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1 Introduction

Why Robotics?

1:1

1:2

http://www.saintpatrick.org/index.aspx/Health_Services/da_

Vinci_Surgery

1:3

(robot “wife” aico)

1:4

http://people.csail.mit.edu/nikolaus/drg/

1:5

Why Robotics?

• Commercial:

Industrial, health care, entertainment, agriculture, surgery, etc

• Critical view:

– International Committee for Robot Arms Control

http://www.icrac.co.uk/

– Noel Sharkey’s articles on robot ethics (Child care robots PePeRo...)

http://www.nec.co.jp/products/robot/en/

1:6

Robotics as intelligence research

AI in the real world

AI: Machine Learning, probabilistic reasoning, optimization

Real World: Interaction, manipulation, perception, navigation,

etc

1:7

Why AI needs to go real world

http://www.saintpatrick.org/index.aspx/Health_Services/da_Vinci_Surgery
http://www.saintpatrick.org/index.aspx/Health_Services/da_Vinci_Surgery
http://people.csail.mit.edu/nikolaus/drg/
http://www.icrac.co.uk/
http://www.nec.co.jp/products/robot/en/


4 Introduction to Robotics, Marc Toussaint—February 4, 2014

Tunicates digest their brain once they settled!

• Motion was the driving force to develop intelligence

– motion needs control & decision making↔ fast information

processing

– motion needs anticipation & planning

– motion needs perception

– motion needs spatial representations

• Manipulation requires to acknowledge the structure (geometry,

physics, objects) of the real world. Classical AI does not

1:8

Robotics as intelligence research

• Machine Learning and AI are computational disciplines, which

had great success with statistical modelling, analysis of data

sets, symbolic reasoning. But they have not solved autonomous

learning, acting & reasoning in real worlds.

• Neurosciences and psychology are descriptive sciences, either

on the biological or cognitive level, e.g. with geat sucesses to

describe and cure certain deceases. But they are not sufficient

to create intelligent systems.

• Robotics is the only synthetic discipline to understand intelli-

gent behavior in natural worlds. Robotic tells us what the actual

problems are when trying to organize behavior in natural worlds.

1:9

History

• little movie...

( http://www.csail.mit.edu/videoarchive/history/aifilms http:

//www.ai.sri.com/shakey/ )

1:10

Four chapters

• Kinematics & Dynamics

goal: orchestrate joint movements for desired movement in task

spaces

Kinematic map, Jacobian, optimality principle of inverse kinematics, singularities, configura-

tion/operational/null space, multiple simultaneous tasks, special task variables, trajectory inter-

polation, motion profiles; 1D point mass, damping & oscillation, PID, general dynamic systems,

Newton-Euler, joint space control, reference trajectory following, optimal operational space con-

trol

• Planning & optimization

goal: planning around obstacles, optimizing trajectories

Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly

Exploring Random Trees, differential constraints, metrics; trajectory optimization, general cost

function, task variables, transition costs, gradient methods, 2nd order methods, Dynamic Pro-

gramming

• Control Theory

theory on designing optimal controllers

Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic

optimal control, Riccati equations (differential, algebraic, discrete-time), controllability, stability,

eigenvalue analysis, Lyapunov function

• Mobile robots

goal: localize and map yourself

State estimation, Bayes filter, odometry, particle filter, Kalman filter, Bayes smoothing, SLAM,

joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM

1:11

• Is this a practical or theoretical course?

“There is nothing more practical than a good theory.”

(Vapnik, others...)

• Essentially, the whole course is about

reducing real-world problems to mathematical problems

that can be solved efficiently

1:12

Books

There is no reference book for this lecture. But a basic well-

known standard text book is:

Craig, J.J.: Introduction to

robotics: mechanics and control.

Addison-Wesley New York, 1989.

(3rd edition 2006)

1:13

http://www.csail.mit.edu/videoarchive/history/aifilms
http://www.ai.sri.com/shakey/
http://www.ai.sri.com/shakey/
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Books

An advanced text book on planning is this:

Steven M. LaValle: Planning Al-

gorithms. Cambridge University

Press, 2006.

online:

http://planning.cs.uiuc.edu/

1:14

Online resources
• VideoLecture by Oussama Khatib: http://academicearth.org/

courses/introduction-to-robotics http://www.virtualprofessors.

com/introduction-to-robotics-stanford-cs223a-khatib

(focus on kinematics, dynamics, control)

• Oliver Brock’s lecture http://courses.robotics.tu-berlin.de/

mediawiki/index.php/Robotics:_Schedule_WT09

• Stefan Schaal’s lecture Introduction to Robotics: http://www-clmc.

usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus

(focus on control, useful: Basic Linear Control Theory (analytic solution

to simple dynamic model→ PID), chapter on dynamics)

• Chris Atkeson’s “Kinematics, Dynamic Systems, and Control” http:

//www.cs.cmu.edu/˜cga/kdc/

(uses Schaal’s slides and LaValle’s book, useful: slides on 3d kinemat-

ics http://www.cs.cmu.edu/˜cga/kdc/ewhitman1.pptx)

• CMU lecture “introduction to robotics” http://www.cs.cmu.edu/afs/

cs.cmu.edu/academic/class/16311/www/current/syllabus.

html

(useful: PID control, simple BUGs algorithms for motion planning, non-

holonomic constraints)

• Handbook of Robotics (partially online at Google books) http://tiny.

cc/u6tzl

• LaValle’s Planning Algorithms http://planning.cs.uiuc.edu/

1:15

Organization

• Course webpage:

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/

– Slides, exercises & software (C++)

– Links to books and other resources

• Secretary, admin issues:

Carola Stahl, Carola.Stahl@ipvs.uni-stuttgart.de, room 2.217

• Rules for the tutorials:

– Doing the exercises is crucial!

– At the beginning of each tutorial:

– sign into a list

– mark which exercises you have (successfully) worked on

– Students are randomly selected to present their solutions

– You need 50% of completed exercises to be allowed to the

exam

1:16

http://academicearth.org/courses/introduction-to-robotics
http://academicearth.org/courses/introduction-to-robotics
http://www.virtualprofessors.com/introduction-to-robotics-stanford-cs223a-khatib
http://www.virtualprofessors.com/introduction-to-robotics-stanford-cs223a-khatib
http://courses.robotics.tu-berlin.de/mediawiki/index.php/Robotics:_Schedule_WT09
http://courses.robotics.tu-berlin.de/mediawiki/index.php/Robotics:_Schedule_WT09
http://www-clmc.usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus
http://www-clmc.usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus
http://www.cs.cmu.edu/~cga/kdc/
http://www.cs.cmu.edu/~cga/kdc/
http://www.cs.cmu.edu/~cga/kdc/ewhitman1.pptx
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/syllabus.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/syllabus.html
http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/syllabus.html
http://tiny.cc/u6tzl
http://tiny.cc/u6tzl
http://planning.cs.uiuc.edu/
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/
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2 Kinematics

Kinematic map, Jacobian, inverse kinematics as optimization prob-

lem, motion profiles, trajectory interpolation, multiple simultaneous

tasks, special task variables, configuration/operational/null space, sin-

gularities

• Two “types of robotics”:

1) Mobile robotics – is all about localization & mapping

2) Manipulation – is all about interacting with the world

[0) Kinematic/Dynamic Motion Control: same as 2) without ever making

it to interaction..]

• Typical manipulation robots (and animals) are kinematic trees

Their pose/state is described by all joint angles

2:1

Basic motion generation problem

• Move all joints in a coordinated way so that the endeffector

makes a desired movement

01-kinematics: ./x.exe -mode 2/3/4

2:2

Outline

• Basic 3D geometry and notation

• Kinematics: φ : q 7→ y

• Inverse Kinematics: y∗ 7→ q∗ = argminq ||φ(q)−y∗||2C+||q−q0||2W
• Basic motion heuristics: Motion profiles

• Additional things to know

– Many simultaneous task variables

– Singularities, null space,

2:3

Basic 3D geometry & notation

2:4

Pose (position & orientation)

• A pose is described by a translation p ∈ R
3 and a rotation R ∈

SO(3)

– R is an orthonormal matrix (orthogonal vectors stay orthog-

onal, unit vectors stay unit)

– R-1 = R⊤

– columns and rows are orthogonal unit vectors

– det(R) = 1

– R =




R11 R12 R13

R21 R22 R23

R31 R32 R33




2:5

Frame and coordinate transforms

• Let (o, e1:3) be the world frame, (o′, e′
1:3) be the body’s frame.

The new basis vectors are the columns in R, that is, e
′
1 =

R11e1 +R21e2 +R31e3, etc,

• x = coordinates in world frame (o, e1:3)

x′ = coordinates in body frame (o′, e′
1:3)

p = coordinates of o′ in world frame (o, e1:3)

x = p+Rx′

2:6

Rotations

• Rotations can alternatively be represented as

– Euler angles – NEVER DO THIS!

– Rotation vector

– Quaternion – default in code

• See the “geometry notes” for formulas to convert, concatenate

& apply to vectors

2:7

Homogeneous transformations

• xA = coordinates of a point in frame A

xB = coordinates of a point in frame B
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• Translation and rotation: xA = t+RxB

• Homogeneous transform T ∈ R
4×4:

TA�B =



R t
0 1




xA = TA�B xB =



R t
0 1






xB

1


 =



RxB + t

1




in homogeneous coordinates, we append a 1 to all coordinate

vectors

2:8

Is TA�B forward or backward?

• TA�B describes the translation and rotation of frame B relative

to A

That is, it describes the forward FRAME transformation (from A

to B)

• TA�B describes the coordinate transformation from xB to xA

That is, it describes the backward COORDINATE transformation

• Confused? Vectors (and frames) transform covariant, coordi-

nates contra-variant. See “geometry notes” or Wikipedia for

more details, if you like.

2:9

Composition of transforms

TW�C = TW�A TA�B TB�C

xW = TW�A TA�B TB�C xC

2:10

Kinematics

2:11

Kinematics

W

A

A'

B'

C

C'

B eff

link

transf.

joint

transf.

relative

eff.

offset

• A kinematic structure is a graph (usually tree or chain)

of rigid links and joints

TW�eff(q) = TW�A TA�A′(q) TA′
�B TB�B′(q) TB′

�C TC�C′(q) TC′
�

2:12

Joint types

• Joint transformations: TA�A′(q) depends on q ∈ R
n

revolute joint: joint angle q ∈ R determines rotation about x-

axis:

TA�A′(q) =




1 0 0 0
0 cos(q) − sin(q) 0
0 sin(q) cos(q) 0
0 0 0 1




prismatic joint: offset q ∈ R determines translation along x-axis:

TA�A′(q) =




1 0 0 q
0 1 0 0
0 0 1 0
0 0 0 1




others: screw (1dof), cylindrical (2dof), spherical (3dof), univer-

sal (2dof)

2:13

2:14
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Kinematic Map

• For any joint angle vector q ∈ R
n we can compute TW�eff(q)

by forward chaining of transformations

TW�eff(q) gives us the pose of the endeffector in the world frame

• The two most important examples for a kinematic map φ are

1) A point v on the endeffector transformed to world coordinates:

φpos
eff,v(q) = TW�eff(q) v ∈ R

3

2) A direction v ∈ R
3 attached to the endeffector transformed to

world:

φvec
eff,v(q) = RW�eff(q) v ∈ R

3

Where RA�B is the rotation in TA�B .

2:15

Kinematic Map

• In general, a kinematic map is any (differentiable) mapping

φ : q 7→ y

that maps to some arbitrary feature y ∈ R
d of the pose q ∈ R

n

2:16

Jacobian

• When we change the joint angles, δq, how does the effector

position change, δy?

• Given the kinematic map y = φ(q) and its Jacobian J(q) =

∂
∂q

φ(q), we have:

δy = J(q) δq

J(q) =
∂

∂q
φ(q) =




∂φ1(q)
∂q1

∂φ1(q)
∂q2

. . . ∂φ1(q)
∂qn

∂φ2(q)
∂q1

∂φ2(q)
∂q2

. . . ∂φ2(q)
∂qn

...
...

∂φd(q)
∂q1

∂φd(q)
∂q2

. . . ∂φd(q)
∂qn




∈ R
d×n

2:17

Jacobian for a rotational joint

i-th joint

point

axis

eff

• The i-th joint is located at pi = tW�i(q) and has rotation axis

ai = RW�i(q)




1
0
0




• We consider an infinitesimal variation δqi ∈ R of the ith joint and

see how an endeffector position peff = φpos
eff,v(q) and attached

vector aeff = φvec
eff,v(q) change.

2:18

Jacobian for a rotational joint

i-th joint

point

axis

eff
Consider a variation δqi
→ the whole sub-tree ro-

tates

δpeff = [ai × (peff − pi)] δqi
δaeff = [ai × aeff] δqi

⇒ Position Jacobian:

Jpos
eff,v(q) =




[a
1 ×

(p
e
ff −

p
1 )]

[a
2 ×

(p
e
ff −

p
2 )]

...

[a
n
×

(p
e
ff −

p
n
)]




∈ R
3×n

⇒ Vector Jacobian:

Jvec
eff,v(q) =




[a
1 ×

a
e
ff ]

[a
2 ×

a
e
ff ]

...

[a
n
×

a
e
ff ]




∈

2:19

Jacobian

• To compute the Jacobian of some endeffector position or vector,

we only need to know the position and rotation axis of each joint.

• The two kinematic maps φpos and φvec are the most important

two examples – more complex geometric features can be com-

puted from these, as we will see later.

2:20

Inverse Kinematics

2:21

Inverse Kinematics problem

• Generally, the aim is to find a robot configuration q such that

φ(q) = y∗

• Iff φ is invertible

q∗ = φ-1(y∗)

• But in general, φ will not be invertible:

1) The pre-image φ-1(y∗) = may be empty: No configuration

can generate the desired y∗

2) The pre-image φ-1(y∗) may be large: many configurations

can generate the desired y∗

2:22
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Inverse Kinematics as optimization problem

• We formalize the inverse kinematics problem as an optimization

problem

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q0||2W

• The 1st term ensures that we find a configuration even if y∗ is

not exactly reachable

The 2nd term disambiguates the configurations if there are many

φ-1(y∗)

2:23

Inverse Kinematics as optimization problem

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q0||2W

• The formulation of IK as an optimization problem is very power-

ful and has many nice properties

• We will be able to take the limit C →∞, enforcing exact φ(q) =

y∗ if possible

• Non-zero C -1 and W corresponds to a regularization that en-

sures numeric stability

• Classical concepts can be derived as special cases:

– Null-space motion

– regularization; singularity robutness

– multiple tasks

– hierarchical tasks

2:24

Solving Inverse Kinematics

• The obvious choice of optimization method for this problem is

Gauss-Newton, using the Jacobian of φ

• We first describe just one step of this, which leads to the classi-

cal equations for inverse kinematics using the local Jacobian...

2:25

Solution using the local linearization

• When using the local linearization of φ at q0,

φ(q) ≈ y0 + J (q − q0) , y0 = φ(q0)

• We can derive the optimum as

f(q) = ||φ(q)− y∗||2C + ||q − q0||
2
W

= ||y0 − y∗ + J (q − q0)||
2
C + ||q − q0||

2
W

∂

∂q
f(q) = 0⊤= 2(y0 − y∗ + J (q − q0))

⊤CJ + 2(q − q0)
TW

J⊤C (y∗ − y0) = (J⊤CJ +W ) (q − q0)

q∗ = q0 + J♯(y∗ − y0)

with J♯ = (J⊤CJ + W )-1J⊤C = W -1J⊤(JW -1J⊤+ C-1)-1 (Woodbury

identity )

– For C → ∞ and W = I, J♯ = J⊤(JJ⊤)-1 is called pseudo-

inverse

– W generalizes the metric in q-space

– C regularizes this pseudo-inverse (see later section on sin-

gularities)

2:26

“Small step” application

• This approximate solution to IK makes sense

– if the local linearization of φ at q0 is “good”

– if q0 and q∗ are close

• This equation is therefore typically used to iteratively compute

small steps in configuration space

qt+1 = qt + J♯(y∗
t+1 − φ(qt))

where the target y∗
t+1 moves smoothly with t

2:27

Example: Iterating IK to follow a trajectory

• Assume initial posture q0. We want to reach a desired endeff

position y∗ in T steps:

Input: initial state q0, desired y∗, methods φpos and Jpos

Output: trajectory q0:T
1: Set y0 = φpos(q0) // starting endeff position

2: for t = 1 : T do

3: y ← φpos(qt-1) // current endeff position

4: J ← Jpos(qt-1) // current endeff Jacobian

5: ŷ ← y0 + (t/T )(y∗ − y0) // interpolated endeff target

6: qt = qt-1 + J♯(ŷ − y) // new joint positions

7: Command qt to all robot motors and compute all

TW�i(qt)

8: end for

01-kinematics: ./x.exe -mode 2/3

• Why does this not follow the interpolated trajectory ŷ0:T exactly?

– What happens if T = 1 and y∗ is far?

2:28

Two additional notes

• What if we linearize at some arbitrary q′ instead of q0?

φ(q) ≈ y′ + J (q − q′) , y′ = φ(q′)

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q′ + (q′ − q0)||

2
W
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= q′ + J♯ (y∗ − y′) + (I − J♯J) h , h = q0 − q′ (1)

Note that h corresponds to the classical concept of null space

motion

• What if we want to find the exact (local) optimum? E.g. what if

we want to compute a big step (where q∗ will be remote from q)

and we cannot not rely only on the local linearization approxi-

mation?

– Iterate equation (1) (optionally with a step size < 1 to en-

sure convergence) by setting the point y′ of linearization to

the current q∗

– This is equivalent to the Gauss-Newton algorithm

2:29

Where are we?

• We’ve derived a basic motion generation principle in robotics

from

– an understanding of robot geometry & kinematics

– a basic notion of optimality

• In the remainder:

A. Heuristic motion profiles for simple trajectory generation

B. Extension to multiple task variables

C. Discussion of classical concepts

– Singularity and singularity-robustness

– Nullspace, task/operational space, joint space

– “inverse kinematics”↔ “motion rate control”

2:30

Heuristic motion profiles

2:31

Heuristic motion profiles

• Assume initially x = 0, ẋ = 0. After 1 second you want x =

1, ẋ = 0.

How do you move from x = 0 to x = 1 in one second?

The sine profile xt = x0 +
1
2
[1− cos(πt/T )](xT − x0) is a com-

promise for low max-acceleration and max-velocity

Taken from http://www.20sim.com/webhelp/toolboxes/mechatronics_

toolbox/motion_profile_wizard/motionprofiles.htm

2:32

Motion profiles

• Generally, let’s define a motion profile as a mapping

MP : [0, 1] 7→ [0, 1]

with MP(0) = 0 and MP(1) = 1 such that the interpolation is

given as

xt = x0 + MP(t/T ) (xT − x0)

• For example

MPramp(s) = s

MPsin(s) =
1

2
[1− cos(πs)]

2:33

Joint space interpolation

1) Optimize a desired final configuration qT :

Given a desired final task value yT , optimize a final joint state qT to

minimize the function

f(qT ) = ||qT − q0||
2
W/T + ||yT − φ(qT )||2C

– The metric 1
T
W is consistent with T cost terms with step metric W .

– In this optimization, qT will end up remote from q0. So we need to

iterate Gauss-Newton, as described on slide 2.

2) Compute q0:T as interpolation between q0 and qT :

Given the initial configuration q0 and the final qT , interpolate on a straight

line with a some motion profile. E.g.,

qt = q0 + MP(t/T ) (qT − q0)

2:34

Task space interpolation

1) Compute y0:T as interpolation between y0 and yT :

Given a initial task value y0 and a desired final task value yT , interpolate

on a straight line with a some motion profile. E.g,

yt = y0 + MP(t/T ) (yT − y0)

2) Project y0:T to q0:T using inverse kinematics:

Given the task trajectory y0:T , compute a corresponding joint trajectory

q0:T using inverse kinematics

qt+1 = qt + J♯(yt+1 − φ(qt))

(As steps are small, we should be ok with just using this local lineariza-

tion.)

2:35

peg-in-a-hole demo

2:36

http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/motion_profile_wizard/motionprofiles.htm
http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/motion_profile_wizard/motionprofiles.htm
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Multiple tasks

2:37

Multiple tasks

2:38

Multiple tasks

LeftHand

position

RightHand

position

2:39

Multiple tasks

• Assume we have m simultaneous tasks; for each task i we

have:

– a kinematic mapping yi = φi(q) ∈ R
di

– a current value yi,t = φi(qt)

– a desired value y∗
i

– a precision ̺i (implying a task cost metric Ci = ̺i I)

• Each task contributes a term to the objective function

q∗ = argmin
q
||q − q0||2W + ̺1 ||φ1(q)− y∗

1 ||2 + ̺2 ||φ2(q)− y∗
2 ||2 + · · ·

which we can also write as

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

where Φ(q) :=




√
̺1 (φ1(q)− y∗

1)√
̺2 (φ2(q)− y∗

2)
...



∈ R

∑
i di

2:40

Multiple tasks

• We can “pack” together all tasks in one “big task” Φ.

Example: We want to control the 3D position of the left hand and of the

right hand. Both are “packed” to one 6-dimensional task vector which

becomes zero if both tasks are fulfilled.

• The big Φ is scaled/normalized in a way that

– the desired value is always zero

– the cost metric is I

• Using the local linearization of Φ at q0, J = ∂Φ(q0)
∂q

, the optimum

is

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

≈ q0 − (J⊤J +W )-1J⊤Φ(q0) = q0 − J#Φ(q0)

2:41

Multiple tasks

LeftHand

position

RightHand

position

• We learnt how to “puppeteer a

robot”

• We can handle many task vari-

ables (but specifying their preci-

sions ̺i becomes cumbersome...)

• In the remainder:
A. Classical limit of “hierarchical IK”

and nullspace motion

B. What are interesting task vari-

ables?
2:42

Hierarchical IK & nullspace motion

• In the classical view, tasks should be executed exactly, which means

taking the limit ̺i →∞ in some prespecified hierarchical order.

• We can rewrite the solution in a way that allows for such a hierarchical

limit:

• One task plus “nullspace motion”:

f(q) = ||q − a||2W + ̺1||J1q − y1||
2

∝ ||q − â||2
Ŵ

Ŵ = W + ̺1J
⊤
1J1 , â = Ŵ -1(Wa+ ̺1J

⊤
1y1) = J#

1 y1 + (I− J#
1 J1)a

J#
1 = (W/̺1 + J⊤1J1)

-1J⊤1

• Two tasks plus nullspace motion:

f(q) = ||q − a||2W + ̺1||J1q − y1||
2 + ̺2||J2q − y2||

2

= ||q − â||2
Ŵ

+ ||J1q +Φ1||
2

q∗ = J#
1 y1 + (I− J#

1 J1)[J
#
2 y2 + (I− J#

2 J2)a]

J#
2 = (W/̺2 + J⊤2J2)

-1J⊤2 , J#
1 = (Ŵ/̺1 + J⊤1J1)

-1J⊤1
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• etc...

2:43

Hierarchical IK & nullspace motion

• The previous slide did nothing but rewrite the nice solution q∗ =

−J#Φ(q0) (for the “big” Φ) in a strange hierarchical way that

allows to “see” nullspace projection

• The benefit of this hierarchical way to write the solution is that

one can take the hierarchical limit ̺i →∞ and retrieve classical

hierarchical IK

• The drawbacks are:

– It is somewhat ugly

– In practise, I would recommend regularization in any case

(for numeric stability). Regularization corresponds to NOT

taking the full limit ̺i → ∞. Then the hierarchical way to

write the solution is unnecessary. (However, it points to

a “hierarchical regularization”, which might be numerically

more robust for very small regularization?)

– The general solution allows for arbitrary blending of tasks

2:44

What are interesting task variables?

The following slides will define 10 different types of task vari-

ables.

This is meant as a reference and to give an idea of possibilities...

