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Probability Theory

• Why do we need probabilities?

– Obvious: to express inherent stochasticity of the world (data)

• But beyond this: (also in a “deterministic world”):
– lack of knowledge!
– hidden (latent) variables
– expressing uncertainty
– expressing information (and lack of information)

• Probability Theory: an information calculus
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Probability: Frequentist and Bayesian

• Frequentist probabilities are defined in the limit of an infinite number of
trials
Example: “The probability of a particular coin landing heads up is 0.43”

• Bayesian (subjective) probabilities quantify degrees of belief
Example: “The probability of it raining tomorrow is 0.3”
– Not possible to repeat “tomorrow”
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Probabilities & Sets

• Sample Space/domain Ω, e.g. Ω = {1, 2, 3, 4, 5, 6}

• Probability P : A ⊂ Ω 7→ [0, 1]

e.g., P ({1}) = 1
6 , P ({4}) = 1

6 , P ({2, 5}) = 1
3 ,

• Axioms: ∀A,B ⊆ Ω

– Nonnegativity P (A) ≥ 0

– Additivity P (A ∪B) = P (A) + P (B) if A ∩B = ∅
– Normalization P (Ω) = 1

• Implications
0 ≤ P (A) ≤ 1

P (∅) = 0

A ⊆ B ⇒ P (A) ≤ P (B)

P (A ∪B) = P (A) + P (B)− P (A ∩B)

P (Ω \A) = 1− P (A)
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Probabilities & Random Variables

• For a random variable X with discrete domain dom(X) = Ω we write:
∀x∈Ω : 0 ≤ P (X=x) ≤ 1∑
x∈Ω P (X=x) = 1

Example: A dice can take values Ω = {1, .., 6}.
X is the random variable of a dice throw.
P (X=1) ∈ [0, 1] is the probability that X takes value 1.

• A bit more formally: a random variable relates a measureable space with a
domain (sample space) and thereby introduces a probability measure on the
domain (“assigns a probability to each possible value”)
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Probabilty Distributions

• P (X=1) ∈ R denotes a specific probability
P (X) denotes the probability distribution (function over Ω)

Example: A dice can take values Ω = {1, 2, 3, 4, 5, 6}.
By P (X) we discribe the full distribution over possible values {1, .., 6}. These
are 6 numbers that sum to one, usually stored in a table, e.g.: [ 1

6
, 1
6
, 1
6
, 1
6
, 1
6
, 1
6
]

• In implementations we typically represent distributions over discrete
random variables as tables (arrays) of numbers

• Notation for summing over a RV:
In equation we often need to sum over RVs. We then write∑

X P (X) · · ·
as shorthand for the explicit notation

∑
x∈dom(X) P (X=x) · · ·
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Joint distributions
Assume we have two random variables X and Y

• Definitions:
Joint: P (X,Y )

Marginal: P (X) =
∑
Y P (X,Y )

Conditional: P (X|Y ) = P (X,Y )
P (Y )

The conditional is normalized: ∀Y :
∑

X P (X|Y ) = 1

• X is independent of Y iff: P (X|Y ) = P (X)

(table thinking: all columns of P (X|Y ) are equal)

• The same for n random variables X1:n (stored as a rank n tensor)
Joint: P (x1:n), Marginal: P (X1) =

∑
X2:n

P (X1:n),
Conditional: P (X1|X2:n) = P (X1:n)

P (X2:n)
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Joint distributions
joint: P (X,Y )

marginal: P (X) =
∑

Y P (X,Y )

conditional: P (X|Y ) = P (X,Y )
P (Y )

• Implications of these definitions:
Product rule: P (X,Y ) = P (X|Y ) P (Y ) = P (Y |X) P (X)

Bayes’ Theorem P (X|Y ) = P (Y |X) P (X)
P (Y )

• The same for n variables, e.g., (X,Y, Z):

P (X1:n) =
∏n

i=1 P (Xi|Xi+1:n)

P (X1|X2:n) = P (X2|X1,X3:n) P (X1|X3:n)
P (X2|X3:n)

