Robotics

Mobile Robotics

State estimation, Bayes filter, odometry, particle filter, Kalman filter, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based

SLAM

Marc Toussaint
U Stuttgart

http://www.darpa.mil/grandchallenge05/

http://www.darpa.mil/grandchallenge/index.asp
DARPA Grand Urban Challenge 2007

http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf Quadcopter Indoor Localization

http://stair.stanford.edu/multimedia.php
STAIR: STanford Artificial Intelligence Robot

Types of Robot Mobility

Types of Robot Mobility

- Each type of robot mobility corresponds to a

$$
\text { system equation } x_{t+1}=x_{t}+\tau f\left(x_{t}, u_{t}\right)
$$

or, if the dynamics are stochastic,

$$
P\left(x_{t+1} \mid u_{t}, x_{t}\right)=\mathcal{N}\left(x_{t+1} \mid x_{t}+\tau f\left(x_{t}, u_{t}\right), \Sigma\right)
$$

- We considered control, path finding, and trajectory optimization

For this we always assumed to know the state x_{t} of the robot (e.g., its posture/position)!

Outline

- PART I:

A core challenge in mobile robotics is state estimation
\rightarrow Bayesian filtering \& smoothing particles, Kalman

- PART II:

Another challenge is to build a map while exploring
\rightarrow SLAM (simultaneous localization and mapping)

PART I: State Estimation Problem

- Our sensory data does not provide sufficient information to determine our location.
- Given the local sensor readings y_{t}, the current state x_{t} (location, position) is uncertain.
- which hallway?
- which door exactly?
- which heading direction?

State Estimation Problem

- What is the probability of being in front of room 154, given we see what is shown in the image?
- What is the probability given that we were just in front of room 156 ?
- What is the probability given that we were in front of room 156 and moved 15 meters?

Recall Bayes' theorem

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

posterior $=\frac{\text { likelihood } \cdot \text { prior }}{(\text { normalization })}$

- How can we apply this to the State Estimation Problem?

- How can we apply this to the State Estimation Problem?

Using Bayes Rule: $P($ location \mid sensor $)=\frac{P(\text { sensor } \mid \text { location }) P(\text { location })}{P(\text { sensor })}$

Bayes Filter

$x_{t}=$ state (location) at time t
$y_{t}=$ sensor readings at time t
$u_{t-1}=$ control command (action, steering, velocity) at time $t-1$

- Given the history $y_{0: t}$ and $u_{0: t-1}$, we want to compute the probability distribution over the state at time t

$$
p_{t}\left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right)
$$

- Generally:

Bayes Filter

$$
p_{t}\left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right)
$$

Bayes Filter

$$
\begin{aligned}
& p_{t}\left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right) \\
& \quad=c_{t} P\left(y_{t} \mid x_{t}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right)
\end{aligned}
$$

using Bayes rule $P(X \mid Y, Z)=c P(Y \mid X, Z) P(X \mid Z)$ with some normalization constant c_{t}

Bayes Filter

$$
\begin{aligned}
& p_{t}\left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right) \\
& \quad=c_{t} P\left(y_{t} \mid x_{t}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& \quad=c_{t} P\left(y_{t} \mid x_{t}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right)
\end{aligned}
$$

uses conditional independence of the observation on past observations and controls

Bayes Filter

$$
\begin{aligned}
& p_{t}\left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right) \\
& \quad=c_{t} P\left(y_{t} \mid x_{t}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& \quad=c_{t} P\left(y_{t} \mid x_{t}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& \quad=c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t}, x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1}
\end{aligned}
$$

by definition of the marginal

Bayes Filter

$$
\begin{aligned}
p_{t} & \left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t}, x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1} \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid x_{t-1}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1}
\end{aligned}
$$

by definition of a conditional

Bayes Filter

$$
\begin{aligned}
p_{t} & \left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t}, x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1} \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid x_{t-1}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1} \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid x_{t-1}, u_{t-1}\right) P\left(x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1}
\end{aligned}
$$

given x_{t-1}, x_{t} depends only on the controls u_{t-1} (Markov Property)

