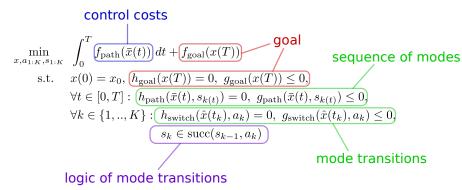
- Todorov: A convex, smooth and invertible contact model for trajectory optimization. ICRA'11
- de Avila Belbute-Peres & Kolter: A Modular Differentiable [..] Physics Engine.
 NIPS'17 workshop
- Mordatch et al: Discovery of complex behaviors through contact-invariant optimization. TOG'12
- Note: Local(!) differentiation through KKT conditions of constrained optimization
- Gradients are powerful, but can they alone solve our problem?
 - would contradict known complexity of task and motion planning
 - 'zero gradients' or local optima
 - discrete decisions translate to combinatorics of local optima

Unstructured Problem Formulation

control costs
$$\min_{x} \int_{0}^{T} \underbrace{f_{\mathrm{path}}(\bar{x}(t))}_{dt} dt + \underbrace{f_{\mathrm{goal}}(x(T))}_{goal} \underbrace{goal}_{s.t.}$$
 s.t. $x(0) = x_{0}, \underbrace{h_{\mathrm{goal}}(x(T)) = 0, \ g_{\mathrm{goal}}(x(T)) \leq 0}_{\forall t \in [0,T] : \underbrace{h_{\mathrm{path}}(\bar{x}(t)) = 0, \ g_{\mathrm{path}}(\bar{x}(t)) \leq 0}_{physics}$

- configuration space $\mathfrak{X}=\mathbb{R}^n\times SE(3)^m$
- path $x:[0,T]\to \mathfrak{X}$
- $-\ \bar{x}(t)=(x(t),\dot{x}(t),\ddot{x}(t))$
- $-(g,h)_{\mathsf{path}}$: physics
- $-(f,h,g)_{qoal}$: objectives

Logic-Geometric Program



- Logic to describe possible sequences of modes
- **Modes** are differentiable constraints on the path
- Every skeleton $a_{1:K}$ defines a smooth and tractable NLP

Toussaint, Allen, Smith, Tenenbaum: Differentiable Physics and Stable Modes for Tool-Use and Manipulation Planning. R:SS'18

A Logic of Path Constraints

- The core categorical decision: (touch X Y)
- Finite types of interaction:
 - Stable relation
 - Inertial dynamics
 - Impulse or force exchange
 - etc

• Symbols to impose modes & constraints:

	(staFree X Y)	create stable free (7D) joint from X to Y
ျွတ္က	(staOn X Y)	create stable 3D $xy\phi$ joint from X to Y
modes	(dynFree X)	create dynamic free joint from world to X
E	(dynOn X Y)	create dynamic 3D $xy\phi$ joint from X to Y
	[impulse X Y]	impulse exchange equation
ပ္	(touch X Y)	distance between X and Y equal 0
l etr	(inside X Y)	point X is inside object $Y \rightarrow$ inequalities
geometric	(above X Y)	Y supports X to not fall \rightarrow inequalities
Ď		
	(push X Y Z)	

$$\begin{array}{ll} \text{dynFree, dynOn} & \text{impulse} \\ M(q)\ddot{q}_q + F(q,\dot{q}) = 0 & I_1\omega_1 - p_1 \times R = 0 & m_1v_1 + m_2v_2 = 0 \\ I_2\omega_2 + p_2 \times R = 0 & (I - cc^\top)R = 0 \end{array}$$

• Decision operators to sequence modes:

decisions	effects
grasp(X Y)	[touch X Y] (staFree X Y)
handover(X Y Z)	[touch Z Y] (staFree Z Y) !(staFree X Y)
place(X Y Z)	[above Y Z] (staOn Z Y) !(staFree X Y)
throw(X Y)	(dynFree Y) !(staFree X Y)
hit(X Y)	[touch X Y] [impulse X Y] (dynFree Y)
hitSlide(X Y Z)	[touch X Y] [impulse X Y] (above Y Z) (dynOn Y Z)
hitSlideSit(X Y Z)	"hitSlide(X Y Z)" "place(X Z)"
push(X, Y, Z)	komo(push X Y Z)

More predicates for preconditions: gripper, held, busy, animate, on, table

Multi-Bound Tree Search

- A NLP \mathcal{P} describes $\min_x f(x)$ s.t. $g(x) \leq 0, \ h(x) = 0$
- **Definition:** $\hat{\mathcal{P}} \preceq \mathcal{P}$ (is lower bound) iff $[\mathcal{P}$ feas. $\Rightarrow \hat{\mathcal{P}}$ feas. $\land \hat{f}^* \leq f^*]$
- Every symbolic (sub-)sequence $s_{k:l}$ defines an NLP $\mathcal{P}(s_{k:l})$
- **Definition:** \mathcal{P} seq. bounds itself iff $[s_{k:l} \subseteq s_{1:K} \Rightarrow \mathcal{P}(s_{k:l}) \preceq \mathcal{P}(s_{1:K})]$
- **Definition:** $(\mathcal{P}_1,..,\mathcal{P}_L)$ is a multi-bound iff $\forall_i: \mathcal{P}_i \preceq \mathcal{P}_{i+1}$ and \mathcal{P}_i seq. bound
- Best-first search alternating over $\mathbb{P}_1,..,\mathbb{P}_L$

