Robotics
 Exercise 10

Marc Toussaint
Machine Learning \& Robotics lab, U Stuttgart
Universitätsstraße 38, 70569 Stuttgart, Germany

December 19, 2013

1 Local linearization and Algebraic Riccati equation

The state of the cart-pole is given by $x=(p, \dot{p}, \theta, \dot{\theta})$, with $p \in \mathbb{R}$ the position of the cart, $\theta \in \mathbb{R}$ the pendulums angular deviation from the upright position and $\dot{p}, \dot{\theta}$ their respective temporal derivatives. The only control signal $u \in \mathbb{R}$ is the force applied on the cart. The analytic model of the cart pole is

$$
\begin{align*}
& \ddot{\theta}=\frac{g \sin (\theta)+\cos (\theta)\left[-c_{1} u-c_{2} \dot{\theta}^{2} \sin (\theta)\right]}{\frac{4}{3} l-c_{2} \cos ^{2}(\theta)} \tag{1}\\
& \ddot{p}=c_{1} u+c_{2}\left[\dot{\theta}^{2} \sin (\theta)-\ddot{\theta} \cos (\theta)\right] \tag{2}
\end{align*}
$$

with $g=9.8 m s^{2}$ the gravitational constant, $l=1 m$ the pendulum length and constants $c_{1}=\left(M_{p}+M_{c}\right)^{-1}$ and $c_{2}=l M_{p}\left(M_{p}+M_{c}\right)^{-1}$ where $M_{p}=M_{c}=1 \mathrm{~kg}$ are the pendulum and cart masses respectively.
a) Derive the local linearization of these dynamics around $x^{*}=(0,0,0,0)$. The eventual dynamics should be in the form

$$
\dot{x}=A x+B u
$$

Note that

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{\partial \ddot{p}}{\partial p} & \frac{\partial \ddot{p}}{\partial \dot{p}} & \frac{\partial \ddot{p}}{\partial \theta} & \frac{\partial \ddot{p}}{\partial \dot{\theta}} \\
0 & 0 & 0 & 1 \\
\frac{\partial \ddot{\theta}}{\partial p} & \frac{\partial \ddot{\theta}}{\partial \ddot{p}} & \frac{\partial \ddot{\theta}}{\partial \theta} & \frac{\partial \ddot{\theta}}{\partial \dot{\theta}}
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
\frac{\partial \ddot{p}}{\partial u} \\
0 \\
\frac{\partial \ddot{\theta}}{\partial u}
\end{array}\right)
$$

where all partial derivatives are taken at the point $p=\dot{p}=\theta=\dot{\theta}=0$. The solution (to continue with the other parts) is

$$
A=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & \frac{g}{\frac{4}{3} l-c_{2}} & 0
\end{array}\right), \quad B=\left(\begin{array}{c}
0 \\
c_{1} \\
0 \\
\frac{-c_{1}}{3} l-c_{2}
\end{array}\right)
$$

b) We assume a stationary infinite-horizon cost function of the form

$$
\begin{aligned}
J^{\pi} & =\int_{0}^{\infty} c(x(t), u(t)) d t \\
c(x, u) & =x^{\top} Q x+u^{\top} R u \\
Q & =\operatorname{diag}(c, 0,1,0), \quad R=\mathbf{I} .
\end{aligned}
$$

That is, we penalize position offset $c\|p\|^{2}$ and pole angle offset $\|\theta\|^{2}$. Choose $c=\varrho=1$ to start with.
Solve the Algebraic Riccati equation

$$
0=A^{\top} P+P^{\top} A-P B R^{-1} B^{\top} P+Q
$$

Robotics

by initializing $P=Q$ and iterating using the following iteration:

$$
P_{k+1}=P_{k}+\epsilon\left[A^{\top} P_{k}+P_{k}^{\top} A-P_{k} B R^{-1} B^{\top} P_{k}+Q\right]
$$

Choose $\epsilon=1 / 1000$ and iterate until convergence. Output the gains $K=-R^{-1} B^{\top} P$. (Why should this iteration converge to the solution of the ARE?)
c) Solve the same Algebraic Riccati equation by calling the are routine of the octave control package (or a similar method in Matlab). For Octave, install the Ubuntu packages octave3.2, octave-control, and qtoctave, perhaps use pkg load control and help are in octave to ensure everything is installed, use $\mathrm{P}=\operatorname{are}\left(\mathrm{A}, \mathrm{B} *\right.$ inverse $\left.(\mathrm{R}) * \mathrm{~B}^{\prime}, Q\right)$ to solve the ARE. Output $K=-R^{-1} B^{\top} P$ and compare to b).
(I found the solution $K=(1.00000,2.58375,52.36463,15.25927$.
d) Implement the optimal Linear Quadratic Regulator $u^{*}=-R^{-1} B^{\top} P x$ on the cart pole. Increase ϱ (e.g. to 100) and observe how the control strategy changes.

