

Robotics

Mobile Robotics

State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM

> Marc Toussaint U Stuttgart

http://www.darpa.mil/grandchallenge05/

http://www.darpa.mil/grandchallenge/index.asp

 ${\tt http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf} \\ {\tt Quadcopter\ Indoor\ Localization} \\$

http://stair.stanford.edu/multimedia.php

Types of Robot Mobility

Types of Robot Mobility

• Each type of robot mobility corresponds to a system equation $x_{t+1} = x_t + \tau f(x_t, u_t)$ or, if the dynamics are stochastic,

$$P(x_{t+1} | u_t, x_t) = \mathcal{N}(x_{t+1} | x_t + \tau f(x_t, u_t), \Sigma)$$

• We considered control, path finding, and trajectory optimization

For this we always assumed to know the state x_t of the robot (e.g., its posture/position)!

Outline

- PART I:
 - A core challenge in mobile robotics is state estimation
 - → Bayesian filtering & smoothing particles, Kalman
- PART II:
 - Another challenge is to **build a map** while exploring
 - → SLAM (simultaneous localization and mapping)

PART I: State Estimation Problem

 Our sensory data does not provide sufficient information to determine our location.

• Given the local sensor readings y_t , the current state x_t (location,

position) is uncertain.

- which hallway?
- which door exactly?
- which heading direction?

State Estimation Problem

- What is the probability of being in front of room 154, given we see what is shown in the image?
- What is the probability given that we were just in front of room 156?
- What is the probability given that we were in front of room 156 and moved 15 meters?

Recall Bayes' theorem

$$P(X|Y) = \frac{P(Y|X) P(X)}{P(Y)}$$

$$posterior = \frac{\textit{likelihood} \cdot \textit{prior}}{\textit{(normalization)}}$$

 How can we apply this to the State Estimation Problem?

 How can we apply this to the State Estimation Problem?


```
x_t = state (location) at time t

y_t = sensor readings at time t

u_{t-1} = control command (action, steering, velocity) at time t-1
```

• Given the history $y_{0:t}$ and $u_{0:t-1}$, we want to compute the probability distribution over the state at time t

$$p_t(x_t) := P(x_t \mid y_{0:t}, u_{0:t-1})$$

Generally:

$$p_t(x_t) := P(x_t | y_{0:t}, u_{0:t-1})$$

$$\begin{aligned} p_t(x_t) &:= P(x_t \mid y_{0:t}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t, y_{0:t-1}, u_{0:t-1}) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \end{aligned}$$

using Bayes rule $P(X|Y,Z) = c \ P(Y|X,Z) \ P(X|Z)$ with some normalization constant c_t

$$\begin{aligned} p_t(x_t) &:= P(x_t \mid y_{0:t}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t, y_{0:t-1}, u_{0:t-1}) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \end{aligned}$$

uses conditional independence of the observation on past observations and controls

$$\begin{aligned} p_t(x_t) &:= P(x_t \mid y_{0:t}, u_{0:t-1}) \\ &= c_t \ P(y_t \mid x_t, y_{0:t-1}, u_{0:t-1}) \ P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \ P(y_t \mid x_t) \ P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \ P(y_t \mid x_t) \ \int_{x_{t-1}} P(x_t, x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \ dx_{t-1} \end{aligned}$$

by definition of the marginal

$$\begin{aligned} p_t(x_t) &:= P(x_t \mid y_{0:t}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t, y_{0:t-1}, u_{0:t-1}) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t, x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t \mid x_{t-1}, y_{0:t-1}, u_{0:t-1}) \; P(x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \end{aligned}$$

by definition of a conditional

$$\begin{split} p_t(x_t) &:= P(x_t \mid y_{0:t}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t, y_{0:t-1}, u_{0:t-1}) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t, x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t \mid x_{t-1}, y_{0:t-1}, u_{0:t-1}) \; P(x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t \mid x_{t-1}, y_{0:t-1}, u_{0:t-1}) \; P(x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \end{split}$$

given x_{t-1} , x_t depends only on the controls u_{t-1} (Markov Property)

$$\begin{split} p_t(x_t) &:= P(x_t \mid y_{0:t}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t, y_{0:t-1}, u_{0:t-1}) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t) \; P(x_t \mid y_{0:t-1}, u_{0:t-1}) \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t, x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t \mid x_{t-1}, y_{0:t-1}, u_{0:t-1}) \; P(x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t \mid x_{t-1}, u_{t-1}) \; P(x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \\ &= c_t \; P(y_t \mid x_t) \; \int_{x_{t-1}} P(x_t \mid u_{t-1}, u_{t-1}) \; P(x_{t-1} \mid y_{0:t-1}, u_{0:t-1}) \; dx_{t-1} \end{split}$$

