
Robotics

Practical: A 2-wheeled Racer

Marc Toussaint
U Stuttgart

A 2-wheeled racer

• Educational ideas:
– have a really dynamic system
– have a system which, in the “racing” limit, is

hard to control
– learn about hardware, communication, etc
– challenges connecting theory with practise:

• Real world issues:
– control interface (“setting velocities”) is adven-

turous
– PARTIAL OBSERVABILITY: we only have a

noisy accelerometer & gyroscope
– unknown time delays
– unknown system parameters (masses, geom-

etry, etc)

2/30

Intro

3/30

[demo]

4/30

Components

• Odroid: on-board PC running xubuntu

• Motor unit: motors, motor driver, motor controller, Hall sensor

• IMU (inertial measurement unit): 3D accelerometer, 3D gyroscope,
(magnetic)

• Communication: USB-to-I2C communicates with both, motors and IMU

• See Marcel’s thesis

5/30

Code

• From Marcel’s thesis:
– Control loop (around 36 msec)

• Kalman filter tests on the accelerometer:
– Caroline

6/30

2D Modelling

• See theoretical modelling notes

7/30

3D Modelling

• Account for centrifugal forces in a curve

• Generalized coordinates q = (x, y, φ, θ), with steering angle φ

• Exercise: Derive general Euler-Lagrange equations

8/30

Clash of theory and real world

9/30

The control interface

• Theory assumed torque control

• In real, the motor controller “does things somehow”. We can set:
– a target velocities v∗l,r
– desired acceleration level a∗l,r ∈ {−10, ..,−1, 1, .., 10}

• The controller will then ramp velocity in 25msec steps depending on a∗

until target v∗ is reached

• Unknown: time delays, scaling of a∗?

• Potential approach:
– Assume acceleration control interface
– Consider constrained Euler-Lagrange equations

10/30

Coping with the partial observability

• Theoretical view: In LQG systems it is known that optimal control under
partial observability is the same as optimal control assuming the Bayes
estimated state as true current state. Uncertainty principle.

• Use a Bayes filter to estimate the state (q, q̇) from all sensor
information we have

• Sensor information:
– Accelerometer readings ãx,y,z
– Gyro readings g̃x,y,z
– Motor positions θ̃l,r. Note that θ̃ ∝ x/r − θ desribes the relative angle

between the pole and the wheels

• Open issue: time delays – relevant?

11/30

Coping with unknown system parameters

• System identification

• We derived the eqs of motion Bu = Mq̈ + F (for 2D) – but don’t know
the parameters

– mA, IA,mB , IB : masses and inertias of bodies A (=wheel) and B
(=pendulum)

– r: radius of the wheel
– l: length of the pendulum (height of its COM)

• Focus on the local linearization around (q, q̇) = 0

• OR: Use blackbox optimization to fit parameters to data

12/30

Data

• We need data to understand better what’s going on!

• Lot’s of data of full control cycles around (q, q̇) = 0

(sensor reading, control signals, cycle time)

• Data specifically on how motors accelerate when setting a desired
acceleration level

13/30

Or completely different: Reinforcement Learning

• Alternatively one fully avoids modelling→ Reinforcement Learning

• Roughly: blackbox optimization (e.g., EA) of PD parameters

14/30

Modelling

15/30

Modelling overview I
We have exact analytical models (and implemented) for the following:

• Euler-Lagange equations

M(q) q̈ + F (q, q̇) = B(q) u

q̈ = M -1(Bu− F)

→ energy check
→ physical simulation

• Local linearization (x = (q, q̇))

q̈ = Ax+ a+ B̄u

A =
∂

∂x
M -1(Bu− F) , B̄ = M -1B

→ gradient check
→ Riccati eqn→ nice controller [demo] 16/30

Modelling overview II

• Sensor model

yacc = c1 R [p̈B − (0, g)>] , R =

cos(θ + c2) − sin(θ + c2)

sin(θ + c2) cos(θ + c2)


ygyro = c3(θ̇ + c4)

yenc = c5(x/r − θ)
y = (yacc, ygyro, yenc) ∈ R4

• Local linearization

C =
∂y

∂(q, q̇)
=

(
∂y
∂q

∂y
∂q̇

)
+
∂y

∂q̈

∂q̈

∂(q, q̇)

