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http://www.darpa.mil/grandchallenge05/

DARPA Grand Challenge 2005

2/48


http://www.darpa.mil/grandchallenge05/

http://www.darpa.mil/grandchallenge/index.asp
DARPA Grand Urban Challenge 2007
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http://www.darpa.mil/grandchallenge/index.asp

http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf

Quadcopter Indoor Localization
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http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf

http://stair.stanford.edu/multimedia.php

STAIR: STanford Atrtificial Intelligence Robot 5/48


http://stair.stanford.edu/multimedia.php

Types of Robot Mobility
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Types of Robot Mobility

Compliant Actuated
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e Each type of robot mobility corresponds to a
system equation x;1 = z; + 7f (x4, ut)
or, if the dynamics are stochastic,

P(@oq1 | ug, 2) = N | 0 + 7f (31, u1), )
e We considered control, path finding, and trajectory optimization

For this we always assumed to know the state z, of the robot (e.g., its
posture/position)!

8/48



Outline

e PART I:
A core challenge in mobile robotics is state estimation
— Bayesian filtering & smoothing
particles, Kalman

e PART II:
Another challenge is to build a map while exploring
— SLAM (simultaneous localization and mapping)
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PART I: State Estimation Problem

e Our sensory data does not provide sufficient information to determine
our location.

e Given the local sensor readings y;, the current state x; (location,
position) is uncertain.

— which hallway?
— which door exactly?
— which heading direction?
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State Estimation Problem

e What is the probability of being in front
of room 154, given we see what is
shown in the image?

e What is the probability given that we
were just in front of room 1567

e What is the probability given that we
were in front of room 156 and moved
15 meters?
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Recall Bayes’ theorem

P(X|Y) = —P<Y|1§f(>yf<X>

likelihood - prior

pOS’[GI’IOI’ - (normalization)
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e How can we apply this to the
State Estimation Problem?
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e How can we apply this to the
State Estimation Problem?

Using Bayes Rule:

P(Iocation | sensor) __ P(sensor | location) P(location)

P(sensor)

=S
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Bayes Filter

x, = state (location) at time ¢
y; = sensor readings at time ¢
ug1 = control command (action, steering, velocity) at time ¢-1

e Given the history yo.; and ug...1, we want to compute the probability
distribution over the state at time ¢

pt(mt) = P(ﬂﬁt | Yo:t, Uo:m)

e Generally:

Filtering: P(z¢|yo:t) T

Smoothing: P(x:|yo:r) [ s 2/ 7

Tt
Prediction: P(zt|yo:s) Vimsii ) A
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Bayes Filter

pt(l’t) = P(l’t \yo;t,uo:u)
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Bayes Filter

Pt(xt) = P(xt \yO:t,UO:t-l)

= ¢t P(ye | ¢, Yo:t-1, Uo:e-1) Pt | Yo:t-1, Uo:t-1)

using Bayes rule P(X Y, Z) = ¢ P(Y|X, Z) P(X|Z) with some
normalization constant ¢,
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Bayes Filter

pe(xe) == Pz | Yo:t, vo:0-1)
= ¢t P(ye | ¢, Yot-1, uo:e-1) Pt | Yo, o:t-1)

= ¢ Py | xe) P(@t | Yot-1, %oit1)

uses conditional independence of the observation on past observations
and controls
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Bayes Filter

pe(xe) = P(¢ | Yout, vo:e-1)
= ¢t P(ye | 4, yoie1, uo:e-1) P(xe | Yo:0-1, Uo:e-1)

= ¢t Py | 2¢) P(w¢ | Yo:t1, Uo:t-1)

=c P(ye | xy) / P(xy, e | Youre1, o) AT

Lt-1

by definition of the marginal
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Bayes Filter
pe(we) = P(2¢ | Yout, vo:e-1)

= ¢t P(ye | 4, yo:e-1, uo:e-1) P24 | Yo:t-1, Uo:e-1)

=ct Pyt | xt) P2t | Yo:t1, vo:t-1)

