Robotics Exercise 10

Marc Toussaint

Machine Learning & Robotics lab, U Stuttgart Universitätsstraße 38, 70569 Stuttgart, Germany

December 19, 2013

1 Local linearization and Algebraic Riccati equation

The state of the cart-pole is given by $x = (p, \dot{p}, \theta, \dot{\theta})$, with $p \in \mathbb{R}$ the position of the cart, $\theta \in \mathbb{R}$ the pendulums angular deviation from the upright position and $\dot{p}, \dot{\theta}$ their respective temporal derivatives. The only control signal $u \in \mathbb{R}$ is the force applied on the cart. The analytic model of the cart pole is

$$\ddot{\theta} = \frac{g\sin(\theta) + \cos(\theta) \left[-c_1 u - c_2 \dot{\theta}^2 \sin(\theta) \right]}{\frac{4}{2} l - c_2 \cos^2(\theta)} \tag{1}$$

$$\ddot{p} = c_1 u + c_2 \left[\dot{\theta}^2 \sin(\theta) - \ddot{\theta} \cos(\theta) \right]$$
(2)

with $g = 9.8ms^2$ the gravitational constant, l = 1m the pendulum length and constants $c_1 = (M_p + M_c)^{-1}$ and $c_2 = lM_p(M_p + M_c)^{-1}$ where $M_p = M_c = 1kg$ are the pendulum and cart masses respectively.

a) Derive the local linearization of these dynamics around $x^* = (0, 0, 0, 0)$. The eventual dynamics should be in the form

$$\dot{x} = Ax + Bu$$

Note that

$$A = \begin{pmatrix} 0 & 1 & 0 & 0\\ \frac{\partial \ddot{p}}{\partial p} & \frac{\partial \ddot{p}}{\partial \dot{p}} & \frac{\partial \ddot{p}}{\partial \theta} & \frac{\partial \ddot{p}}{\partial \dot{\theta}}\\ 0 & 0 & 0 & 1\\ \frac{\partial \ddot{\theta}}{\partial p} & \frac{\partial \ddot{\theta}}{\partial \dot{p}} & \frac{\partial \ddot{\theta}}{\partial \theta} & \frac{\partial \ddot{\theta}}{\partial \dot{\theta}} \end{pmatrix}, \quad B = \begin{pmatrix} 0\\ \frac{\partial \ddot{p}}{\partial u}\\ 0\\ \frac{\partial \ddot{\theta}}{\partial u} \end{pmatrix}$$

where all partial derivatives are taken at the point $p = \dot{p} = \theta = \dot{\theta} = 0$. The solution (to continue with the other parts) is

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & \frac{g}{\frac{4}{3}l - c_2} & 0 \end{pmatrix}, \quad B = \begin{pmatrix} 0 \\ c_1 \\ 0 \\ \frac{-c_1}{\frac{4}{3}l - c_2} \end{pmatrix}$$

b) We assume a stationary infinite-horizon cost function of the form

$$\begin{split} J^{\pi} &= \int_{0}^{\infty} c(x(t), u(t)) \; dt \\ c(x, u) &= x^{\mathsf{T}} Q x + u^{\mathsf{T}} R u \\ Q &= \mathrm{diag}(c, 0, 1, 0) \;, \quad R = \mathbf{I} \end{split}$$

That is, we penalize position offset $c \|p\|^2$ and pole angle offset $\|\theta\|^2$. Choose $c = \rho = 1$ to start with. Solve the Algebraic Riccati equation

$$0 = A^{\mathsf{T}}P + P^{\mathsf{T}}A - PBR^{\mathsf{-}1}B^{\mathsf{T}}P + Q$$

by initializing P = Q and iterating using the following iteration:

$$P_{k+1} = P_k + \epsilon [A^{\mathsf{T}} P_k + P_k^{\mathsf{T}} A - P_k B R^{\mathsf{-}1} B^{\mathsf{T}} P_k + Q]$$

Choose $\epsilon = 1/1000$ and iterate until convergence. Output the gains $K = -R^{-1}B^{\top}P$. (Why should this iteration converge to the solution of the ARE?)

c) Solve the same Algebraic Riccati equation by calling the are routine of the octave control package (or a similar method in Matlab). For Octave, install the Ubuntu packages octave3.2, octave-control, and qtoctave, perhaps use pkg load control and help are in octave to ensure everything is installed, use P=are (A, B*inverse (R) *B', Q) to solve the ARE. Output $K = -R^{-1}B^{T}P$ and compare to b).

(I found the solution K = (1.00000, 2.58375, 52.36463, 15.25927.)

d) Implement the optimal Linear Quadratic Regulator $u^* = -R^{-1}B^{\top}Px$ on the cart pole. Increase ρ (e.g. to 100) and observe how the control strategy changes.