Bayes Filter

$$
\begin{aligned}
p_{t} & \left(x_{t}\right):=P\left(x_{t} \mid y_{0: t}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) P\left(x_{t} \mid y_{0: t-1}, u_{0: t-1}\right) \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t}, x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1} \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid x_{t-1}, y_{0: t-1}, u_{0: t-1}\right) P\left(x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1} \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid x_{t-1}, u_{t-1}\right) P\left(x_{t-1} \mid y_{0: t-1}, u_{0: t-1}\right) d x_{t-1} \\
& =c_{t} P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) p_{t-1}\left(x_{t-1}\right) d x_{t-1}
\end{aligned}
$$

- A Bayes filter updates the posterior belief $p_{t}\left(x_{t}\right)$ in each time step using the:
observation model $P\left(y_{t} \mid x_{t}\right)$
transition model $P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)$

Bayes Filter

$$
p_{t}\left(x_{t}\right) \propto \underbrace{P\left(y_{t} \mid x_{t}\right)}_{\text {new information }} \underbrace{\int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) \underbrace{p_{t-1}\left(x_{t-1}\right)}_{\text {old estimate }} d x_{t-1}}_{\text {predictive estimate } \hat{p}_{t}\left(x_{t}\right)}
$$

1. We have a belief $p_{t-1}\left(x_{t-1}\right)$ of our previous position
2. We use the motion model to predict the current position

$$
\hat{p}_{t}\left(x_{t}\right) \propto \int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) p_{t-1}\left(x_{t-1}\right) d x_{t-1}
$$

3. We integetrate this with the current observation to get a better belief

$$
p_{t}\left(x_{t}\right) \propto P\left(y_{t} \mid x_{t}\right) \hat{p}_{t}\left(x_{t}\right)
$$

- Typical transition model $P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)$ in robotics:

(from Robust Monte Carlo localization for mobile robots Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

Odometry ("Dead Reckoning")

- The predictive distributions $\hat{p}_{t}\left(x_{t}\right)$ without integrating observations (removing the $P\left(y_{t} \mid x_{t}\right)$ part from the Bayesian filter)

(from Robust Monte Carlo localization for mobile robots Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

Again, predictive distributions $\hat{p}_{t}\left(x_{t}\right)$ without integrating landmark observations

The Bayes-filtered distributions $p_{t}\left(x_{t}\right)$ integrating landmark observations

*

Bayesian Filters

- How to represent the belief $p_{t}\left(x_{t}\right)$:
- Gaussian
- Particles

Recall: Particle Representation of a Distribution

- Weighed set of N particles $\left\{\left(x^{i}, w^{i}\right)\right\}_{i=1}^{N}$

$$
p(x) \approx q(x):=\sum_{i=1}^{N} w^{i} \delta\left(x, x^{i}\right)
$$

Particle Filter := Bayesian Filtering with Particles

(Bayes Filter: $\left.p_{t}\left(x_{t}\right) \propto P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) p_{t-1}\left(x_{t-1}\right) d x_{t-1}\right)$

1. Start with N particles $\left\{\left(x_{t-1}^{i}, w_{t-1}^{i}\right)\right\}_{i=1}^{N}$
2. Resample particles to get N weight-1-particles: $\left\{\hat{x}_{t-1}^{i}\right\}_{i=1}^{N}$
3. Use motion model to get new "predictive" particles $\left\{x_{t}^{i}\right\}_{i=1}^{N}$ each $x_{t}^{i} \sim P\left(x_{t} \mid u_{t-1}, \hat{x}_{t-1}^{i}\right)$
4. Use observation model to assign new weights $w_{t}^{i} \propto P\left(y_{t} \mid x_{t}^{i}\right)$