=ct P(ys | x¢) / P(xy, e | Youre1, Uo:1) AT
Tt-1

=c Py | xy) / P(xy | o1, Youre1, o:1) P(zea | Youe1, o) dxea
Tt-1

by definition of a conditional
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Bayes Filter

pe(x¢) == P(z¢ | Yo:t, o:t-1)
= ¢t P(ye | 4, yoie1, uo:e-1) P(xe | Yo:0-1, Uo:e-1)

= ¢t Py | 2¢) P(w¢ | Yo:t1, Uo:t-1)

=c P(ye | xy) / P(xy, e | Youre1, o) AT

Lt-1

=c P(ys | xy) / P(xy| o1, Youre1, o) Pz | Youo1, o) dxea
Tt-1

=c Py | xy) / P(xy | xp1, ) P(zea | Yo, o) dxea
Tt-1

given x,.1, x; depends only on the controls u;.; (Markov Property)
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Bayes Filter

Pt(xt) = P(xt \yomUo:m)
= ¢t P(ye | ¢, Yot-1, uo:e-1) P24 | Yo:t-1, Uo:t-1)

=ct Pyt | z¢) P(we | Yo:t1, vo:t1)

=ct Py | w) / P(xt, 241 | Yort-1, Uor-1) Aoy
Tt-1

=ct P(yi|w) / P(x¢ | o1, Your1, o:1) P(zea | Youe1, o) dxea
Zt-1

=c; Py |2e) / Pz | zea,uea) P(e | Yoe1, woi1) s
Zt-1

=ct Pyt | z1) / P(wg | g1, w01) pra(@ea) dog
Tt-1
o A Bayes filter updates the posterior belief p;(z;) in each time step
using the:
observation model P(y, | x)

transition model P(x; | w1, x41) 1548



Bayes Filter

p(e) o« Py |z / P2 | e, 21) pea(@en) deen
— Tia —_——

t- .
new information old estimate

~—
predictive estimate py (z+)

1. We have a belief p;; (x:1) of our previous position

2. We use the motion model to predict the current position
Pe(wy) o< fmt_l P2y | w1, 0e1) pra(@ea) doey

3. We integetrate this with the current observation to get a better belief
pe(we) o< P(ye | @) Pe()
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e Typical transition model P(z; | us1,2:1) in robotics:

)

(from Robust Monte Carlo localization for mobile robots Sebastian
Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

-
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Odometry (“Dead Reckoning”)

e The predictive distributions p;(xz;) without integrating observations
(removing the P(y.|z;) part from the Bayesian filter)

Start location

(from Robust Monte Carlo localization for mobile robots Sebastian
Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)
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Again, predictive distributions p;(z;) without integrating landmark

observations
* *
* %/%i@
/

* *
b
/ * 3

A

7 *
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The Bayes-filtered distributions p; () integrating landmark
observations
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Bayesian Filters

e How to represent the belief p;(x;):

e Gaussian

o Particles
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Recall: Particle Representation of a Distribution

e Weighed set of N particles {(z*,w®)}¥
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Particle Filter := Bayesian Filtering with Particles

(Bayes Filter: py(v¢) o< P(ye|21) [, Plas|uer, xe1) pea(ea) dees)

T 11

I X w
O

O=-——-@

1. Start with NV particles { (=i, wi )},

2. Resample particles to get N weight-1-particles: {3},

3. Use motion model to get new “predictive” particles {zi} ,
each zi ~ P(xy | ugy,2%,)

4. Use observation model to assign new weights w; o P(y; | z%)
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“Particle Filter”
aka Monte Carlo Localization in the mobile robotics community

Condensation Algorithm in the vision community

Efficient resampling is important:
Typically “Residual Resampling”:

Instead of sampling directly 7" ~ Multi({ Nw;}) set 4’ = | Nw; | + f; with
Ay ~ Multi({ Nw; — | Nw;]})

Liu & Chen (1998): Sequential Monte Carlo Methods for Dynamic Systems.
Douc, Cappé & Moulines: Comparison of Resampling Schemes for Particle
Filtering.
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Example: Quadcopter Localization

http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf
Quadcopter Indoor Localization
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http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf

Typical Pitfall in Particle Filtering

e Predicted particles {zi}¥ , have very low observation likelihood
P(ye|a}) = 0
(“particles die over time”)

