
Robotics

Reinforcement Learning in Robotics

Marc Toussaint
U Stuttgart

RL = Learning to Act

from Satinder Singh’s Introduction to RL, videolectures.com

2/37

(around 2000, by Schaal, Atkeson, Vijayakumar)

(2007, Andrew Ng et al.)

3/37

Applications of RL

• Robotics
– Navigation, walking, juggling, helicopters, grasping, etc...

• Games
– Backgammon, Chess, Othello, Tetris, ...

• Control
– factory processes, resource control in multimedia networks, elevators,

• Operations Research

– Warehousing, transportation, scheduling, ...

4/37

Markov Decision Process

a0

s0

r0

a1

s1

r1

a2

s2

r2

P (s0:T+1, a0:T , r0:T ;π) = P (s0)
∏T
t=0 P (at|st;π) P (rt|st, at) P (st+1|st, at)

– world’s initial state distribution P (s0)

– world’s transition probabilities P (st+1 | st, at)
– world’s reward probabilities P (rt | st, at)
– agent’s policy π(at | st) = P (a0|s0;π) (or deterministic at = π(st))

• Stationary MDP:
– We assume P (s′ | s, a) and P (r|s, a) independent of time
– We also define R(s, a) := E{r|s, a} =

∫
r P (r|s, a) dr

5/37

... in the notation this Robotic’s lecture

• We have a (potentially stochastic) controlled system

ẋ = f(x, u) + noise(x, u)

• We have costs (neg-rewards), e.g. in the finite horizon case:

Jπ =

∫ T

0

c(x(t), u(t)) dt+ φ(x(T))

• We want a policy (“controller”)

π : (x, t) 7→ u

6/37

Reinforcement Learning = the dynamics f and costs c are unknown

• All the agent can do is collect data

D = {(xt, ut, ct)}Tt=0

What can we do with this data?

7/37

Five approaches to RL
M

o
d

e
l−

b
a

s
e

d

In
v

e
rs

e
 O

C

Im
it

a
ti

o
n

 L
e

a
rn

in
g

P
o

li
c

y
 S

e
a

rc
h

M
o

d
e

l−
fr

e
e
learn value fct.

V (x)

policy
π(x)

optimize policy learn latent costs
c(x)

dynamic prog.

π(x)
policy

learn policy
π(x)

policy

learn model

πt(x)

P (x′|u, x)
c(x, u)

dynamic prog.
Vt(x) Vt

π(x)

demonstration dataexperience data
D = {(xt, ut, ct)}Tt=0 D = {(x0:T , u0:T)

d}nd=1

8/37

Five approaches to RL

P
o

li
c

y
 S

e
a

rc
h

In
v

e
rs

e
 R

L

Im
it

a
ti

o
n

 L
e

a
rn

in
g

M
o

d
e

l−
fr

e
e

M
o

d
e

l−
b

a
s

e
d

learn value fct.
V (s)

policy
π(s)

optimize policy learn latent costs
R(s, a)

dynamic prog.

π(s)
policy

learn policy
π(s)

policy

learn model

π(s)

P (s′|s, a)
R(s, a)

dynamic prog.
V (s) V (s)

π(s)

demonstration dataexperience data
D = {(s0:T , a0:T)d}nd=1

D = {(st, at, rt)}Tt=0

9/37

Imitation Learning

D = {(s0:T , a0:T)d}nd=1

learn/copy→ π(s)

• Use ML to imitate demonstrated state trajectories x0:T

Literature:

Atkeson & Schaal: Robot learning from demonstration (ICML 1997)

Schaal, Ijspeert & Billard: Computational approaches to motor learning by imitation
(Philosophical Transactions of the Royal Society of London. Series B: Biological
Sciences 2003)

Grimes, Chalodhorn & Rao: Dynamic Imitation in a Humanoid Robot through
Nonparametric Probabilistic Inference. (RSS 2006)

Rüdiger Dillmann: Teaching and learning of robot tasks via observation of human
performance (Robotics and Autonomous Systems, 2004)

10/37

Imitation Learning

• There a many ways to imitate/copy the oberved policy:

Learn a density model P (at | st)P (st) (e.g., with mixture of Gaussians)
from the observed data and use it as policy (Billard et al.)

Or trace observed trajectories by minimizing perturbation costs
(Atkeson & Schaal 1997)

11/37

Imitation Learning

Atkeson & Schaal
12/37

Inverse RL

D = {(s0:T , a0:T)d}nd=1
learn→ R(s, a)

DP→ V (s) → π(s)

• Use ML to “uncover” the latent reward function in observed behavior

Literature:

Pieter Abbeel & Andrew Ng: Apprenticeship learning via inverse reinforcement learning
(ICML 2004)

Andrew Ng & Stuart Russell: Algorithms for Inverse Reinforcement Learning (ICML
2000)

Nikolay Jetchev & Marc Toussaint: Task Space Retrieval Using Inverse Feedback Control
(ICML 2011).

