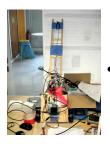


Robotics

Practical: A 2-wheeled Racer

Marc Toussaint U Stuttgart

A 2-wheeled racer



Educational ideas:

- have a really dynamic system
- have a system which, in the "racing" limit, is hard to control
- learn about hardware, communication, etc
- challenges connecting theory with practise:

Real world issues:

- control interface ("setting velocities") is adventurous
- PARTIAL OBSERVABILITY: we only have a noisy accelerometer & gyroscope
- unknown time delays
- unknown system parameters (masses, geometry, etc)

Intro

[demo]

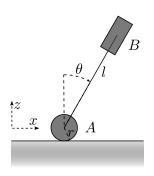
Components

- Odroid: on-board PC running xubuntu
- Motor unit: motors, motor driver, motor controller, Hall sensor
- IMU (inertial measurement unit): 3D accelerometer, 3D gyroscope, (magnetic)
- Communication: USB-to-I2C communicates with both, motors and IMU
- · See Marcel's thesis

Code

- From Marcel's thesis:
 - Control loop (around 36 msec)
- Kalman filter tests on the accelerometer:
 - Caroline

2D Modelling



• See theoretical modelling notes

3D Modelling

- · Account for centrifugal forces in a curve
- Generalized coordinates $q = (x, y, \phi, \theta)$, with steering angle ϕ
- Exercise: Derive general Euler-Lagrange equations

Clash of theory and real world

The control interface

- Theory assumed torque control
- In real, the motor controller "does things somehow". We can set:
 - a target velocities $v_{l,r}^*$
 - desired acceleration level $a_{l,r}^* \in \{-10,..,-1,1,..,10\}$
- The controller will then ramp velocity in 25msec steps depending on a^* until target v^* is reached
- Unknown: time delays, scaling of a*?
- Potential approach:
 - Assume acceleration control interface
 - Consider constrained Euler-Lagrange equations

Coping with the partial observability

- Theoretical view: In LQG systems it is known that optimal control under partial observability is the same as optimal control assuming the Bayes estimated state as true current state. *Uncertainty principle*.
- Use a Bayes filter to estimate the state (q, q) from all sensor information we have
- Sensor information:
 - Accelerometer readings $\tilde{a}_{x,y,z}$
 - Gyro readings $\tilde{g}_{x,y,z}$
 - Motor positions $\tilde{\theta}_{l,r}$. Note that $\tilde{\theta} \propto x/r \theta$ desribes the relative angle between the pole and the wheels
- Open issue: time delays relevant?

Coping with unknown system parameters

- System identification
- We derived the eqs of motion $Bu=M\ddot{q}+F$ (for 2D) but don't know the parameters
 - m_A, I_A, m_B, I_B : masses and inertias of bodies A (=wheel) and B (=pendulum)
 - r: radius of the wheel
 - l: length of the pendulum (height of its COM)
- Focus on the local linearization around $(q, \dot{q}) = 0$
- OR: Use blackbox optimization to fit parameters to data

Data

- We need data to understand better what's going on!
- Lot's of data of full control cycles around $(q, \dot{q}) = 0$ (sensor reading, control signals, cycle time)
- Data specifically on how motors accelerate when setting a desired acceleration level

Or completely different: Reinforcement Learning

- $\bullet \ \ \text{Alternatively one fully avoids modelling} \to \text{Reinforcement Learning}$
- Roughly: blackbox optimization (e.g., EA) of PD parameters

Modelling

Modelling overview I

We have exact analytical models (and implemented) for the following:

• Euler-Lagange equations

$$\begin{split} M(q) \; \ddot{q} + F(q,\dot{q}) &= B(q) \; u \\ \ddot{q} &= M^{\text{--}1}(Bu - F) \end{split}$$

- \rightarrow energy check
- ightarrow physical simulation
- Local linearization $(x = (q, \dot{q}))$

$$\ddot{q} = Ax + a + \bar{B}u$$

$$A = \frac{\partial}{\partial x} M^{\text{-}1}(Bu - F) , \quad \bar{B} = M^{\text{-}1}B$$

- → gradient check
- → Riccati eqn → nice controller [demo]

Modelling overview II

Sensor model

$$\begin{split} \boldsymbol{y}^{\mathsf{acc}} &= c_1 \; R \; [\ddot{p}_B - (0, g)^\top] \;, \quad R = \begin{pmatrix} \cos(\theta + c_2) & -\sin(\theta + c_2) \\ \sin(\theta + c_2) & \cos(\theta + c_2) \end{pmatrix} \\ \boldsymbol{y}^{\mathsf{gyro}} &= c_3 (\dot{\theta} + c_4) \\ \boldsymbol{y}^{\mathsf{enc}} &= c_5 (x/r - \theta) \\ \boldsymbol{y} &= (\boldsymbol{y}^{\mathsf{acc}}, \boldsymbol{y}^{\mathsf{gyro}}, \boldsymbol{y}^{\mathsf{enc}}) \in \mathbb{R}^4 \end{split}$$

Local linearization

$$C = \frac{\partial y}{\partial (q, \dot{q})} = \begin{pmatrix} \frac{\partial y}{\partial q} & \frac{\partial y}{\partial \dot{q}} \end{pmatrix} + \frac{\partial y}{\partial \ddot{q}} \; \frac{\partial \ddot{q}}{\partial (q, \dot{q})}$$