¢ Classical solution: generate particles also with other than purely
forward proposal P(x; | us.1, Zs1):

— Choose a proposal that depends on the new observation y;, ideally
approximating P(x¢ | ye, ue1, Ze1)

— Or mix particles sampled directly from P(y; | z;) and from

Pzt | w1, v41)-
(Robust Monte Carlo localization for mobile robots. Sebastian Thrun, Dieter Fox,
Wolfram Burgard, Frank Dellaert)
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Kalman filter := Bayesian Filtering with Gaussians

Bayes Filter: p;(x:) o< P(y;|z¢) f-'l/'t—l Py |upy, 1) pra(xe) dee

e Can be computed analytically for linear-Gaussian observations and
transitions:
Py |2¢) = N(ye | Coy + ¢, W)
P(xy |uga, vea) = N(zy | A(uer) o1 + alug), Q)

Defition:

N(z|a,A) = m exp{—%(m -a)l A (z-a)}

Product:

N(z|a, A) N(z | b, B) = N(z | B(A+B)'a + A(A+B)1b, A(A+B)'B) N(a|b, A+ B)
“Propagation”:

ny(a:|a+Fy,A) N(y|b, B) dy = N(z|a + Fb, A+ FBFT)

Transformation:

N(Fz+ fl|a,A) = ﬁ N(z| Fl(a— f), FTAFT)

(more identities: see “Gaussian identities”
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf)
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http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf

Kalman filter derivation

pe(ze) = N(we | s¢, St)
P(yt|zt) = N(yt | Cxy + ¢, W)
Pzt | upa, 1) = Nzt | Aze1 + a, Q)

pe(xt) < Pyt \xt)/ Pzt | w1, 1) pee1 (@e-1) det
Tt-1

=N(yt | Cxt + ¢, W) / N(z¢ | Azga + a, Q) N(m¢-1 | s¢-1, St-1) dagn
Tyl

=N(yt | Cxt + ¢, W) N(z¢ | Astr +a, Q+ ASt,lAT)
=:8 =:5
= N(Cx¢ + c|yt, W) N(zt | 3¢, S¢)
= Nlz¢ | CTW(ye — ¢), CTWC] N(z¢ | 3¢, St)
= N(w¢ | s¢,St) - (terms indep. of z¢)
Sy = (CWro+ 84t =8 — 5,.T(W + ¢S5,y s,

“Kalman gain” K
st = St [CTW_l (yt — C) + §£1§t} = 5 + K(yt —C3; — C)

The second to last line uses the general Woodbury identity.
The last line uses $;CTW-! = K and $;5;' =1 - KC 28/48



Extended Kalman filter (EKF) and Unscented
Transform

Bayes Filter: p;(w:) oc P(y: | ) fmt_l P(xy | U, @41) Pro1 (T41) dvg

e Can be computed analytically for linear-Gaussian observations and
transitions:
P(ys | zt) = N(y | Cxy + ¢, W)
P2t |, we1) = N(2t | A(upr) e + alusr), Q)

o If P(y,|xz,) or P(x;|up1,21) are not linear:
P(ye | @) = N(ye | g(ae), W)
P(xt \ut-l, $t-1) = N(xt | f(xt-h ut-1), Q)
— approximate f and g as locally linear (Extended Kalman Filter)
— or sample locally from them and reapproximate as Gaussian
(Unscented Transform)
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Bayes smoothing

Filtering: P(x¢|yo:t) 7 e /j,g

Smoothing: P(z¢|yor) s’ 2/ %,

T
Prediction: P(x¢|yo:s) s A
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Bayes smoothing
e Let P = yq. past observations, F = y;.;. future observations

P(xt |:Pa 577 uO:T) 08 P(?‘It, :Pv uO:T) P(It |?7UO:T)
= P(?‘xtaut:T) P(ﬂct | ﬂ)7U0:t-1)
:1Bt(iﬂt) :IP(It)

Bayesian smoothing fuses a forward filter p,(x,) with a backward “filter” 5,(z+)
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Bayes smoothing
e Let P = yq. past observations, F = y;.;. future observations