• A Bayes filter updates the posterior belief $p_t(x_t)$ in each time step using the: observation model $P(y_t \mid x_t)$

transition model $P(x_t | u_{t-1}, x_{t-1})$

$$p_t(x_t) \propto \underbrace{P(y_t \mid x_t)}_{\text{new information}} \underbrace{\int_{x_{t-1}} P(x_t \mid u_{t-1}, x_{t-1})}_{\text{predictive estimate } \hat{p}_t(x_t)} \underbrace{p_{t-1}(x_{t-1})}_{\text{old estimate}} dx_{t-1}$$

- 1. We have a belief $p_{t-1}(x_{t-1})$ of our previous position
- 2. We use the motion model to predict the current position

$$\hat{p}_t(x_t) \propto \int_{x_{t-1}} P(x_t \mid u_{t-1}, x_{t-1}) \ p_{t-1}(x_{t-1}) \ dx_{t-1}$$

3. We integetrate this with the current observation to get a better belief $p_t(x_t) \propto P(y_t \mid x_t) \ \hat{p}_t(x_t)$

• Typical transition model $P(x_t | u_{t-1}, x_{t-1})$ in robotics:

(from *Robust Monte Carlo localization for mobile robots* Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

Odometry ("Dead Reckoning")

• The predictive distributions $\hat{p}_t(x_t)$ without integrating observations (removing the $P(y_t|x_t)$ part from the Bayesian filter)

(from *Robust Monte Carlo localization for mobile robots* Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

Again, predictive distributions $\hat{p}_t(x_t)$ without integrating landmark observations

The Bayes-filtered distributions $p_t(\boldsymbol{x}_t)$ integrating landmark observations

Bayesian Filters

• How to represent the belief $p_t(x_t)$:

Gaussian

Particles

Recall: Particle Representation of a Distribution

• Weighed set of N particles $\{(x^i, w^i)\}_{i=1}^N$

$$p(x) \approx q(x) := \sum_{i=1}^{N} w^{i} \delta(x, x^{i})$$

Particle Filter := Bayesian Filtering with Particles

(Bayes Filter: $p_t(x_t) \propto P(y_t \mid x_t) \int_{x_{t-1}} P(x_t \mid u_{t-1}, x_{t-1}) p_{t-1}(x_{t-1}) dx_{t-1}$)

- 1. Start with N particles $\{(x_{t-1}^i, w_{t-1}^i)\}_{i=1}^N$
- 2. Resample particles to get N weight-1-particles: $\{\hat{x}_{t-1}^i\}_{i=1}^N$
- 3. Use motion model to get new "predictive" particles $\{x_t^i\}_{i=1}^N$ each $x_t^i \sim P(x_t \mid u_{t-1}, \hat{x}_{t-1}^i)$
- 4. Use observation model to assign new weights $w_t^i \propto P(y_t \,|\, x_t^i)$

"Particle Filter"

aka Monte Carlo Localization in the mobile robotics community

Condensation Algorithm in the vision community

Efficient resampling is important:
 Typically "Residual Resampling":

Instead of sampling directly $\hat{n}^i \sim \text{Multi}(\{Nw_i\})$ set $\hat{n}^i = \lfloor Nw_i \rfloor + \bar{n}_i$ with $\bar{n}_i \sim \text{Multi}(\{Nw_i - \lfloor Nw_i \rfloor\})$

Liu & Chen (1998): Sequential Monte Carlo Methods for Dynamic Systems. Douc, Cappé & Moulines: Comparison of Resampling Schemes for Particle Filtering.