2:45

Position

Position of some point attached to link i

dimension d = 3

parameters link index i, point offset v

kin. map φpos
iv (q) = TW�i v

Jacobian Jpos
iv (q)·k = [k ≺ i] ak × (φpos

iv (q)− pk)

Notation:

– ak, pk are axis and position of joint k

– [k ≺ i] indicates whether joint k is between root and link i

– J·k is the kth column of J

2:46

Vector

Vector attached to link i

dimension d = 3

parameters link index i, attached vector v

kin. map φvec
iv (q) = RW�i v

Jacobian Jvec
iv (q) = Ai × φvec

iv (q)

Notation:

– Ai is a matrix with columns (Ai)·k = [k ≺ i] ak containing

the joint axes or zeros

– the short notation “A × p” means that each column in A
takes the cross-product with p.

2:47

Relative position

Position of a point on link i relative to point on link j

dimension d = 3

parameters link indices i, j, point offset v in i and w in j

kin. map φpos

iv|jw(q) = R-1
j (φ

pos
iv − φpos

jw )

Jacobian Jpos

iv|jw(q) = R-1
j [J

pos
iv − Jpos

jw −Aj × (φpos
iv − φpos

jw )]

Derivation:

For y = Rp the derivative w.r.t. a rotation around axis a is y′ = Rp′ + R′p =
Rp′ + a × Rp. For y = R-1p the derivative is y′ = R-1p′ − R-1(R′)R-1p =

R-1(p′−a×p). (For details see http://ipvs.informatik.uni-stuttgart.
de/mlr/marc/notes/3d-geometry.pdf)

2:48

Relative vector

Vector attached to link i relative to link j

dimension d = 3

parameters link indices i, j, attached vector v in i

kin. map φvec
iv|j(q) = R-1

j φ
vec
iv

Jacobian Jvec
iv|j(q) = R-1

j [J
vec
iv −Aj × φvec

iv ]
2:49

Alignment

Alignment of a vector attached to link i with a reference v∗

dimension d = 1

parameters link index i, attached vector v, world refer-

ence v∗

kin. map φalign
iv (q) = v∗⊤ φvec

iv

Jacobian Jalign
iv (q) = v∗⊤ Jvec

iv

Note: φalign = 1 ↔ align φalign = −1 ↔ anti-align φalign = 0 ↔ orthog.

2:50

Relative Alignment

Alignment a vector attached to link i with vector attached to j

dimension d = 1

parameters link indices i, j, attached vectors v, w

kin. map φalign

iv|jw(q) = (φvec
jw)

⊤ φvec
iv

Jacobian Jalign

iv|jw(q) = (φvec
jw)

⊤ Jvec
iv + φvec

iv
⊤ Jvec

jw

2:51

Joint limits

Penetration of joint limits

dimension d = 1

parameters joint limits qlow, qhi, margin m

kin. map φlimits(q) =
1
m

∑n
i=1[m−qi+qlow]

++[m+qi−qhi]
+

Jacobian Jlimits(q)1,i = − 1
m
[m − qi + qlow > 0] + 1

m
[m +

qi − qhi > 0]

[x]+ = x > 0?x : 0 [· · · ]: indicator function

2:52

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf
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Collision limits

Penetration of collision limits

dimension d = 1

parameters margin m

kin. map φcol(q) =
1
m

∑K
k=1[m− |pak − pbk|]+

Jacobian Jcol(q) =
1
m

∑K
k=1[m− |pak − pbk| > 0]

(−Jpos
pa
k

+ Jpos

pb
k

)⊤
pak−pbk
|pa

k
−pb

k
|

A collision detection engine returns a set {(a, b, pa, pb)Kk=1} of potential

collisions between link ak and bk, with nearest points pak on a and pbk on

b.

2:53

Center of gravity

Center of gravity of the whole kinematic structure

dimension d = 3

parameters (none)

kin. map φcog(q) =
∑

i massi φ
pos
ici

Jacobian Jcog(q) =
∑

i massi J
pos
ici

ci denotes the center-of-mass of link i (in its own frame)

2:54

Homing

The joint angles themselves

dimension d = n

parameters (none)

kin. map φqitself(q) = q

Jacobian Jqitself(q) = In

Example: Set the target y∗ = 0 and the precision ̺ very low→ this task

describes posture comfortness in terms of deviation from the joints’ zero

position. In the classical view, it induces “nullspace motion”.

2:55

Task variables – conclusions

LeftHand

position

nearest

distance

• There is much space for creativity in

defining task variables! Many are ex-

tensions of φpos and φvec and the Ja-

cobians combine the basic Jacobians.

• What the right task variables are to

design/describe motion is a very hard

problem! In what task space do hu-

mans control their motion? Possible to

learn from data (“task space retrieval”)

or perhaps via Reinforcement Learn-

ing.

• In practice: Robot motion design (in-

cluding grasping) may require cumber-

some hand-tuning of such task vari-

ables.
2:56

Discussion of classical concepts

– Singularity and singularity-robustness

– Nullspace, task/operational space, joint space

– “inverse kinematics”↔ “motion rate control”

2:57

Singularity

• In general: A matrix J singular ⇐⇒ rank(J) < d

– rows of J are linearly dependent

– dimension of image is < d

– δy = Jδq ⇒ dimensions of δy limited

– Intuition: arm fully stretched

• Implications:

det(JJ⊤) = 0

→ pseudo-inverse J⊤(JJ⊤)-1 is ill-defined!

→ inverse kinematics δq = J⊤(JJ⊤)-1δy computes “infinite”

steps!

• Singularity robust pseudo inverse J⊤(JJ⊤+ ǫI)-1

The term ǫI is called regularization

• Recall our general solution (for W = I)

J♯ = J⊤(JJ⊤+ C -1)-1

is already singularity robust

2:58

Null/task/operational/joint/configuration spaces

• The space of all q ∈ R
n is called joint/configuration space

The space of all y ∈ R
d is called task/operational space

Usually d < n, which is called redundancy

• For a desired endeffector state y∗ there exists a whole manifold

(assuming φ is smooth) of joint configurations q:

nullspace(y∗) = {q | φ(q) = y∗}

• We found earlier that

q∗ = argmin
q
||q − a||2W + ̺||Jq − y∗||2

= J#y∗ + (I− J#J)a , J# = (W/̺+ J⊤J)-1J⊤

In the limit ̺ → ∞ it is guaranteed that Jq = y∗ (we are exacty

on the manifold). The term a introduces additional “nullspace

motion”.

2:59

Inverse Kinematics and Motion Rate Control

Some clarification of concepts:

• The notion “kinematics” describes the mapping φ : q 7→ y,

which usually is a many-to-one function.
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• The notion “inverse kinematics” in the strict sense describes

some mapping g : y 7→ q such that φ(g(y)) = y, which usu-

ally is non-unique or ill-defined.

• In practice, one often refers to δq = J♯δy as inverse kinemat-

ics.

• When iterating δq = J♯δy in a control cycle with time step τ

(typically τ ≈ 1 − 10 msec), then ẏ = δy/τ and q̇ = δq/τ and

q̇ = J♯ẏ. Therefore the control cycle effectively controls the

endeffector velocity—this is why it is called motion rate control.

2:60
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3 Path Planning

Path finding vs. trajectory optimization, local vs. global, Dijkstra, Prob-

abilistic Roadmaps, Rapidly Exploring Random Trees, non-holonomic

systems, car system equation, path-finding for non-holonomic sys-

tems, control-based sampling, Dubins curves

Path finding examples

Alpha-Puzzle, solved with James Kuffner’s RRTs

3:1

Path finding examples

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue.

Footstep Planning Among Obstacles for Biped Robots. Proc.

IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS),

2001.

3:2

Path finding examples

T. Bretl. Motion Planning of Multi-Limbed Robots Subject to

Equilibrium Constraints: The Free-Climbing Robot Problem. In-

ternational Journal of Robotics Research, 25(4):317-342, Apr

2006.

3:3

Path finding examples

S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Plan-

ning. International Journal of Robotics Research, 20(5):378–

400, May 2001.

3:4

Feedback control, path finding, trajectory op-

tim.

goalstart

path finding

trajectory optimization

feedback control

• Feedback Control: E.g., qt+1 = qt + J♯(y∗ − φ(qt))

• Trajectory Optimization: argminq0:T
f(q0:T )

• Path Finding: Find some q0:T with only valid configurations

3:5

Control, path finding, trajectory optimization

• Combining methods:

1) Path Finding

2) Trajectory Optimization (“smoothing”)

3) Feedback Control

• Many problems can be solved with only feedback control (though

not optimally)

• Many more problems can be solved locally optimal with only

trajectory optimization

• Tricky problems need path finding: global search for valid paths

3:6
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Outline

• Heuristics & Discretization (slides from Howie CHoset’s CMU

lectures)

– Bugs algorithm

– Potentials to guide feedback control

– Dijkstra

• Sample-based Path Finding

– Probabilistic Roadmaps

– Rapidly Exploring Random Trees

3:7

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again.

3) Leave the obstacle and continue 
toward the goal

OK ?

m-line
“Bug 2” Algorithm

3:8

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again.

3) Leave the obstacle and continue 
toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?

3:9

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again.

3) Leave the obstacle and continue 
toward the goal

NO! How do we fix this?

Goal

Start

“Bug 2” Algorithm

3:10

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way, 
follow it until you encounter the 
m-line again closer to the goal.

3) Leave the obstacle and continue 
toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?

3:11

BUG algorithms – conclusions

• Other variants: TangentBug, VisBug, RoverBug, WedgeBug,

. . .

• only 2D! (TangentBug has extension to 3D)

• Guaranteed convergence

• Still active research:

K. Taylor and S.M. LaValle: I-Bug: An Intensity-Based Bug

Algorithm

⇒ Useful for minimalistic, robust 2D goal reaching

– not useful for finding paths in joint space

3:12
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Start-Goal Algorithm:
Potential Functions

3:13

Repulsive Potential

3:14

Total Potential Function

+ =

)()()( repatt qUqUqU +=

)()( qUqF −∇=

3:15

Local Minimum Problem with the Charge Analogy

3:16

Potential fields – conclusions

• Very simple, therefore popular

• In our framework: Combining a goal (endeffector) task variable,

with a constraint (collision avoidance) task variable; then using

inv. kinematics is exactly the same as “Potential Fields”

⇒ Does not solve locality problem of feedback control.

3:17

The Wavefront in Action (Part 2)

• Now repeat with the modified cells
– This will be repeated until no 0’s are adjacent to cells 

with values >= 2
• 0’s will only remain when regions are unreachable

3:18
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The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with 
“0” to the current cell + 1
– 4-Point Connectivity or 8-Point Connectivity?
– Your Choice.  We’ll use 8-Point Connectivity in our example

3:19

The Wavefront in Action (Part 2)

• Now repeat with the modified cells
– This will be repeated until no 0’s are adjacent to cells 

with values >= 2
• 0’s will only remain when regions are unreachable

3:20

The Wavefront in Action (Part 3)

• Repeat again...

3:21

The Wavefront in Action (Part 4)

• And again...

3:22

The Wavefront in Action (Part 5)

• And again until...

3:23

The Wavefront in Action (Done)

• You’re done
– Remember, 0’s should only remain if unreachable 

regions exist

3:24
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The Wavefront, Now What?

• To find the shortest path, according to your metric, simply always 
move toward a cell with a lower number

– The numbers generated by the Wavefront planner are roughly proportional to their 
distance from the goal

Two
possible
shortest
paths
shown

3:25

Dijkstra Algorithm

• Is efficient in discrete domains

– Given start and goal node in an arbitrary graph

– Incrementally label nodes with their distance-from-start

• Produces optimal (shortest) paths

• Applying this to continuous domains requires discretization

– Grid-like discretization in high-dimensions is daunting! (curse

of dimensionality)

– What are other ways to “discretize” space more efficiently?

3:26

Sample-based Path Finding

3:27

Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]

q ∈ R
n describes configuration

Qfree is the set of configurations without collision

3:28

Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]

Probabilistic Road Map

– generates a graph G = (V,E) of configurations

– such that configurations along each edges are ∈ Qfree

3:29

Probabilistic Road Maps

Given the graph, use (e.g.) Dijkstra to find path from qstart to

qgoal.

3:30

Probabilistic Road Maps – generation

Input: number n of samples, number k number of nearest

neighbors

Output: PRM G = (V,E)

1: initialize V = ∅, E = ∅

2: while |V | < n do // find n collision free points qi
3: q ← random sample from Q

4: if q ∈ Qfree then V ← V ∪ {q}

5: end while

6: for all q ∈ V do // check if near points can be connected

7: Nq ← k nearest neighbors of q in V

8: for all q′ ∈ Nq do

9: if path(q, q′) ∈ Qfree then E ← E ∪ {(q, q′)}
10: end for

11: end for

where path(q, q′) is a local planner (easiest: straight line)

3:31
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Local Planner

tests collisions up to a specified resolution δ

3:32

Problem: Narrow Passages

The smaller the gap (clearance ̺) the more unlikely to sample

such points.

3:33

PRM theory

(for uniform sampling in d-dim space)

• Let a, b ∈ Qfree and γ a path in Qfree connecting a and b.

Then the probability that PRM found the path after n samples

is

P (PRM-success |n) ≥ 1− 2|γ|
̺

e−σ̺dn

σ = |B1|
2d|Qfree|

̺ = clearance of γ (distance to obstacles)

(roughly: the exponential term are “volume ratios”)

• This result is called probabilistic complete (one can achieve any

probability with high enough n)

• For a given success probability, n needs to be exponential in d

3:34

Other PRM sampling strategies

illustration from O. Brock’s lecture

Gaussian: q1 ∼ U; q2 ∼ N(q1, σ); if q1 ∈ Qfree and q2 6∈ Qfree, add q1
(or vice versa).

Bridge: q1 ∼ U; q2 ∼ N(q1, σ); q3 = (q1 + q2)/2; if q1, q2 6∈ Qfree and

q3 ∈ Qfree, add q3.

• Sampling strategy can be made more intelligence: “utility-based

sampling”

• Connection sampling

(once earlier sampling has produced connected components)

3:35

Probabilistic Roadmaps – conclusions

• Pros:

– Algorithmically very simple

– Highly explorative

– Allows probabilistic performance guarantees

– Good to answer many queries in an unchanged environment

• Cons:

– Precomputation of exhaustive roadmap takes a long time

(but not necessary for “Lazy PRMs”)

3:36

Rapidly Exploring Random Trees

2 motivations:

• Single Query path finding: Focus computational efforts on paths

for specific (qstart, qgoal)

• Use actually controllable DoFs to incrementally explore the search

space: control-based path finding.

(Ensures that RRTs can be extended to handling differential

constraints.)

3:37
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n = 1 n = 100 n = 300 n = 600 n = 1000 n = 2000

3:38

Rapidly Exploring Random Trees

Simplest RRT with straight line local planner and step size α

Input: qstart, number n of nodes, stepsize α

Output: tree T = (V,E)

1: initialize V = {qstart}, E = ∅

2: for i = 0 : n do

3: qtarget ← random sample from Q

4: qnear ← nearest neighbor of qtarget in V

5: qnew ← qnear +
α

|qtarget−qnear| (qtarget − qnear)

6: if qnew ∈ Qfree then V ← V ∪ {qnew}, E ← E ∪

{(qnear, qnew)}

7: end for

3:39

Rapidly Exploring Random Trees

RRT growing directedly towards the goal

Input: qstart, qgoal, number n of nodes, stepsize α, β

Output: tree T = (V,E)

1: initialize V = {qstart}, E = ∅

2: for i = 0 : n do

3: if rand(0, 1) < β then qtarget ← qgoal

4: else qtarget ← random sample from Q

5: qnear ← nearest neighbor of qtarget in V

6: qnew ← qnear +
α

|qtarget−qnear| (qtarget − qnear)

7: if qnew ∈ Qfree then V ← V ∪ {qnew}, E ← E ∪

{(qnear, qnew)}

8: end for

3:40
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n = 1 n = 100 n = 200 n = 300 n = 400 n = 500

3:41

Bi-directional search

• grow two trees starting from qstart and qgoal

let one tree grow towards the other

(e.g., “choose qnew of T1 as qtarget of T2”)

3:42

Summary: RRTs

• Pros (shared with PRMs):

– Algorithmically very simple

– Highly explorative

– Allows probabilistic performance guarantees

• Pros (beyond PRMs):

– Focus computation on single query (qstart, qgoal) problem

– Trees from multiple queries can be merged to a roadmap

– Can be extended to differential constraints (nonholonomic sys-

tems)

• To keep in mind (shared with PRMs):

– The metric (for nearest neighbor selection) is sometimes criti-

cal

– The local planner may be non-trivial

3:43
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References

Steven M. LaValle: Planning Algorithms, http://planning.

cs.uiuc.edu/.
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Latombe’s “motion planning” lecture, http://robotics.stanford.
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3:44

Non-holonomic systems

3:45

Non-holonomic systems

• We define a nonholonomic system as one with differential

constraints:

dim(ut) < dim(xt)

⇒ Not all degrees of freedom are directly controllable

• Dynamic systems are an example!

• General definition of a differential constraint:

For any given state x, let Ux be the tangent space that is gener-

ated by controls:

Ux = {ẋ : ẋ = f(x, u), u ∈ U}
(non-holonomic ⇐⇒ dim(Ux) < dim(x))

The elements of Ux are elements of Tx subject to additional

differential constraints.

3:46

Car example

ẋ = v cos θ

ẏ = v sin θ

θ̇ = (v/L) tanϕ

|ϕ| < Φ

State q =




x
y
θ




Controls u =



v
ϕ




Sytem equation




ẋ
ẏ

θ̇



=




v cos θ
v sin θ

(v/L) tanϕ




3:47

Car example

• The car is a non-holonomic system: not all DoFs are controlled,

dim(u) < dim(q)

We have the differential constraint q̇:

ẋ sin θ − ẏ cos θ = 0

“A car cannot move directly lateral.”

• Analogy to dynamic systems: Just like a car cannot instantly move side-

wards, a dynamic system cannot instantly change its position q: the

current change in position is constrained by the current velocity q̇.

3:48

Path finding with a non-holonomic system

Could a car follow this trajectory?

This is generated with a PRM in the state space q = (x, y, θ)

ignoring the differntial constraint.

3:49

Path finding with a non-holonomic system

This is a solution we would like to have:

The path respects differential constraints.

Each step in the path corresponds to setting certain controls.

3:50

Control-based sampling to grow a tree

http://planning.cs.uiuc.edu/
http://planning.cs.uiuc.edu/
http://robotics.stanford.edu/~latombe/cs326/2007/schedule.htm
http://robotics.stanford.edu/~latombe/cs326/2007/schedule.htm
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• Control-based sampling: fulfils none of the nice exploration prop-

erties of RRTs, but fulfils the differential constraints:

1) Select a q ∈ T from tree of current configurations

2) Pick control vector u at random

3) Integrate equation of motion over short duration (picked at

random or not)

4) If the motion is collision-free, add the endpoint to the tree

3:51

Control-based sampling for the car

1) Select a q ∈ T

2) Pick v, φ, and τ

3) Integrate motion from q

4) Add result if collision-

free

3:52

J. Barraquand and J.C. Latombe. Nonholonomic Multibody Robots:

Controllability and Motion Planning in the Presence of Obstacles.

Algorithmica, 10:121-155, 1993.

car parking

3:53

car parking

3:54

parking with only left-steering

3:55

with a trailer

3:56

Better control-based exploration: RRTs re-

visited
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• RRTs with differential constraints:

Input: qstart, number k of nodes, time interval τ

Output: tree T = (V,E)

1: initialize V = {qstart}, E = ∅

2: for i = 0 : k do

3: qtarget ← random sample from Q

4: qnear ← nearest neighbor of qtarget in V

5: use local planner to compute controls u that steer qnear

towards qtarget

6: qnew ← qnear +
∫ τ
t=0 q̇(q, u)dt

7: if qnew ∈ Qfree then V ← V ∪ {qnew}, E ← E ∪

{(qnear, qnew)}

8: end for

• Crucial questions:

– How meassure near in nonholonomic systems?

– How find controls u to steer towards target?

3:57

Metrics

Standard/Naive metrics:

• Comparing two 2D rotations/orientations θ1, θ2 ∈ SO(2):

a) Euclidean metric between eiθ1 and eiθ2

b) d(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}

• Comparing two configurations (x, y, θ)1,2 in R2:

Eucledian metric on (x, y, eiθ)

• Comparing two 3D rotations/orientations r1, r2 ∈ SO(3):

Represent both orientations as unit-length quaternions r1, r2 ∈ R4:

d(r1, d2) = min{|r1 − r2|, |r1 + r2|}

where | · | is the Euclidean metric.

(Recall that r1 and −r1 represent exactly the same rotation.)

• Ideal metric:

Optimal cost-to-go between two states x1 and x2:

– Use optimal trajectory cost as metric

– This is as hard to compute as the original problem, of course!!

→ Approximate, e.g., by neglecting obstacles.

3:58

Dubins curves

• Dubins car: constant velocity, and steer ϕ ∈ [−Φ,Φ]

• Neglecting obstacles, there are only six types of trajectories that

connect any configuration ∈ R
2 × S

1:

{LRL,RLR,LSL,LSR,RSL,RSR}

• annotating durations of each phase:

{LαRβLγ , , RαLβRγ , LαSdLγ , LαSdRγ , RαSdLγ , RαSdRγ}
with α ∈ [0, 2π), β ∈ (π, 2π), d ≥ 0

3:59

Dubins curves

→ By testing all six types of trajectories for (q1, q2) we can define

a Dubins metric for the RRT – and use the Dubins curves as

controls!

• Reeds-Shepp curves are an extension for cars which can drive

back.

(includes 46 types of trajectories, good metric for use in RRTs

for cars)

3:60
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4 Path Optimization

very briefly

Outline

• These are only some very brief notes on path optimization

• The aim is to explain how to formulate the optimization prob-

lem. Concerning the optimization algortihm itself, refer to the

Optimization lecture.

4:1

From inverse kinematics to path costs

• Recall our optimality principle of inverse kinematics

argmin
q
||q − q0||2W + ||Φ(q)||2

• A trajectory q0:T is a sequence of robot configurations qt ∈ R
n

• Consider the cost function

f(q0:T ) =
T∑

t=0

||Ψt(qt-k, .., qt)||2 +
T∑

t=0

||Φt(qt)||2

(where (q−k, .., q-1) is a given prefix)

• Ψt(qt-k, .., qt) represents control costs

k denotes the order of the control costs

Φt(qt) represents task costs

(More generally, task costs could depend on Φt(qt-k, .., qt))

4:2

Control costs

• The Ψt(qt-k, .., qt) can penalize various things:

k = 0 Ψt(qt) = qt − q0 penalize offset from

zero

k = 1 Ψt(qt-1, qt) = qt − qt-1 penalize velocity

k = 2 Ψt(qt-2, .., qt) = qt − 2qt-1 + qt-2 penalize acceleration

k = 3 Ψt(qt-3, .., qt) = qt − 3qt-1 + 3qt-2 − qt-3 penalize jerk

• The big Φt(qt) imposes tasks as for inverse kinematics

4:3

Choice of optimizer

f(q0:T ) =

T∑

t=0

||Ψt(qt-k, .., qt)||2 +
T∑

t=0

||Φt(qt)||2

Is in the form of the so-called Gauss-Newton optimization prob-

lem, and can be solved using such 2nd order methods.

(Note that the pseudo Hessian is a banded, symmetric, positive-definite matrix.)

• Alternativ: formulate hard constraints in the framework of con-

strained optimization

4:4



Introduction to Robotics, Marc Toussaint—February 4, 2014 27

5 Dynamics

1D point mass, damping & oscillation, PID, dynamics of mechanical

systems, Euler-Lagrange equation, Newton-Euler recursion, general

robot dynamics, joint space control, reference trajectory following,

operational space control

Kinematic Dynamic

instantly change joint velocities

q̇:

instantly change joint torques

u:

δqt
!
= J♯ (y∗ − φ(qt)) u

!
= ?

accounts for kinematic cou-

pling of joints but ignores in-

ertia, forces, torques

accounts for dynamic coupling

of joints and full Newtonian

physics

gears, stiff, all of industrial

robots

future robots, compliant, few

research robots

5:1

When velocities cannot be changed/set arbi-

trarily

• Examples:

– An air plane flying: You cannot command it to hold still in the

air, or to move straight up.