13/37

Inverse RL (Apprenticeship Learning)
• Given: demonstrations D = {xd0:T }nd=1

• Try to find a reward function that discriminates demonstrations from
other policies
– Assume the reward function is linear in some features R(x) = w>φ(x)

– Iterate:

1. Given a set of candidate policies {π0, π1, ..}
2. Find weights w that maximize the value margin between teacher and all

other candidates

max
w,ξ

ξ

s.t. ∀πi : w>〈φ〉D︸ ︷︷ ︸
value of demonstrations

≥ w>〈φ〉πi︸ ︷︷ ︸
value of πi

+ξ

||w||2 ≤ 1

3. Compute a new candidate policy πi that optimizes R(x) = w>φ(x) and
add to candidate list.

(Abbeel & Ng, ICML 2004)14/37

15/37

Policy Search with Policy Gradients

16/37

Policy gradients

• In continuous state/action case, represent the policy as linear in
arbitrary state features:

π(s) =

k∑
j=1

φj(s)βj = φ(s)>β (deterministic)

π(a | s) = N(a |φ(s)>β,Σ) (stochastic)

with k features φj .

• Given an episode ξ = (st, at, rt)
H
t=0, we want to estimate

∂V (β)

∂β

17/37

Policy Gradients
• One approach is called REINFORCE:

∂V (β)

∂β
=

∂

∂β

∫
P (ξ|β) R(ξ) dξ =

∫
P (ξ|β)

∂

∂β
logP (ξ|β)R(ξ)dξ

= E{ξ|β} ∂
∂β

logP (ξ|β)R(ξ) = E{ξ|β}
H∑
t=0

γt
∂ log π(at|st)

∂β

H∑
t′=t

γt
′−trt′︸ ︷︷ ︸

Qπ(st,at,t)

• Another is Natural Policy Gradient
– Estimate the Q-function as linear in the basis functions ∂

∂β
log π(a|s):

Q(x, u) ≈
[∂ log π(a|s)

∂β

]>
w

– Then the natural gradient (∂V (β)
∂β

multiplied with inv. Fisher metric) updates

βnew = β + αw

• Another is PoWER, which requires ∂V (β)
∂β = 0

β ← β +
E{ξ|β}

∑H
t=0 εtQ

π(st, at, t)

E{ξ|β}
∑H
t=0Q

π(st, at, t) 18/37

Kober & Peters: Policy Search for Motor Primitives in Robotics, NIPS 2008.

(serious reward shaping!)

19/37

Learning to walk in 20 Minutes

• Policy Gradient method (Reinforcement Learning)
Stationary policy parameterized as linear in features u =

∑
i wiφi(q, q̇)

• Problem: find parameters wi to minimize expected costs
cost = mimick (q, q̇) of the passive down-hill walker at “certain point in
cycle”

Learning To Walk

Tedrake, Zhang & Seung: Stochastic policy gradient reinforcement learning on a simple
3D biped. IROS, 2849-2854, 2004.
http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf

20/37

http://groups.csail.mit.edu/robotics-center/public_papers/Tedrake04a.pdf

Policy Gradients – references
Peters & Schaal (2008): Reinforcement learning of motor skills with policy gradients,
Neural Networks.

Kober & Peters: Policy Search for Motor Primitives in Robotics, NIPS 2008.

Vlassis, Toussaint (2009): Learning Model-free Robot Control by a Monte Carlo EM
Algorithm. Autonomous Robots 27, 123-130.

Rawlik, Toussaint, Vijayakumar(2012): On Stochastic Optimal Control and
Reinforcement Learning by Approximate Inference. RSS 2012. (ψ-learning)

• These methods are sometimes called white-box optimization:
They optimize the policy parameters β for the total reward R =

∑
γtrt

while tying to exploit knowledge of how the process is actually
parameterized

21/37

Black-Box Optimization

22/37

“Black-Box Optimization”

• The term is not really well defined
– I use it to express that only f(x) can be evaluated
– ∇f(x) or ∇2f(x) are not (directly) accessible
More common terms:

• Global optimization
– This usually emphasizes that methods should not get stuck in local optima
– Very very interesting domain – close analogies to (active) Machine

Learning, bandits, POMDPs, optimal decision making/planning, optimal
experimental design

– Usually mathematically well founded methods

• Stochastic search or Evolutionary Algorithms or Local Search
– Usually these are local methods (extensions trying to be “more” global)
– Various interesting heuristics
– Some of them (implicitly or explicitly) locally approximating gradients or

2nd order models 23/37

Black-Box Optimization

• Problem: Let x ∈ Rn, f : Rn → R, find

min
x

f(x)

where we can only evaluate f(x) for any x ∈ Rn

• A constrained version: Let x ∈ Rn, f : Rn → R, g : Rn → {0, 1}, find

min
x

f(x) s.t. g(x) = 1

where we can only evaluate f(x) and g(x) for any x ∈ Rn
I haven’t seen much work on this. Would be interesting to consider this more rigorously.