- "Particle Filter"
aka Monte Carlo Localization in the mobile robotics community

Condensation Algorithm in the vision community

- Efficient resampling is important: Typically "Residual Resampling":

Instead of sampling directly $\hat{n}^{i} \sim \operatorname{Multi}\left(\left\{N w_{i}\right\}\right)$ set $\hat{n}^{i}=\left\lfloor N w_{i}\right\rfloor+\bar{n}_{i}$ with $\bar{n}_{i} \sim \operatorname{Multi}\left(\left\{N w_{i}-\left\lfloor N w_{i}\right\rfloor\right\}\right)$
Liu \& Chen (1998): Sequential Monte Carlo Methods for Dynamic Systems. Douc, Cappé \& Moulines: Comparison of Resampling Schemes for Particle Filtering.

Example: Quadcopter Localization

http://www.slawomir.de/publications/grzonka09icra/grzonka09icra.pdf Quadcopter Indoor Localization

Typical Pitfall in Particle Filtering

- Predicted particles $\left\{x_{t}^{i}\right\}_{i=1}^{N}$ have very low observation likelihood $P\left(y_{t} \mid x_{t}^{i}\right) \approx 0$
("particles die over time")
- Classical solution: generate particles also with other than purely forward proposal $P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)$:
- Choose a proposal that depends on the new observation y_{t}, ideally approximating $P\left(x_{t} \mid y_{t}, u_{t-1}, x_{t-1}\right)$
- Or mix particles sampled directly from $P\left(y_{t} \mid x_{t}\right)$ and from
$P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)$.
(Robust Monte Carlo localization for mobile robots. Sebastian Thrun, Dieter Fox, Wolfram Burgard, Frank Dellaert)

Kalman filter := Bayesian Filtering with Gaussians

Bayes Filter: $p_{t}\left(x_{t}\right) \propto P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) p_{t-1}\left(x_{t-1}\right) d x_{t-1}$

- Can be computed analytically for linear-Gaussian observations and transitions:

$$
\begin{aligned}
& P\left(y_{t} \mid x_{t}\right)=\mathcal{N}\left(y_{t} \mid C x_{t}+c, W\right) \\
& P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)=\mathcal{N}\left(x_{t} \mid A\left(u_{t-1}\right) x_{t-1}+a\left(u_{t-1}\right), Q\right)
\end{aligned}
$$

Defition:
$\mathcal{N}(x \mid a, A)=\frac{1}{|2 \pi A|^{1 / 2}} \exp \left\{-\frac{1}{2}(x-a)^{\top} A^{-1}(x-a)\right\}$
Product:
$\mathcal{N}(x \mid a, A) \mathcal{N}(x \mid b, B)=\mathcal{N}\left(x \mid B(A+B)^{-1} a+A(A+B)^{-1} b, A(A+B)^{-1} B\right) \mathcal{N}(a \mid b, A+B)$
"Propagation":
$\int_{y} \mathcal{N}(x \mid a+F y, A) \mathcal{N}(y \mid b, B) d y=\mathcal{N}\left(x \mid a+F b, A+F B F^{\top}\right)$
Transformation:
$\mathcal{N}(F x+f \mid a, A)=\frac{1}{|F|} \mathcal{N}\left(x \mid F^{-1}(a-f), F^{-1} A F^{-\top}\right)$
(more identities: see "Gaussian identities"
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/gaussians.pdf)