→ gradient check
→ Kalman filtering [demo]

17/30

Modelling overview III

• Constrained Euler-Lagange equations for acceleration control
– Our motors actually don’t allow to set torques – but rather set

accelerations. Setting accelerations implies the constraint

B′q̈ = u′

– Using q̈ =M -1(Bu− F) we can retrieve the torque

u = (B′M -1B)-1[u′ +B′M -1F]

that exactly generates this acceleration
– Plugging this back into q̈ =M -1(Bu− F) we get

q̈ = B′#u′ − (I−B′#B′)M -1F , B′# =M -1B(B′M -1B)-1

18/30

Modelling summary

• We now have all analytic models we need

• In simulation we have no problem to apply
– Riccati to retrieve a (locally) optimal linear regulator
– Kalman to optimally (subject to linearizations) estimate the state

• The crux: we have 12 unknown parameters

mA, IA,mB , IB , r, l, lC , c1, .., c5

(plus sensor noise parameters σa, σg, σe)

19/30

System Identification

20/30

System Identification

• Given data D = {(x, u, y)t}Tt=1, learn

(x, u) 7→ x′ or P (x′|x, u)

(x, u) 7→ y or P (y|x, u)

21/30

Regression options for system identification
• Linear: (linear in finite number of parameters)

f(x; θ) = φ(x)>θ

• Blackbox parameteric:
– Given some blackbox parameteric model f(x; θ) with finite parameters θ;

use blackbox optimization

• Non-parameteric:
– Kernel methods
– Gaussian processes
– Are closely related to linear models

• In all cases one typically minimizes the squared error

Lls(θ) =
∑n

i=1(yi − f(xi; θ))
2

• We can use the mean 1
nL

ls(θ) as estimate of the output variance σ2 to
define

P (y|x; θ) = N(y|f(x; θ), σ2)
22/30

System Id examples: Kinematics

• If the kinematics φ are unknown, learn them from data!

Literature:

Todorov: Probabilistic inference of multi-joint movements, skeletal parameters and
marker attachments from diverse sensor data. (IEEE Transactions on Biomedical
Engineering 2007)

Deisenroth, Rasmussen & Fox: Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning (RSS 2011)

23/30

Todorov: Probabilistic inference of multi-joint movements, skeletal parameters and
marker attachments from diverse sensor data. (IEEE Transactions on Biomedical
Engineering 2007)

Deisenroth, Rasmussen & Fox: Learning to Control a Low-Cost Manipulator using
Data-Efficient Reinforcement Learning (RSS 2011)

24/30

System Id examples: Dynamics

• If the dynamics ẋ = f(x, u) are unknown, learn them from data!

Literature:

Moore: Acquisition of Dynamic Control Knowledge for a Robotic Manipulator (ICML
1990)

Atkeson, Moore & Schaal: Locally weighted learning for control. Artificial Intelligence
Review, 1997.

Schaal, Atkeson & Vijayakumar: Real-Time Robot Learning with Locally Weighted
Statistical Learning. (ICRA 2000)

Vijayakumar et al: Statistical learning for humanoid robots, Autonomous Robots, 2002.

25/30

(Schaal, Atkeson, Vijayakumar)

• Use a simple regression method (locally weighted Linear Regression)
to estimate ẋ = f(x, u)

26/30

Regression basics
[ML slides]

27/30

Applying System Id to the racer?

• Core problem:
We have no ground truth data!

• We can record data (u, y) (controls & observations), but not x!

• Try an EM like approach:
– Hand-estimate the parameters as good as possible
– Use a Kalman filter (better: smoother!!) to estimate the unobserved x

during
– Option (a): Learn local linear models q̈ = Ax+ a+Bu and
y = Cx+ c+Du
Option (b): Improve the parameters θ = (mA, IA,mB , IB , r, l, lC , c1, .., c5)

– Repeat with Kalman smoothing

• I have no idea whether/how well this’ll work

28/30

Data

29/30

We’ve collected data

• Motor responses
– Free running wheels (no load..)
– Setting extreme target velocities v∗ and different acceleration levels
a∗ ∈ {−10, ..,−1, 1, .., 10} we can generate well-defined accelerations

• Balancing trials
– the gyroscope picks up some oscillations
– the accelerometer is very noisy, perhaps correlated with jerky controls
– only 30Hz!

30/30