– A car: you cannot command it to move side-wards.

– Your arm: you cannot command it to throw a ball with arbitrary

speed (force limits).

– A torque controlled robot: You cannot command it to instantly

change velocity (infinite acceleration/torque).

• What all examples have in comment:

– One can set controls ut (air plane’s control stick, car’s steer-

ing wheel, your muscles activations, torque/voltage/current send

to a robot’s motors)

– But these controls only indirectly influence the dynamics of

state, xt+1 = f(xt, ut)

5:2

Dynamics

• The dynamics of a system describes how the controls ut influ-

ence the change-of-state of the system

xt+1 = f(xt, ut)

– The notation xt refers to the dynamic state of the system: e.g.,

joint positions and velocities xt = (qt, q̇t).

– f is an arbitrary function, often smooth

5:3

Outline

• We start by discussing a 1D point mass for 3 reasons:

– The most basic force-controlled system with inertia

– We can introduce and understand PID control

– The behavior of a point mass under PID control is a refer-

ence that we can also follow with arbitrary dynamic robots

(if the dynamics are known)

• We discuss computing the dynamics of general robotic systems

– Euler-Lagrange equations

– Euler-Newton method

• We derive the dynamic equivalent of inverse kinematics:

– operational space control

5:4

PID and a 1D point mass

5:5

The dynamics of a 1D point mass

• Start with simplest possible example: 1D point mass

(no gravity, no friction, just a single mass)

• The state x(t) = (q(t), q̇(t)) is described by:

– position q(t) ∈ R

– velocity q̇(t) ∈ R

• The controls u(t) is the force we apply on the mass point

• The system dynamics is:

q̈(t) = u(t)/m

5:6

1D point mass – proportional feedback

• Assume current position is q.

The goal is to move it to the position q∗.

What can we do?
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• Idea 1:

“Always pull the mass towards the goal q∗:”

u = Kp (q∗ − q)

5:7

1D point mass – proportional feedback

• What’s the effect of this control law?

m q̈ = u = Kp (q∗ − q)

q = q(t) is a function of time, this is a second order differential

equation

• Solution: assume q(t) = a+ beωt

(a “non-imaginary” alternative would be q(t) = a+b ǫ−λt cos(ωt))

m b ω2 eωt = Kp q∗ −Kp a−Kp b eωt

(m b ω2 +Kp b) eωt = Kp (q∗ − a)

⇒ (m b ω2 +Kp b) = 0 ∧ (q∗ − a) = 0

⇒ ω = i
√

Kp/m

q(t) = q∗ + b ei
√

Kp/m t

This is an oscillation around q∗ with amplitude b = q(0)− q∗ and

frequency
√

Kp/m!

5:8

1D point mass – proportional feedback

m q̈ = u = Kp (q∗ − q)

q(t) = q∗ + b ei
√

Kp/m t

Oscillation around q∗ with amplitude b = q(0)−q∗ and frequency
√

Kp/m

-1

-0.5

 0

 0.5

 1

 0  2  4  6  8  10  12  14

cos(x)

5:9

1D point mass – derivative feedback

• Idea 2

“Pull less, when we’re heading the right direction already:”

“Damp the system:”

u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇)

q̇∗ is a desired goal velocity

For simplicity we set q̇∗ = 0 in the following.

5:10

1D point mass – derivative feedback

• What’s the effect of this control law?

mq̈ = u = Kp(q
∗ − q) +Kd(0− q̇)

• Solution: again assume q(t) = a+ beωt

m b ω2 eωt = Kp q∗ −Kp a−Kp b eωt −Kd b ωeωt

(m b ω2 +Kd b ω +Kp b) eωt = Kp (q∗ − a)

⇒ (m ω2 +Kd ω +Kp) = 0 ∧ (q∗ − a) = 0

⇒ ω =
−Kd ±

√
K2

d − 4mKp

2m

q(t) = q∗ + b eω t

The term −Kd
2m

in ω is real ↔ exponential decay (damping)

5:11

1D point mass – derivative feedback

q(t) = q∗ + b eω t , ω =
−Kd ±

√
K2

d − 4mKp

2m

• Effect of the second term
√

K2
d − 4mKp/2m in ω:

K2
d < 4mKp ⇒ ω has imaginary part

oscillating with frequency
√

Kp/m−K2
d/4m

2

q(t) = q∗ + be−Kd/2m t ei
√

Kp/m−K2
d
/4m2 t

K2
d > 4mKp ⇒ ω real

strongly damped

K2
d = 4mKp ⇒ second term zero

only exponential decay
5:12

1D point mass – derivative feedback

illustration from O. Brock’s lecture

5:13
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1D point mass – derivative feedback

Alternative parameterization:

Instead of the gains Kp and Kd it is sometimes more intuitive to

set the

• wave length λ = 1
ω0

= 1√
Kp/m

, Kp = m/λ2

• damping ratio ξ = Kd√
4mKp

= λKd
2m

, Kd = 2mξ/λ

ξ > 1: over-damped

ξ = 1: critically dampled

ξ < 1: oscillatory-damped

q(t) = q∗ + be−ξ t/λ ei
√

1−ξ2 t/λ

5:14

1D point mass – integral feedback

• Idea 3

“Pull if the position error accumulated large in the past:”

u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇) +Ki

∫ t

s=0

(q∗(s)− q(s)) ds

• This is not a linear ODE w.r.t. x = (q, q̇).

However, when we extend the state to x = (q, q̇, e) we have the ODE

q̇ = q̇

q̈ = u/m = Kp/m(q
∗
− q) +Kd/m(q̇

∗
− q̇) +Ki/m e

ė = q
∗
− q

(no explicit discussion here)

5:15

1D point mass – PID control

u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇) +Ki

∫ t

s=0

(q∗ − q(s)) ds

• PID control

– Proportional Control (“Position Control”)

f ∝ Kp(q
∗ − q)

– Derivative Control (“Damping”)

f ∝ Kd(q̇
∗ − q̇) (ẋ∗ = 0→ damping)

– Integral Control (“Steady State Error”)

f ∝ Ki

∫ t

s=0
(q∗(s)− q(s)) ds

5:16

Controlling a 1D point mass – lessons learnt

• Proportional and derivative feedback (PD control) are like adding

a spring and damper to the point mass

• PD control is a linear control law

(q, q̇) 7→ u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇)

(linear in the dynamic system state x = (q, q̇))

• With such linear control laws we can design approach trajecto-

ries (by tuning the gains)

– but no optimality principle behind such motions

5:17

Dynamics of mechanical systems

5:18

Two ways to derive dynamics equations for

mechanical systems

• The Euler-Lagrange equation

d

dt

∂L

∂q̇
− ∂L

∂q
= u

Used when you want to derive analytic equations of motion (“on paper”)

• The Newton-Euler recursion (and related algorithms)

fi = mv̇i , ui = Iiẇ + w × Iw

Algorithms that “propagate” forces through a kinematic tree and numer-

ically compute the inverse dynamics u = NE(q, q̇, q̈) or forward dynam-

ics q̈ = f(q, q̇, u).

5:19

The Euler-Lagrange equation

d

dt

∂L

∂q̇
− ∂L

∂q
= u

• L(q, q̇) is called Lagrangian and defined as

L = T − U

where T=kinetic energy and U=potential energy.

• q is called generalized coordinate – any coordinates such that

(q, q̇) describes the state of the system. Joint angles in our case.

• u are external forces

5:20
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The Euler-Lagrange equation

• How is this typically done?

• First, describe the kinematics and Jacobians for every link i:

(q, q̇) 7→ {TW→i(q), vi, wi}

Recall TW→i(q) = TW→A TA→A′ (q) TA′→B TB→B′ (q) · · ·

Further, we know that a link’s velocity vi = Jiq̇ can be described via its position
Jacobian.

Similarly we can describe the link’s angular velocity wi = Jw
i q̇ as linear in q̇.

• Second, formulate the kinetic energy

T =
∑

i

1

2
miv

2
i +

1

2
w⊤

i Iiwi =
∑

i

1

2
q̇⊤Miq̇ , Mi =



 Ji
Jw
i




⊤

miI3 0
0 Ii







 Ji
Jw
i





where Ii = RiĪiR
⊤
i and Īi the inertia tensor in link coordinates

• Third, formulate the potential energies (typically independent of q̇)

U = gmiheight(i)

• Fourth, compute the partial derivatives analytically to get something like

u︸︷︷︸
control

=
d

dt

∂L

∂q̇
−

∂L

∂q
= M︸︷︷︸

inertia

q̈ + Ṁq̇ −
∂T

∂q︸ ︷︷ ︸
Coriolis

+
∂U

∂q︸︷︷︸
gravity

which relates accelerations q̈ to the forces

5:21

Example: A pendulum

• Generalized coordinates: angle q = (θ)

• Kinematics:

– velocity of the mass: v = (lθ̇ cos θ, 0, lθ̇ sin θ)

– angular velocity of the mass: w = (0,−θ̇, 0)
• Energies:

T =
1

2
mv2 +

1

2
w⊤Iw =

1

2
(ml2 + I2)θ̇

2 , U = −mgl cos θ

• Euler-Lagrange equation:

u =
d

dt

∂L

∂q̇
− ∂L

∂q

=
d

dt
(ml2 + I2)θ̇ +mgl sin θ = (ml2 + I2)θ̈ +mgl sin θ

5:22

Newton-Euler recursion

• An algorithm that computes the inverse dynamics

u = NE(q, q̇, q̈∗)

by recursively computing force balance at each joint:

– Newton’s equation expresses the force acting at the cen-

ter of mass for an accelerated body:

fi = mv̇i

– Euler’s equation expresses the torque (=control!) act-

ing on a rigid body given an angular velocity and angular

acceleration:

ui = Iiẇ + w × Iw

• Forward recursion: (≈ kinematics)

Compute (angular) velocities (vi, wi) and accelerations (v̇i, ẇi)

for every link (via forward propagation; see geometry notes for details)

• Backward recursion:

For the leaf links, we now know the desired accelerations q∗ and

can compute the necessary joint torques. Recurse backward.

5:23

Numeric algorithms for forward and inverse

dynamics

• Newton-Euler recursion: very fast (O(n)) method to compute

inverse dynamics

u = NE(q, q̇, q̈∗)

Note that we can use this algorithm to also compute

– gravity terms: u = NE(q, 0, 0) = G(q)

– Coriolis terms: u = NE(q, q̇, 0) = C(q, q̇) q̇ +G(q)

– column of Intertia matrix: u = NE(q, 0, ei) = M(q) ei

• Articulated-Body-Dynamics: fast method (O(n)) to compute

forward dynamics q̈ = f(q, q̇, u)

5:24

Some last practical comments

• [demo]

• Use energy conservation to measure dynamic of physical simu-

lation

• Physical simulation engines (developed for games):

– ODE (Open Dynamics Engine)

– Bullet (originally focussed on collision only)

– Physx (Nvidia)

Differences of these engines to Lagrange, NE or ABD:

– Game engine can model much more: Contacts, tissues,

particles, fog, etc

– (The way they model contacts looks ok but is somewhat

fictional)

– On kinematic trees, NE or ABD are much more precise than

game engines

– Game engines do not provide inverse dynamics, u = NE(q, q̇, q̈)

• Proper modelling of contacts is really really hard

5:25

Dynamic control of a robot

5:26
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• We previously learnt the effect of PID control on a 1D point mass

• Robots are not a 1D point mass

– Neither is each joint a 1D point mass

– Applying separate PD control in each joint neglects force

coupling

(Poor solution: Apply very high gains separately in each

joint↔ make joints stiff, as with gears.)

• However, knowing the robot dynamics we can transfer our un-

derstanding of PID control of a point mass to general systems

5:27

General robot dynamics

• Let (q, q̇) be the dynamic state and u ∈ R
n the controls (typically

joint torques in each motor) of a robot

• Robot dynamics can generally be written as:

M(q) q̈ + C(q, q̇) q̇ +G(q) = u

M(q) ∈ Rn×n is positive definite intertia matrix

(can be inverted→ forward simulation of dynamics)

C(q, q̇) ∈ Rn are the centripetal and coriolis forces

G(q) ∈ Rn are the gravitational forces

u are the joint torques

(cf. to the Euler-Lagrange equation on slide 22)

• We often write more compactly:

M(q) q̈ + F (q, q̇) = u

5:28

Controlling a general robot

• From now on we jsut assume that we have algorithms to effi-

ciently compute M(q) and F (q, q̇) for any (q, q̇)

• Inverse dynamics: If we know the desired q̈∗ for each joint,

u = M(q) q̈∗ + F (q, q̇)

gives the necessary torques

• Forward dynamics: If we know which torques u we apply, use

q̈∗ = M(q)-1(u− F (q, q̇))

to simulate the dynamics of the system (e.g., using Runge-Kutta)

5:29

Controlling a general robot – joint space ap-

proach

• Where could we get the desired q̈∗ from?

Assume we have a nice smooth reference trajectory qref
0:T (gen-

erated with some motion profile or alike), we can at each t read

off the desired acceleration as

q̈ref
t :=

1

τ
[(qt+1 − qt)/τ − (qt − qt-1)/τ ] = (qt-1 + qt+1 − 2qt)/τ

2

However, tiny errors in acceleration will accumulate greatly over

time! This is Instable!!

• Choose a desired acceleration q̈∗t that implies a PD-like behavior

around the reference trajectory !

q̈∗t = q̈ref
t +Kp(q

ref
t − qt) +Kd(q̇

ref
t − q̇t)

This is a standard and very convenient heuristic to track a reference

trajectory when the robot dynamics are known: All joints will exactly

behave like a 1D point particle around the reference trajectory!

5:30

Controlling a robot – operational space ap-

proach

• Recall the inverse kinematics problem:

– We know the desired step δy∗ (or velocity ẏ∗) of the endeffec-

tor.

– Which step δq (or velocities q̇) should we make in the joints?

• Equivalent dynamic problem:

– We know how the desired acceleration ÿ∗ of the endeffector.

– What controls u should we apply?

5:31

Operational space control

• Inverse kinematics:

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q0||2W

• Operational space control (one might call it “Inverse task space

dynamics”):

u∗ = argmin
u
||φ̈(q)− ÿ∗||2C + ||u||2H

5:32

Operational space control

• We can derive the optimum perfectly analogous to inverse kine-

matics

We identify the minimum of a locally squared potential, using the local

linearization (and approx. J̈ = 0)

φ̈(q) =
d

dt
φ̇(q) ≈

d

dt
(Jq̇ + J̇q) ≈ Jq̈ + 2J̇ q̇ = JM -1(u− F ) + 2J̇ q̇

We get

u∗ = T ♯(ÿ∗ − 2J̇ q̇ + TF )

with T = JM -1 , T ♯ = (T⊤CT +H)-1T⊤C

(C →∞ ⇒ T ♯ = H -1T⊤(TH -1T⊤)-1)

5:33
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Controlling a robot – operational space ap-

proach

• Where could we get the desired ÿ∗ from?

– Reference trajectory yref
0:T in operational space

– PD-like behavior in each operational space:

ÿ∗
t = ÿref

t +Kp(y
ref
t − yt) +Kd(ẏ

ref
t − ẏt)

illustration from O. Brock’s lecture

• Operational space control: Let the system behave as if we could

directly “apply a 1D point mass behavior” to the endeffector

5:34

Multiple tasks

• Recall trick last time: we defined a “big kinematic map” Φ(q)

such that

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

• Works analogously in the dynamic case:

u∗ = argmin
u
||u||2H + ||Φ(q)||2

5:35
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6 Probability Basics

Probability Theory

• Why do we need probabilities?

– Obvious: to express inherent stochasticity of the world (data)

• But beyond this: (also in a “deterministic world”):

– lack of knowledge!

– hidden (latent) variables

– expressing uncertainty

– expressing information (and lack of information)

• Probability Theory: an information calculus

6:1

Probability: Frequentist and Bayesian

• Frequentist probabilities are defined in the limit of an infinite

number of trials

Example: “The probability of a particular coin landing heads up is 0.43”

• Bayesian (subjective) probabilities quantify degrees of belief

Example: “The probability of it raining tomorrow is 0.3”

– Not possible to repeat “tomorrow”

6:2

Probabilities & Sets

• Sample Space/domain Ω, e.g. Ω = {1, 2, 3, 4, 5, 6}

• Probability P : A ⊂ Ω 7→ [0, 1]

e.g., P ({1}) = 1
6
, P ({4}) = 1

6
, P ({2, 5}) = 1

3
,

• Axioms: ∀A,B ⊆ Ω

– Nonnegativity P (A) ≥ 0

– Additivity P (A ∪B) = P (A) + P (B) if A ∩B = ∅
– Normalization P (Ω) = 1

• Implications

0 ≤ P (A) ≤ 1

P (∅) = 0

A ⊆ B ⇒ P (A) ≤ P (B)

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (Ω \A) = 1− P (A)

6:3

Probabilities & Random Variables

• For a random variable X with discrete domain dom(X) = Ω we

write:

∀x∈Ω : 0 ≤ P (X=x) ≤ 1
∑

x∈Ω P (X=x) = 1

Example: A dice can take values Ω = {1, .., 6}.

X is the random variable of a dice throw.

P (X=1) ∈ [0, 1] is the probability that X takes value 1.

• A bit more formally: a random variable relates a measureable space with

a domain (sample space) and thereby introduces a probability measure

on the domain (“assigns a probability to each possible value”)

6:4

Probabilty Distributions

• P (X=1) ∈ R denotes a specific probability

P (X) denotes the probability distribution (function over Ω)

Example: A dice can take values Ω = {1, 2, 3, 4, 5, 6}.

By P (X) we discribe the full distribution over possible values {1, .., 6}.
These are 6 numbers that sum to one, usually stored in a table, e.g.:

[ 1
6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
]

• In implementations we typically represent distributions over dis-

crete random variables as tables (arrays) of numbers

• Notation for summing over a RV:

In equation we often need to sum over RVs. We then write∑
X P (X) · · ·

as shorthand for the explicit notation
∑

x∈dom(X) P (X=x) · · ·

6:5

Joint distributions

Assume we have two random variables X and Y

• Definitions:

Joint: P (X,Y )

Marginal: P (X) =
∑

Y P (X,Y )

Conditional: P (X|Y ) = P (X,Y )
P (Y )

The conditional is normalized: ∀Y :
∑

X P (X|Y ) = 1

• X is independent of Y iff: P (X|Y ) = P (X)

(table thinking: all columns of P (X|Y ) are equal)

• The same for n random variables X1:n (stored as a rank n tensor)

Joint: P (x1:n), Marginal: P (X1) =
∑

X2:n
P (X1:n),

Conditional: P (X1|X2:n) =
P (X1:n)
P (X2:n)

6:6
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Joint distributions

joint: P (X,Y )

marginal: P (X) =
∑

Y P (X,Y )

conditional: P (X|Y ) =
P (X,Y )
P (Y )

• Implications of these definitions:

Product rule: P (X,Y ) = P (X|Y ) P (Y ) = P (Y |X) P (X)

Bayes’ Theorem P (X|Y ) = P (Y |X) P (X)
P (Y )

• The same for n variables, e.g., (X,Y, Z):

P (X1:n) =
∏n

i=1 P (Xi|Xi+1:n)

P (X1|X2:n) =
P (X2|X1,X3:n) P (X1|X3:n)

P (X2|X3:n)

P (X,Z, Y ) =
P (X|Y, Z) P (Y |Z) P (Z)

P (X|Y, Z) =
P (Y |X,Z) P (X|Z)

P (Y |Z)

P (X,Y |Z) =
P (X,Z|Y ) P (Y )

P (Z)
6:7

Bayes’ Theorem

P (X|Y ) =
P (Y |X) P (X)

P (Y )

posterior = likelihood · prior
normalization

6:8

Distributions over continuous domain

• Let X be a continuous RV. The probability density function

(pdf) p(x) ∈ [0,∞) defines the probability

P (a ≤ X ≤ b) =

∫ b

a

p(x) dx ∈ [0, 1]

The (cumulative) probability distribution F (x) = P (X ≤
x) =

∫ x

−∞ dx p(x) ∈ [0, 1] is the cumulative integral with limx→∞ F (x) =

1.

(In discrete domain: probability distribution and probability mass func-

tion P (X) ∈ [0, 1] are used synonymously.)

• Two basic examples:

Gaussian: N(x | a,A) = 1

|2πA|1/2 e−
1
2
(xa)⊤ A-1 (xa)

Dirac or δ (“point particle”) δ(x) = 0 except at x = 0,
∫
δ(x) dx =

1

δ(x) = ∂
∂x

H(x) where H(x) = [x ≥ 0] = Heavyside step func-

tion.

6:9

Gaussian distribution

• 1-dim: N(x |µ, σ2) = 1

|2πσ2|1/2 e−
1
2
(x−µ)2/σ2

N (x|µ, σ
2)

x

2σ

µ

• n-dim: N(x | a,A) = 1

|2πA|1/2 e−
1
2
(x−a)⊤ A-1 (x−a)

x1

x2

(b)

Useful identities:
Symmetry: N(x|a,A) = N(a|x,A) = N(x− a|0, A)

Product:
N(x | a,A)N(x | b, B) = N(x |B(A+B)-1a+A(A+B)-1b, A(A+B)-1B) N(a | b, A
B)

“Propagation”:∫
y
N(x | a+ Fy,A) N(y | b, B) dy = N(x | a+ Fb,A+ FBF⊤)

Transformation:
N(Fx+ f | a,A) = 1

|F |
N(x | F -1(a− f), F -1AF -⊤)

Mre identities: see “Gaussian identities” http://userpage.fu-berlin.de/

˜mtoussai/notes/gaussians.pdf

6:10

Particle Approximation of a Distribution

• We approximate a distribution p(x) over a continuous domain

R
n.

• A particle distribution q(x) is a weighed set of N particles {(xi, wi)}Ni=1

– each particle has a location xi ∈ R
n and a weight wi ∈ R

– weights are normalized
∑

i w
i = 1

q(x) :=
∑N

i=1 w
iδ(x− xi)

where δ(x− xi) is the δ-distribution.

6:11

Particle Approximation of a Distribution

Histogram of a particle representation:

6:12

http://userpage.fu-berlin.de/~mtoussai/notes/gaussians.pdf
http://userpage.fu-berlin.de/~mtoussai/notes/gaussians.pdf
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Particle Approximation of a Distribution

• For q(x) to approximate a given p(x) we want to choose parti-

cles and weights such that for any (smooth) f :

limN→∞ 〈f(x)〉q = limN→∞
∑N

i=1 w
if(xi) =

∫

x
f(x)p(x)dx = 〈f(x)〉p

• How to do this? See An Introduction to MCMC for Machine

Learning www.cs.ubc.ca/˜nando/papers/mlintro.pdf

6:13

Some continuous distributions

Gaussian N(x | a,A) = 1

|2πA|1/2 e−
1
2
(xa)⊤ A-1 (xa)

Dirac or δ δ(x) = ∂
∂x

H(x)

Student’s t
(=Gaussian for ν → ∞, otherwise
heavy tails)

p(x; ν) ∝ [1 + x2

ν
]−

ν+1

2

Exponential
(distribution over single event time)

p(x;λ) = [x ≥ 0] λe−λx

Laplace
(“double exponential”)

p(x;µ, b) = 1
2b
e−|x−µ|/b

Chi-squared p(x; k) ∝ [x ≥ 0] xk/2−1e−x/2

Gamma p(x; k, θ) ∝ [x ≥ 0] xk−1e−x/θ

6:14

www.cs.ubc.ca/~nando/papers/mlintro.pdf
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7 Mobile Robotics

State estimation, Bayes filter, odometry, particle filter, Kalman filter,

SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based

SLAM

http://www.darpa.mil/grandchallenge05/

DARPA Grand Challenge 2005

7:1

http://www.darpa.mil/grandchallenge/index.asp

DARPA Grand Urban Challenge 2007

7:2

http://www.slawomir.de/publications/grzonka09icra/

grzonka09icra.pdf

Quadcopter Indoor Localization

7:3

http://stair.stanford.edu/multimedia.php

STAIR: STanford Artificial Intelligence Robot

7:4

Types of Robot Mobility

7:5

Types of Robot Mobility

7:6

• Each type of robot mobility corresponds to a

system equation xt+1 = xt + τf(xt, ut)

or, if the dynamics are stochastic,

http://www.darpa.mil/grandchallenge05/
http://www.darpa.mil/grandchallenge/index.asp
http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf
http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf
http://stair.stanford.edu/multimedia.php
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P (xt+1 | ut, xt) = N(xt+1 | xt + τf(xt, ut),Σ)

• We considered control, path finding, and trajectory optimization

For this we always assumed to know the state xt of the robot

(e.g., its posture/position)!