Kalman filter derivation

$$
\begin{aligned}
& p_{t}\left(x_{t}\right)=\mathcal{N}\left(x_{t} \mid s_{t}, S_{t}\right) \\
& P\left(y_{t} \mid x_{t}\right)=\mathcal{N}\left(y_{t} \mid C x_{t}+c, W\right) \\
& P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)=\mathcal{N}\left(x_{t} \mid A x_{t-1}+a, Q\right) \\
& p_{t}\left(x_{t}\right) \propto P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) p_{t-1}\left(x_{t-1}\right) d x_{t-1} \\
&= \mathcal{N}\left(y_{t} \mid C x_{t}+c, W\right) \int_{x_{t-1}} \mathcal{N}\left(x_{t} \mid A x_{t-1}+a, Q\right) \mathcal{N}\left(x_{t-1} \mid s_{t-1}, S_{t-1}\right) d x_{t-1} \\
&= \mathcal{N}\left(y_{t} \mid C x_{t}+c, W\right) \mathcal{N}(x_{t} \mid \underbrace{A s_{t-1}+a}_{=: \hat{s}_{t}}, \underbrace{Q+A S_{t-1} A^{\top}}_{=: \hat{S}_{t}}) \\
&= \mathcal{N}\left(C x_{t}+c \mid y_{t}, W\right) \mathcal{N}\left(x_{t} \mid \hat{s}_{t}, \hat{S}_{t}\right) \\
&= \mathcal{N}\left[x_{t} \mid C^{\top} W^{-1}\left(y_{t}-c\right), C^{\top} W^{-1} C\right] \mathcal{N}\left(x_{t} \mid \hat{s}_{t}, \hat{S}_{t}\right) \\
&= \mathcal{N}\left(x_{t} \mid s_{t}, S_{t}\right) \cdot\left\langle\text { terms indep. of } x_{t}\right\rangle \\
& S_{t}=\left(C^{\top} W^{-1} C+\hat{S}_{t}^{-1}\right)^{-1}=\hat{S}_{t}-\underbrace{\hat{S}_{t} C^{\top}\left(W+C \hat{S}_{t} C^{\top}\right)^{-1}}_{\text {"Kalman gain" } K} C \hat{S}_{t} \\
& s_{t}= S_{t}\left[C^{\top} W^{-1}\left(y_{t}-c\right)+\hat{S}_{t}^{-1} \hat{s}_{t}\right]=\hat{s}_{t}+K\left(y_{t}-C \hat{s}_{t}-c\right)
\end{aligned}
$$

The second to last line uses the general Woodbury identity.
The last line uses $S_{t} C^{\top} W^{-1}=K$ and $S_{t} \hat{S}_{t}^{-1}=\mathbf{I}-K C$

Extended Kalman filter (EKF) and Unscented Transform

Bayes Filter: $p_{t}\left(x_{t}\right) \propto P\left(y_{t} \mid x_{t}\right) \int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) p_{t-1}\left(x_{t-1}\right) d x_{t-1}$

- Can be computed analytically for linear-Gaussian observations and transitions:

$$
\begin{aligned}
& P\left(y_{t} \mid x_{t}\right)=\mathcal{N}\left(y_{t} \mid C x_{t}+c, W\right) \\
& P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)=\mathcal{N}\left(x_{t} \mid A\left(u_{t-1}\right) x_{t-1}+a\left(u_{t-1}\right), Q\right)
\end{aligned}
$$

- If $P\left(y_{t} \mid x_{t}\right)$ or $P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)$ are not linear:
$P\left(y_{t} \mid x_{t}\right)=\mathcal{N}\left(y_{t} \mid g\left(x_{t}\right), W\right)$
$P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)=\mathcal{N}\left(x_{t} \mid f\left(x_{t-1}, u_{t-1}\right), Q\right)$
- approximate f and g as locally linear (Extended Kalman Filter)
- or sample locally from them and reapproximate as Gaussian
(Unscented Transform)