Example: Quadcopter Localization

 ${\tt http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf} \\ Quadcopter\ Indoor\ Localization$

Typical Pitfall in Particle Filtering

- Predicted particles $\{x_t^i\}_{i=1}^N$ have very low observation likelihood $P(y_t\,|\,x_t^i)\approx 0$ ("particles die over time")
- Classical solution: generate particles also with other than purely forward proposal $P(x_t | u_{t-1}, x_{t-1})$:
 - Choose a proposal that depends on the new observation y_t , ideally approximating $P(x_t \,|\, y_t, u_{t-1}, x_{t-1})$
 - Or mix particles sampled directly from $P(y_t \mid x_t)$ and from $P(x_t \mid u_{t-1}, x_{t-1})$. (Robust Monte Carlo localization for mobile robots. Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

Kalman filter := Bayesian Filtering with Gaussians

Bayes Filter: $p_t(x_t) \propto P(y_t | x_t) \int_{x_{t-1}} P(x_t | u_{t-1}, x_{t-1}) p_{t-1}(x_{t-1}) dx_{t-1}$

 Can be computed analytically for linear-Gaussian observations and transitions:

$$P(y_t \mid x_t) = \mathcal{N}(y_t \mid Cx_t + c, W)$$

$$P(x_t \mid u_{t-1}, x_{t-1}) = \mathcal{N}(x_t \mid A(u_{t-1}) \mid x_{t-1} + a(u_{t-1}), Q)$$

Defition:

$$\mathcal{N}(x \,|\, a, A) = \frac{1}{|2\pi A|^{1/2}} \, \exp\{-\frac{1}{2}(x \, \cdot a)^{\!\top} \, A^{\text{-}1} \, (x \, \cdot a)\}$$

Product:

$$\mathcal{N}(x \mid a,A) \ \mathcal{N}(x \mid b,B) = \mathcal{N}(x \mid B(A+B)^{\text{-}1}a + A(A+B)^{\text{-}1}b, A(A+B)^{\text{-}1}B) \ \ \mathcal{N}(a \mid b,A+B)$$
 "Propagation":

$$\int_{\mathcal{Y}} \mathcal{N}(x \mid a + Fy, A) \, \mathcal{N}(y \mid b, B) \, dy = \mathcal{N}(x \mid a + Fb, A + FBF^{\top})$$
Transformation:

$$\mathcal{N}(Fx + f \mid a, A) = \frac{1}{|F|} \mathcal{N}(x \mid F^{-1}(a - f), F^{-1}AF^{-\top})$$

(more identities: see "Gaussian identities"

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf)

Kalman filter derivation

$$\begin{split} p_{t}(x_{t}) &= \mathbb{N}(x_{t} \,|\, s_{t}, S_{t}) \\ P(y_{t} \,|\, x_{t}) &= \mathbb{N}(y_{t} \,|\, Cx_{t} + c, W) \\ P(x_{t} \,|\, u_{t-1}, x_{t-1}) &= \mathbb{N}(x_{t} \,|\, Ax_{t-1} + a, Q) \\ p_{t}(x_{t}) &\propto P(y_{t} \,|\, x_{t}) \int_{x_{t-1}} P(x_{t} \,|\, u_{t-1}, x_{t-1}) \,p_{t-1}(x_{t-1}) \,dx_{t-1} \\ &= \mathbb{N}(y_{t} \,|\, Cx_{t} + c, W) \int_{x_{t-1}} \mathbb{N}(x_{t} \,|\, Ax_{t-1} + a, Q) \,\mathbb{N}(x_{t-1} \,|\, s_{t-1}, S_{t-1}) \,dx_{t-1} \\ &= \mathbb{N}(y_{t} \,|\, Cx_{t} + c, W) \,\mathbb{N}(x_{t} \,|\, \underbrace{As_{t-1} + a}_{=:\hat{s}_{t}}, \underbrace{Q + AS_{t-1}A^{\mathsf{T}}}_{=:\hat{s}_{t}}) \\ &= \mathbb{N}(Cx_{t} + c \,|\, y_{t}, W) \,\mathbb{N}(x_{t} \,|\, \hat{s}_{t}, \hat{s}_{t}) \\ &= \mathbb{N}(Cx_{t} + c \,|\, y_{t}, W) \,\mathbb{N}(x_{t} \,|\, \hat{s}_{t}, \hat{s}_{t}) \\ &= \mathbb{N}(x_{t} \,|\, C^{\mathsf{T}}W^{-1}(y_{t} - c), \, C^{\mathsf{T}}W^{-1}C] \,\mathbb{N}(x_{t} \,|\, \hat{s}_{t}, \hat{s}_{t}) \\ &= \mathbb{N}(x_{t} \,|\, s_{t}, S_{t}) \cdot \langle \text{terms indep. of } x_{t} \rangle \\ S_{t} &= (C^{\mathsf{T}}W^{-1}C + \hat{S}_{t}^{-1})^{-1} = \hat{S}_{t} - \underbrace{\hat{S}_{t}C^{\mathsf{T}}(W + C\hat{S}_{t}C^{\mathsf{T}})^{-1}}_{\text{"Kalman gain" } K} \\ s_{t} &= S_{t}[C^{\mathsf{T}}W^{-1}(y_{t} - c) + \hat{S}_{t}^{-1}\hat{s}_{t}] = \hat{s}_{t} + K(y_{t} - C\hat{s}_{t} - c) \end{split}$$