7:7

Outline

• PART I:

A core challenge in mobile robotics is state estimation

→ Bayesian filtering & smoothing

particles, Kalman

• PART II:

Another challenge is to build a map while exploring

→ SLAM (simultaneous localization and mapping)

7:8

PART I: State Estimation Problem

• Our sensory data does not provide sufficient information to de-

termine our location.

• Given the local sensor readings yt, the current state xt (location,

position) is uncertain.

– which hallway?

– which door exactly?

– which heading direction?

7:9

State Estimation Problem

• What is the probability of being in

front of room 154, given we see

what is shown in the image?

• What is the probability given that

we were just in front of room 156?

• What is the probability given that

we were in front of room 156 and

moved 15 meters?

7:10

Recall Bayes’ theorem

P (X|Y ) = P (Y |X) P (X)
P (Y )

posterior = likelihood · prior
(normalization)

7:11

• How can we apply this to the

State Estimation Problem?

Using Bayes Rule:

P (location | sensor) = P (sensor | location)P (location)
P (sensor)

7:12

Bayes Filter

xt = state (location) at time t

yt = sensor readings at time t

ut-1 = control command (action, steering, velocity) at time t-1

• Given the history y0:t and u0:t-1, we want to compute the proba-

bility distribution over the state at time t

pt(xt) := P (xt | y0:t, u0:t-1)

• Generally:
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y0:t

xt

xt

y0:T

y0:s

xt

Smoothing: P (xt|y0:T )

Prediction: P (xt|y0:s)

Filtering: P (xt|y0:t)

7:13

Bayes Filter

pt(xt) := P (xt | y0:t, u0:t-1)

= ct P (yt |xt, y0:t-1, u0:t-1) P (xt | y0:t-1, u0:t-1)

= ct P (yt |xt) P (xt | y0:t-1, u0:t-1)

= ct P (yt |xt)

∫

xt-1

P (xt, xt-1 | y0:t-1, u0:t-1) dxt-1
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= ct P (yt |xt)

∫

xt-1

P (xt |xt-1, y0:t-1, u0:t-1) P (xt-1 | y0:t-1, u0:t-1) dxt-1

= ct P (yt |xt)

∫

xt-1

P (xt |xt-1, ut-1) P (xt-1 | y0:t-1, u0:t-1) dxt-1

= ct P (yt |xt)

∫

xt-1

P (xt |ut-1, xt-1) pt-1(xt-1) dxt-1

using Bayes rule P (X|Y, Z) = c P (Y |X,Z) P (X|Z) with some

normalization constant ct

uses conditional independence of the observation on past ob-

servations and controls

by definition of the marginal

by definition of a conditional

given xt-1, xt depends only on the controls ut-1 (Markov Prop-

erty)

• A Bayes filter updates the posterior belief pt(xt) in each time

step using the:

observation model P (yt |xt)

transition model P (xt |ut-1, xt-1)

7:14

Bayes Filter

pt(xt) ∝ P (yt | xt)
︸ ︷︷ ︸

new information

∫

xt-1

P (xt | ut-1, xt-1) pt-1(xt-1)
︸ ︷︷ ︸

old estimate

dxt-1

︸ ︷︷ ︸

predictive estimate p̂t(xt)

1. We have a belief pt-1(xt-1) of our previous position

2. We use the motion model to predict the current position

p̂t(xt) ∝
∫

xt-1
P (xt |ut-1, xt-1) pt-1(xt-1) dxt-1

3. We integetrate this with the current observation to get a better

belief

pt(xt) ∝ P (yt |xt) p̂t(xt)

7:15

• Typical transition model P (xt |ut-1, xt-1) in robotics:

(from Robust Monte Carlo localization for mobile robots Sebas-

tian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

7:16

Odometry (“Dead Reckoning”)

• The predictive distributions p̂t(xt) without integrating observa-

tions (removing the P (yt|xt) part from the Bayesian filter)

(from Robust Monte Carlo localization for mobile robots Sebas-

tian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

7:17

Again, predictive distributions p̂t(xt) without integrating land-

mark observations

7:18

The Bayes-filtered distributions pt(xt) integrating landmark ob-

servations

7:19

Bayesian Filters

• How to represent the belief pt(xt):

• Gaussian
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• Particles

7:20

Recall: Particle Representation of a Distribu-

tion

• Weighed set of N particles {(xi, wi)}Ni=1

p(x) ≈ q(x) :=
∑N

i=1 w
iδ(x, xi)

7:21

Particle Filter := Bayesian Filtering with Par-

ticles

(Bayes Filter: pt(xt) ∝ P (yt |xt)
∫

xt-1
P (xt |ut-1, xt-1) pt-1(xt-1) dxt-1 )

1. Start with N particles {(xi
t-1, w

i
t-1)}Ni=1

2. Resample particles to get N weight-1-particles: {x̂i
t-1}Ni=1

3. Use motion model to get new “predictive” particles {xi
t}Ni=1

each xi
t ∼ P (xt |ut-1, x̂

i
t-1)

4. Use observation model to assign new weights wi
t ∝ P (yt |xi

t)

7:22

• “Particle Filter”

aka Monte Carlo Localization in the mobile robotics community

Condensation Algorithm in the vision community

• Efficient resampling is important:

Typically “Residual Resampling”:

Instead of sampling directly n̂i ∼ Multi({Nwi}) set n̂i = ⌊Nwi⌋ + n̄i

with n̄i ∼ Multi({Nwi − ⌊Nwi⌋})

Liu & Chen (1998): Sequential Monte Carlo Methods for Dynamic Sys-

tems.

Douc, Cappé & Moulines: Comparison of Resampling Schemes for Par-

ticle Filtering.

7:23

Example: Quadcopter Localization

http://www.slawomir.de/publications/grzonka09icra/

grzonka09icra.pdf

Quadcopter Indoor Localization

7:24

Typical Pitfall in Particle Filtering

• Predicted particles {xi
t}Ni=1 have very low observation likelihood

P (yt |xi
t) ≈ 0

(“particles die over time”)

• Classical solution: generate particles also with other than purely

forward proposal P (xt |ut-1, xt-1):

– Choose a proposal that depends on the new observation yt,

ideally approximating P (xt | yt, ut-1, xt-1)

– Or mix particles sampled directly from P (yt |xt) and from

P (xt |ut-1, xt-1).

(Robust Monte Carlo localization for mobile robots. Sebastian Thrun, Dieter Fox,

Wolfram Burgard, Frank Dellaert)

7:25

Kalman filter := Bayesian Filtering with Gaus-

sians

Bayes Filter: pt(xt) ∝ P (yt |xt)
∫

xt-1
P (xt |ut-1, xt-1) pt-1(xt-1) dxt-1

http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf
http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf


40 Introduction to Robotics, Marc Toussaint—February 4, 2014

• Can be computed analytically for linear-Gaussian observations

and transitions:

P (yt |xt) = N(yt |Cxt + c,W )

P (xt |ut-1, xt-1) = N(xt |A(ut-1) xt-1 + a(ut-1), Q)

Defition:
N(x | a,A) = 1

|2πA|1/2
exp{− 1

2
(x - a)⊤A-1 (x - a)}

Product:
N(x | a,A)N(x | b, B) = N(x |B(A+B)-1a+A(A+B)-1b, A(A+B)-1B) N(a | b, A+
B)

“Propagation”:∫
y
N(x | a+ Fy,A) N(y | b, B) dy = N(x | a+ Fb,A+ FBF⊤)

Transformation:
N(Fx+ f | a,A) = 1

|F |
N(x | F -1(a− f), F -1AF -⊤)

(more identities: see “Gaussian identities” http://ipvs.informatik.uni-stuttgart.
de/mlr/marc/notes/gaussians.pdf)

7:26

Kalman filter derivation

pt(xt) = N(xt | st, St)

P (yt | xt) = N(yt |Cxt + c,W )

P (xt |ut-1, xt-1) = N(xt |Axt-1 + a,Q)

pt(xt) ∝ P (yt | xt)

∫

xt-1

P (xt |ut-1, xt-1) pt-1(xt-1) dxt-1

= N(yt |Cxt + c,W )

∫

xt-1

N(xt |Axt-1 + a,Q) N(xt-1 | st-1, St-1) dxt-1

= N(yt |Cxt + c,W ) N(xt | Ast-1 + a
︸ ︷︷ ︸

=:ŝt

, Q+ ASt-1A
⊤

︸ ︷︷ ︸
=:Ŝt

)

= N(Cxt + c | yt,W ) N(xt | ŝt, Ŝt)

= N[xt |C
⊤
W

-1
(yt − c), C

⊤
W

-1
C] N(xt | ŝt, Ŝt)

= N(xt | st, St) · 〈terms indep. of xt〉

St = (C
⊤
W

-1
C + Ŝ

-1

t )
-1

= Ŝt − ŜtC
⊤
(W + CŜtC

⊤
)

-1

︸ ︷︷ ︸
“Kalman gain” K

CŜt

st = St[C
⊤
W

-1
(yt − c) + Ŝ

-1

t ŝt] = ŝt +K(yt − Cŝt − c)

The second to last line uses the general Woodbury identity.

The last line uses StC
⊤W -1 = K and StŜ

-1
t = I −KC

7:27

Extended Kalman filter (EKF) and Unscented

Transform

Bayes Filter: pt(xt) ∝ P (yt |xt)
∫

xt-1
P (xt |ut-1, xt-1) pt-1(xt-1) dxt-1

• Can be computed analytically for linear-Gaussian observations

and transitions:

P (yt |xt) = N(yt |Cxt + c,W )

P (xt |ut-1, xt-1) = N(xt |A(ut-1)xt-1 + a(ut-1), Q)

• If P (yt |xt) or P (xt |ut-1, xt-1) are not linear:

P (yt |xt) = N(yt | g(xt),W )

P (xt |ut-1, xt-1) = N(xt | f(xt-1, ut-1), Q)

– approximate f and g as locally linear (Extended Kalman Filter )

– or sample locally from them and reapproximate as Gaussian

(Unscented Transform)

7:28

Bayes smoothing
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y0:t

xt

xt

y0:T

y0:s

xt

Smoothing: P (xt|y0:T )

Prediction: P (xt|y0:s)

Filtering: P (xt|y0:t)

7:29

Bayes smoothing

• Let P = y0:t past observations, F = yt+1:T future observations

P (xt |P,F, u0:T ) ∝ P (F |xt,P, u0:T ) P (xt |P, u0:T )

= P (F |xt, ut:T )
︸ ︷︷ ︸

=:βt(xt)

P (xt |P, u0:t-1)
︸ ︷︷ ︸

=:p(xt)

Bayesian smoothing fuses a forward filter pt(xt) with a backward “filter”

βt(xt)

• Backward recursion (derivation analogous to the Bayesian filter)

βt(xt) := P (yt+1:T |xt, ut:T )

=

∫

xt+1

βt+1(xt+1) P (yt+1 |xt+1) P (xt+1 |xt, ut) dxt+1

7:30

PART II: Localization and Mapping

• The Bayesian filter requires an observation model P (yt |xt)

• A map is something that provides the observation model:

A map tells us for each xt what the sensor readings yt might

look like

7:31

Types of maps

Grid map

K. Murphy (1999): Bayesian map learning
in dynamic environments.
Grisetti, Tipaldi, Stachniss, Burgard, Nardi:
Fast and Accurate SLAM with
Rao-Blackwellized Particle Filters

Laser scan map

Landmark map

Victoria Park data set
M. Montemerlo, S. Thrun, D. Koller, & B.
Wegbreit (2003): FastSLAM 2.0: An im-
proved particle filtering algorithm for simul-
taneous localization and mapping that prov-
ably converges. IJCAI, 1151–1156.

7:32

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf
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Simultaneous Localization and Mapping Prob-

lem

• Notation:

xt = state (location) at time t

yt = sensor readings at time t

ut-1 = control command (action, steering, velocity) at time t-1

m = the map

• Given the history y0:t and u0:t-1, we want to compute the belief

over the pose AND THE MAP m at time t

pt(xt,m) := P (xt,m | y0:t, u0:t-1)

• We assume to know:

– transition model P (xt |ut-1, xt-1)

– observation model P (yt |xt,m)

7:33

SLAM: classical “chicken or egg problem”

• If we knew the state trajectory x0:t we could efficiently compute

the belief over the map

P (m |x0:t, y0:t, u0:t-1)

• If we knew the map we could use a Bayes filter to compute the

belief over the state

P (xt |m, y0:t, u0:t-1)

• SLAM requires to tie state estimation and map building together:

1) Joint inference on xt and m (→ Kalman-SLAM)

2) Tie a state hypothesis (=particle) to a map hypothesis

(→ particle SLAM)

3) Frame everything as a graph optimization problem (→ graph

SLAM)

7:34

Joint Bayesian Filter over x and m

• A (formally) straight-forward approach is the joint Bayesian filter

pt(xt,m) ∝ P (yt |xt,m)
∫

xt-1
P (xt |ut-1, xt-1) pt-1(xt-1,m) dxt-1

But: How represent a belief over high-dimensional xt,m?

7:35

Map uncertainty

• In the case the map m = (θ1, .., θN ) is a set of N landmarks,

θj ∈ R
2

• Use Gaussians to represent the uncertainty of landmark posi-

tions

7:36

(Extended) Kalman Filter SLAM

• Analogous to Localization with Gaussian for the pose belief pt(xt)

– But now: joint belief pt(xt, θ1:N ) is 3 + 2N -dimensional Gaus-

sian

– Assumes the map m = (θ1, .., θN ) is a set of N landmarks,

θj ∈ R
2

– Exact update equations (under the Gaussian assumption)

– Conceptually very simple

• Drawbacks:

– Scaling (full covariance matrix is O(N2))

– Sometimes non-robust (uni-modal, “data association problem”)

– Lacks advantages of Particle Filter

(multiple hypothesis, more robust to non-linearities)

7:37

SLAM with particles

Core idea: Each particle carries its own map belief

• Use a conditional representation “pt(xt,m) = pt(xt) pt(m |xt)”

(This notation is flaky... the below is more precise)

• As for the Localization Problem use particles to represent the

pose belief pt(xt)

Note: Each particle actually “has a history xi
0:t” – a whole tra-

jectory!

• For each particle separately, estimate the map belief pit(m) con-

ditioned on the particle history xi
0:t.
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The conditional beliefs pit(m) may be factorized over grid points

or landmarks of the map

K. Murphy (1999): Bayesian map learning in dynamic environ-

ments.

http://www.cs.ubc.ca/˜murphyk/Papers/map_nips99.pdf
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Map estimation for a given particle history

• Given x0:t (e.g. a trajectory of a particle), what is the posterior

over the map m?

→ simplified Bayes Filter:

pt(m) := P (m |x0:t, y0:t) ∝ P (yt |m,xt) pt-1(m)

(no transtion model: assumption that map is constant)

• In the case of landmarks (FastSLAM):

m = (θ1, .., θN )

θj = position of the jth landmark, j ∈ {1, .., N}
nt = which landmark we observe at time t, nt ∈ {1, .., N}

We can use a separate (Gaussian) Bayes Filter for each θj
conditioned on x0:t, each θj is independent from each θk:

P (θ1:N | x0:t, y0:n, n0:t) =
∏

j

P (θj | x0:t, y0:n, n0:t)
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Particle likelihood in SLAM

• Particle likelihood for Localization Problem:

wi
t = P (yt |xi

t)

(determins the new importance weight wi
t

• In SLAM the map is uncertain→ each particle is weighted with

the expected likelihood:

wi
t =

∫
P (yt |xi

t,m) pt−1(m) dm

• In case of landmarks (FastSLAM):

wi
t =

∫
P (yt |xi

t, θnt , nt) pt−1(θnt) dθnt

• Data association problem (actually we don’t know nt):

For each particle separately choose ni
t = argmaxnt

wi
t(nt)
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Particle-based SLAM summary

• We have a set of N particles {(xi, wi)}Ni=1 to represent the pose

belief pt(xt)

• For each particle we have a separate map belief pit(m); in the

case of landmarks, this factorizes in N separate 2D-Gaussians

• Iterate

1. Resample particles to get N weight-1-particles: {x̂i
t-1}Ni=1

2. Use motion model to get new “predictive” particles {xi
t}Ni=1

3. Update the map belief pim(m) ∝ P (yt |m,xt) p
i
t-1(m) for each

particle

4. Compute new importance weights wi
t ∝

∫
P (yt |xi

t,m) pt−1(m) dm

using the observation model and the map belief
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Demo: Visual SLAM

• Map building from a freely moving camera

7:42

Demo: Visual SLAM

• Map building from a freely moving camera

– SLAM has become a big topic in the vision community..

– features are typically landmarks θ1:N with SURF/SIFT features

– PTAM (Parallel Tracking and Mapping) parallelizes computa-

tions...

PTAM1 PTAM2 DTAM KinectFusion

G Klein, D Murray: Parallel Tracking and Mapping for Small AR

Workspaces http://www.robots.ox.ac.uk/˜gk/PTAM/

Newcombe, Lovegrove & Davison: DTAM: Dense Tracking and

Mapping in Real-Time ICCV 2011. http:

//www.doc.ic.ac.uk/˜rnewcomb/
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http://www.cs.ubc.ca/~murphyk/Papers/map_nips99.pdf
http://www.robots.ox.ac.uk/~gk/PTAM/
http://www.doc.ic.ac.uk/~rnewcomb/
http://www.doc.ic.ac.uk/~rnewcomb/
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Alternative SLAM approach: Graph-based

• Represent the previous trajectory as a graph

– nodes = estimated positions & observations

– edges = transition & step estimation based on scan matching

• Loop Closing: check if some nodes might coincide→ new edges

• Classical Optimization:

The whole graph defines an optimization problem: Find poses

that minimize sum of edge & node errors

7:44

Loop Closing Problem

(Doesn’t explicitly exist in Particle Filter methods: If particles

cover the belief, then “data association” solves the “loop closing

problem”)
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Graph-based SLAM

Life-long Map Learning for Graph-based SLAM Approaches in Static Environ-

ments Kretzschmar, Grisetti, Stachniss
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SLAM code

• Graph-based and grid map methods:

http://openslam.org/

• Visual SLAM

e.g. http://ewokrampage.wordpress.com/

7:47

http://openslam.org/
http://ewokrampage.wordpress.com/
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8 Control Theory

Topics in control theory, optimal control, HJB equation, infinite hori-

zon case, Linear-Quadratic optimal control, Riccati equations (dif-

ferential, algebraic, discrete-time), controllability, stability, eigenvalue

analysis, Lyapunov function

Cart pole example

x

u

θ

state x = (x, ẋ, θ, θ̇)

θ̈ =
g sin(θ) + cos(θ)

[

−c1u− c2θ̇
2 sin(θ)

]

4
3
l − c2 cos2(θ)

ẍ = c1u+ c2
[

θ̇2 sin(θ)− θ̈ cos(θ)
]

8:1

Control Theory

• Concerns controlled systems of the form

ẋ = f(x, u) + noise(x, u)

and a controller of the form

π : (x, t) 7→ u

• We’ll neglect stochasticity here

• When analyzing a given controller π, one analyzes closed-loop

system as described by the differential equation

ẋ = f(x, π(x, t))

(E.g., analysis for convergence & stability)

8:2

Core topics in Control Theory

• Stability*

Analyze the stability of a closed-loop system

→ Eigenvalue analysis or Lyapunov function method

• Controllability*

Analyze which dimensions (DoFs) of the system can actually in principle

be controlled

• Transfer function

Analyze the closed-loop transfer function, i.e., “how frequencies are

transmitted through the system”. (→ Laplace transformation)

• Controller design

Find a controller with desired stability and/or transfer function properties

• Optimal control*

Define a cost function on the system behavior. Optimize a controller to

minimize costs

8:3

Control Theory references

• Robert F. Stengel: Optimal control and estimation

Online lectures: http://www.princeton.edu/˜stengel/

MAE546Lectures.html (esp. lectures 3,4 and 7-9)

• From robotics lectures:

Stefan Schaal’s lecture Introduction to Robotics: http://www-clmc.

usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus

Drew Bagnell’s lecture on Adaptive Control and Reinforcement

Learning http://robotwhisperer.org/acrls11/

8:4

Outline

• We’ll first consider optimal control

Goal: understand Algebraic Riccati equation

significance for local neighborhood control

• Then controllability & stability

8:5

Optimal control (discrete time)

Given a controlled dynamic system

xt+1 = f(xt, ut)

we define a cost function

Jπ =

T∑

t=0

c(xt, ut) + φ(xT )

where x0 and the controller π : (x, t) 7→ u are given, which

determines x1:T and u0:T

8:6

Dynamic Programming & Bellman principle

An optimal policy has the property that whatever the initial state

and initial decision are, the remaining decisions must constitute

an optimal policy with regard to the state resulting from the first

decision.

http://www.princeton.edu/~stengel/MAE546Lectures.html
http://www.princeton.edu/~stengel/MAE546Lectures.html
http://www-clmc.usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus
http://www-clmc.usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus
http://robotwhisperer.org/acrls11/
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Start

Goal
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1
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3

3

15

“V (state) = minedge[c(edge) + V (next-state)]”
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Bellman equation (discrete time)

• Define the value function or optimal cost-to-go function

Vt(x) = min
π

[ T∑

s=t

c(xs, us) + φ(xT )
]

xt=x

• Bellman equation

Vt(x) = minu

[

c(x, u) + Vt+1(f(x, u))
]

The argmin gives the optimal control signal: π∗
t (x) = argminu

[

· · ·
]

Derivation:

Vt(x) = min
π

[ T∑

s=t

c(xs, us) + φ(xT )
]

= min
ut

[
c(x, ut) + min

π
[

T∑

s=t+1

c(xs, us) + φ(xT )]
]

= min
ut

[
c(x, ut) + Vt+1(f(x, ut))

]

8:8

Optimal Control (continuous time)

Given a controlled dynamic system

ẋ = f(x, u)

we define a cost function with horizon T

Jπ =

∫ T

0

c(x(t), u(t)) dt+ φ(x(T ))

where the start state x(0) and the controller π : (x, t) 7→ u

are given, which determine the closed-loop system trajectory

x(t), u(t) via ẋ = f(x, π(x, t)) and u(t) = π(x(t), t)

8:9

Hamilton-Jacobi-Bellman equation (continu-

ous time)

• Define the value function or optimal cost-to-go function

V (x, t) = min
π

[ ∫ T

t

c(x(s), u(s)) ds+ φ(x(T ))
]

x(t)=x

• Hamilton-Jacobi-Bellman equation

− ∂
∂t
V (x, t) = minu

[

c(x, u) + ∂V
∂x

f(x, u)
]

The argmin gives the optimal control signal: π∗(x) = argminu

[

· · ·
]

Derivation:

dV (x, t)

dt
=
∂V

∂t
+
∂V

∂x
ẋ

c(x, u
∗
) =

∂V

∂t
+
∂V

∂x
f(x, u

∗
)

−
∂V

∂t
= c(x, u

∗
) +

∂V

∂x
f(x, u

∗
)
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Infinite horizon case

Jπ =

∫ ∞

0

c(x(t), u(t)) dt

• This cost function is stationary (time-invariant)!