- → gradient check
- → Kalman filtering [demo]

Modelling overview III

- Constrained Euler-Lagange equations for acceleration control
 - Our motors actually don't allow to set torques but rather set accelerations. Setting accelerations implies the constraint

$$B'\ddot{q} = u'$$

– Using $\ddot{q} = M^{-1}(Bu - F)$ we can retrieve the torque

$$u = (B'M^{-1}B)^{-1}[u' + B'M^{-1}F]$$

that exactly generates this acceleration

- Plugging this back into $\ddot{q} = M^{-1}(Bu - F)$ we get

$$\ddot{q} = B'^{\#}u' - (\mathbf{I} - B'^{\#}B')M^{-1}F$$
, $B'^{\#} = M^{-1}B(B'M^{-1}B)^{-1}$

Modelling summary

- We now have all analytic models we need
- In simulation we have no problem to apply
 - Riccati to retrieve a (locally) optimal linear regulator
 - Kalman to optimally (subject to linearizations) estimate the state
- The crux: we have 12 unknown parameters

$$m_A, I_A, m_B, I_B, r, l, l_C, c_1, ..., c_5$$

(plus sensor noise parameters $\sigma_a, \sigma_g, \sigma_e$)

System Identification

System Identification

• Given data $D = \{(x, u, y)_t\}_{t=1}^T$, learn

$$\begin{array}{ccc} (x,u) \mapsto x' & \quad \text{or} & \quad P(x'|x,u) \\ (x,u) \mapsto y & \quad \text{or} & \quad P(y|x,u) \end{array}$$

Regression options for system identification

• Linear: (linear in finite number of parameters)

$$f(x;\theta) = \phi(x)^{\mathsf{T}}\theta$$

- Blackbox parameteric:
 - Given some blackbox parameteric model $f(x;\theta)$ with finite parameters θ ; use blackbox optimization
- Non-parameteric:
 - Kernel methods
 - Gaussian processes
 - Are closely related to linear models
- In all cases one typically minimizes the squared error

$$L^{\mathsf{ls}}(\theta) = \sum_{i=1}^{n} (y_i - f(x_i; \theta))^2$$

• We can use the mean $\frac{1}{n}L^{ls}(\theta)$ as estimate of the output variance σ^2 to define

$$P(y|x;\theta) = \mathcal{N}(y|f(x;\theta),\sigma^2)$$

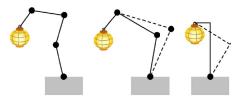
System Id examples: Kinematics

• If the kinematics ϕ are unknown, learn them from data!

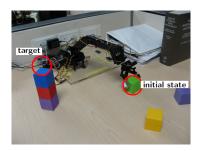
Literature:

Todorov: Probabilistic inference of multi-joint movements, skeletal parameters and marker attachments from diverse sensor data. (IEEE Transactions on Biomedical Engineering 2007)

Deisenroth, Rasmussen & Fox: Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning (RSS 2011)



Todorov: Probabilistic inference of multi-joint movements, skeletal parameters and marker attachments from diverse sensor data. (IEEE Transactions on Biomedical Engineering 2007)



Deisenroth, Rasmussen & Fox: Learning to Control a Low-Cost Manipulator using Data-Efficient Reinforcement Learning (RSS 2011)

System Id examples: Dynamics

• If the dynamics $\dot{x} = f(x, u)$ are unknown, learn them from data!

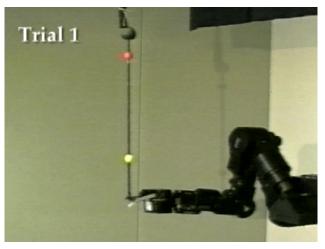
Literature:

Moore: Acquisition of Dynamic Control Knowledge for a Robotic Manipulator (ICML 1990)

Atkeson, Moore & Schaal: Locally weighted learning for control. Artificial Intelligence Review, 1997.

Schaal, Atkeson & Vijayakumar: Real-Time Robot Learning with Locally Weighted Statistical Learning. (ICRA 2000)

Vijayakumar et al: Statistical learning for humanoid robots, Autonomous Robots, 2002.



(Schaal, Atkeson, Vijayakumar)

• Use a simple regression method (locally weighted Linear Regression) to estimate $\dot{x}=f(x,u)$

Regression basics

[ML slides]

Applying System Id to the racer?

· Core problem:

We have no ground truth data!

- We can record data (u, y) (controls & observations), but not x!
- Try an EM like approach:
 - Hand-estimate the parameters as good as possible
 - Use a Kalman filter (better: smoother!!) to estimate the unobserved x during
 - Option (a): Learn local linear models $\ddot{q}=Ax+a+Bu$ and y=Cx+c+Du Option (b): Improve the parameters $\theta=(m_A,I_A,m_B,I_B,r,l,l_C,c_1,..,c_5)$
 - Repeat with Kalman smoothing
- I have no idea whether/how well this'll work

Data

We've collected data

- Motor responses
 - Free running wheels (no load..)
 - Setting extreme target velocities v^* and different acceleration levels $a^* \in \{-10, ..., -1, 1, ..., 10\}$ we can generate well-defined accelerations
- Balancing trials
 - the gyroscope picks up some oscillations
 - the accelerometer is very noisy, perhaps correlated with jerky controls
 - only 30Hz!