The second to last line uses the general Woodbury identity.

The last line uses $S_tC^{\mathsf{T}}W^{-1}=K$ and $S_t\hat{S}_t^{-1}=\mathbf{I}-KC$

Extended Kalman filter (EKF) and Unscented Transform

Bayes Filter:
$$p_t(x_t) \propto P(y_t | x_t) \int_{x_{t-1}} P(x_t | u_{t-1}, x_{t-1}) p_{t-1}(x_{t-1}) dx_{t-1}$$

 Can be computed analytically for linear-Gaussian observations and transitions:

$$\begin{split} P(y_t \mid x_t) &= \mathcal{N}(y_t \mid Cx_t + c, W) \\ P(x_t \mid u_{t-1}, x_{t-1}) &= \mathcal{N}(x_t \mid A(u_{t-1})x_{t-1} + a(u_{t-1}), Q) \end{split}$$

• If $P(y_t \mid x_t)$ or $P(x_t \mid u_{t-1}, x_{t-1})$ are not linear:

$$P(y_t \mid x_t) = \mathcal{N}(y_t \mid g(x_t), W)$$

$$P(x_t \mid u_{t-1}, x_{t-1}) = \mathcal{N}(x_t \mid f(x_{t-1}, u_{t-1}), Q)$$

- approximate f and g as locally linear (*Extended Kalman Filter*)
- or sample locally from them and reapproximate as Gaussian (Unscented Transform)

Bayes smoothing

Bayes smoothing

• Let $\mathcal{P} = y_{0:t}$ past observations, $\mathcal{F} = y_{t+1:T}$ future observations

$$P(x_t \mid \mathcal{P}, \mathcal{F}, u_{0:T}) \propto P(\mathcal{F} \mid x_t, \mathcal{P}, u_{0:T}) P(x_t \mid \mathcal{P}, u_{0:T})$$

$$= \underbrace{P(\mathcal{F} \mid x_t, u_{t:T})}_{=:\beta_t(x_t)} \underbrace{P(x_t \mid \mathcal{P}, u_{0:t-1})}_{=:p(x_t)}$$

Bayesian smoothing fuses a forward filter $p_t(x_t)$ with a backward "filter" $\beta_t(x_t)$

Bayes smoothing

• Let $\mathcal{P} = y_{0:t}$ past observations, $\mathcal{F} = y_{t+1:T}$ future observations

$$P(x_t \mid \mathcal{P}, \mathcal{F}, u_{0:T}) \propto P(\mathcal{F} \mid x_t, \mathcal{P}, u_{0:T}) P(x_t \mid \mathcal{P}, u_{0:T})$$

$$= \underbrace{P(\mathcal{F} \mid x_t, u_{t:T})}_{=:\beta_t(x_t)} \underbrace{P(x_t \mid \mathcal{P}, u_{0:t-1})}_{=:p(x_t)}$$

Bayesian smoothing fuses a forward filter $p_t(x_t)$ with a backward "filter" $\beta_t(x_t)$

Backward recursion (derivation analogous to the Bayesian filter)

$$\begin{split} \beta_t(x_t) &:= P(y_{t+1:T} \,|\, x_t, u_{t:T}) \\ &= \int_{x_{t+1}} \beta_{t+1}(x_{t+1}) \; P(y_{t+1} \,|\, x_{t+1}) \; P(x_{t+1} \,|\, x_t, u_t) \; dx_{t+1} \end{split}$$

PART II: Localization and Mapping

- The Bayesian filter requires an observation model $P(y_t | x_t)$
- A map is something that provides the observation model: A map tells us for each x_t what the sensor readings y_t might look like

Types of maps

Grid map

K. Murphy (1999): Bayesian map learning in dynamic environments.

Grisetti, Tipaldi, Stachniss, Burgard, Nardi: Fast and Accurate SLAM with Rao-Blackwellized Particle Filters

Laser scan map

Landmark map

Victoria Park data set

M. Montemerlo, S. Thrun, D. Koller, & B. Wegbreit (2003): FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. IJ-CAI, 1151–1156.

