Robotics

Reinforcement Learning in Robotics

Marc Toussaint
U Stuttgart

RL = Learning to Act

Environment

from Satinder Singh’s Introduction to RL, videolectures.com

2/37

Trial 1

(around 2000, by Schaal, Atkeson, Vijayakumar)

(2007, Andrew Ng et al.)
3/37

Applications of RL

o Robotics
— Navigation, walking, juggling, helicopters, grasping, etc...

e Games
— Backgammon, Chess, Othello, Tetris, ...

e Control
— factory processes, resource control in multimedia networks, elevators,

e Operations Research
— Warehousing, transportation, scheduling, ...

4/37

Markov Decision Process

()

P(SO:T+1,(10:T,7"0:T;7T) = P(SO) HtT:O P(at\St;W) P(Tt|5t»at) P(St+1|5t,at)

— world’s initial state distribution P(so)

— world’s transition probabilities P(s;t1 | s¢, ar)

— world’s reward probabilities P(r; | s, at)

—agent’s policy ww(a; | s¢) = P(ag|so;w) (or deterministic a; = 7(st))

e Stationary MDP:
— We assume P(s'|s,a) and P(r|s,a) independent of time
— We also define R(s,a) := E{r|s,a} = [r P(r|s,a) dr
5/37

... in the notation this Robotic’s lecture

e We have a (potentially stochastic) controlled system

& = f(x,u) + noise(z,u)

e We have costs (neg-rewards), e.g. in the finite horizon case:

JT :/ c(x(t),u(t)) dt + ¢(x(T))
0

¢ We want a policy (“controller”)

7w (z,t) = u

6/37

Reinforcement Learning = the dynamics f and costs c are unknown

¢ All the agent can do is collect data

D = {(It’utvct)}tho

What can we do with this data?

7/37

Five approaches to RL

experience data demonstration data
D= {(:rt,ut,ct)}tho D= {(xO:T7UO:T)d}Z:1
learn model learn value fct. optimize policy learn policy learn latent costs
P(a'|u, z) Vi(z) ™(x) (x) c(z)
ez, u)
Y A (= !
dynamic prog. policy £ dynamic prog.
Vi(z) m(x) c Vi
2 S g
@ pol(icgl @ 5 s Q poliy
a8 (T et D c m(x)
1 T 2 9 o
[) [) =
g g 3 g
O
= = o E £

8/37

Five approaches to RL

experience data demonstration data
D = {(s¢,a4,74) } e D = {(so.r, ao:r)*}i—y
learn model learn value fct. optimize policy learn policy learn latent costs
P(s'|s,a) V(s) m(s) w(s) R(s,a)
R(s,a)
! A = !
dynamic prog. policy £ dynamic prog.
V(s) w(s) c V(s)
© 'S © ¢
[} f) = Q f
% po(|c)y 3 © | n_:' policy
o (s e [J] c 7-r(§)
1 T ? 9 @
(] (] =
g g 3 -
o
= = o E £

9/37

Imitation Learning

D = {(so.1, ao:r)}1_, loarn/gopy 7(s)

e Use ML to imitate demonstrated state trajectories zq.7

Literature:

Atkeson & Schaal: Robot learning from demonstration (ICML 1997)

Schaal, ljspeert & Billard: Computational approaches to motor learning by imitation
(Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences 2003)

Grimes, Chalodhorn & Rao: Dynamic Imitation in a Humanoid Robot through
Nonparametric Probabilistic Inference. (RSS 2006)

Rudiger Dillmann: Teaching and learning of robot tasks via observation of human
performance (Robotics and Autonomous Systems, 2004)

10/37

Imitation Learning

e There a many ways to imitate/copy the oberved policy:

Learn a density model P(a; | s:)P(s;) (e.g., with mixture of Gaussians)
from the observed data and use it as policy (Billard et al.)

Or trace observed trajectories by minimizing perturbation costs
(Atkeson & Schaal 1997)

11/37

Imitation Learning

Leaming AFendulum
Swing-Up

Cheis Aflieson & Siefan Schual

Atkeson & Schaal
12/37

Inverse RL

D ={(sor,a0r)}’_, " R(s,a) B V() o n(s)

e Use ML to “uncover” the latent reward function in observed behavior

Literature:

Pieter Abbeel & Andrew Ng: Apprenticeship learning via inverse reinforcement learning
(ICML 2004)

Andrew Ng & Stuart Russell: Algorithms for Inverse Reinforcement Learning (ICML
2000)

Nikolay Jetchev & Marc Toussaint: Task Space Retrieval Using Inverse Feedback Control
(ICML 2011).