24/37

A zoo of approaches

• People with many different backgrounds drawn into this
Ranging from heuristics and Evolutionary Algorithms to heavy mathematics

– Evolutionary Algorithms, esp. Evolution Strategies, Covariance Matrix
Adaptation, Estimation of Distribution Algorithms

– Simulated Annealing, Hill Climing, Downhill Simplex
– local modelling (gradient/Hessian), global modelling

25/37

Optimizing and Learning

• Black-Box optimization is strongly related to learning:

• When we have local a gradient or Hessian, we can take that local
information and run – no need to keep track of the history or learn
(exception: BFGS)

• In the black-box case we have no local information directly accessible
→ one needs to account for the history in some way or another to have
an idea where to continue search

• “Accounting for the history” very often means learning: Learning a local
or global model of f itself, learning which steps have been successful
recently (gradient estimation), or which step directions, or other
heuristics

26/37

Stochastic Search

27/37

Stochastic Search

• The general recipe:
– The algorithm maintains a probability distribution pθ(x)

– In each iteration it takes n samples {xi}ni=1 ∼ pθ(x)

– Each xi is evaluated → data {(xi, f(xi))}ni=1

– That data is used to update θ

• Stochastic Search:

Input: initial parameter θ, function f(x), distribution model pθ(x), update
heuristic h(θ,D)

Output: final θ and best point x
1: repeat
2: Sample {xi}ni=1 ∼ pθ(x)
3: Evaluate samples, D = {(xi, f(xi))}ni=1

4: Update θ ← h(θ,D)

5: until θ converges

28/37

Stochastic Search

• The parameter θ is the only “knowledge/information” that is being
propagated between iterations
θ encodes what has been learned from the history
θ defines where to search in the future

• Evolutionary Algorithms: θ is a parent population
Evolution Strategies: θ defines a Gaussian with mean & variance
Estimation of Distribution Algorithms: θ are parameters of some
distribution model, e.g. Bayesian Network
Simulated Annealing: θ is the “current point” and a temperature

29/37

Example: Gaussian search distribution (µ, λ)-ES
From 1960s/70s. Rechenberg/Schwefel

• Perhaps the simplest type of distribution model

θ = (x̂) , pt(x) = N(x|x̂, σ2)

a n-dimenstional isotropic Gaussian with fixed deviation σ

• Update heuristic:
– Given D = {(xi, f(xi))}λi=1, select µ best: D′ = bestOfµ(D)

– Compute the new mean x̂ from D′

• This algorithm is called “Evolution Strategy (µ, λ)-ES”
– The Gaussian is meant to represent a “species”
– λ offspring are generated
– the best µ selected

30/37

Covariance Matrix Adaptation (CMA-ES)
• An obvious critique of the simple Evolution Strategies:

– The search distribution N(x|x̂, σ2) is isotropic
(no going forward, no preferred direction)

– The variance σ is fixed!

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

31/37

Covariance Matrix Adaptation (CMA-ES)

• In Covariance Matrix Adaptation

θ = (x̂, σ, C, pσ, pC) , pθ(x) = N(x|x̂, σ2C)

where C is the covariance matrix of the search distribution

• The θ maintains two more pieces of information: pσ and pC capture the
“path” (motion) of the mean x̂ in recent iterations

• Rough outline of the θ-update:
– Let D′ = bestOfµ(D) be the set of selected points
– Compute the new mean x̂ from D′

– Update pσ and pC proportional to x̂k+1 − x̂k
– Update σ depending on |pσ|
– Update C depending on pcp>c (rank-1-update) and Var(D′)

32/37

CMA references
Hansen, N. (2006), ”The CMA evolution strategy: a comparing review”
Hansen et al.: Evaluating the CMA Evolution Strategy on Multimodal
Test Functions, PPSN 2004.

• For “large enough” populations local minima are avoided

• An interesting variant:
Igel et al.: A Computational Efficient Covariance Matrix Update and a
(1 + 1)-CMA for Evolution Strategies, GECCO 2006.

33/37

CMA conclusions

• It is a good starting point for an off-the-shelf black-box algorithm

• It includes components like estimating the local gradient (pσ, pC), the
local “Hessian” (Var(D′)), smoothing out local minima (large
populations)

34/37

Stochastic search conclusions

Input: initial parameter θ, function f(x), distribution model pθ(x), update
heuristic h(θ,D)

Output: final θ and best point x
1: repeat
2: Sample {xi}ni=1 ∼ pθ(x)
3: Evaluate samples, D = {(xi, f(xi))}ni=1

4: Update θ ← h(θ,D)

5: until θ converges

• The framework is very general

• The crucial difference between algorithms is their choice of pθ(x)

35/37

RL under Partial Observability

• Data:
D = {(ut, ct, yt)t}Tt=0

→ state xt not observable

• Model-based RL is dauting: Learning P (x′|u, x) and P (y|u, x) with
latent x is very hard

• Model-free: The policy needs to map the history to a new control

π : (yt−h,..,t-1, ut−h,..,t−1) 7→ ut

or any features of the history

ut = φ(yt−h,..,t-1, ut−h,..,t−1)>w

36/37

Features for the racer?

• Potential features might be:(
yt, ẏt, 〈y〉0.5 , 〈ẏ〉0.5 , 〈y〉0.9 , 〈ẏ〉0.9 , ut, ut−1

)
where ẏ = yt−yt−1

τt
and 〈y〉α is a low-pass filter

37/37