Bayes smoothing

Filtering: $P\left(x_{t} \mid y_{0: t}\right)$

Smoothing: $P\left(x_{t} \mid y_{0: T}\right)$

Prediction: $P\left(x_{t} \mid y_{0: s}\right)$

Bayes smoothing

- Let $\mathcal{P}=y_{0: t}$ past observations, $\mathcal{F}=y_{t+1: T}$ future observations

$$
\begin{aligned}
P\left(x_{t} \mid \mathcal{P}, \mathcal{F}, u_{0: T}\right) & \propto P\left(\mathcal{F} \mid x_{t}, \mathcal{P}, u_{0: T}\right) P\left(x_{t} \mid \mathcal{P}, u_{0: T}\right) \\
& =\underbrace{P\left(\mathcal{F} \mid x_{t}, u_{t: T}\right)}_{=: \beta_{t}\left(x_{t}\right)} \underbrace{P\left(x_{t} \mid \mathcal{P}, u_{0: t-1}\right)}_{=: p\left(x_{t}\right)}
\end{aligned}
$$

Bayesian smoothing fuses a forward filter $p_{t}\left(x_{t}\right)$ with a backward "filter" $\beta_{t}\left(x_{t}\right)$

Bayes smoothing

- Let $\mathcal{P}=y_{0: t}$ past observations, $\mathcal{F}=y_{t+1: T}$ future observations

$$
\begin{aligned}
P\left(x_{t} \mid \mathcal{P}, \mathcal{F}, u_{0: T}\right) & \propto P\left(\mathcal{F} \mid x_{t}, \mathcal{P}, u_{0: T}\right) P\left(x_{t} \mid \mathcal{P}, u_{0: T}\right) \\
& =\underbrace{P\left(\mathcal{F} \mid x_{t}, u_{t: T}\right)}_{=: \beta_{t}\left(x_{t}\right)} \underbrace{P\left(x_{t} \mid \mathcal{P}, u_{0: t-1}\right)}_{=: p\left(x_{t}\right)}
\end{aligned}
$$

Bayesian smoothing fuses a forward filter $p_{t}\left(x_{t}\right)$ with a backward "filter" $\beta_{t}\left(x_{t}\right)$

- Backward recursion (derivation analogous to the Bayesian filter)

$$
\begin{aligned}
\beta_{t}\left(x_{t}\right) & :=P\left(y_{t+1: T} \mid x_{t}, u_{t: T}\right) \\
& =\int_{x_{t+1}} \beta_{t+1}\left(x_{t+1}\right) P\left(y_{t+1} \mid x_{t+1}\right) P\left(x_{t+1} \mid x_{t}, u_{t}\right) d x_{t+1}
\end{aligned}
$$

PART II: Localization and Mapping

- The Bayesian filter requires an observation model $P\left(y_{t} \mid x_{t}\right)$
- A map is something that provides the observation model: A map tells us for each x_{t} what the sensor readings y_{t} might look like

Types of maps

Grid map

K. Murphy (1999): Bayesian map learning in dynamic environments.
Grisetti, Tipaldi, Stachniss, Burgard, Nardi:
Fast and Accurate SLAM with
Rao-Blackwellized Particle Filters

Laser scan map

Landmark map

Victoria Park data set
M. Montemerlo, S. Thrun, D. Koller, \& B. Wegbreit (2003): FastSLAM 2.0: An improved particle filtering algorithm for simultaneous localization and mapping that provably converges. IJCAI, 1151-1156.

Simultaneous Localization and Mapping Problem

- Notation:
$x_{t}=$ state (location) at time t
$y_{t}=$ sensor readings at time t
$u_{t-1}=$ control command (action, steering, velocity) at time $t-1$
$m=$ the map
- Given the history $y_{0: t}$ and $u_{0: t-1}$, we want to compute the belief over the pose AND THE MAP m at time t

$$
p_{t}\left(x_{t}, m\right):=P\left(x_{t}, m \mid y_{0: t}, u_{0: t-1}\right)
$$

- We assume to know:
- transition model $P\left(x_{t} \mid u_{t-1}, x_{t-1}\right)$
- observation model $P\left(y_{t} \mid x_{t}, m\right)$

SLAM: classical "chicken or egg problem"