P (X,Z, Y ) = P (X|Y,Z) P (Y |Z) P (Z)

P (X|Y,Z) = P (Y |X,Z) P (X|Z)
P (Y |Z)

P (X,Y |Z) = P (X,Z|Y ) P (Y )
P (Z)
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Bayes’ Theorem

P (X|Y ) =
P (Y |X) P (X)

P (Y )

posterior = likelihood · prior
normalization
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Distributions over continuous domain

• Let X be a continuous RV. The probability density function (pdf)
p(x) ∈ [0,∞) defines the probability

P (a ≤ X ≤ b) =

∫ b

a

p(x) dx ∈ [0, 1]

The (cumulative) probability distribution
F (x) = P (X ≤ x) =

∫ x
−∞ dx p(x) ∈ [0, 1] is the cumulative integral with

limx→∞ F (x) = 1.

(In discrete domain: probability distribution and probability mass function
P (X) ∈ [0, 1] are used synonymously.)

• Two basic examples:
Gaussian: N(x | a,A) = 1

|2πA|1/2 e
− 1

2 (xa)> A-1 (xa)

Dirac or δ (“point particle”) δ(x) = 0 except at x = 0,
∫
δ(x) dx = 1

δ(x) = ∂
∂xH(x) where H(x) = [x ≥ 0] = Heavyside step function.
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Gaussian distribution

• 1-dim: N(x |µ, σ2) = 1
|2πσ2|1/2 e

− 1
2 (x−µ)2/σ2

N (x|µ, σ2)

x

2σ

µ

• n-dim: N(x | a,A) = 1
|2πA|1/2 e

− 1
2 (x−a)> A-1 (x−a)

x1

x2

(b)

Useful identities:
Symmetry: N(x|a,A) = N(a|x,A) = N(x− a|0, A)
Product:
N(x | a,A) N(x | b, B) = N(x |B(A+B)-1a+A(A+B)-1b, A(A+B)-1B) N(a | b, A+B)

“Propagation”:∫
y N(x | a+ Fy,A) N(y | b, B) dy = N(x | a+ Fb,A+ FBF>)

Transformation:
N(Fx+ f | a,A) = 1

|F | N(x | F -1(a− f), F -1AF ->)

Mre identities: see “Gaussian identities”
http://userpage.fu-berlin.de/~mtoussai/notes/gaussians.pdf 11/15
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Particle Approximation of a Distribution

• We approximate a distribution p(x) over a continuous domain Rn.

• A particle distribution q(x) is a weighed set of N particles {(xi, wi)}Ni=1

– each particle has a location xi ∈ Rn and a weight wi ∈ R
– weights are normalized

∑
i w

i = 1

q(x) :=
∑N
i=1 w

iδ(x− xi)

where δ(x− xi) is the δ-distribution.
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Particle Approximation of a Distribution
Histogram of a particle representation:
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Particle Approximation of a Distribution

• For q(x) to approximate a given p(x) we want to choose particles and
weights such that for any (smooth) f :

limN→∞ 〈f(x)〉q = limN→∞
∑N
i=1 w

if(xi) =
∫
x
f(x)p(x)dx = 〈f(x)〉p

• How to do this? See An Introduction to MCMC for Machine Learning
www.cs.ubc.ca/~nando/papers/mlintro.pdf
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Some continuous distributions
Gaussian N(x | a,A) = 1

|2πA|1/2 e
− 1

2 (xa)> A-1 (xa)

Dirac or δ δ(x) = ∂
∂xH(x)

Student’s t
(=Gaussian for ν → ∞, otherwise
heavy tails)

p(x; ν) ∝ [1 + x2

ν ]−
ν+1
2

Exponential
(distribution over single event time)

p(x;λ) = [x ≥ 0] λe−λx

Laplace
(“double exponential”)

p(x;µ, b) = 1
2be
−|x−µ|/b

Chi-squared p(x; k) ∝ [x ≥ 0] xk/2−1e−x/2

Gamma p(x; k, θ) ∝ [x ≥ 0] xk−1e−x/θ
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