13/37

Inverse RL (Apprenticeship Learning)

e Given: demonstrations D = {zd ,/}"_,
¢ Try to find a reward function that discriminates demonstrations from
other policies
— Assume the reward function is linear in some features R(x) = w'¢(x)
— lterate:
1. Given a set of candidate policies {mo, 71, ..}
2. Find weights w that maximize the value margin between teacher and all
other candidates

e ¢
St Vo, : w(d)p Zw (P, +&
~—— N——
value of demonstrations value of ;
lwl* <1

3. Compute a new candidate policy ; that optimizes R(z) = w'¢(z) and
add to candidate list.

(Abbeel & Ng, ICML 2044),37

Policy Search with Policy Gradients

16/37

Policy gradients

¢ In continuous state/action case, represent the policy as linear in
arbitrary state features:

k
w(s) =Y ¢;(s)8; = ¢(s)'B (deterministic)
j=1
m(a]s) = N(a|¢(s) B, %) (stochastic)

with k features ¢,.

e Given an episode & = (sy, ar, 7¢)L,, we want to estimate

oV (p)

B

17/37

Policy Gradients

. One approach is called REINFORCE:

v (B
85 = 35 /P €|B) R(€) d¢ = /P £8)55 1ogP(£I5)R(£) d¢

L0 Hoo
= E{§|B}% log P(¢|B)R(€) = E{g|5}z¢%géat|sﬂ Sy
t=0 —
Q™ (s¢,a¢,t)

e Another is Natural Policy Gradient
— Estimate the Q-function as linear in the basis functions -2 5 log m(als):

Ol u) ~ [810%2(&'5)] w

— Then the natural gradient (mgff) multiplied with inv. Fisher metric) updates
6new — ﬁ + aw

o Another is POWER, which requires a‘g—(ﬁﬁ) =0

E{EIBY 1y Q7 (50, a, t)

BB+
E{EIBY 0, Q™ (i, ar.t) 18/37

Reinforcement Learning: Policy after 15 Trials

N

Kober & Peters: Policy Search for Motor Primitives in Robotics, NIPS 2008.

(serious reward shaping!)

19/37

Learning to walk in 20 Minutes

¢ Policy Gradient method (Reinforcement Learning)
Stationary policy parameterized as linear in features v = >, w;¢;(q, §)

e Problem: find parameters w; to minimize expected costs
cost = mimick (g, ¢) of the passive down-hill walker at “certain point in

cycle”

Learning To Walk

Tedrake, Zhang & Seung: Stochastic policy gradient reinforcement learning on a simple
3D biped. IROS, 2849-2854, 2004.
http://groups.csail.mit.edu/robotics-center/public_papers/TedrakeO4a.pdf

20/37

http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf

Policy Gradients — references

Peters & Schaal (2008): Reinforcement learning of motor skills with policy gradients,
Neural Networks.

Kober & Peters: Policy Search for Motor Primitives in Robotics, NIPS 2008.

Vlassis, Toussaint (2009): Learning Model-free Robot Control by a Monte Carlo EM
Algorithm. Autonomous Robots 27, 123-130.

Rawlik, Toussaint, Vijayakumar(2012): On Stochastic Optimal Control and
Reinforcement Learning by Approximate Inference. RSS 2012. (3-learning)

e These methods are sometimes called white-box optimization:
They optimize the policy parameters 3 for the total reward R = >~ vir,
while tying to exploit knowledge of how the process is actually
parameterized

21/37

Black-Box Optimization

22/37

“Black-Box Optimization”

e The term is not really well defined
— l use it to express that only f(z) can be evaluated
— Vf(z) or V2f(x) are not (directly) accessible
More common terms:

e Global optimization
— This usually emphasizes that methods should not get stuck in local optima

— Very very interesting domain — close analogies to (active) Machine
Learning, bandits, POMDPs, optimal decision making/planning, optimal
experimental design

— Usually mathematically well founded methods

¢ Stochastic search or Evolutionary Algorithms or Local Search
— Usually these are local methods (extensions trying to be “more” global)
— Various interesting heuristics

— Some of them (implicitly or explicitly) locally approximating gradients or
2nd order models 23/37

Black-Box Optimization
e Problem: Let x € R, f: R™ — R, find
min f(x)

where we can only evaluate f(x) for any z € R”

e Aconstrained version: Letz € R", f: R® - R, g: R™ — {0, 1}, find
min f(z) st gx)=1
xT

where we can only evaluate f(z) and g(z) for any € R™
| haven’t seen much work on this. Would be interesting to consider this more rigorously.

24/37

A zoo of approaches

e People with many different backgrounds drawn into this
Ranging from heuristics and Evolutionary Algorithms to heavy mathematics

— Evolutionary Algorithms, esp. Evolution Strategies, Covariance Matrix
Adaptation, Estimation of Distribution Algorithms

— Simulated Annealing, Hill Climing, Downhill Simplex
— local modelling (gradient/Hessian), global modelling

25/37

Optimizing and Learning

e Black-Box optimization is strongly related to learning:

e When we have local a gradient or Hessian, we can take that local
information and run — no need to keep track of the history or learn
(exception: BFGS)

¢ In the black-box case we have no local information directly accessible
— one needs to account for the history in some way or another to have
an idea where to continue search

e “Accounting for the history” very often means learning: Learning a local
or global model of f itself, learning which steps have been successful
recently (gradient estimation), or which step directions, or other
heuristics

26/37

Stochastic Search

27/37

Stochastic Search

e The general recipe:
— The algorithm maintains a probability distribution pg(z)
— In each iteration it takes n samples {x;}?_; ~ po(x)
— Each z; is evaluated — data {(x;, f(z;))},
— That data is used to update 6

e Stochastic Search:

Input: initial parameter 6, function f(z), distribution model py(z), update
heuristic h(6, D)
Output: final 6 and best point
1: repeat
2 Sample {z;}7; ~ po(x)
3: Evaluate samples, D = {(x, f(x;))}1,
4: Update 6 « h(6, D)
5: until 6 converges

28/37

Stochastic Search

e The parameter ¢ is the only “knowledge/information” that is being
propagated between iterations
6 encodes what has been learned from the history
6 defines where to search in the future

e Evolutionary Algorithms: 6 is a parent population
Evolution Strategies: 6 defines a Gaussian with mean & variance
Estimation of Distribution Algorithms: 6 are parameters of some
distribution model, e.g. Bayesian Network
Simulated Annealing: 6 is the “current point” and a temperature

29/37

Example: Gaussian search distribution (u, A\)-ES

From 1960s/70s. Rechenberg/Schwefel
e Perhaps the simplest type of distribution model

0=(2), pa)=Nlz,o?

a n-dimenstional isotropic Gaussian with fixed deviation o

e Update heuristic:
— Given D = {(z;, f(x;))}},, select u best: D’ = bestOf,, (D)
— Compute the new mean % from D’

e This algorithm is called “Evolution Strategy (u, A)-ES”
— The Gaussian is meant to represent a “species”
— A offspring are generated
— the best i selected

30/37

Covariance Matrix Adaptation (CMA-ES)
e An obvious critique of the simple Evolution Strategies:
— The search distribution N(z|#, o2) is isotropic
(no going forward, no preferred direction)
— The variance ¢ is fixed!

e Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Generation 1 Generation 2 Generation 3
Generation 4 Generation 5 Generation 6

31/37

Covariance Matrix Adaptation (CMA-ES)

e In Covariance Matrix Adaptation
QZ(Q,U,C,pU,pc) 9 p(i(x):N(ICm',O'QC)

where C is the covariance matrix of the search distribution

e The # maintains two more pieces of information: p, and pc capture the
“path” (motion) of the mean Z in recent iterations

¢ Rough outline of the #-update:
— Let D’ = bestOf,, (D) be the set of selected points
— Compute the new mean & from D’
— Update p, and pc proportional to Zx11 — &%
— Update o depending on |p, |
— Update C depending on p.p|. (rank-1-update) and Var(D’)

32/37

CMA references

Hansen, N. (2006), "The CMA evolution strategy: a comparing review”
Hansen et al.: Evaluating the CMA Evolution Strategy on Multimodal
Test Functions, PPSN 2004.

Function fstop init n CMA-ES DE RES LOS
Fackdey () le-3 [-30,30]" 20 2667 . . 6.0e4
30 3701 12481 1.1e5 9.3e4
100 11900 36801 . .
Forionani(z) 1e-3 [-600,600]" 20 3111 8691 .
30 4455 11410 * 8.5¢-3/2e5
100 12796 31796 . .
Frastrigin(T) 0.9 —5.12,5.12]" 20 68586 12971 . 9.2e4
DE: [-600,600]" 30 147416 20150 ~ 1.0e5 2.3e5
100 1010989 73620 . .
Frstrigin(Az) 0.9 [-512,512]" 30 152000 171/1.25¢6 *
100 1011556 944/1.25¢6 * . .
Jschwetet (@) 1e-3 [-500,500]" 5 43810 2567 " . T.ded
10 240899 5522 . 5.6e5

e For “large enough” populations local minima are avoided

¢ An interesting variant:
Igel et al.: A Computational Efficient Covariance Matrix Update and a
(14 1)-CMA for Evolution Strategies, GECCO 2006. 33/37

CMA conclusions

e Itis a good starting point for an off-the-shelf black-box algorithm

e It includes components like estimating the local gradient (p,, pc), the
local “Hessian” (Var(D’)), smoothing out local minima (large
populations)

34/37

Stochastic search conclusions

Input: initial parameter 0, function f(z), distribution model py(z), update
heuristic h(6, D)
Output: final and best point
1: repeat
2 Sample {z;}7; ~ po(x)
3: Evaluate samples, D = {(x, f(x;))}7,
4: Update 6 « h(6, D)
5: until 6 converges

e The framework is very general

e The crucial difference between algorithms is their choice of py(x)

35/37

RL under Partial Observability

e Data:
D = {(us, e, y¢)e Fi—o

— state z; not observable

e Model-based RL is dauting: Learning P(x'|u,x) and P(y|u,z) with
latent x is very hard

e Model-free: The policy needs to map the history to a new control

T (ytfh,..,t-laUtfh,.,,tfl) = Ut

or any features of the history

Ut = G(Yeeh,.. 11, Ut—h,. 4—1) W

36/37

Features for the racer?

¢ Potential features might be:
(yta yt7 <y>0_5) <y>0.5 ’ <y>0_9 ’ <y>0,9 , Ut utfl)

where y = #=¥=1 and (y),, is a low-pass filter

37/37