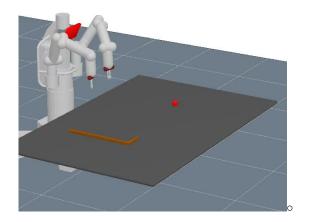
Concrete bounds we use:

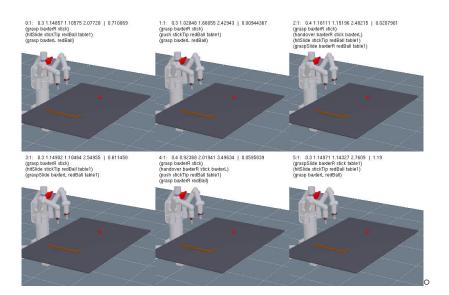
10msec
- 200msec
2-2sec
10sec

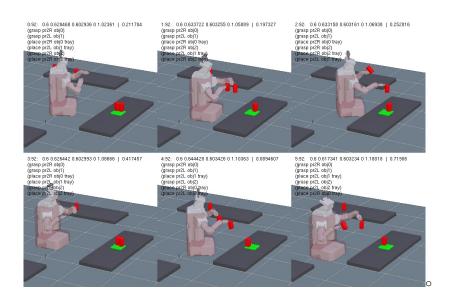
18/**?**?

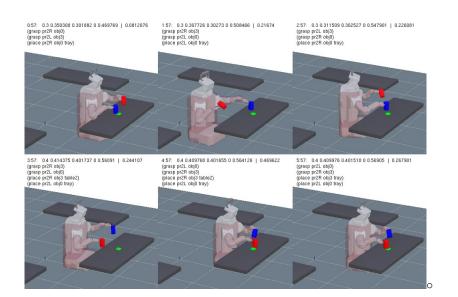
MBTS properties

- Optimality Guarantees? Yes, if...
 - we could solve the NLPs exactly (instead: mostly uni-modal, but no convexity guarantee)
- Possibilities to improve
 - cooperation with Erez Karpas (Technion)
 Karpaz et al: Rational deployment of multiple heuristics in optimal state-space search. Al 2018
 - integration with Fast Downward planning (STRIPS-stream; Garrett)
 - integration with Angelic Semantics (Marthi; Vega-Brown)

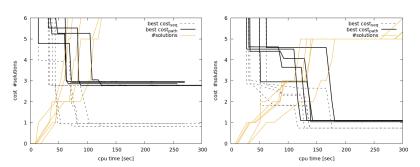






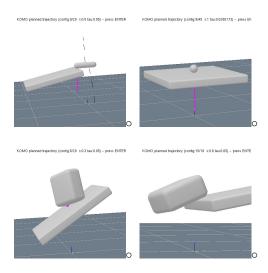


Run times



For 5 runs, cost of the best solution found, for bounds \mathcal{P}_2 and \mathcal{P}_3 , over time

Other interaction types – all differentiable

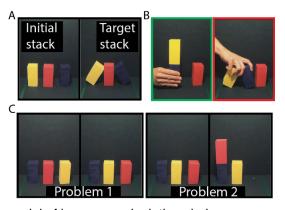


Relations to other areas

- Mixed-Integer Programming in Hybrid Control:
 - \rightarrow bridge to AI planning
- Differentiable Physics:
 - → exploit differentiable modes; but introduce "logic of local optima"
- Dexterous Robot Manipulation:
 - → represent manipulation modes to become Al-plannable
- Classical (sample-based) Task and Motion Planning:
 - → optimization & physics
- Cognitive Science & Intuitive Physics
 - → computational paradigm beyond MCMC

Human Experiments

Human Experiments



LGP as a model of human manipulation choice

Yildirim, Gerstenberg, Saeed, Toussaint, Tenenbaum: *Physical problem solving: Joint planning with symbolic, geometric, and dynamic constraints.* CogSci'17

What's next?

Planning → **Execution**

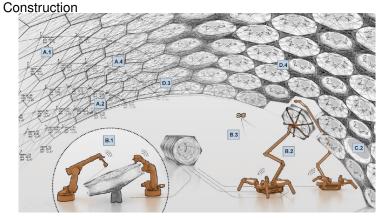
 So far, LGP only describes how to compute plans – execution of these plans is a different beast

Planning → Execution

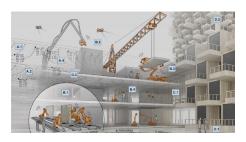
- A plan is only a guess of what might be possible (more rigorously, a lower bound of real-world execution)
- · Learn from failures:
 - We have a clear notion of failure; much more informative than reward
 - Sample-efficient RL to learn so choose, discard, and switch between plans

IntCDC

Excellence Cluster in Integrated Computational Design and



IntCDC



- Formalize the whole process (multi-robot construction, design, physics, etc) in a way so we can jointly reason over everything
 - Design so as to make it easier to construct
 - Design things that you didn't know could be constructed
 - Leverage simulations for large-scale exploration of designs