Simultaneous Localization and Mapping Problem

Notation:

```
x_t = state (location) at time t y_t = sensor readings at time t u_{t-1} = control command (action, steering, velocity) at time t-1 m = the map
```

• Given the history $y_{0:t}$ and $u_{0:t-1}$, we want to compute the belief over the pose AND THE MAP m at time t

$$p_t(x_t, m) := P(x_t, m \mid y_{0:t}, u_{0:t-1})$$

- We assume to know:
 - transition model $P(x_t | u_{t-1}, x_{t-1})$
 - observation model $P(y_t | x_t, \mathbf{m})$

SLAM: classical "chicken or egg problem"

• If we knew the state trajectory $x_{0:t}$ we could efficiently compute the belief over the map

$$P(m \mid x_{0:t}, y_{0:t}, u_{0:t-1})$$

 If we knew the map we could use a Bayes filter to compute the belief over the state

$$P(x_t | m, y_{0:t}, u_{0:t-1})$$

SLAM: classical "chicken or egg problem"

• If we knew the state trajectory $x_{0:t}$ we could efficiently compute the belief over the map

$$P(m \mid x_{0:t}, y_{0:t}, u_{0:t-1})$$

 If we knew the map we could use a Bayes filter to compute the belief over the state

$$P(x_t | m, y_{0:t}, u_{0:t-1})$$

- SLAM requires to tie state estimation and map building together:
 - 1) Joint inference on x_t and $m \in \mathsf{Kalman-SLAM}$
 - Tie a state hypothesis (=particle) to a map hypothesis (→ particle SLAM)
 - 3) Frame everything as a graph optimization problem $(\rightarrow \text{graph SLAM})$

Joint Bayesian Filter over x and m

A (formally) straight-forward approach is the joint Bayesian filter

$$p_t(x_t,m) \; \propto \; P(y_t \, | \, x_t,m) \; \int_{x_{t\text{--}1}} P(x_t \, | \, u_{t\text{--}1},x_{t\text{--}1}) \; p_{t\text{--}1}(x_{t\text{--}1},m) \; dx_{t\text{--}1}$$

But: How represent a belief over high-dimensional x_t, m ?

Map uncertainty

• In the case the map $m=(\theta_1,..,\theta_N)$ is a set of N landmarks, $\theta_j\in\mathbb{R}^2$

Use Gaussians to represent the uncertainty of landmark positions

(Extended) Kalman Filter SLAM

- Analogous to Localization with Gaussian for the pose belief $p_t(x_t)$
 - But now: joint belief $p_t(x_t, \theta_{1:N})$ is 3 + 2N-dimensional Gaussian
 - Assumes the map $m=(\theta_1,..,\theta_N)$ is a set of N landmarks, $\theta_i \in \mathbb{R}^2$
 - Exact update equations (under the Gaussian assumption)
 - Conceptually very simple
- Drawbacks:
 - Scaling (full covariance matrix is $O(N^2)$)
 - Sometimes non-robust (uni-modal, "data association problem")
 - Lacks advantages of Particle Filter (multiple hypothesis, more robust to non-linearities)

SLAM with particles

Core idea: Each particle carries its own map belief

SLAM with particles

Core idea: Each particle carries its own map belief

- Use a conditional representation " $p_t(x_t, m) = p_t(x_t) \; p_t(m \, | \, x_t)$ " (This notation is flaky... the below is more precise)
- As for the Localization Problem use particles to represent the *pose* belief $p_t(x_t)$
 - Note: Each particle actually "has a history $x_{0:t}^i$ " a whole trajectory!
- \bullet For each particle separately, estimate the map belief $p_t^i(m)$ conditioned on the particle history $x_{0:t}^i.$
 - The conditional beliefs $p_t^i(m)$ may be factorized over grid points or landmarks of the map
 - K. Murphy (1999): Bayesian map learning in dynamic environments.

