Robotics exercise 1

Marc Toussaint Machine Learning & Robotics lab, U Stuttgart Universitätsstraße 38, 70569 Stuttgart, Germany

October 22, 2013

1 Geometry

Read the notes on basic 3D geometry at http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf at least until section 2. We will recap this briefly also in the lecture. Prepare questions for the exercises if you have any.

a) You have a book (coordinate frame *B*) lying on the table (world frame *W*). You move the book 1 unit to the right, then rotate it by 45° counter-clock-wise. Given a dot *p* marked on the book at position $p^B = (1,1)$ in the book coordinate frame, what are the coordinates p^W of that dot with respect to the world frame? Given a point *x* with coordinates $x^W = (0,1)$ in world frame, what are its coordinates x^B in the book frame? What is the *coordinate* transformation from world frame to book frame, and from book frame to world frame?

2 Vector derivatives

Let $x \in \mathbb{R}^n$, $y \in \mathbb{R}^d$, $f, g : \mathbb{R}^n \to \mathbb{R}^d$, $A \in \mathbb{R}^{d \times n}$, $C \in \mathbb{R}^{d \times d}$. a) What is $\frac{\partial}{\partial x} x$? b) What is $\frac{\partial}{\partial x} [x^T x]$? c) What is $\frac{\partial}{\partial x} [f(x)^T f(x)]$? d) What is $\frac{\partial}{\partial x} [f(x)^T Cg(x)]$? e) Let *B* and *C* be symmetric (and pos.def.). What is the minimum of $(Ax - y)^T C(Ax - y) + x^T Bx$?

3 Simulation software

Future exercises will require to code some examples in C/C++. Test if you can compile and run the lib that accompanies this lecture. Report on problems with installation. On Ubuntu:

- install the packages liblapack-dev freeglut3-dev libqhull-dev libf2c2-dev libann-dev gnuplot doxygen
- get the code from http://ipvs.informatik.uni-stuttgart.de/mlr/marc/source-code/libRoboticsCourse.13.tgz
- tar xvzf libRoboticsCourse.13.tgz cd share/examples/Ors/ors make ./x.exe