P(It |:Pa ?7 UO:T) 08 P(S’P‘xt’ va UO:T) P(xt |?7UO:T)
= P(?‘xtaut:T) P(ﬂct | ﬂ)7U0:t-1)
=8¢ () =:p(x¢)

Bayesian smoothing fuses a forward filter p,(x,) with a backward “filter” 5,(z+)

e Backward recursion (derivation analogous to the Bayesian filter)

ﬁt(ﬂUt) = P(yt+1:T \ xtaut:T)

= Bia1(Ti+1) P(Yetr | Ter1) P(wegr |24, ue) doggs

Tt41
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PART IlI: Localization and Mapping

e The Bayesian filter requires an observation model P(y; | z)

e A map is something that provides the observation model:
A map tells us for each x; what the sensor readings vy, might look like
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Types of maps

Grid map Landmark map

K. Murphy (1999): Bayesian map learning
in dynamic environments.

Grisetti, Tipaldi, Stachniss, Burgard, Nardi:
Fast and Accurate SLAM with
Rao-Blackwellized Particle Filters

Victoria Park data set

M. Montemerlo, S. Thrun, D. Koller, & B. Weg-
breit (2003): FastSLAM 2.0: An improved parti-
cle filtering algorithm for simultaneous localiza-
tion and mapping that provably converges. |J-
CAl, 1151-1156.

Laser scan map
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Simultaneous Localization and Mapping Problem

¢ Notation:
x; = state (location) at time ¢
y: = sensor readings at time ¢
ugq = control command (action, steering, velocity) at time ¢-1
m = the map

e Given the history yo.: and ug.c.1, we want to compute the belief over the
pose AND THE MAP m at time ¢

pt(xta m) = P(xt,m | on:t,Uo:t-l)
e We assume to know:

— transition model P(xt | w1, x1)
— observation model P(y; | z¢,m)
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SLAM: classical “chicken or egg problem”

o If we knew the state trajectory x,.; we could efficiently compute the
belief over the map

P(m | To:t, Yo:t» uO:t—l)

¢ If we knew the map we could use a Bayes filter to compute the belief
over the state

P(»Tt \ m; Yo:t, Uo:t_1)
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SLAM: classical “chicken or egg problem”

o If we knew the state trajectory x,.; we could efficiently compute the
belief over the map
P(m | To:t, Yo:t» uO:t—l)

¢ If we knew the map we could use a Bayes filter to compute the belief
over the state

P(»Tt \ m; Yo:t, Uo:t_1)

e SLAM requires to tie state estimation and map building together:
1) Joint inference on x; and m (— Kalman-SLAM)
2) Tie a state hypothesis (=particle) to a map hypothesis
(— particle SLAM)
3) Frame everything as a graph optimization problem (— graph SLAM)

35/48



Joint Bayesian Filter over x and m

¢ A (formally) straight-forward approach is the joint Bayesian filter

pe(xe,m) o< Plye|ze,m) [ Play|uer, 2ea) pra(en, m) doe

But: How represent a belief over high-dimensional z;, m?
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Map uncertainty

e In the case the map m = (61, .., 0x) is a set of V landmarks, 0; € R?

e Use Gaussians to represent the uncertainty of landmark positions
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(Extended) Kalman Filter SLAM

e Analogous to Localization with Gaussian for the pose belief p;(z;)
— But now: joint belief p;(z, 01.n) is 3 + 2N-dimensional Gaussian
— Assumes the map m = (61, ..,0x) is a set of N landmarks, 0; € R?
— Exact update equations (under the Gaussian assumption)
— Conceptually very simple

e Drawbacks:
— Scaling (full covariance matrix is O(N?))
— Sometimes non-robust (uni-modal, “data association problem”)
— Lacks advantages of Particle Filter
(multiple hypothesis, more robust to non-linearities)
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SLAM with particles

Core idea: Each particle carries its own map belief

39/48


http://www.cs.ubc.ca/~murphyk/Papers/map_nips99.pdf

SLAM with particles

Core idea: Each particle carries its own map belief

e Use a conditional representation “p;(x¢,m) = pi(ay) pr(m|xy)”
(This notation is flaky... the below is more precise)