- If we knew the state trajectory $x_{0: t}$ we could efficiently compute the belief over the map

$$
P\left(m \mid x_{0: t}, y_{0: t}, u_{0: t-1}\right)
$$

- If we knew the map we could use a Bayes filter to compute the belief over the state

$$
P\left(x_{t} \mid m, y_{0: t}, u_{0: t-1}\right)
$$

SLAM: classical "chicken or egg problem"

- If we knew the state trajectory $x_{0: t}$ we could efficiently compute the belief over the map

$$
P\left(m \mid x_{0: t}, y_{0: t}, u_{0: t-1}\right)
$$

- If we knew the map we could use a Bayes filter to compute the belief over the state

$$
P\left(x_{t} \mid m, y_{0: t}, u_{0: t-1}\right)
$$

- SLAM requires to tie state estimation and map building together:

1) Joint inference on x_{t} and $m \quad(\rightarrow$ Kalman-SLAM)
2) Tie a state hypothesis (=particle) to a map hypothesis
(\rightarrow particle SLAM)
3) Frame everything as a graph optimization problem (\rightarrow graph SLAM)

Joint Bayesian Filter over x and m

- A (formally) straight-forward approach is the joint Bayesian filter

$$
p_{t}\left(x_{t}, m\right) \propto P\left(y_{t} \mid x_{t}, m\right) \int_{x_{t-1}} P\left(x_{t} \mid u_{t-1}, x_{t-1}\right) p_{t-1}\left(x_{t-1}, m\right) d x_{t-1}
$$

But: How represent a belief over high-dimensional x_{t}, m ?

Map uncertainty

- In the case the map $m=\left(\theta_{1}, . ., \theta_{N}\right)$ is a set of N landmarks, $\theta_{j} \in \mathbb{R}^{2}$

- Use Gaussians to represent the uncertainty of landmark positions

(Extended) Kalman Filter SLAM

- Analogous to Localization with Gaussian for the pose belief $p_{t}\left(x_{t}\right)$
- But now: joint belief $p_{t}\left(x_{t}, \theta_{1: N}\right)$ is $3+2 N$-dimensional Gaussian
- Assumes the map $m=\left(\theta_{1}, . ., \theta_{N}\right)$ is a set of N landmarks, $\theta_{j} \in \mathbb{R}^{2}$
- Exact update equations (under the Gaussian assumption)
- Conceptually very simple
- Drawbacks:
- Scaling (full covariance matrix is $O\left(N^{2}\right)$)
- Sometimes non-robust (uni-modal, "data association problem")
- Lacks advantages of Particle Filter (multiple hypothesis, more robust to non-linearities)

SLAM with particles

Core idea: Each particle carries its own map belief

SLAM with particles

Core idea: Each particle carries its own map belief

- Use a conditional representation " $p_{t}\left(x_{t}, m\right)=p_{t}\left(x_{t}\right) p_{t}\left(m \mid x_{t}\right)$ " (This notation is flaky... the below is more precise)
- As for the Localization Problem use particles to represent the pose belief $p_{t}\left(x_{t}\right)$
Note: Each particle actually "has a history $x_{0: t}^{i}$ " - a whole trajectory!
- For each particle separately, estimate the map belief $p_{t}^{i}(m)$ conditioned on the particle history $x_{0: t}^{i}$.
The conditional beliefs $p_{t}^{i}(m)$ may be factorized over grid points or landmarks of the map
K. Murphy (1999): Bayesian map learning in dynamic environments.

