Robotics

Probability Basics

Marc Toussaint
U Stuttgart

Probability Theory

- Why do we need probabilities?

Probability Theory

- Why do we need probabilities?
- Obvious: to express inherent stochasticity of the world (data)

Probability Theory

- Why do we need probabilities?
- Obvious: to express inherent stochasticity of the world (data)
- But beyond this: (also in a "deterministic world"):
- lack of knowledge!
- hidden (latent) variables
- expressing uncertainty
- expressing information (and lack of information)
- Probability Theory: an information calculus

Probability: Frequentist and Bayesian

- Frequentist probabilities are defined in the limit of an infinite number of trials
Example: "The probability of a particular coin landing heads up is 0.43 "
- Bayesian (subjective) probabilities quantify degrees of belief Example: "The probability of it raining tomorrow is 0.3 "
- Not possible to repeat "tomorrow"

Probabilities \& Sets

- Sample Space/domain Ω, e.g. $\Omega=\{1,2,3,4,5,6\}$
- Probability $P: A \subset \Omega \mapsto[0,1]$
e.g., $P(\{1\})=\frac{1}{6}, \quad P(\{4\})=\frac{1}{6}, \quad P(\{2,5\})=\frac{1}{3}$,
- Axioms: $\forall A, B \subseteq \Omega$
- Nonnegativity $P(A) \geq 0$
- Additivity $P(A \cup B)=P(A)+P(B)$ if $A \cap B=\emptyset$
- Normalization $P(\Omega)=1$
- Implications

$$
\begin{aligned}
& 0 \leq P(A) \leq 1 \\
& P(\emptyset)=0 \\
& A \subseteq B \Rightarrow P(A) \leq P(B) \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& P(\Omega \backslash A)=1-P(A)
\end{aligned}
$$

Probabilities \& Random Variables

- For a random variable X with discrete domain $\operatorname{dom}(X)=\Omega$ we write:
$\forall_{x \in \Omega}: 0 \leq P(X=x) \leq 1$
$\sum_{x \in \Omega} P(X=x)=1$
Example: A dice can take values $\Omega=\{1, . ., 6\}$.
X is the random variable of a dice throw.
$P(X=1) \in[0,1]$ is the probability that X takes value 1 .
- A bit more formally: a random variable relates a measureable space with a domain (sample space) and thereby introduces a probability measure on the domain ("assigns a probability to each possible value")

Probabilty Distributions

- $P(X=1) \in \mathbb{R}$ denotes a specific probability
$P(X)$ denotes the probability distribution (function over Ω)

Probabilty Distributions

- $P(X=1) \in \mathbb{R}$ denotes a specific probability
$P(X)$ denotes the probability distribution (function over Ω)

Example: A dice can take values $\Omega=\{1,2,3,4,5,6\}$.
By $P(X)$ we discribe the full distribution over possible values $\{1, \ldots, 6\}$. These are 6 numbers that sum to one, usually stored in a table, e.g.: $\left[\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right]$

- In implementations we typically represent distributions over discrete random variables as tables (arrays) of numbers
- Notation for summing over a RV:

In equation we often need to sum over RVs. We then write

$$
\sum_{X} P(X) \cdots
$$

as shorthand for the explicit notation $\sum_{x \in \operatorname{dom}(X)} P(X=x) \cdots$

Joint distributions

Assume we have two random variables X and Y

- Definitions:

Joint: $\quad P(X, Y)$
Marginal: $\quad P(X)=\sum_{Y} P(X, Y)$
Conditional: $\quad P(X \mid Y)=\frac{P(X, Y)}{P(Y)}$
The conditional is normalized: $\forall_{Y}: \sum_{X} P(X \mid Y)=1$

- X is independent of Y iff: $P(X \mid Y)=P(X)$ (table thinking: all columns of $P(X \mid Y)$ are equal)
- The same for n random variables $X_{1: n}$ (stored as a rank n tensor) Joint: $P\left(x_{1: n}\right), \quad$ Marginal: $P\left(X_{1}\right)=\sum_{X_{2: n}} P\left(X_{1: n}\right)$, Conditional: $P\left(X_{1} \mid X_{2: n}\right)=\frac{P\left(X_{1: n}\right)}{P\left(X_{2: n}\right)}$

Joint distributions

joint: $\quad P(X, Y)$
marginal: $\quad P(X)=\sum_{Y} P(X, Y)$
conditional: $\quad P(X \mid Y)=\frac{P(X, Y)}{P(Y)}$

- Implications of these definitions:

Product rule: $\quad P(X, Y)=P(X \mid Y) P(Y)=P(Y \mid X) P(X)$
Bayes' Theorem $\quad P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}$

- The same for n variables, e.g., (X, Y, Z) :

$$
\begin{gathered}
P\left(X_{1: n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{i+1: n}\right) \\
P\left(X_{1} \mid X_{2: n}\right)=\frac{P\left(X_{2} \mid X_{1}, X_{33 n}\right) P\left(X_{1} \mid X_{3: n}\right)}{P\left(X_{2} \mid X_{3: n}\right)}
\end{gathered}
$$

$$
\begin{aligned}
& P(X, Z, Y)=P(X \mid Y, Z) P(Y \mid Z) P(Z) \\
& P(X \mid Y, Z)=\frac{P(Y \mid X, Z) P(X \mid Z)}{P(Y Z)} \\
& P(X, Y \mid Z)=\frac{P(X, Z \mid Y) P(Y)}{P(Z)}
\end{aligned}
$$