→ the optimal value function is stationary (V (x, t) = V (x))

→ the optimal control signal depends on x but not on t

→ the optimal controller π∗ is stationary

• The HBJ and Bellman equations remain “the same” but with the

same (stationary) value function independent of t:

0 = min
u

[

c(x, u) +
∂V

∂x
f(x, u)

]

(cont. time)

V (x) = min
u

[

c(x, u) + V (f(x, u))
]

(discrete time)

The argmin gives the optimal control signal: π∗(x) = argminu

[

· · ·
]
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Infinite horizon examples

• Cart-pole balancing:

– You always want the pole to be upright (θ ≈ 0)

– You always want the car to be close to zero (x ≈ 0)

– You want to spare energy (apply low torques) (u ≈ 0)

You might define a cost

Jπ =

∫ ∞

0
||θ||2 + ǫ||x||2 + ρ||u||2

• Reference following:

– You always want to stay close to a reference trajectory r(t)

Define x̃(t) = x(t)− r(t) with dynamics ˙̃x(t) = f(x̃(t) + r(t), u)− ṙ(t)

Define a cost

Jπ =

∫ ∞

0
||x̃||2 + ρ||u||2

• Many many problems in control can be framed this way

8:12

Comments

• The Bellman equation is fundamental in optimal control theory,

but also Reinforcement Learning

• The HJB eq. is a differential equation for V (x, t) which is in gen-

eral hard to solve

• The (time-discretized) Bellman equation can be solved by Dy-

namic Programming starting backward:

VT (x) = φ(x) , VT -1(x) = min
u

[

c(x, u) + VT (f(x, u))
]

etc.
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But it might still be hard or infeasible to represent the functions

Vt(x) over continuous x!

• Both become significantly simpler under linear dynamics and

quadratic costs:

→ Riccati equation

8:13

Linear-Quadratic Optimal Control

linear dynamics

ẋ = f(x, u) = Ax+Bu

quadratic costs

c(x, u) = x⊤Qx+ u⊤Ru , φ(xT ) = x⊤TFxT

• Note: Dynamics neglects constant term; costs neglect linear

and constant terms. This is because

– constant costs are irrelevant

– linear cost terms can be made away by redefining x or u

– constant dynamic term only introduces a constant drift

8:14

Linear-Quadratic Control as Local Approxi-

mation

• LQ control is important also to control non-LQ systems in the

neighborhood of a desired state!

Let x∗ be such a desired state (e.g., cart-pole: x∗ = (0, 0, 0, 0))

– linearize the dynamics around x∗

– use 2nd order approximation of the costs around x∗

– control the system locally as if it was LQ

– pray that the system will never leave this neighborhood!
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Riccati differential equation = HJB eq. in LQ

case

• In the Linear-Quadratic (LQ) case, the value function always is

a quadratic function of x!

Let V (x, t) = x⊤P (t)x, then the HBJ equation becomes

− ∂

∂t
V (x, t) = min

u

[

c(x, u) +
∂V

∂x
f(x, u)

]

−x⊤Ṗ (t)x = min
u

[

x⊤Qx+ u⊤Ru+ 2x⊤P (t)(Ax+Bu)
]

0 =
∂

∂u

[

x⊤Qx+ u⊤Ru+ 2x⊤P (t)(Ax+Bu)
]

= 2u⊤R+ 2x⊤P (t)B

u∗ = −R-1B⊤Px

⇒ Riccati differential equation

−Ṗ = A⊤P + PA− PBR-1B⊤P +Q

8:16

Riccati differential equation

−Ṗ = A⊤P + PA− PBR-1B⊤P +Q

• This is a differential equation for the matrix P (t) describing the

quadratic value function. If we solve it with the finite horizon

constraint P (T ) = F we solved the optimal control problem

• The optimal control u∗ = −R-1B⊤Px is called Linear Quadratic

Regulator

Note: If the state is dynamic (e.g., x = (q, q̇)) this control is linear

in the positions and linear in the velocities and is an instance of

PD control

The matrix K = R-1B⊤P is therefore also called gain matrix

For instance, if x(t) = (q(t)− r(t), q̇(t)− ṙ(t)) for a reference r(t) and

K = [Kp Kd ] then

u∗ = Kp(r(t)− q(t)) +Kd(ṙ(t)− q̇(t))

8:17

Riccati equations

• Finite horizon continuous time

Riccati differential equation

−Ṗ = A⊤P + PA− PBR-1B⊤P +Q , P (T ) = F

• Infinite horizon continuous time

Algebraic Riccati equation (ARE)

0 = A⊤P + PA− PBR-1B⊤P +Q

• Finite horizon discrete time (Jπ =
∑T

t=0 ||xt||2Q+||ut||2R+||xT ||2F )

Pt-1 = Q+A⊤[Pt − PtB(R+B⊤PtB)-1B⊤Pt]A , PT = F

• Infinite horizon discrete time (Jπ =
∑∞

t=0 ||xt||2Q + ||ut||2R)

P = Q+A⊤[P − PB(R+B⊤PB)-1B⊤P ]A
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Example: 1D point mass

• Dynamics:

q̈(t) = u(t)/m

x =



q
q̇


 , ẋ =



q̇
q̈


 =




q̇
u(t)/m


 =



0 1
0 0


x+




0
1/m


u

= Ax+Bu , A =



0 1
0 0


 , B =




0
1/m



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• Costs:

c(x, u) = ǫ||x||2 + ̺||u||2 , Q = ǫI , R = ̺I

• Algebraic Riccati equation:

P =



a c
c b


 , u∗ = −R-1B⊤Px =

−1
̺m

[cq + bq̇]

0 = A⊤P + PA− PBR-1B⊤P +Q

=



c b
0 0


 +



0 a
0 c


− 1

̺m2



c2 bc
bc b2


 + ǫ



1 0
0 1



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Example: 1D point mass (cont.)

• Algebraic Riccati equation:

P =



a c
c b


 , u∗ = −R-1B⊤Px =

−1
̺m

[cq + bq̇]

0 =



c b
0 0


 +



0 a
0 c


− 1

̺m2



c2 bc
bc b2


 + ǫ



1 0
0 1




First solve for c, then for b = m
√
̺
√
c+ ǫ. Whether the damping

ration ξ = b√
4mc

depends on the choices of ̺ and ǫ.

• The Algebraic Riccati equation is usually solved numerically.

(E.g. are, care or dare in Octave)
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Optimal control comments

• HJB or Bellman equation are very powerful concepts

• Even if we can solve the HJB eq. and have the optimal control,

we still don’t know how the system really behaves?

– Will it actually reach a “desired state”?

– Will it be stable?

– It is actually “controllable” at all?

• Last note on optimal control:

Formulate as a constrainted optimization problem with objective function

Jπ and constraint ẋ = f(x, u). λ(t) are the Langrange multipliers. It

turns out that ∂
∂x

V (x, t) = λ(t). (See Stengel.)
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Relation to other topics

• Optimal Control:

min
π

Jπ =

∫ T

0

c(x(t), u(t)) dt+ φ(x(T ))

• Inverse Kinematics:

min
q

f(q) = ||q − q0||2W + ||φ(q)− y∗||2C

• Operational space control:

min
u

f(u) = ||u||2H + ||φ̈(q)− ÿ∗||2C

• Trajectory Optimization: (control hard constraints could be included)

min
q0:T

f(q0:T ) =
T∑

t=0

||Ψt(qt-k, .., qt)||2 +
T∑

t=0

||Φt(qt)||2

• Reinforcement Learning:

– Markov Decision Processes ↔ discrete time stochastic con-

trolled system P (xt+1 |ut, xt)

– Bellman equation→ Basic RL methods (Q-learning, etc)
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Controllability
8:23

Controllability

• As a starting point, consider the claim:

“Intelligence means to gain maximal controllability over all de-

grees of freedom over the environment.”

Note:

– controllability (ability to control) 6= control

– What does controllability mean exactly?

• I think the general idea of controllability is really interesting

– Linear control theory provides one specific definition of con-

trollability, which we introduce next..

8:24

Controllability

• Consider a linear controlled system

ẋ = Ax+Bu

How can we tell from the matrices A and B whether we can

control x to eventually reach any desired state?

• Example: x is 2-dim, u is 1-dim:



ẋ1

ẋ2


 =



0 0
0 0






x1

x2


 +



1
0


u

Is x “controllable”?



ẋ1

ẋ2


 =



0 1
0 0






x1

x2


 +



0
1


u

Is x “controllable”?

8:25
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Controllability

We consider a linear stationary (=time-invariant) controlled sys-

tem

ẋ = Ax+Bu

• Complete controllability: All elements of the state can be brought

from arbitrary initial conditions to zero in finite time

• A system is completely controllable iff the controllability matrix

C :=
[

B AB A2B · · · An-1B
]

has full rank dim(x) (that is, all rows are linearly independent)

• Meaning of C:

The ith row describes how the ith element xi can be influenced by u

“B”: ẋi is directly influenced via B

“AB”: ẍi is “indirectly” influenced via AB (u directly influences some ẋj

via B; the dynamics A then influence ẍi depending on ẋj )

“A2B”:
...
x i is “double-indirectly” influenced

etc...

Note: ẍ = Aẋ+Bu̇ = AAx+ABu+Bu̇
...
x = A3x+A2Bu+ABu̇+Bü

8:26

Controllability

• When all rows of the controllability matrix are linearly indepen-

dent ⇒ (u, u̇, ü, ...) can influence all elements of x indepen-

dently

• If a row is zero→ this element of x cannot be controlled at all

• If 2 rows are linearly dependent→ these two elements of x will

remain coupled forever

8:27

Controllability examples



ẋ1

ẋ2


 =



0 0
0 0






x1

x2


 +



1
1


u C =



1 0
1 0


 rows linearly dependent



ẋ1

ẋ2


 =



0 0
0 0






x1

x2


 +



1
0


u C =



1 0
0 0


 2nd row zero



ẋ1

ẋ2


 =



0 1
0 0






x1

x2


 +



0
1


u C =



0 1
1 0


 good!
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Controllability

Why is it important/interesting to analyze controllability?

• The Algebraic Riccati Equation will always return an “optimal”

controller – but controllability tells us whether such a controller

even has a chance to control x

• “Intelligence means to gain maximal controllability over all de-

grees of freedom over the environment.”

– real environments are non-linear

– “to have the ability to gain controllability over the environment’s

DoFs”

8:29

Stability

8:30

Stability

• One of the most central topics in control theory

• Instead of designing a controller by first designing a cost func-

tion and then applying Riccati,

design a controller such that the desired state is provably a sta-

ble equilibrium point of the closed loop system

8:31

Stability

• Stability is an analysis of the closed loop system. That is: for

this analysis we don’t need to distinguish between system and

controller explicitly. Both together define the dynamics

ẋ = f(x, π(x, t)) =: f(x)

• The following will therefore discuss stability analysis of general

differential equations ẋ = f(x)

• What follows:

– 3 basic definitions of stability

– 2 basic methods for analysis by Lyapunov

8:32

Aleksandr Lyapunov (1857–1918)

8:33

Stability – 3 definitions

ẋ = F (x) with equilibrium point x = 0

• x0 is an equilibrium point ⇐⇒ f(x0) = 0
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• Lyapunov stable or uniformly stable ⇐⇒

∀ǫ : ∃δ s.t. ||x(0)|| ≤ δ ⇒ ||x(t)|| ≤ ǫ

(when it starts off δ-near to x0, it will remain ǫ-near forever)

• asymtotically stable ⇐⇒
Lyapunov stable and limt→∞ x(t) = 0

• exponentially stable ⇐⇒
asymtotically stable and ∃α, a s.t. ||x(t)|| ≤ ae−αt||x(0)||

(→ the “error” time integral
∫∞
0
||x(t)||dt ≤ a

α
||x(0)|| is bounded!)

8:34

Linear Stability Analysis

(“Linear” ↔ “local” for a system linearized at the equilibrium

point.)

• Given a linear system

ẋ = Ax

Let λi be the eigenvalues of A

– The system is asymptotically stable ⇐⇒ ∀i : real(λi) < 0

– The system is unstable stable ⇐⇒ ∃i : real(λi) > 0

– The system is marginally stable ⇐⇒ ∀i : real(λi) ≤ 0

• Meaning: An eigenvalue describes how the system behaves along one

state dimension (along the eigenvector):

ẋi = λixi

As for the 1D point mass the solution is xi(t) = aeλit and

– imaginary λi → oscillation

– negative real(λi)→ exponential decay ∝ e−|λi|t

– positive real(λi)→ exponential explosion ∝ e|λi|t

8:35

Linear Stability Analysis: Example

• Let’s take the 1D point mass q̈ = u/m in closed loop with a PD

u = −Kpq −Kdq̇

• Dynamics:

ẋ =



q̇
q̈


 =



0 1
0 0


x+ 1/m




0 0
−Kp −Kd


x

A =




0 1
−Kp/m −Kd/m




• Eigenvalues:

The equation λ



q
q̇


 =




0 1
−Kp/m −Kd/m






q
q̇


 leads to the

equation λq̇ = λ2q = −Kp/mq−Kd/mλq or mλ2+Kdλ+Kp =

0 with solution (compare slide 05:10)

λ =
−Kd ±

√
K2

d − 4mKp

2m

For K2
d − 4mKp negative, the real(λ) = −Kd/2m

⇒ Positive derivative gain Kd makes the system stable.

8:36

Side note: Stability for discrete time systems

• Given a discrete time linear system

xt+1 = Axt

Let λi be the eigenvalues of A

– The system is asymptotically stable ⇐⇒ ∀i : |λi| < 1

– The system is unstable stable ⇐⇒ ∃i : |λi| > 1

– The system is marginally stable ⇐⇒ ∀i : |λi| ≤ 1

8:37

Linear Stability Analysis comments

• The same type of analysis can be done locally for non-linear

systems, as we will do for the cart-pole in the exercises

• We can design a controller that minimizes the (negative) eigen-

values of A:

↔ controller with fastest asymtopic convergence

This is a real alternative to optimal control!

8:38

Lyapunov function method

• A method to analyze/prove stability for general non-linear sys-

tems is the famous “Lyapunov’s second method”

Let D be a region around the equilibrium point x0

• A Lyaponov function V (x) for a system dynamics ẋ = f(x) is

– positive, V (x) > 0, everywhere in D except...

at the equilibrium point where V (x0) = 0

– always decreases, V̇ (x) = ∂V (x)
∂x

ẋ < 0, in D except...

at the equilibrium point where f(x) = 0 and therefore V̇ (x) = 0

• If there exists a D and a Lyapunov function ⇒ the system is

asymtotically stable

If D is the whole state space, the system is globally stable

8:39

Lyapunov function method

• The Lyapunov function method is very general. V (x) could be

“anything” (energy, cost-to-go, whatever). Whenever one finds

some V (x) that decreases, this proves stability
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• The problem though is to think of some V (x) given a dynamics!

(In that sense, the Lyapunov function method is rather a method

of proof than a concrete method for stability analysis.)

• In standard cases, a good guess for the Lyapunov function is

either the energy or the value function

8:40

Lyapunov function method – Energy Exam-

ple

• Let’s take the 1D point mass q̈ = u/m in closed loop with a PD

u = −Kpq −Kdq̇, which has the solution (slide 05:14):

q(t) = be−ξ/λ t eiω0

√
1−ξ2 t

• Energy of the 1D point mass: V (q, q̇) := 1
2
mq̇2

V̇ (x) = e−2ξ/λ tV (x(0))

(using that the energy of an undamped oscillator is conserved)

• V (x) < 0 ⇐⇒ ξ > 0 ⇐⇒ Kd > 0

Same result as for the eigenvalue analysis

8:41

Lyapunov function method – value function

Example

• Consider infinite horizon linear-quadratic optimal control. The

solution of the Algebraic Riccati equation gives the optimal con-

troller.

• The value function satisfies

V (x) = x⊤Px

V̇ (x) = [Ax+Bu∗]⊤Px+ x⊤P [Ax+Bu∗]

u∗ = −R-1B⊤Px = Kx

V̇ (x) = x⊤[(A+BK)⊤P + P (A+BK)]x

= x⊤[A⊤P + PA+ (BK)⊤P + P (BK)]x

0 = A⊤P + PA− PBR-1B⊤P +Q

V̇ (x) = x⊤[PBR-1B⊤P −Q+ (PBK)⊤+ PBK]x

= −x⊤[Q+K⊤RK]x

(We could have derived this easier! x⊤Qx are the immediate state costs,

and x⊤K⊤RKx = u⊤Ru are the immediate control costs—and V̇ (x) =
−c(x, u∗)! See slide 11 bottom.)

• That is: V is a Lyapunov function if Q +K⊤RK is positive defi-

nite!

8:42

Observability & Adaptive Control

• When some state dimensions are not directly observable: ana-

lyzing higher order derivatives to infer them.

Very closely related to controllability: Just like the controllabil-

ity matrix tells whether state dimensions can (indirectly) be con-

trolled; an observation matrix tells whether state dimensions can

(indirectly) be inferred.

• Adaptive Control: When system dynamics ẋ = f(x, u, β) has

unknown parameters β.

– One approach is to estimate β from the data so far and use

optimal control.

– Another is to design a controller that has an additional internal

update equation for an estimate β̂ and is provably stable. (See

Schaal’s lecture, for instance.)

8:43
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9 Practical: A 2-wheeled Racer

A 2-wheeled racer

• Educational ideas:

– have a really dynamic system

– have a system which, in the “racing”

limit, is hard to control

– learn about hardware, communica-

tion, etc

– challenges connecting theory with

practise:

• Real world issues:

– control interface (“setting velocities”)

is adventurous

– PARTIAL OBSERVABILITY: we only

have a noisy accelerometer & gyro-

scope

– unknown time delays

– unknown system parameters

(masses, geometry, etc)
9:1

Intro

9:2

[demo]

9:3

Components

• Odroid: on-board PC running xubuntu

• Motor unit: motors, motor driver, motor controller, Hall sensor

• IMU (inertial measurement unit): 3D accelerometer, 3D gyro-

scope, (magnetic)

• Communication: USB-to-I2C communicates with both, motors

and IMU

• See Marcel’s thesis

9:4

Code

• From Marcel’s thesis:

– Control loop (around 36 msec)

• Kalman filter tests on the accelerometer:

– Caroline

9:5

2D Modelling

• See theoretical modelling notes

9:6

3D Modelling

• Account for centrifugal forces in a curve

• Generalized coordinates q = (x, y, φ, θ), with steering angle φ

• Exercise: Derive general Euler-Lagrange equations

9:7

Clash of theory and real world

9:8

The control interface

• Theory assumed torque control

• In real, the motor controller “does things somehow”. We can

set:

– a target velocities v∗l,r

– desired acceleration level a∗
l,r ∈ {−10, ..,−1, 1, .., 10}

• The controller will then ramp velocity in 25msec steps depend-

ing on a∗ until target v∗ is reached

• Unknown: time delays, scaling of a∗?

• Potential approach:

– Assume acceleration control interface

– Consider constrained Euler-Lagrange equations

9:9

Coping with the partial observability

• Theoretical view: In LQG systems it is known that optimal con-

trol under partial observability is the same as optimal control

assuming the Bayes estimated state as true current state. Un-

certainty principle.

• Use a Bayes filter to estimate the state (q, q̇) from all sensor

information we have

• Sensor information:

– Accelerometer readings ãx,y,z

– Gyro readings g̃x,y,z

– Motor positions θ̃l,r. Note that θ̃ ∝ x/r − θ desribes the

relative angle between the pole and the wheels

• Open issue: time delays – relevant?
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9:10

Coping with unknown system parameters

• System identification

• We derived the eqs of motion Bu = Mq̈+F (for 2D) – but don’t

know the parameters

– mA, IA,mB , IB : masses and inertias of bodies A (=wheel)

and B (=pendulum)

– r: radius of the wheel

– l: length of the pendulum (height of its COM)

• Focus on the local linearization around (q, q̇) = 0

• OR: Use blackbox optimization to fit parameters to data

9:11

Data

• We need data to understand better what’s going on!

• Lot’s of data of full control cycles around (q, q̇) = 0

(sensor reading, control signals, cycle time)

• Data specifically on how motors accelerate when setting a de-

sired acceleration level

9:12

Or completely different: Reinforcement Learn-

ing

• Alternatively one fully avoids modelling→ Reinforcement Learn-

ing

• Roughly: blackbox optimization (e.g., EA) of PD parameters

9:13

Modelling

9:14

Modelling overview I

We have exact analytical models (and implemented) for the fol-

lowing:

• Euler-Lagange equations

M(q) q̈ + F (q, q̇) = B(q) u

q̈ = M -1(Bu− F )

→ energy check

→ physical simulation

• Local linearization (x = (q, q̇))

q̈ = Ax+ a+ B̄u

A =
∂

∂x
M -1(Bu− F ) , B̄ = M -1B

→ gradient check

→ Riccati eqn→ nice controller [demo]

9:15

Modelling overview II

• Sensor model

yacc = c1 R [p̈B − (0, g)⊤] , R =



cos(θ + c2) − sin(θ + c2)
sin(θ + c2) cos(θ + c2)




ygyro = c3(θ̇ + c4)

yenc = c5(x/r − θ)

y = (yacc, ygyro, yenc) ∈ R
4

• Local linearization

C =
∂y

∂(q, q̇)
=

(
∂y
∂q

∂y
∂q̇

)
+

∂y

∂q̈

∂q̈

∂(q, q̇)

→ gradient check

→ Kalman filtering [demo]

9:16

Modelling overview III

• Constrained Euler-Lagange equations for acceleration control

– Our motors actually don’t allow to set torques – but rather

set accelerations. Setting accelerations implies the con-

straint

B′q̈ = u′

– Using q̈ = M -1(Bu− F ) we can retrieve the torque

u = (B′M -1B)-1[u′ +B′M -1F ]

that exactly generates this acceleration

– Plugging this back into q̈ = M -1(Bu− F ) we get

q̈ = B′#u′−(I−B′#B′)M -1F , B′# = M -1B(B′M -1B)-1

9:17

Modelling summary

• We now have all analytic models we need

• In simulation we have no problem to apply

– Riccati to retrieve a (locally) optimal linear regulator

– Kalman to optimally (subject to linearizations) estimate the

state

• The crux: we have 12 unknown parameters

mA, IA,mB , IB , r, l, lC , c1, .., c5

(plus sensor noise parameters σa, σg, σe)

9:18
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System Identification

9:19

System Identification

• Given data D = {(x, u, y)t}Tt=1, learn

(x, u) 7→ x′
or P (x′|x, u)

(x, u) 7→ y or P (y|x, u)

9:20

Regression options for system identification

• Linear: (linear in finite number of parameters)

f(x; θ) = φ(x)⊤θ

• Blackbox parameteric:

– Given some blackbox parameteric model f(x; θ) with finite

parameters θ; use blackbox optimization

• Non-parameteric:

– Kernel methods

– Gaussian processes

– Are closely related to linear models

• In all cases one typically minimizes the squared error

Lls(θ) =
∑n

i=1(yi − f(xi; θ))
2

• We can use the mean 1
n
Lls(θ) as estimate of the output variance

σ2 to define

P (y|x; θ) = N(y|f(x; θ), σ2)

9:21

System Id examples: Kinematics

• If the kinematics φ are unknown, learn them from data!