Map estimation for a given particle history

- Given $x_{0: t}$ (e.g. a trajectory of a particle), what is the posterior over the map m ?
\rightarrow simplified Bayes Filter:

$$
p_{t}(m):=P\left(m \mid x_{0: t}, y_{0: t}\right) \propto P\left(y_{t} \mid m, x_{t}\right) p_{t-1}(m)
$$

(no transtion model: assumption that map is constant)

- In the case of landmarks (FastSLAM):
$m=\left(\theta_{1}, . ., \theta_{N}\right)$
$\theta_{j}=$ position of the j th landmark, $j \in\{1, . ., N\}$
$n_{t}=$ which landmark we observe at time $t, n_{t} \in\{1, . ., N\}$
We can use a separate (Gaussian) Bayes Filter for each θ_{j} conditioned on $x_{0: t}$, each θ_{j} is independent from each θ_{k} :

$$
P\left(\theta_{1: N} \mid x_{0: t}, y_{0: n}, n_{0: t}\right)=\prod_{j} P\left(\theta_{j} \mid x_{0: t}, y_{0: n}, n_{0: t}\right)
$$

Particle likelihood in SLAM

- Particle likelihood for Localization Problem:

$$
w_{t}^{i}=P\left(y_{t} \mid x_{t}^{i}\right)
$$

(determins the new importance weight w_{t}^{i}

- In SLAM the map is uncertain \rightarrow each particle is weighted with the expected likelihood:

$$
w_{t}^{i}=\int P\left(y_{t} \mid x_{t}^{i}, m\right) p_{t-1}(m) d m
$$

- In case of landmarks (FastSLAM):

$$
w_{t}^{i}=\int P\left(y_{t} \mid x_{t}^{i}, \theta_{n_{t}}, n_{t}\right) p_{t-1}\left(\theta_{n_{t}}\right) d \theta_{n_{t}}
$$

- Data association problem (actually we don't know n_{t}): For each particle separately choose $n_{t}^{i}=\operatorname{argmax}_{n_{t}} w_{t}^{i}\left(n_{t}\right)$

Particle-based SLAM summary

- We have a set of N particles $\left\{\left(x^{i}, w^{i}\right)\right\}_{i=1}^{N}$ to represent the pose belief $p_{t}\left(x_{t}\right)$
- For each particle we have a separate map belief $p_{t}^{i}(m)$; in the case of landmarks, this factorizes in N separate 2D-Gaussians
- Iterate

1. Resample particles to get N weight-1-particles: $\left\{\hat{x}_{t-1}^{i}\right\}_{i=1}^{N}$
2. Use motion model to get new "predictive" particles $\left\{x_{t}^{i}\right\}_{i=1}^{N}$
3. Update the map belief $p_{m}^{i}(m) \propto P\left(y_{t} \mid m, x_{t}\right) p_{t-1}^{i}(m)$ for each particle
4. Compute new importance weights $w_{t}^{i} \propto \int P\left(y_{t} \mid x_{t}^{i}, m\right) p_{t-1}(m) d m$ using the observation model and the map belief

Demo: Visual SLAM

- Map building from a freely moving camera

Demo: Visual SLAM

- Map building from a freely moving camera
- SLAM has become a bit topic in the vision community..
- features are typically landmarks $\theta_{1: N}$ with SURF/SIFT features
- PTAM (Parallel Tracking and Mapping) parallelizes computations...

```
PTAM1 PTAM2
TODO: 11-DTAM-Davidson
```

G Klein, D Murray: Parallel Tracking and Mapping for Small AR Workspaces

Alternative SLAM approach: Graph-based

- Represent the previous trajectory as a graph
- nodes = estimated positions \& observations
- edges = transition \& step estimation based on scan matching
- Loop Closing: check if some nodes might coincide \rightarrow new edges
- Classical Optimization:

The whole graph defines an optimization problem: Find poses that minimize sum of edge \& node errors

Loop Closing Problem

(Doesn't explicitly exist in Particle Filter methods: If particles cover the belief, then "data association" solves the "loop closing problem")

Graph-based SLAM

Life-long Map Learning for Graph-based SLAM Approaches in Static Environments Kretzschmar, Grisetti, Stachniss

SLAM code

- Graph-based and grid map methods: http://openslam.org/
- Visual SLAM
e.g. http://ewokrampage.wordpress.com/