Bayes' Theorem

$$
P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}
$$

posterior $=\frac{\text { likelihood } \cdot \text { prior }}{\text { normalization }}$

Distributions over continuous domain

- Let X be a continuous RV. The probability density function (pdf) $p(x) \in[0, \infty)$ defines the probability

$$
P(a \leq X \leq b)=\int_{a}^{b} p(x) d x \in[0,1]
$$

The (cumulative) probability distribution $F(x)=P(X \leq x)=\int_{-\infty}^{x} d x p(x) \in[0,1]$ is the cumulative integral with $\lim _{x \rightarrow \infty} F(x)=1$.
(In discrete domain: probability distribution and probability mass function $P(X) \in[0,1]$ are used synonymously.)

- Two basic examples:

Gaussian: $\mathcal{N}(x \mid a, A)=\frac{1}{|2 \pi A|^{1 / 2}} e^{-\frac{1}{2}(x a)^{\top} A^{-1}(x a)}$
Dirac or δ ("point particle") $\delta(x)=0$ except at $x=0, \int \delta(x) d x=1$
$\delta(x)=\frac{\partial}{\partial x} H(x)$ where $H(x)=[x \geq 0]=$ Heavyside step function.

Gaussian distribution

- 1-dim: $\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\left|2 \pi \sigma^{2}\right|^{1 / 2}} e^{-\frac{1}{2}(x-\mu)^{2} / \sigma^{2}}$

- n-dim: $\mathcal{N}(x \mid a, A)=\frac{1}{|2 \pi A|^{1 / 2}} e^{-\frac{1}{2}(x-a)^{\top} A^{-1}(x-a)}$

Useful identities:
Symmetry: $\mathcal{N}(x \mid a, A)=\mathcal{N}(a \mid x, A)=\mathcal{N}(x-a \mid 0, A)$
Product:
$\mathcal{N}(x \mid a, A) \mathcal{N}(x \mid b, B)=\mathcal{N}\left(x \mid B(A+B)^{-1} a+A(A+B)^{-1} b, A(A+B)^{-1} B\right) \mathcal{N}(a \mid b, A+B)$
"Propagation":
$\int_{y} \mathcal{N}(x \mid a+F y, A) \mathcal{N}(y \mid b, B) d y=\mathcal{N}\left(x \mid a+F b, A+F B F^{\boldsymbol{\top}}\right)$
Transformation:
$\mathcal{N}(F x+f \mid a, A)=\frac{1}{|F|} \mathcal{N}\left(x \mid F^{-1}(a-f), F^{-1} A F^{-\top}\right)$
Mre identities: see "Gaussian identities"
http://userpage.fu-berlin.de/~mtoussai/notes/gaussians.pdf

Particle Approximation of a Distribution

- We approximate a distribution $p(x)$ over a continuous domain \mathbb{R}^{n}.
- A particle distribution $q(x)$ is a weighed set of N particles $\left\{\left(x^{i}, w^{i}\right)\right\}_{i=1}^{N}$ - each particle has a location $x^{i} \in \mathbb{R}^{n}$ and a weight $w^{i} \in \mathbb{R}$
- weights are normalized $\sum_{i} w^{i}=1$

$$
q(x):=\sum_{i=1}^{N} w^{i} \delta\left(x-x^{i}\right)
$$

where $\delta\left(x-x^{i}\right)$ is the δ-distribution.

Particle Approximation of a Distribution

Histogram of a particle representation:

Particle Approximation of a Distribution

- For $q(x)$ to approximate a given $p(x)$ we want to choose particles and weights such that for any (smooth) f :

$$
\lim _{N \rightarrow \infty}\langle f(x)\rangle_{q}=\lim _{N \rightarrow \infty} \sum_{i=1}^{N} w^{i} f\left(x^{i}\right)=\int_{x} f(x) p(x) d x=\langle f(x)\rangle_{p}
$$

- How to do this? See An Introduction to MCMC for Machine Learning www.cs.ubc.ca/~nando/papers/mlintro.pdf

Some continuous distributions

Gaussian
Dirac or δ
Student's t
(=Gaussian for $\nu \rightarrow \infty$, otherwise heavy tails)

Exponential (distribution over single event time)
Laplace
("double exponential")
Chi-squared
Gamma
$\mathcal{N}(x \mid a, A)=\frac{1}{|2 \pi A|^{1 / 2}} e^{-\frac{1}{2}(x a)^{\top} A^{-1}(x a)}$
$\delta(x)=\frac{\partial}{\partial x} H(x)$
$p(x ; \nu) \propto\left[1+\frac{x^{2}}{\nu}\right]^{-\frac{\nu+1}{2}}$
$p(x ; \lambda)=[x \geq 0] \lambda e^{-\lambda x}$
$p(x ; \mu, b)=\frac{1}{2 b} e^{-|x-\mu| / b}$
$p(x ; k) \propto[x \geq 0] x^{k / 2-1} e^{-x / 2}$
$p(x ; k, \theta) \propto[x \geq 0] x^{k-1} e^{-x / \theta}$