Literature:

Todorov: Probabilistic inference of multi-joint movements, skeletal pa-
rameters and marker attachments from diverse sensor data. (IEEE
Transactions on Biomedical Engineering 2007)

Deisenroth, Rasmussen & Fox: Learning to Control a Low-Cost Manip-
ulator using Data-Efficient Reinforcement Learning (RSS 2011)

9:22

Todorov: Probabilistic inference of multi-joint movements, skeletal pa-
rameters and marker attachments from diverse sensor data. (IEEE
Transactions on Biomedical Engineering 2007)

Deisenroth, Rasmussen & Fox: Learning to Control a Low-Cost Manip-
ulator using Data-Efficient Reinforcement Learning (RSS 2011)

9:23

System Id examples: Dynamics

• If the dynamics ẋ = f(x, u) are unknown, learn them from data!

Literature:

Moore: Acquisition of Dynamic Control Knowledge for a Robotic Manip-
ulator (ICML 1990)

Atkeson, Moore & Schaal: Locally weighted learning for control. Artifi-
cial Intelligence Review, 1997.

Schaal, Atkeson & Vijayakumar: Real-Time Robot Learning with Locally
Weighted Statistical Learning. (ICRA 2000)

Vijayakumar et al: Statistical learning for humanoid robots, Autonomous
Robots, 2002.

9:24

(Schaal, Atkeson, Vijayakumar)

• Use a simple regression method (locally weighted Linear Re-

gression) to estimate ẋ = f(x, u)

9:25

Regression basics

[ML slides]

9:26

Applying System Id to the racer?

• Core problem:

We have no ground truth data!

• We can record data (u, y) (controls & observations), but not x!

• Try an EM like approach:

– Hand-estimate the parameters as good as possible
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– Use a Kalman filter (better: smoother!!) to estimate the

unobserved x during

– Option (a): Learn local linear models q̈ = Ax+ a+Bu and

y = Cx+ c+Du
Option (b): Improve the parameters θ = (mA, IA,mB , IB , r, l, lC , c1, .., c5)

– Repeat with Kalman smoothing

• I have no idea whether/how well this’ll work

9:27

Data

9:28

We’ve collected data

• Motor responses

– Free running wheels (no load..)

– Setting extreme target velocities v∗ and different accelera-

tion levels a∗ ∈ {−10, ..,−1, 1, .., 10} we can generate well-

defined accelerations

• Balancing trials

– the gyroscope picks up some oscillations

– the accelerometer is very noisy, perhaps correlated with

jerky controls

– only 30Hz!

9:29
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10 Reinforcement Learning in Robotics

RL = Learning to Act

from Satinder Singh’s Introduction to RL, videolectures.com

10:1

(around 2000, by Schaal, Atkeson, Vijayakumar)

(2007, Andrew Ng et al.)

10:2

Applications of RL

• Robotics

– Navigation, walking, juggling, helicopters, grasping, etc...

• Games

– Backgammon, Chess, Othello, Tetris, ...

• Control

– factory processes, resource control in multimedia networks, elevators,

....

• Operations Research

– Warehousing, transportation, scheduling, ...

10:3

Markov Decision Process

a0

s0

r0

a1

s1

r1

a2

s2

r2

P (s0:T+1, a0:T , r0:T ;π) = P (s0)
∏T

t=0 P (at|st;π) P (rt|st, at) P (st+1|st, at)

– world’s initial state distribution P (s0)

– world’s transition probabilities P (st+1 | st, at)

– world’s reward probabilities P (rt | st, at)

– agent’s policy π(at | st) = P (a0|s0;π) (or deterministic at =

π(st))

• Stationary MDP:

– We assume P (s′ | s, a) and P (r|s, a) independent of time

– We also define R(s, a) := E{r|s, a} =
∫
r P (r|s, a) dr

10:4

... in the notation this Robotic’s lecture

• We have a (potentially stochastic) controlled system

ẋ = f(x, u) + noise(x, u)

• We have costs (neg-rewards), e.g. in the finite horizon case:

Jπ =

∫ T

0

c(x(t), u(t)) dt+ φ(x(T ))

• We want a policy (“controller”)

π : (x, t) 7→ u

10:5

Reinforcement Learning = the dynamics f and costs c are unknown

• All the agent can do is collect data

D = {(xt, ut, ct)}Tt=0

What can we do with this data?

10:6

Five approaches to RL
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Five approaches to RL
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Imitation Learning

D = {(s0:T , a0:T )
d}nd=1

learn/copy→ π(s)

• Use ML to imitate demonstrated state trajectories x0:T

Literature:

Atkeson & Schaal: Robot learning from demonstration (ICML 1997)

Schaal, Ijspeert & Billard: Computational approaches to motor learning
by imitation (Philosophical Transactions of the Royal Society of London.
Series B: Biological Sciences 2003)

Grimes, Chalodhorn & Rao: Dynamic Imitation in a Humanoid Robot
through Nonparametric Probabilistic Inference. (RSS 2006)

Rüdiger Dillmann: Teaching and learning of robot tasks via observation
of human performance (Robotics and Autonomous Systems, 2004)

10:9

Imitation Learning

• There a many ways to imitate/copy the oberved policy:

Learn a density model P (at | st)P (st) (e.g., with mixture of Gaus-

sians) from the observed data and use it as policy (Billard et al.)

Or trace observed trajectories by minimizing perturbation costs

(Atkeson & Schaal 1997)

10:10

Imitation Learning

Atkeson & Schaal

10:11

Inverse RL

D = {(s0:T , a0:T )
d}nd=1

learn→ R(s, a)
DP→ V (s) → π(s)

• Use ML to “uncover” the latent reward function in observed be-

havior

Literature:

Pieter Abbeel & Andrew Ng: Apprenticeship learning via inverse rein-
forcement learning (ICML 2004)

Andrew Ng & Stuart Russell: Algorithms for Inverse Reinforcement Learn-
ing (ICML 2000)

Nikolay Jetchev & Marc Toussaint: Task Space Retrieval Using Inverse
Feedback Control (ICML 2011).

10:12

Inverse RL (Apprenticeship Learning)

• Given: demonstrations D = {xd
0:T }nd=1

• Try to find a reward function that discriminates demonstra-

tions from other policies

– Assume the reward function is linear in some features R(x) =

w⊤φ(x)

– Iterate:

1. Given a set of candidate policies {π0, π1, ..}

2. Find weights w that maximize the value margin between

teacher and all other candidates

max
w,ξ

ξ

s.t. ∀πi : w⊤〈φ〉D
︸ ︷︷ ︸

value of demonstrations

≥ w⊤〈φ〉πi
︸ ︷︷ ︸

value of πi

+ξ

||w||2 ≤ 1
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3. Compute a new candidate policy πi that optimizes R(x) =

w⊤φ(x) and add to candidate list.

(Abbeel & Ng, ICML 2004)

10:13

10:14

Policy Search with Policy Gradients

10:15

Policy gradients

• In continuous state/action case, represent the policy as linear in

arbitrary state features:

π(s) =

k∑

j=1

φj(s)βj = φ(s)⊤β (deterministic)

π(a | s) = N(a |φ(s)⊤β,Σ) (stochastic)

with k features φj .

• Given an episode ξ = (st, at, rt)
H
t=0, we want to estimate

∂V (β)

∂β

10:16

Policy Gradients

• One approach is called REINFORCE:

∂V (β)

∂β
=

∂

∂β

∫

P (ξ|β) R(ξ) dξ =

∫

P (ξ|β) ∂

∂β
logP (ξ|β)R(ξ)dξ

= E{ξ|β} ∂

∂β
logP (ξ|β)R(ξ) = E{ξ|β}

H∑

t=0

γt ∂ log π(at|st)
∂β

H∑

t′=t

γt′−trt′

︸ ︷︷ ︸

Qπ(st,at,t)

• Another is Natural Policy Gradient

– Estimate the Q-function as linear in the basis functions ∂
∂β

log π(a|s):

Q(x, u) ≈
[∂ log π(a|s)

∂β

]⊤
w

– Then the natural gradient (
∂V (β)
∂β

multiplied with inv. Fisher

metric) updates

βnew = β + αw

• Another is PoWER, which requires
∂V (β)
∂β

= 0

β ← β +
E{ξ|β}∑H

t=0 ǫtQ
π(st, at, t)

E{ξ|β}∑H
t=0 Q

π(st, at, t)

10:17

Kober & Peters: Policy Search for Motor Primitives in Robotics, NIPS 2008.

(serious reward shaping!)

10:18

Learning to walk in 20 Minutes

• Policy Gradient method (Reinforcement Learning)

Stationary policy parameterized as linear in features u =
∑

i wiφi(q,

• Problem: find parameters wi to minimize expected costs

cost = mimick (q, q̇) of the passive down-hill walker at “certain

point in cycle”

Learning To Walk

Tedrake, Zhang & Seung: Stochastic policy gradient reinforcement learning on a
simple 3D biped. IROS, 2849-2854, 2004. http://groups.csail.mit.edu/
robotics-center/public_papers/Tedrake04a.pdf

10:19

Policy Gradients – references

Peters & Schaal (2008): Reinforcement learning of motor skills with policy gradi-
ents, Neural Networks.

Kober & Peters: Policy Search for Motor Primitives in Robotics, NIPS 2008.

Vlassis, Toussaint (2009): Learning Model-free Robot Control by a Monte Carlo
EM Algorithm. Autonomous Robots 27, 123-130.

Rawlik, Toussaint, Vijayakumar(2012): On Stochastic Optimal Control and Rein-
forcement Learning by Approximate Inference. RSS 2012. (ψ-learning)

• These methods are sometimes called white-box optimization:

They optimize the policy parameters β for the total reward R =
∑

γtrt while tying to exploit knowledge of how the process is

actually parameterized

10:20

http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf
http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf
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Black-Box Optimization

10:21

“Black-Box Optimization”

• The term is not really well defined

– I use it to express that only f(x) can be evaluated

– ∇f(x) or ∇2f(x) are not (directly) accessible

More common terms:

• Global optimization

– This usually emphasizes that methods should not get stuck

in local optima

– Very very interesting domain – close analogies to (active)

Machine Learning, bandits, POMDPs, optimal decision mak-

ing/planning, optimal experimental design

– Usually mathematically well founded methods

• Stochastic search or Evolutionary Algorithms or Local Search

– Usually these are local methods (extensions trying to be

“more” global)

– Various interesting heuristics

– Some of them (implicitly or explicitly) locally approximating

gradients or 2nd order models

10:22

Black-Box Optimization

• Problem: Let x ∈ R
n, f : R

n → R, find

min
x

f(x)

where we can only evaluate f(x) for any x ∈ R
n

• A constrained version: Let x ∈ R
n, f : R

n → R, g : R
n → {0, 1}, find

min
x

f(x) s.t. g(x) = 1

where we can only evaluate f(x) and g(x) for any x ∈ R
n

I haven’t seen much work on this. Would be interesting to consider this more
rigorously.

10:23

A zoo of approaches

• People with many different backgrounds drawn into this
Ranging from heuristics and Evolutionary Algorithms to heavy mathematics

– Evolutionary Algorithms, esp. Evolution Strategies, Covari-

ance Matrix Adaptation, Estimation of Distribution Algorithms

– Simulated Annealing, Hill Climing, Downhill Simplex

– local modelling (gradient/Hessian), global modelling

10:24

Optimizing and Learning

• Black-Box optimization is strongly related to learning:

• When we have local a gradient or Hessian, we can take that

local information and run – no need to keep track of the history

or learn (exception: BFGS)

• In the black-box case we have no local information directly ac-

cessible

→ one needs to account for the history in some way or another

to have an idea where to continue search

• “Accounting for the history” very often means learning: Learning

a local or global model of f itself, learning which steps have

been successful recently (gradient estimation), or which step

directions, or other heuristics

10:25

Stochastic Search

10:26

Stochastic Search

• The general recipe:

– The algorithm maintains a probability distribution pθ(x)

– In each iteration it takes n samples {xi}ni=1 ∼ pθ(x)

– Each xi is evaluated → data {(xi, f(xi))}ni=1

– That data is used to update θ

• Stochastic Search:

Input: initial parameter θ, function f(x), distribution model

pθ(x), update heuristic h(θ,D)

Output: final θ and best point x

1: repeat

2: Sample {xi}ni=1 ∼ pθ(x)

3: Evaluate samples, D = {(xi, f(xi))}ni=1

4: Update θ ← h(θ,D)

5: until θ converges

10:27

Stochastic Search

• The parameter θ is the only “knowledge/information” that is be-

ing propagated between iterations

θ encodes what has been learned from the history

θ defines where to search in the future

• Evolutionary Algorithms: θ is a parent population

Evolution Strategies: θ defines a Gaussian with mean & vari-

ance

Estimation of Distribution Algorithms: θ are parameters of

some distribution model, e.g. Bayesian Network

Simulated Annealing: θ is the “current point” and a temperature

10:28
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Example: Gaussian search distribution (µ, λ)-
ES

From 1960s/70s. Rechenberg/Schwefel

• Perhaps the simplest type of distribution model

θ = (x̂) , pt(x) = N(x|x̂, σ2)

a n-dimenstional isotropic Gaussian with fixed deviation σ

• Update heuristic:

– Given D = {(xi, f(xi))}λi=1, select µ best: D′ = bestOfµ(D)

– Compute the new mean x̂ from D′

• This algorithm is called “Evolution Strategy (µ, λ)-ES”

– The Gaussian is meant to represent a “species”

– λ offspring are generated

– the best µ selected

10:29

Covariance Matrix Adaptation (CMA-ES)

• An obvious critique of the simple Evolution Strategies:

– The search distribution N(x|x̂, σ2) is isotropic

(no going forward, no preferred direction)

– The variance σ is fixed!

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

10:30

Covariance Matrix Adaptation (CMA-ES)

• In Covariance Matrix Adaptation

θ = (x̂, σ, C, pσ, pC) , pθ(x) = N(x|x̂, σ2C)

where C is the covariance matrix of the search distribution

• The θ maintains two more pieces of information: pσ and pC cap-

ture the “path” (motion) of the mean x̂ in recent iterations

• Rough outline of the θ-update:

– Let D′ = bestOfµ(D) be the set of selected points

– Compute the new mean x̂ from D′

– Update pσ and pC proportional to x̂k+1 − x̂k

– Update σ depending on |pσ|
– Update C depending on pcp

⊤
c (rank-1-update) and Var(D′)

10:31

CMA references

Hansen, N. (2006), ”The CMA evolution strategy: a comparing

review”

Hansen et al.: Evaluating the CMA Evolution Strategy on Multi-

modal Test Functions, PPSN 2004.

• For “large enough” populations local minima are avoided

• An interesting variant:

Igel et al.: A Computational Efficient Covariance Matrix Update

and a (1 + 1)-CMA for Evolution Strategies, GECCO 2006.

10:32

CMA conclusions

• It is a good starting point for an off-the-shelf black-box algorithm

• It includes components like estimating the local gradient (pσ, pC ),

the local “Hessian” (Var(D′)), smoothing out local minima (large

populations)

10:33

Stochastic search conclusions

Input: initial parameter θ, function f(x), distribution model

pθ(x), update heuristic h(θ,D)

Output: final θ and best point x

1: repeat

2: Sample {xi}ni=1 ∼ pθ(x)

3: Evaluate samples, D = {(xi, f(xi))}ni=1

4: Update θ ← h(θ,D)

5: until θ converges

• The framework is very general

• The crucial difference between algorithms is their choice of pθ(x)

10:34

RL under Partial Observability

• Data:

D = {(ut, ct, yt)t}Tt=0

→ state xt not observable

• Model-based RL is dauting: Learning P (x′|u, x) and P (y|u, x)
with latent x is very hard
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• Model-free: The policy needs to map the history to a new con-

trol

π : (yt−h,..,t-1, ut−h,..,t−1) 7→ ut

or any features of the history

ut = φ(yt−h,..,t-1, ut−h,..,t−1)
⊤w

10:35

Features for the racer?

• Potential features might be:

(

yt, ẏt, 〈y〉0.5 , 〈ẏ〉0.5 , 〈y〉0.9 , 〈ẏ〉0.9 , ut, ut−1

)

where ẏ =
yt−yt−1

τt
and 〈y〉α is a low-pass filter

10:36
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11 SKIPPED THIS TERM – Grasping (brief

intro)

Force closure, alternative/bio-inspired views

Grasping

• The most elementary type of interaction with (manipulation of)

the environment.

– Basis for intelligent behavior.

• In industrial settings with high precision sensors and actuators:

very fast and precise.

• In general real world with uncertain actuators and perception,

still a great research challenge, despite all the theory that has

been developed.

11:1

Pick-and-place in industry

(This type of kinematics is called “Delta Robot”, which is a “par-

allel robot” just as the Stewart platform.)

11:2

Research

• Using ultra high speed and precise cameras and localization:

High speed robot hand from the Ishikawa Komuro’s “Sensor Fu-

sion” Lab

http://www.k2.t.u-tokyo.ac.jp/fusion/index-e.html

• Asimo’s grasping:

11:3

Outline

• Introduce to the basic classical concepts for grasping (force clo-

sure)

• Discussion and alternative views

• References:

Craig’s Introduction to robotics: mechanics and control – chapter 3.

Matt Mason’s lecture: Static and Quasistatic Manipulation

www.cs.cmu.edu/afs/cs/academic/class/16741-s07/www/lecture18.

pdf

Daniela Rus and Seth Teller’s lecture: Grasping and Manipulation

courses.csail.mit.edu/6.141/spring2011/pub/lectures/Lec13-Manipulation-

pdf

11:4

Force Closure

• Which of these objects is in “tight grip”?

Defining “tight grip”: Assume fingers (vectors) have no friction

– but can exert arbitrary normal forces. Can we generate (or

counter-act) arbitrary forces on the object?

11:5

Force Closure – more rigorously

• Assume that each “finger” is a point that can apply forces on the

object as decribed by the friction cone

• Each finger is described by a point pi and a force fi ∈ Fi in the

fingers friction cone. Together they can exert the the force an

torque:

f total =
∑

i

fi , τ total =
∑

i

fi × (pi − c)

http://www.k2.t.u-tokyo.ac.jp/fusion/index-e.html
www.cs.cmu.edu/afs/cs/academic/class/16741-s07/www/lecture18.pdf
www.cs.cmu.edu/afs/cs/academic/class/16741-s07/www/lecture18.pdf
courses.csail.mit.edu/6.141/spring2011/pub/lectures/Lec13-Manipulation-I.pdf
courses.csail.mit.edu/6.141/spring2011/pub/lectures/Lec13-Manipulation-I.pdf
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• Force closure ⇐⇒ we can generate (counter-act) arbitrary

f total and τ total by choosing fi ∈ Fi appropriately.

↔ Check whether the positive linear span of the fiction cones

covers the whole space.
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Form & Force Closure

• Force closure: The contacts can apply an arbitrary wrench (=force-

torque) to the object.

• Form closure: The object is at an isolated point in configuration

space. Note: form closure ⇐⇒ frictionless force closure

• Equilibrium: The contact forces can balance the object’s weight

and other external forces.
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Traditional research into force closure

• Theorem (Mishra, Schwartz and Sharir, 1987):

For any bounded shape that is not a surface of revolution, a

force closure (or first order form closure) grasp exists.

• Guaranteed synthesis:

1) put fingers “everywhere”

2) while redundant finger exists delete any redundant finger

(A finger is redundant if it can be deleted without reducing the

positive linear span.)

Theorem (Mishra, Schwartz, and Sharir, 1987):

For any surface not a surface of revolution, [the above method]

yields a grasp with at most 6 fingers in the plane, at most 12

fingers in three space.

11:8

Traditional research into force closure

• Force closure turn into a continuous optimization criterion:

– Constrain the absolute forces each finger can apply

(cut the friction cones)

– The friction cones define a finite convex polygon in 6D wrench

space

→What is the inner radius of this convex wrench polygon?

Illustration from Suárez, Roa, Cornellà (2006): Grasp Quality Measures
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The “mitten thought experiment”

• From Oliver Brock’s research website:

“Our approach to grasping is motivated by the ”mitten thought experi-

ment”. This experiment illustrates that a sensory information-deprived

subject (blindfolded, wearing a thick mitten to eliminate tactile feedback)

is able to grasp a large variety of objects reliably by simply closing the

hand, provided that a second experimenter appropriately positioned the

object relative to the hand. This thought experiments illustrates that an

appropriate perceptual strategy (the experimenter) in conjunction with a

simple compliance-based control strategy (the mitten hand) can lead to

outstanding grasping performance.”

Illustration from O. Brock’s page

11:10

Food for thought

• Are point contact a good model?

• Is the whole idea of “arranging friction cones” the right approach?

• What about biomechanics?

11:11

Biomechanics of the human hand

• Finger tendons:

De Bruijne et al. 1999

J.N.A.L. Leijnse, 2005

See Just Herder’s lecture on “Biograsping”

http://www.slideshare.net/DelftOpenEr/bio-inspired-design-lecture6-

11:12

Tendon-based hand mechanisms

Shape Gripper, Shigeo Hirose, TITECH
Jaster Schuurmans, 2004

http://www.slideshare.net/DelftOpenEr/bio-inspired-design-lecture6-bio-grasping
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DLR hand

11:13
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12 SKIPPED THIS TERM – Legged Lo-

comotion (brief intro)

Why legs, Raibert hopper, statically stable walking, zero moment

point, human walking, compass gait, passive walker

Legged Locomotion

• Why legs?

Bacterial Flagellum: (rotational “motors” in Biology?)

12:1

Legged Locomotion

• Why legs?

– Human/Animal Locomotion Research

– Potentially less weight

– Better handling of rough terrains

(climbing, isolated footholds, ladders, stairs)

12:2

Rolling vs walking

12:3

One-legged locomotion

• Three separate controllers for:

– hopping height

– horizontal velocity (foot place-

ment)

– attitude (hip torques during

stance)

• Each a simple (PD-like) controller

Raibert et al.: Dynamically Stable Legged Locomotion. 1985 http://dspace.

mit.edu/handle/1721.1/6820

Tedrake: Applied Optimal Control for Dynamically Stable Legged Locomotion.
PhD thesis (2004). http://groups.csail.mit.edu/robotics-center/

public_papers/Tedrake04b.pdf

12:4

Biped locomotion

• Walking vs Running

Walking := in all instances at least one foot is on ground

Running := otherwise

• 2 phases of Walking

– double-support phase (in Robotics often statically stable)

– single-support phase (statically instable)

12:5

Asimo

12:6

Statically Stable Walk

• You could rest (hold pose) at any point in time and not fall over

⇐⇒ CoG projected on ground is within support polygon

CoG = center of gravity of all body masses

support polygon = hull of foot contact points

• Try yourself: Move as slow as you can but make normal length

steps...

http://dspace.mit.edu/handle/1721.1/6820
http://dspace.mit.edu/handle/1721.1/6820
http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04b.pdf
http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04b.pdf
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12:7

Zero Moment Point

• Vukobratovic’s view on walking, leading to ZMP ideas:

“Basic characteristics of all biped locomotion systems are:

(i) the possibility of rotation of the overall system about one of

the foot edges caused by strong disturbances, which is equiva-

lent to the appearance of an unpowered (passive) DOF,

(ii) gait repeatability (symmetry), which is related to regular gait

only

(iii) regular interchangeability of single- and double-support phases”

Vukobratovic & Borovac: Zero-moment point—Thirty five years of its life. Interna-
tional Journal of Humanoid Robotics 1, 157-173, 2004. http://www.cs.cmu.
edu/˜cga/legs/vukobratovic.pdf

12:8

Zero Moment Point

12:9

Zero Moment Point

• “ZMP is defined as that point on the ground at which the net mo-

ment of the inertial forces and the gravity forces has no compo-

nent along the horizontal axes.” (Vukobratovic & Borovac, 2004)

• fi = force vector acting on body i (gravity plus external)

wi = angular vel vector of body i

Ii = interia tensor (∈ R
3×3) of body i

ri = pi − pZMP = relative position of body i to ZMP

• Definition: pZMP is the point on the ground for which
∑

i ri × fi + Iiẇi + wi × Iiwi
!
= (0, 0, *)⊤

See also: Popovic, Goswami & Herr: Ground Reference Points in Legged Loco-
motion: Definitions, Biological Trajectories and Control Implications. International
Journal of Robotics Research 24(12), 2005. http://www.cs.cmu.edu/˜cga/
legs/Popovic_Goswami_Herr_IJRR_Dec_2005.pdf
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Zero Moment Point

• If the ZMP is outside the support polygon → foot rolls over the

edge

(presumes foot is a rigid body, and non-compliant control)

• Locomotion is dynamically stable if the ZMP remains within the

foot-print polygons.