¢ As for the Localization Problem use particles to represent the pose
Note: Each particle actually “has a history z{.,” — a whole trajectory!

e For each particle separately, estimate the map belief pi(m) conditioned
on the particle history z{ ,.
The conditional beliefs pi(m) may be factorized over grid points or
landmarks of the map

K. Murphy (1999): Bayesian map learning in dynamic environments.
http://www.cs.ubc.ca/~murphyk/Papers/map_nips99.pdf
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http://www.cs.ubc.ca/~murphyk/Papers/map_nips99.pdf

Map estimation for a given particle history
e Given z¢; (e.g. a trajectory of a particle), what is the posterior over the

map m?

— simplified Bayes Filter:
pe(m) := P(m| 204, Yo0:) o< P(ye | m, ) pra(m)

(no transtion model: assumption that map is constant)

¢ In the case of landmarks (FastSLAM):
m = (61,..,0n)
g, = position of the jth landmark, j € {1,.., N}
n¢ = which landmark we observe attime t, n; € {1,..,N}

We can use a separate (Gaussian) Bayes Filter for each ¢;
conditioned on zq.¢, each 6; is independent from each 6;,:

P(01:8 | 0:t,Y0:n, m0:t) = [ [ P05 |Z0:t, Y0im, m0:t)
’ 40/48



Particle likelihood in SLAM

e Particle likelihood for Localization Problem:
wi = P(y \l’%)
(determins the new importance weight w;

e In SLAM the map is uncertain — each particle is weighted with the
expected likelihood:

wé = fP(yt | xiﬁ”) pi—1(m) dm

e In case of landmarks (FastSLAM):
wz = f P(yt | in, entant) pt—l(ant) danf,

¢ Data association problem (actually we don’t know n;):
For each particle separately choose n = argmax,,, w;(n;)
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Particle-based SLAM summary

e We have a set of N particles {(z%,w")}¥, to represent the pose belief
pe(we)

e For each particle we have a separate map belief pi(m); in the case of
landmarks, this factorizes in N separate 2D-Gaussians

o lterate
1. Resample particles to get N weight-1-particles: {#i,}%,
2. Use motion model to get new “predictive” particles {z}Y ,
3. Update the map belief pi, (m) o< P(y; | m, ;) pi,(m) for each particle
4. Compute new importance weights w; o< [ P(y; |z}, m) pt—1(m) dm
using the observation model and the map belief
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Demo: Visual SLAM

¢ Map building from a freely moving camera
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Demo: Visual SLAM

¢ Map building from a freely moving camera
— SLAM has become a bit topic in the vision community..

— features are typically landmarks 6;. with SURF/SIFT features
— PTAM (Parallel Tracking and Mapping) parallelizes computations...

PTAM1 PTAM2
TODO: 11-DTAM-Davidson

G Klein, D Murray: Parallel Tracking and Mapping for Small AR
Workspaces http://www.robots.ox.ac.uk/~gk/PTAM/
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Alternative SLAM approach: Graph-based

® *
® *
x| g
// ® *
‘ N
d"”"'*“i‘b

o Represent the previous trajectory as a graph
— nodes = estimated positions & observations
— edges = transition & step estimation based on scan matching

e Loop Closing: check if some nodes might coincide — new edges

e Classical Optimization:
The whole graph defines an optimization problem: Find poses that
minimize sum of edge & node errors
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Loop Closing Problem

(Doesn’t explicitly exist in Particle Filter methods: If particles cover the

belief, then “data association” solves the “loop closing problem”)

T :‘\
v — IJ/'\‘{-‘E\
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LY "“i \
§
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Ta\ ,;,‘7\ \
N\ Correlation

response

et Gutman, Konolige
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Graph-based SLAM

e I P
L R {" o G ]

<l

vl
|l
P ]

Life-long Map Learning for Graph-based SLAM Approaches in Static Environments

Kretzschmar, Grisetti, Stachniss
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SLAM code

e Graph-based and grid map methods:
http://openslam.org/

e Visual SLAM
e.g. http://ewokrampage .wordpress. com/
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