 http://www.cs.ubc.ca/~murphyk/Papers/map_nips99.pdf
 39/48

Map estimation for a *given* particle history

- Given x_{0:t} (e.g. a trajectory of a particle), what is the posterior over the map m?
 - \rightarrow simplified Bayes Filter:

$$p_t(m) := P(m \mid x_{0:t}, y_{0:t}) \propto P(y_t \mid m, x_t) p_{t-1}(m)$$

(no transtion model: assumption that map is constant)

• In the case of landmarks (FastSLAM):

$$\begin{split} m &= (\theta_1,..,\theta_N) \\ \theta_j &= \text{position of the } j \text{th landmark, } j \in \{1,..,N\} \\ n_t &= \text{which landmark we observe at time } t, \quad n_t \in \{1,..,N\} \end{split}$$

We can use a separate (Gaussian) Bayes Filter for each θ_j conditioned on $x_{0:t}$, each θ_j is independent from each θ_k :

$$P(\theta_{1:N} \mid x_{0:t}, y_{0:n}, n_{0:t}) = \prod_{j} P(\theta_j \mid x_{0:t}, y_{0:n}, n_{0:t})$$

Particle likelihood in SLAM

• Particle likelihood for Localization Problem:

$$w_t^i = P(y_t \,|\, x_t^i)$$
 (determins the new importance weight w_t^i

(determine the new importance weight ω_t

 In SLAM the map is uncertain → each particle is weighted with the expected likelihood:

$$w_t^i = \int P(y_t \,|\, x_t^i, m) \; p_{t-1}(m) \; dm$$

• In case of landmarks (FastSLAM):

$$w_t^i = \int P(y_t | x_t^i, \theta_{n_t}, n_t) \ p_{t-1}(\theta_{n_t}) \ d\theta_{n_t}$$

• Data association problem (actually we don't know n_t): For each particle separately choose $n_t^i = \operatorname{argmax}_{n_t} w_t^i(n_t)$

Particle-based SLAM summary

- We have a set of N particles $\{(x^i,w^i)\}_{i=1}^N$ to represent the pose belief $p_t(x_t)$
- For each particle we have a separate map belief $p_t^i(m)$; in the case of landmarks, this factorizes in N separate 2D-Gaussians
- Iterate
 - 1. Resample particles to get N weight-1-particles: $\{\hat{x}_{t-1}^i\}_{i=1}^N$
 - 2. Use motion model to get new "predictive" particles $\{x_t^i\}_{i=1}^N$
 - 3. Update the map belief $p_m^i(m) \propto P(y_t \, | \, m, x_t) \; p_{t-1}^i(m)$ for each particle
 - 4. Compute new importance weights $w_t^i \propto \int P(y_t \,|\, x_t^i, m) \; p_{t-1}(m) \; dm$ using the observation model and the map belief

Demo: Visual SLAM

• Map building from a freely moving camera

Demo: Visual SLAM

- Map building from a freely moving camera
 - SLAM has become a bit topic in the vision community...
 - features are typically landmarks $\theta_{1:N}$ with SURF/SIFT features
 - PTAM (Parallel Tracking and Mapping) parallelizes computations...

PTAM1 PTAM2

TODO: 11-DTAM-Davidson

G Klein, D Murray: Parallel Tracking and Mapping for Small AR

Workspaces http://www.robots.ox.ac.uk/~gk/PTAM/

Alternative SLAM approach: Graph-based

- Represent the previous trajectory as a graph
 - nodes = estimated positions & observations
 - edges = transition & step estimation based on scan matching
- ullet Loop Closing: check if some nodes might coincide o new edges
- Classical Optimization:
 The whole graph defines an optimization problem: Find poses that minimize sum of edge & node errors

Loop Closing Problem

(Doesn't explicitly exist in Particle Filter methods: If particles cover the belief, then "data association" solves the "loop closing problem")

Graph-based SLAM

Life-long Map Learning for Graph-based SLAM Approaches in Static Environments Kretzschmar, Grisetti, Stachniss

SLAM code

 Graph-based and grid map methods: http://openslam.org/

• Visual SLAM e.g. http://ewokrampage.wordpress.com/