(↔ the support can always apply some momentum, if neces-

sary)

• Computing the ZMP in practise:

– either exact robot model

– or foot pressure sensors

12:11

Zero Moment Point – example

• combine ZMP with 3D linear inverted pendulum model and model-

predictive control

HRP-2 stair climbing

Kajita et al.: Biped Walking Pattern Generation by using Preview Control of Zero-
Moment Point. ICRA 2003. http://eref.uqu.edu.sa/files/eref2/folder1/
biped_walking_pattern_generation_by_usin_53925.pdf

12:12

ZMP Summary

• ZMP is the “rescue” for conventional methods:

– ZMP-stability→ the robot can be controlled as if foot is “glued”

(virtually) to the ground!

– The whole body behaves like a “conventional arm”

– Can accellerate q̈ any DoF→ conventional dynamic control

fully actuated system

• Limitations:

– Humans don’t use ZMP stability, we allow our feet to roll

(toe-off, heel-strike: ZMP at edge of support polygon)

– Can’t describe robots with point feet (walking on stilts)

http://www.cs.cmu.edu/~cga/legs/vukobratovic.pdf
http://www.cs.cmu.edu/~cga/legs/vukobratovic.pdf
http://www.cs.cmu.edu/~cga/legs/Popovic_Goswami_Herr_IJRR_Dec_2005.pdf
http://www.cs.cmu.edu/~cga/legs/Popovic_Goswami_Herr_IJRR_Dec_2005.pdf
http://eref.uqu.edu.sa/files/eref2/folder1/biped_walking_pattern_generation_by_usin_53925.pdf
http://eref.uqu.edu.sa/files/eref2/folder1/biped_walking_pattern_generation_by_usin_53925.pdf
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12:13

Models of human bipedal locomotion

The following illustrations are from:

McMahon: Mechanics of Locomotion. IJRR 3:4-28, 1984
http://www.cs.cmu.edu/˜cga/legs/mcmahon1.pdf

http://www.cs.cmu.edu/˜cga/legs/mcmahon2.pdf
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Walking research from Marey 1874:

12:15

Six determinants of gait

following Saunders, Inman & Eberhart (1953)

1. Compass Gait:

2. Pelvic Rotation:

3. Pelvic Tilt:

4. Stance Knee Flexion:

5. Stance Ankle Flextion:

6. Pelvis Lateral Displacement:

12:16

Models of human bipedal locomotion

• Human model with 23 DoFs, 54 muscles

– Compare human walking data with model

– Model: optimize energy-per-distance

– Energy estimated based on metabolism and muscle heat rate

models

http://www.cs.cmu.edu/~cga/legs/mcmahon1.pdf
http://www.cs.cmu.edu/~cga/legs/mcmahon2.pdf


Introduction to Robotics, Marc Toussaint—February 4, 2014 67

Anderson & Pandy: Dynamic Optimization of Human Walking. Journal of Biome-
chanical Engineering 123:381-390, 2001. http://e.guigon.free.fr/rsc/

article/AndersonPandy01.pdf

Anderson & Pandy: Static and dynamic optimization solutions for gait are prac-
tically equivalent. Journal of Biomechanics 34 (2001) 153-161. http://www.

bme.utexas.edu/faculty/pandy/StaticOptWalking2001.pdf
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Models of human bipedal locomotion

• Suggest different principles of human motion:

– passive dynamics (Compass Gait) ↔ underactuated system

– modulation of basic passive dynamics

– Energy minimization

12:18

Passive dynamic walking: Compass Gait

• Basic 2D planar model of the Compass Gait:

The pose is described by q = (θs, θns), the state by (q, q̇)

Goswami, Thuilot & Espiau: A study of the passive gait of a compass-like biped
robot: symmetry and chaos. International Journal of Robotics Research 17, 1998.

http://www.ambarish.com/paper/COMPASS_IJRR_Goswami.pdf

12:19

Passive dynamic walking: Compass Gait

• Swing phase has analytic equations of motions

M(q)q̈ + C(q, q̇)q̇ +G(q) = 0

but can’t be solved analytically...

• Phase space plot of numeric solution:

12:20

Passive walker examples

compass gait simulation

controlled on a circle

passive walker

• Minimally actuated: Minimal Control on rough terrain

12:21

Impact Models in the Compass Gait

• Switch between two consecutive swing phases: depends on

slope!

• Typical assumptions made in simulation models:

– The contact of the swing leg with the ground results in no rebound and

no slipping of the swing leg.

– At the moment of impact, the stance leg lifts from the ground without

interaction.

– The impact is instantaneous.

– The external forces during the impact can be represented by impulses.

– The impulsive forces may result in an instantaneous change in the

velocities, but there is no instantaneous change in the configuration.

– The actuators cannot generate impulses and, hence, can be ignored

during impact.

Westervelt, Grizzle & Koditschek: Hybrid Zero Dynamics of Planar Biped Walkers.
IEEE Trans. on Automatic Control 48(1), 2003.

http://repository.upenn.edu/cgi/viewcontent.cgi?article=1124&context=

ese_papers
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Implausibility of the stiff Compass Gait leg

Geyer, Seyfarth & Blickhan: Compliant leg behaviour explains basic dynamics of
walking and running. Proc. Roy. Soc. Lond. B, 273(1603): 2861-2867, 2006.
http://www.cs.cmu.edu/˜cga/legs/GeyerEA06RoySocBiolSci.pdf
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Learning to walk in 20 Minutes

• Policy Gradient method (Reinforcement Learning)

Stationary policy parameterized as linear in features u =
∑

i wiφi(q,

• Problem: find parameters wi to minimize expected costs

cost = mimick (q, q̇) of the passive down-hill walker at “certain

point in cycle”

http://e.guigon.free.fr/rsc/article/AndersonPandy01.pdf
http://e.guigon.free.fr/rsc/article/AndersonPandy01.pdf
http://www.bme.utexas.edu/faculty/pandy/StaticOptWalking2001.pdf
http://www.bme.utexas.edu/faculty/pandy/StaticOptWalking2001.pdf
http://www.ambarish.com/paper/COMPASS_IJRR_Goswami.pdf
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1124&context=ese_papers
http://repository.upenn.edu/cgi/viewcontent.cgi?article=1124&context=ese_papers
http://www.cs.cmu.edu/~cga/legs/GeyerEA06RoySocBiolSci.pdf
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Learning To Walk

Tedrake, Zhang & Seung: Stochastic policy gradient reinforcement learning on a
simple 3D biped. IROS, 2849-2854, 2004. http://groups.csail.mit.edu/
robotics-center/public_papers/Tedrake04a.pdf
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Summary

• ZMP type walking was successful (ASIMO, HRP-2, etc), but lim-

ited

• Future types of walking:

– Exploit passive dynamics, cope with underactuation

– Follow some general optimiality principle (but real-time!)

– Learn (esp. Reinforcement Learning)

– Compliant hardware! (controllable elasticity & damping)

• Recommended reading: Tedrake: Underactuated Robotics: Learn-

ing, Planning, and Control for Effcient and Agile Machines. Course

Notes for MIT 6.832

www.cs.berkeley.edu/˜pabbeel/cs287-fa09/readings/Tedrake-Aug09.

pdf

12:25

Finally, multi-legged locomotion

12:26

Finally, multi-legged locomotion

http://www.bostondynamics.com/robot_rise.html

12:27

http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf
http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf
www.cs.berkeley.edu/~pabbeel/cs287-fa09/readings/Tedrake-Aug09.pdf
www.cs.berkeley.edu/~pabbeel/cs287-fa09/readings/Tedrake-Aug09.pdf
http://www.bostondynamics.com/robot_rise.html


Introduction to Robotics, Marc Toussaint—February 4, 2014 69

13 Exercises

13.1 Exercise 1

13.1.1 Geometry

Read the notes on basic 3D geometry at http://ipvs.

informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf

at least until section 2. We will recap this briefly also in

the lecture. Prepare questions for the exercises if you

have any.

a) You have a book (coordinate frame B) lying on the

table (world frame W ). You move the book 1 unit to the

right, then rotate it by 45◦ counter-clock-wise. Given

a dot p marked on the book at position pB = (1, 1) in

the book coordinate frame, what are the coordinates

pW of that dot with respect to the world frame? Given

a point x with coordinates xW = (0, 1) in world frame,

what are its coordinates xB in the book frame? What is

the coordinate transformation from world frame to book

frame, and from book frame to world frame?

13.1.2 Vector derivatives

Let x ∈ R
n, y ∈ R

d, f, g : Rn → R
d, A ∈ R

d×n, C ∈

R
d×d.

a) What is ∂
∂xx ?

b) What is ∂
∂x [x

⊤x] ?

c) What is ∂
∂x [f(x)

⊤f(x)] ?

d) What is ∂
∂x [f(x)

⊤Cg(x)] ?

e) Let B and C be symmetric (and pos.def.). What is

the minimum of (Ax− y)⊤C(Ax− y) + x⊤Bx ?

13.1.3 Simulation software

Future exercises will require to code some examples

in C/C++. Test if you can compile and run the lib that

accompanies this lecture. Report on problems with in-

stallation.

On Ubuntu:

• install the packages

liblapack-dev freeglut3-dev libqhull-dev libf2c2-dev

libann-dev gnuplot doxygen

• get the code from

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/

source-code/libRoboticsCourse.13.tgz

• tar xvzf libRoboticsCourse.13.tgz

cd share/examples/Ors/ors

make

./x.exe

13.2 Exercise 2

13.2.1 Task spaces and Jacobians

In the lecture we introduced the basic kinematic maps

φpos
eff,v(q) and φvec

eff,v(q), and their Jacobians, Jpos
eff,v(q) and

Jvec
eff,v(q). In the following you may assume that we know

how to compute these for any q. The problem is to

express other kinematic maps and their Jacobians in

terms of these knowns.

a) Assume you would like to control the pointing direc-

tion of the robot’s head (e.g., its eyes) to point to an

external world point xW . What task map can you de-

fine to achieve this? What is the Jacobian?

b) You would like the two hands or the robot to become

parallel (e.g. for clapping). What task map can you de-

fine to achieve this? What is the Jacobian?

c) You would like to control a standard endeffector po-

sition peff to be at y∗, as usual. Can you define a 1-

dimensional task map φ : R
n → R to achieve this?

What is its Jacobian?

13.2.2 IK in the simulator

Download the simulator code from http://userpage.fu-berlin.

de/˜mtoussai/source-code/libRoboticsCourse.13.tgz. (See last

exercise for instructions.) The header <src/Ors/roboticsCourse.h>

provides a very simple interface to the simulator—we

will use only this header and some generic matrix func-

tionalities.

Consider the example in teaching/RoboticsCourse/01-kinematics

(rename main.problem.cpp to main.cpp). The goal

is to reach the coordinates y∗ = (−0.2,−0.4, 1.1) with

the right hand of the robot. Assume W = I and σ = .01.

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/source-code/libRoboticsCourse.13.tgz
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/source-code/libRoboticsCourse.13.tgz
http://userpage.fu-berlin.de/~mtoussai/source-code/libRoboticsCourse.13.tgz
http://userpage.fu-berlin.de/~mtoussai/source-code/libRoboticsCourse.13.tgz
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a) The example solution generates a motion in one step

using inverse kinematics δq = J♯ δy with J♯ = (J⊤J +

σ2W )-1J⊤. Record the task error, that is, the deviation

of hand position from y∗ after the step. Why is it larger

than expected?

b) Try to do 100 smaller steps δq = αJ♯ δy with α = .1

(each step starting with the outcome of the previous

step). How does the task error evolve over time?

c) Generate a nice trajectory composed of T = 100 time

steps. Interpolate the target linearly ŷ ← y0+(t/T )(y∗−

y0) in each time step.

d) Generate a trajectory that moves the right hand in

a circle centered at (−0.2,−0.4, 1.1), aligned with the

xz-plane, with radius 0.2.

13.3 Exercise 3

In the tutorial we will first discuss again the last week’s

2nd exercise.

13.3.1 Motion profiles

Construct a motion profile that accelerates constantly

in the first quarter of the trajectory, then moves with

constant velocity, then decelerates constantly in the last

quarter. Write down the equation MP : [0, 1] 7→ [0, 1].

13.3.2 Multiple task variables & Peg in a Hole

In our libRoboticsCourse.12.tgz in teaching/RoboticsCourse/02-pegInAHole

you find an example problem (rename main.problem.cpp

to main.cpp), where the goal is to stick the green peg

into the blue “hole”.

The initial implementation fails: it does not find an ap-

propriate path to insert the peg from the top; and it

does not use kinematicsVec(y,"peg") with target

ARR(0,0,-1) to force the peg to point down.

Implement a nice peg-in-a-hole movement. You may

devide the whole movement in several sections and use

task space or joint space interpolations with a smooth

motion profiles within each. The motion should reach

the final position with very high accuracy in finite time

and without collisions.

Bonus: How can we apply joint space interpolation?

How could one avoid zero velocities at the junction of

sections?

13.4 Exercise 4

13.4.1 The Dijkstra algorithm

Write a proper pseudo code for the Dijkstra algorithm

on a general undirected graph G = (V,E). A graph is

defined by the set V of nodes and the set E of edges;

each edge e ∈ E is a tuple e = (v1, v2) of nodes.1 De-

termine the computational complexity of the algorithm.

13.4.2 RRTs for path finding

In our libRoboticsCourse.12.tgz in teaching/RoboticsCourse/04-rrt

you find an example problem (rename main.problem.cpp

to main.cpp).

a) The code demonstrates an RRT exploration and dis-

plays the explored endeffector positions. What is the

endeffector’s exploration distribution in the limit n →

∞? Specify such a distribution analytically for a planar

2 link arm.

b) First grow an RRT backward target configuration q∗ =

(0.945499, 0.431195,−1.97155, 0.623969, 2.22355,−0.665206,

−1.48356) that we computed in the last exercises. Stop

when there exists a node close (<stepSize) to the

q = 0 configuration. Read out the collision free path

from the tree and display it. Why would it be more diffi-

cult to grow the tree forward from q = 0 to q∗?

c) Find a collision free path using bi-directional RRTs

(that is, 2 RRTs growing together). Use q∗ to root the

backward tree and q = 0 to root the forward tree. Stop

when a newly added node is close to the other tree.

Read out the collision free path from the tree and dis-

play it.

d) (Bonus) Think of a method to make the found path

smoother (while keeping it collision free). You’re free

to try anything. Implement the method and display the

smooth trajectory.

1Ideally, use the LaTeX package algpseudocode to

write the pseudo code (see http://en.wikibooks.org/

wiki/LaTeX/Algorithms#Typesetting_using_the_

algorithmicx_package )

http://en.wikibooks.org/wiki/LaTeX/Algorithms##Typesetting_using_the_algorithmicx_package
http://en.wikibooks.org/wiki/LaTeX/Algorithms##Typesetting_using_the_algorithmicx_package
http://en.wikibooks.org/wiki/LaTeX/Algorithms##Typesetting_using_the_algorithmicx_package
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e) (Bonus) Follow the smooth trajectory using a sinus

motion profile using kinematic control.

13.5 Exercise 5

In the lecture we discussed PD force control on a 1D

point mass, which leads to oscillatory behavior for high

Kp and damped behavior for high Kd (slide 05:13). Slide

05:14 replaces the parameters Kp,Kd by two other,

more intuitive parameters, λ and ξ: λ roughly denotes

the time (or time steps) until the goal is reached, and

ξ whether it is reached agressively (ξ > 1, which over-

shoots a bit) or by exponential decay (ξ ≤ 1). Use this

to solve the following exercise.

13.5.1 PD force control on a 1D mass point

a) Implement the system equation for a 1D point mass

with mass m = 3.456. That is, implement the Euler in-

tergration of the system dynamics that computes xt+1

given xt and ut in each iteration. (No need for the

robot simulator—implement it directly.) Assume a step

time of τ = 0.01sec. Generate a trajectory from the

start position q0 = 0 that approaches the goal position

q∗ = 1 with high precision within about 1 second us-

ing PD force control. Find 3 different parameter sets for

Kp and Kd to get oscillatory, overdamped and critical

damped behaviors. Plot the point trajectory (e.g. using

the routine gnuplot(arr& q); MT::wait(); .)

b) Repeat for time horizon t = 2sec and t = 5sec. How

should the values of Kp and Kd change when we have

more time?

c) Implement a PID controller (including the integral (sta-

tionary error) term). How does the solution behave with

only Ki turned on (Kp = Kd = 0); how with Ki and Kd

non-zero?

13.5.2 A distance measure in phase space for

kinodynamic RRTs

Consider the 1D point mass with mass m = 1 state

x = (q, q̇). The 2D space of (q, q̇) combining position

and velocity is also called phase space.

Draft an RRT algorithm for rapidly exploring the phase

space of the point mass. Provide explicit descriptions

of the subroutines needed in lines 4-6 of the algorithm

on slide 03:58. (No need to implement it.)

Consider a current state x0 = (0, 1) (at position 0 with

velocity 1). Pick any random phase state xtarget ∈ R
2.

How would you connect x0 with xtarget in a way that ful-

fils the differential constraints of the point mass dynam-

ics? Given this trajectory connecting x0 with xtarget, how

would you quantify/meassure the distance? (If you de-

fined the connecting trajectory appropriately, you should

be able to give an analytic expression for this distance.)

Given a set (tree) of states x1:n and you pick the clos-

est to xtarget, how would you “grow” the tree from this

closest point towards xtarget?

13.6 Exercise 6

13.6.1 Direct PD control to hold an arm steady

In our code, in 03-dynamics you find an example (re-

name main.problem.cpp to main.cpp). Please change

../02-pegInAHole/pegInAHole.ors to pegArm.ors.

You will find an arm with three joints that is swinging

freely under gravity.

a) Apply direct PD control (without using M and F ) to

each joint separately and try to find parameters Kp and

Kd (potentially different for each joint) to hold the arm

steady, i.e., q∗ = 0 and q̇∗ = 0. If you are successful,

try the same for the arm in pegArm2.ors.

b) (Bonus) Try to use a PID controller that also includes

the integral error

u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇) +Ki

∫ t

s=0

(q∗ − q(s)) ds .

13.6.2 PD acceleration control to hold an arm

steady

As above, try to hold the arm steady at q∗ = 0 and

q̇∗ = 0. But now use the knowledge of M and F in

each time step. For this, decide on a desired wave-

length λ and damping behavior ξ and compute the re-

spective Kp and Kd (assuming m = 1), the same for

each joint. Use the PD equation to determine desired

accelerations q̈∗ (slide 05:31) and use inverse dynam-

ics to determine the necessary u.

Try this for both, pegArm.ors and pegArm2.ors.
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13.6.3 The dynamic peg-in-a-hole problem

In the exercise 3 you generated nice collision-free tra-

jectories for peg-in-a-hole using inverse kinematics.

a) Follow these reference trajectories using PD accel-

eration control (slide 05:31) and thereby solve the peg-

in-a-hole problem with a noisy dynamic system.

b) Increase noise into the dynamic system (change to

setDynamicSimulationNoise(2.);). Record the

trajectory of the 3rd joint (q(2)) and plot it. Tune the

PD parameters to get an oscillatory behavior.

13.7 Exercise 7

13.7.1 Particle Filtering the location of a car

Start from the code in RoboticsCourse/05-car.

The CarSimulator simulates a car exactly as described

on slide 03:48 (using Euler integration with step size

1sec). At each time step a control signal u = (v, φ)

moves the car a bit and Gaussian noise with standard

deviation σdynamics = .03 is added to x, y and θ. Then, in

each step, the car meassures the relative positions to

some landmars, resulting in an observation yt ∈ R
m×2;

these observations are Gaussian-noisy with standard

deviation σobservation = .5. In the current implementation

the control signal ut = (.1, .2) is fixed (roughly driving

circles).

a) Odometry (dead reckoning): First write a particle fil-

ter (with N = 100 particles) that ignores the observa-

tions. For this you need to use the cars system dy-

namics (described on 03:48) to propagate each parti-

cle, and add some noise σdynamics to each particle (step

3 on slide 07:23). Draw the particles (their x, y com-

ponent) into the display. Expected is that the particle

cloud becomes larger and larger.

b) Next implement the likelihood weights wi ∝ P (yt|x
i
t) =

N(yt|y(x
i
t), σ) ∝ e−

1
2
(yt−y(x

i
t))

2/σ2

where y(xit) is the

(ideal) observation the car would have if it were in the

particle possition xit. Since
∑

i wi = 1, normalize the

weights after this computation.

c) Test the full particle filter including the likelihood weights

(step 4) and resampling (step 2). Test using a larger

(10σobservation) and smaller (σobservation/10) variance in the

computation of the likelihood.

13.7.2 Gaussians

On slide 06:11 there is the definition of a multivariate

(n-dim) Gaussian distribution. Proof the following using

only the definition. (You may ignore terms independent

of x.)

a) Proof that:

N(x|a,A) = N(a|x,A)

N(x | a,A) = |F | N(Fx |Fa, FAF⊤)

N(Fx+ f | a,A) = 1
|F | N(x | F -1(a− f), F -1AF -⊤)

b) Prove:

N(x | a,A) N(x | b, B) ∝ N
(
x
∣
∣ (A-1 + B-1)-1[A-1a +

B-1b] , (A-1 +B-1)-1
)

c) Prove:

∫

y
N(x | a + Fy,A) N(y | b, B) dy = N(x | a + Fb,A +

FBF⊤)

13.8 Exercise 8

13.8.1 Kalman filter

We consider the same car example as for the last exer-

cise, but track the car using a Kalman filter.

a) To apply a Kalman filter (slide 07:28) we need Gaus-

sian models for P (xt |xt-1, ut-1) as well as P (yt|xt). We

assume that the dynamics model is given as a local

Gaussian of the form

P (xt+1 |xt, ut) = N(xt+1|xt +B(xt)ut, σdynamics)

where the matrix B(xt) gives the local linearization of

the car dynamics (slide 05:27). What is B(xt) (the Ja-

cobian of the state change w.r.t. u) for the car dynam-

ics?

b) Concerning the observation likelihood P (yt|xt) we

assume

P (yt|xt, θ1:N ) = N(yt |C(xt)xt + c(xt), σobservation)

What is the matrix C(xt) (the Jacobian of the landmark

positions w.r.t. the car state) in our example?

c) Start with the code in RoboticsCourse/06-kalmanSLAM.
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Write a Kalman filter to track the car. You can use the

routine getObservationJacobianAtState to access

C(xt) = ∂y
∂x . Note that c(xt) = ŷt − C(xt)xt, where ŷt

is the mean observation in state xt (there is another

routine for this).

13.8.2 Kalman SLAM

Slide 07:38 outlines how to use a high-dimensional Kalman

filter to simultaneously estimate the robot position (lo-

calization) and the landmarks position (mapping).

a) Concerning P (yt|xt, θ1:N ) we assume

P (yt|xt, θ1:N ) = N(yt |D(xt)θ + d(xt), σobservation)

where D(xt) =
∂y
∂θ is the observation Jacobian w.r.t. the

unknown landmarks, and θ ∈ R
2N is the same as θ1:N

written as a 2N -dim vector.

Write a pseudo-code for Kalman SLAM. (There is much

freedom in how to organize the code, choices of nota-

tion and variables, etc. Try to write is as concise as

possible.)

b) Try to implement Kalman SLAM, which tracks the car

simultaneous to the landmarks. You should now access

the routines getMeanObservationAtStateAndLandmarks

and getObservationJacobianAtStateAndLandmarks

to retrieve the mean observation and the necessary Ja-

cobians given the current mean estimate θ of the land-

marks.

13.9 Exercise 9

13.9.1 Aggressive quadcopter maneuvers

In the article D. Mellinger, N. Michael and V. Kumar

(2010): Trajectory generation and control for precise

aggressive maneuvers with quadrotors www.seas.upenn.

edu/˜dmel/mellingerISER2010.pdf the methods used for ag-

gressive quadcopter maneuvers are described (see also

the videos at http://www.youtube.com/watch?v=geqip_0Vjec).

Read the essential parts of the paper to be able to ex-

plain how the quadcopter is controlled. (Neglect the

part on parameter adaptation.)

13.9.2 Cart pole swing-up

x

u

θ

The cart pole (as described, e.g., in the Sutton-Barto

book) is a standard benchmark to test stable control

strategies. We will assume the model known.

The state of the cart-pole is given by x = (x, ẋ, θ, θ̇),

with x ∈ R the position of the cart, θ ∈ R the pendulums

angular deviation from the upright position and ẋ, θ̇ their

respective temporal derivatives. The only control signal

u ∈ R is the force applied on the cart. The analytic

model of the cart pole is

θ̈ =
g sin(θ) + cos(θ)

[

−c1u− c2θ̇
2 sin(θ)

]

4
3 l − c2 cos2(θ)

(2)

ẍ = c1u+ c2

[

θ̇2 sin(θ)− θ̈ cos(θ)
]

(3)

with g = 9.8ms2 the gravitational constant, l = 1m the

pendulum length and constants c1 = (Mp +Mc)
−1 and

c2 = lMp(Mp + Mc)
−1 where Mp = Mc = 1kg are the

pendulum and cart masses respectively.

a) Implement the system dynamics using the Euler in-

tegration with a time step of ∆ = 1/60s. Test the imple-

mentation by initializing the pole almost upright (θ = .1)

and watching the dynamics. To display the system,

start from the code in course/07-cartPole. The

state of the cart pole can be displayed using OpenGL

with the state.gl.update() function.

b) Design a controller that stabilizes the pole in upright

position and the cart in the zero position – any heuristic

is allowed (we will use Ricatti methods later). You may

want to assume that the range of θ and θ̇ are limited to

some small interval around zero (theoretically the im-

plication is that the local linearization of the system is a

good approximation). Your controller then needs to en-

sure that the system does not escape such an interval.

(It would be rather hard to design a general controller

that can handle any initial state and return the system

stably to the target state.)

Test your controller on two problems:

– When the dynamics are deterministic (as above) but

the initial position is perturbed by θ = .1.

– When additionally the dynamics are stochastic (add

Gaussian noise with standard deviation σ = .01 to the

www.seas.upenn.edu/~dmel/mellingerISER2010.pdf
www.seas.upenn.edu/~dmel/mellingerISER2010.pdf
http://www.youtube.com/watch?v=geqip_0Vjec
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system state in each Euler integration step).

13.10 Exercise 10

13.10.1 Read the other exercise

On the webpage there is a 2nd exercise sheet e10-

riccati. Please read this carefully. You don’t need to

do the exercise – the Octave solution was anyway in

07-cartPole/cartPole.m. But you need to under-

stand what’s happening – we will do exactly the same

for the Racer below.

13.10.2 Balance the Racer

Download the new libRoboticsCourse.13.tgz from

the webpage. This now includes a folder 09-racer,

which simulates the racer using Runge Kutta. Note that

q = (x, θ). Currently it applies a control signal u = 0.

Design a controller π : (q, q̇) 7→ u that balances the

robot.

13.10.3 Use the local linearization and Alge-

braic Riccati equation

The code implements a routine getDynamics that, for

the current state (q, q̇), computes the local linear dy-

namics

Mq̈ + F = Bu

Use this to apply the Algebraic Riccati equation, as in

the exercise e10-riccati, to compute a linear regulator

using Octave. Test robustness w.r.t. system noise, that

is, increasing dynamicsNoise.

13.11 Exercise 10

13.11.1 Local linearization and Algebraic Ric-

cati equation

The state of the cart-pole is given by x = (p, ṗ, θ, θ̇),

with p ∈ R the position of the cart, θ ∈ R the pendulums

angular deviation from the upright position and ṗ, θ̇ their

respective temporal derivatives. The only control signal

u ∈ R is the force applied on the cart. The analytic

model of the cart pole is

θ̈ =
g sin(θ) + cos(θ)

[

−c1u− c2θ̇
2 sin(θ)

]

4
3 l − c2 cos2(θ)

(4)

p̈ = c1u+ c2

[

θ̇2 sin(θ)− θ̈ cos(θ)
]

(5)

with g = 9.8ms2 the gravitational constant, l = 1m the

pendulum length and constants c1 = (Mp +Mc)
−1 and

c2 = lMp(Mp + Mc)
−1 where Mp = Mc = 1kg are the

pendulum and cart masses respectively.

a) Derive the local linearization of these dynamics around

x∗ = (0, 0, 0, 0). The eventual dynamics should be in

the form

ẋ = Ax+Bu

Note that

A =




0 1 0 0
∂p̈
∂p

∂p̈
∂ṗ

∂p̈
∂θ

∂p̈

∂θ̇

0 0 0 1
∂θ̈
∂p

∂θ̈
∂ṗ

∂θ̈
∂θ

∂θ̈
∂θ̇




, B =




0
∂p̈
∂u

0
∂θ̈
∂u




where all partial derivatives are taken at the point p =

ṗ = θ = θ̇ = 0.

The solution (to continue with the other parts) is

A =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 g
4
3
l−c2

0




, B =




0

c1
0

−c1
4
3
l−c2




b) We assume a stationary infinite-horizon cost function

of the form

Jπ =

∫ ∞

0

c(x(t), u(t)) dt

c(x, u) = x⊤Qx+ u⊤Ru

Q = diag(c, 0, 1, 0) , R = I .

That is, we penalize position offset c||p||2 and pole angle

offset ||θ||2. Choose c = ̺ = 1 to start with.

Solve the Algebraic Riccati equation

0 = A⊤P + P⊤A− PBR-1B⊤P +Q

by initializing P = Q and iterating using the following

iteration:

Pk+1 = Pk + ǫ[A⊤Pk + P⊤
kA− PkBR-1B⊤Pk +Q]



Introduction to Robotics, Marc Toussaint—February 4, 2014 75

Choose ǫ = 1/1000 and iterate until convergence. Out-

put the gains K = −R-1B⊤P . (Why should this iteration

converge to the solution of the ARE?)

c) Solve the same Algebraic Riccati equation by calling

the are routine of the octave control package (or a sim-

ilar method in Matlab). For Octave, install the Ubuntu

packages octave3.2, octave-control, and qtoctave,

perhaps use pkg load control and help are in

octave to ensure everything is installed, use P=are(A,B*inverse(R)*B’,Q)

to solve the ARE. Output K = −R-1B⊤P and compare

to b).

(I found the solution K = (1.00000, 2.58375, 52.36463, 15.25927.)

d) Implement the optimal Linear Quadratic Regulator

u∗ = −R-1B⊤Px on the cart pole. Increase ̺ (e.g. to

100) and observe how the control strategy changes.

13.12 Exercise 11

13.12.1 Kalman filtering

I collected new data from the racer’s IMU, with higher

frame rate. To collect this data I fixed the wheels (mo-

tors don’t turn, the motors’ encoder is constantly zero)

and moved the racer by hand back and forth from lying

on the ground to approximately balancing.

Please find the data files 01-imu.dat, 02-imu.dat,

01-times.dat, 02-times.dat on the course page.

01 and 02 refer to two different trials—start with 02.

The imu files contain the 4D IMU signal (the 4th entry

is constantly zero: the motor encoders). The times

files contain the real time in seconds that correspond

to these readings (you will need these to determine the

time interval τ between two steps).

Also, find on the webpage the two files racer.h and

racer.cpp, which implement an updated model of the

racer.

Implement a Kalman filter to estimate the state trajec-

tory q(t) from this data. For this,

• Initialize the state of the Racermodel with R.q(1)=MT_PI/2.;

(lying down)

• Assume the following simplified dynamic model:

A = I4 + τ



0 I2

0 0


 , a = 0 , Q = diag(10−6, 10−6, 1, 1)

(6)

This dynamics ẋ = Ax+ a, with x = (q, q̇) simply

says that the velocities are “copied” with high pre-

cision to the next time slice, but the accelerations

in the next time slice are N(0, 1) distributed (very

uncertain). Clearly this is a rough approximation

– but fully sufficient for the current scenario.

• In the Kalman filter loop step as follows:

– Retrieve the observation model (C, c,W ) for the

current Racer state using Racer::getObservation.

Also retrieve ypred here: the predicted sensor read-

ings.

– Use the true sensor readings (from the data file)

and the dynamics and observation model for a

Kalman step. Compute τ from the data files.

– Set the state of the Racer model to the Kalman

estimate using R.q = ... and R.q_dot = ...,

and display the state using R.gl.update()

– Output the Kalman’s mean estimate x, the pre-

dicted ypred, and the true sensor readings ytrue in

one line of a file

• Plot all curves of the output file. In particular,

compare the predicted sensor outputs ypred with

the true ones ytrue. Do they match?

13.12.2 Identification of the sensor model

Now that we have an estimated underlying state tra-

jectory q(t), q̇(t), we can learn an even better sensor

model. Usually this means to learn a mapping from the

dynamic state to the sensor readings:

x(t) 7→ y(t)

However, we exploit that we already have a sensor model

implemented, with hand-tuned parameters, and want to

learn a model that improves upon this (or corrects this).

Therefore we learn a mapping

(x, ypred) 7→ ytrue

where ypred is the output of the implemented sensor

model.

We take the output data file of the previous exercise as

the basis to learn this mapping.

Use multivariate linear regression, to compute such a

linear map. See http://ipvs.informatik.uni-stuttgart.

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-MachineLearning/02-regression.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-MachineLearning/02-regression.pdf


76 Introduction to Robotics, Marc Toussaint—February 4, 2014

de/mlr/marc/teaching/13-MachineLearning/02-regression.

pdf if you need details. Use

β̂ridge = (X⊤X + λI)-1X⊤y

where y is a matrix, containing the multivariate output

in each row; X is a matrix containing the multivariate

input (and an appended 1) in each row, and λ ≈ 10−4

is some small number.

a) What is the mean squared error of (ypred−ytrue)
2 (not

using the learned mapping)

b) What is the mean squared error of (f(x, ypred)−ytrue)
2

using the learned linear map f

c) (Bonus) Can you weave in this learned mapping into

the Kalman filter of the first exercise?

13.13 Exercise 12

13.13.1 Controllability

Consider the local linearization of the cart-pole,

ẋ = Ax+Bu , A =




0 1 0 0

0 0 0 0

0 0 0 1

0 0 g
4
3
l−c2

0




, B =




0

c1
0

−c1
4
3
l−c2




Is the system controllable?

13.13.2 Stable control for the cart-pole

Consider a linear controller u = w⊤x with 4 parameters

w ∈ R
4 for the cart-pole.

a) What is the closed-loop linear dynamics ẋ = Âx of

the system?

b) Test if the controller with w = (1.00000, 2.58375, 52.36463, 15.25927)

(computed using ARE) is asymtotically stable. What

are the eigenvalues?

c) Come up with a method that finds parameters w

such that the closed-loop system is “maximally stable”

around x∗ = (0, 0, 0, 0) (e.g., asymptotically stable with

fastest convergence rate).

Output the optimal parameters and test them on the

cart-pole simulation you developed in exercise 9 (in course/07-cartPole).

13.13.3 Lyapunov stability

Recall that a general controlled dynamic system can be

described with the Euler-Lagrange equation as

Bu
︸︷︷︸

control

=
d

dt

∂L

∂q̇
−

∂L

∂q
= M

︸︷︷︸

inertia

q̈ + Ṁ q̇ −
∂T

∂q
︸ ︷︷ ︸

Coriolis

+
∂U

∂q
︸︷︷︸

gravity

Consider a dynamic without Coriolis forces and con-

stant M (independent of a and q̇).

Can you give sufficient conditions on U(q) (potential en-

ergy) and u(q) (control policy) such that energy is a Lya-

punov function?

13.14 Exercise 13

On Wed. 29th we meet as usual for the exercise.

On Tue. 28th, 14:00 my office, interested students are

invited to try whatever they like on the racer hardware,

play around, etc.

13.14.1 Policy Search for the Racer

We consider again the simulation of the racer as given

in 09-racer in your code repo.

In this exercise the goal is to find a policy

π : φ(y) 7→ u = φ(u)⊤w

that maps some features of the (history of the) direct

sensor signals y to the control policy.

Use black-box optimization to find parameters w that

robustly balance the racer.

Some notes:

• Features: In the lecture I suggested that a range

of interesting features is:

(

yt, ẏt, 〈y〉0.5 , 〈ẏ〉0.5 , 〈y〉0.9 , 〈ẏ〉0.9 , ut, ut−1

)

However, I noticed that a balancing policy can

also be found for the direct sensor signals only,

that is:

φ(y) = (1, y) ∈ R
5

(the augmentation by 1 is definitly necessary).

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-MachineLearning/02-regression.pdf
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-MachineLearning/02-regression.pdf
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• Cost function: Realistically, the running costs ct

would have to be defined on the sensor signals

only. (On the real robot we don’t know the real

state – if the robot is to reward itself it needs to

rely on sensor signals only.) I tried

costs += .1*MT::sqr(y(3)) + 1.*MT::sqr(y(2));

which combines the wheel encoder y(3) and the

gyroscope reading y(2). That worked mediocre.

For a start, cheat and directly use the state of the

simulator to compute costs:

costs += 1.*MT::sqr(R.q(0)) + 10.*MT::sqr(R.q(1));

• Episodes and duration costs: To compute the

cost for a given w you need to simulate the racer

for a couple of time steps. For the optimization

it is really bad if an episode is so long that it in-

cludes a complete failure and wrapping around

of the inverted pendulum. Therefore, abort an

episode if fabs(R.q(1)) too large and penal-

ize an abortion with an extra cost, e.g., propor-

tional to T−t. Try different episode horizons T up

to 500; maybe increase this horizon stage-wise.

• Optimizer: You are free to use any optimizer you

like. On the webpage you find a reference imple-

mentation of CMA by Niko Hansen (with wrap-

per using our arr), which you may use. In that

case, add cmaes.o and search_CMA.o in the

Makefile. The typical loop for optimization is
SearchCMA cma;

cma.init(5, -1, -1, -0.1, 0.1);

arr samples, values;

uint T=500;

for(uint t=0;t<1000;t++){

cma.step(samples, values);

for(uint i=0;i<samples.d0;i++) values(i) = evaluateControlParameters(samples[i], T);

uint i=values.minIndex();

cout <<t <<’ ’ <<values(i) <<’ ’ <<samples[i] <<endl;

}

13.15 Exercise 12 – SKIPPED THIS TERM

13.15.1 Balancing a pin in a hole with a torque-

controlled arm

Discplaimer: To actually solve this problem (in the sim-

ulator) is hard work and beyond the scope of this exer-

cise. Instead, describe precisely how you would solve

the problem.

Consider a free swining pole (with a 2 DoF universal

joint) at the tip of a 6 DoF arm. The arm joints can

be articulated using torques (no direct position/velocity

control). The pole itself cannot be articulated, only bal-

anced using the arm. Above the arm (in the “ceiling”)

is a hole. Initially the pole is hanging down; the prob-

lem is to swing up the pole and then balance it to in-

sert it in the ceiling’s hole without collision. We assume

to have full access to the system dynamics in the form

q̈M(q)+F (q̇, q) = u, where q = (qarm, qpole) contains the

6 arm DoFs qarm ∈ R
6 and the 2 pole DoFs qpole ∈ R

2.

Since we cannot actuate the pole directly, upole ≡ 0.

If you would like to see the system, download the newest

version of the http://userpage.fu-berlin.de/˜mtoussai/source-code/

libRoboticsCourse.11.1.tgz and have a look at course/08-pin_balancing

For all questions: Write down the precise controller equa-

tions, or cost function, or constraints, or search/optimization

strategy, or whatever is necessary to precisely define

your solution.

a) Hold steady: Let qarm ∈ R
6 be the 6D arm joints

and qarm
0 their initial position. How can you hold the arm

steady around q0 (counter-balance gravity and potential

perturbations while the pole is hanging down)? Which

methods from the lecture do you use?

b) Swing up (1): How can you find a rough plan of how

to swing up the pole? Which methods from the lec-

ture do you use? (What does not work: using the local

linearization of the pole around standing-up, because

this linearization is totally wrong if the pole is hanging

down.)

c) Swing up (2): Given a rough plan of the swing up,

is there a way to follow this rough plan directly? Alter-

natively, how would you refine the plan to become an

“optimal” swing up? Which methods from the lecture

do you use?

d) Balance steadily: When you managed to swing up

the pole, how could you balance it straight-up, even un-

der perturbations (Gaussian noise in the pole dynam-

ics)?

e) Pin-in-a-hole (1): How can you find a rough plan of

how to insert the balanced pole into the ceiling’s hole?

f) Pin-in-a-hole (2): Given that rough plan, how can you

follow this plan while balancing the pole in a stable way

(robust under perturbations)? Alternatively, how can

you refine the plan to become more optimal?

g) Is there a way to solve the whole problem in a holis-

tic way, to find an “optimal” solution of the whole proce-

dure? (The swing-up already targets towards the ceil-

ing’s hole etc.) How could this be done realistically?

http://userpage.fu-berlin.de/~mtoussai/source-code/libRoboticsCourse.11.1.tgz
http://userpage.fu-berlin.de/~mtoussai/source-code/libRoboticsCourse.11.1.tgz
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h) Partial observability: Do you think the whole problem

could be solved if qpole is non-observable (the pole is

invisible, but the qarm are observed at every time step)?

How?
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14 Topic list

This list summarizes the lecture’s content and is in-

tended as a guide for preparation for the exam. (Go-

ing through all exercises is equally important!) Refer-

ences to the lectures slides are given in the format (lec-

ture:slide).

14.1 Kinematics

• 3D geometry

– Definition of an object pose, frame, transforma-

tions (2:5,6)

– Homogeneous transformations (4×4 matrix) (2:8,9)

– Composition of transformations, notation xW =

TW→A TA→B TB→C xC (2:10)

• Fwd kinematics & Jacobian

– Fwd kinematics as composition of transforma-

tions (2:12)

– Transformations of a rotational joint (2:13)

– Kinematic maps φpos : q 7→ y and φvec (2:15)

– Definition of a Jacobian (2:17)

– Derivation of the position and vector Jacobians

Jpos, Jvec (2:18,19)

• Inverse kinematics (IK)

– Optimality criterion for IK (2:23,24)

– Using the local linearization to find the optimum

(2:26)

– Pseudo code of Inverse Kinematics control (2:28)

– Definition & example for a singularity (3:24)

• Motion profiles & Interpolation

– Motion profiles (esp. sine profile) (2:32)

– Joint space vs. task space interpolation of a

motion (2:34,35) [e.g. using a motion profile in

one or the other space]

• Multiple Tasks

– How to incorporate multiple tasks (2:40,41)

– What are interesting task variables; know at

leads about pos, vec, align, and limits (2:46-52)

• Further

– Definition of a singularity (2:58) Be able to give

example

– Be able to explain the consequences of the lo-

cal linearization in IK (big steps→ errors)

14.2 Path planning

• Basics

– Path finding vs. trajectroy optimization vs. feed-

back control (3:5,6)

– Roughly: BUG algorithms (3:8-12)

– Potential functions, and that they’re nothing but

IK with special task variables (3:17)

– Dijkstra Algorithm (3:26,18-25)

• Probabilistic Road Maps (PRMs)

– Definition (3:29,30) & Generation (4:31)

– Importance of local planner (3:32)

– Roughly: knowing about probabilistic complete-

ness (3:34)

– Roughly: alternative sampling strategies (3:35)

• Rapidly Exploring Random Trees (RRTs)

– Algorithm (3:39)

– Goal-directed (3:40) & bi-direction (3:42) exten-

sions

• Non-holonomic Systems

– Definition of non-holonomicity (3:36) Be able to

give example

– Path finding: control-based sampling (3:52)

– RRT extension for control-based exploration (3:57)

– Roughly: Intricacies with metrics for non-holonomic

systems (3:58-60)

14.3 Dynamics

• 1D point mass & PID control

– General form of a dynamic system (5:3)

– Dynamics of a 1D point mass (5:6)

– Position, derivative and integral feedback to con-

trol it to a desired state (5:7,10,15)

– Solution to the closed-loop PD system equa-

tions (5:11)

– Qualitative behaviors: oscillatory-damped, over-

damped, critically damped (5:13,14)

• Euler-Lagrange equation

– Definition (5:20)

– Roughly: application to robotic systems (5:21)

Understand at least T = 1
2 q̇

⊤Mq̇

– Be able to apply on minimalistic system (5:22)
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• Robot dynamics & joint/operational space control

– General form of the dynamics equation (5:28)

– Joint space control: given desired q̈∗, choose

u∗ = M(q) q̈∗ + F (q, q̇) (5:30)

– Operational space control: given desired ÿ∗,

choose u∗ = T ♯(ÿ∗ − J̇ q̇ + TF ) (5:31, 32, 34)

– Joint space approach to follow a reference tra-

jectory qref
0:T (5:30)

14.4 Mobile Robotics

• Probability Basics

– Definitions of random variable, probability dis-

tribution, joint, marginal, conditional distribution,

independence (6:4-7)

– Bayes’ Theorem (6:7,8)

– Continuous distributions, Gaussian, particles

(6:9-13)

• State Estimation

– Formalization of the state estimation problem

(7:13)

– The Bayes Filter as the general analytic solu-

tion (7:14,15)

– Gaussians and particles to approximate the Bayes

filter and make it computationally feasible:

– Details of a Particle Filter (7:22)

– Kalman filter (esp. assumptions made, not eq.

or derivation) (7:26)

– Extended KF (assumptions made) (7:28)

– Odometry (dead reckoning) as “Bayes filter with-

out observations” (7:17,18)

– What is smoothing (7:29)

• SLAM

– In what sense SLAM is a “chicken or egg prob-

lem” (7:34)

– Joint inference over x and m: Extended Kalman

SLAM (7:37)

– Particle-based SLAM (map belief for each par-

ticle) (7:38-41)

– Roughly: graph-based SLAM & loop closing

(7:44-46)

14.5 Control Theory

• Generally

– What we mean by “closed-loop system” (8:2)

– Topics in Control Theory (8:3)

• Optimal Control

– Definition of the (continuous time) optimal con-

trol problem (8:9)

– Concept & definition of the value function (8:10)

– HJB equation (8:10)

– Infinite horizon→ stationary solution (8:11)

– Awareness that optimal control is not the only

approach; it shifts the problem of designing a con-

troller to designing a cost function.

• Linear-Quadratic Optimal Control

– Definition of problem (esp. assumptions made)

(8:14)

– Be able to express system dynamics in (locally

linearized) standard form ẋ = Ax+Bu (8:19)

– Fact that the value function is quadratic V (x, t) =

x⊤P (t)x (8:16)

– Riccati differential equation (8:16)

– How P gives the optimal Linear-Quadratic Reg-

ulator (8:17)

– Algebraic (infinite horizon) Riccati equation (8:18)

• Controllability

– Definition and understanding/interpretation of

the controllability matrix C (8:27)

– Definition of controllability (8:26,27)

– Be able to apply on simple examples (8:28)

• Stability

– Definitions of stability (8:34)

– Eigenvalue analysis for linear systems (8:35)

– Optimize controllers for negativity of eigenval-

ues

– Definition of a Lyapunov function (8:39)

– Lyanunov’s theorem: ∃ Lyapunov fct. → stabil-

ity (8:39)

– Energy and value function as candidates for a

Lyapunov fct. (8:41,42)
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