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Probability Theory

e Why do we need probabilities?

— Obvious: to express inherent stochasticity of the world (data)

e But beyond this: (also in a “deterministic world”):
— lack of knowledge!
— hidden (latent) variables
— expressing uncertainty
— expressing information (and lack of information)

e Probability Theory: an information calculus
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Probability: Frequentist and Bayesian

e Frequentist probabilities are defined in the limit of an infinite number of

trials
Example: “The probability of a particular coin landing heads up is 0.43”

e Bayesian (subjective) probabilities quantify degrees of belief
Example: “The probability of it raining tomorrow is 0.3”
— Not possible to repeat “tomorrow”
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Probabilities & Sets

e Sample Space/domain 2, e.g. 2 ={1,2,3,4,5,6}

e Probability P: AC Qw—[0,1]
eg. P({1}) =5 P({4}) =5 P{2.5}) =3,

e Axioms: VA, B C Q)
— Nonnegativity P(A) >0
— Additivity P(AU B) = P(A)+ P(B) if AnNB =1
— Normalization P(Q2) =1

e Implications
0<PA)<1
P@)=0
AC B= P(A) < P(B)
P(AUB)=P(A)+ P(B)—-P(ANB)

P(Q\A)=1-P(4) 4/15



Probabilities & Random Variables

e For a random variable X with discrete domain dom(X) = 2 we write:
Veeq: 0S P(X=x)<1
YorcoP(X=2)=1

Example: A dice can take values 2 = {1, ..,6}.
X is the random variable of a dice throw.
P(X =1) € [0, 1] is the probability that X takes value 1.

e A bit more formally: a random variable relates a measureable space with a
domain (sample space) and thereby introduces a probability measure on the
domain (“assigns a probability to each possible value”)
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Probabilty Distributions

e P(X=1) € R denotes a specific probability
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Probabilty Distributions

e P(X=1) € R denotes a specific probability
P(X) denotes the probability distribution (function over )

Example: A dice can take values 2 = {1,2,3,4,5,6}.
By P(X) we discribe the full distribution over possible values {1, ..,6}. These

are 6 numbers that sum to one, usually stored in a table, €.9.: [§, %, &, &, 5+ &

¢ In implementations we typically represent distributions over discrete
random variables as tables (arrays) of numbers

¢ Notation for summing over a RV:
In equation we often need to sum over RVs. We then write

2x PX) -

as shorthand for the explicit notation 3 yomx) P(X =) -
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Joint distributions

Assume we have two random variables X and Y

X=z,Y=y)
o Definitions: z Py
Joint:  P(X.,Y)
Marginal: P(X)=>, P(X,Y) Y

i . P(X,Y
Conditional: ~ P(X|Y) = T2
The conditional is normalized: Vy : > P(X|Y) =1

e X is independent of Y iff: P(X|Y) = P(X)
(table thinking: all columns of P(X|Y") are equal)

e The same for n random variables X.,, (stored as a rank n tensor)
Joint: P(z1.n), Marginal: P(X1) =3y,  P(Xin),
Conditional: P(X:[Xz.n) = pid
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Joint distributions
joint:  P(X,Y)
marginal:  P(X) =3, P(X,Y)
conditional:  P(X|Y) = Z5G3)
e Implications of these definitions:
Product rule: P(X,Y)= P(X|Y) P(Y) = P(Y|X) P(X)

Bayes’ Theorem P(X|y) = 201707

e The same for n variables, e.g., (X,Y, Z):

P(X,Z,Y) = P(X|Y, Z) P(Y|Z) P(Z)

P(Xl:n) = H?:l P(X1|X1+1n) P(YIX.Z) P(X|Z
P(X|Y,Z) = ( ‘P7(Y)|Z)( 12)

P(X2|X1,X3:5) P(X1]|X3:n
P(X1|X2:n): (Xa] 1P()?2|}>(\57(L)1‘ =

P(X,Y|7) = 2eo2) P
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Bayes’ Theorem

P(Y|X) P(X)
PXIY) = =5
posterior — Sl
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Distributions over continuous domain

e Let X be a continuous RV. The probability density function (pdf)
p(z) € [0, 00) defines the probability

b
P(aﬁXﬁb):/ p(z) dx € [0,1]

The (cumulative) probability distribution
F(z) = P(X <) = [*_ dx p(z) € [0,1] is the cumulative integral with
lim, o F(x) = 1.

(In discrete domain: probability distribution and probability mass function
P(X) € [0, 1] are used synonymously.)

e Two basic examples:

Gaussian: N(z|a,A) = me*j(waﬁ 1 (za)

Dirac or § (“point particle”) &(z) =0exceptatz =0, [d§(z) de =1
§(z) = 2 H(x) where H(z) = [z > 0] = Heavyside step function.
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N(alu,0?)

Gaussian distribution

o 1-dim: N(z|p,0?) = m e—3(@—n)?/o?

T2
o n-dim: N(z|a, A) = =L e~ 3@ A" (2-a)
. bl - |27TA‘ 1/2 @
T
(b)

Useful identities:
Symmetry: N(z|a, A) = N(a|z, A) = N(z — a|0, A)
Product:
N(z|a, A) N(z | b, B) = N(z | B(A+B)'a+ A(A+B)1b, A(A+B)1B) N(a|b, A+ B)
“Propagation”:
J,N(@|a+ Fy, A)N(y|b, B) dy = N(z|a + Fb, A+ FBF")
Transformation:
N(Fz+ fla,A) = 47 Nz | FH(a~ f), FTAFT)

Mre identities: see “Gaussian identities”

http://userpage.fu-berlin.de/~mtoussai/notes/gaussians.pdf 11/15
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Particle Approximation of a Distribution

e We approximate a distribution p(x) over a continuous domain R".

e A particle distribution ¢(z) is a weighed set of N particles {(z*,w*)} ¥,
— each particle has a location z* € R™ and a weight w' € R
— weights are normalized }, w’ =1

q(z) = vazl wié(x — xt)

where §(x — z?) is the §-distribution.
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Particle Approximation of a Distribution

Histogram of a particle representation:
0.15 0.15
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Particle Approximation of a Distribution

e For ¢(z) to approximate a given p(z) we want to choose particles and
weights such that for any (smooth) f:

limy oo (F(@)), = limyoo SN, wif(a) = [ f@)p(a)dz = (f(2)),

e How to do this? See An Introduction to MCMC for Machine Learning
www.cs.ubc.ca/~nando/papers/mlintro.pdf
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Some continuous distributions

H _1 T
Gaussian N(z|a,A) = EFZﬁE’e F(@a)" A (wa)
Dirac or § 5(z) = L H(x)

Student’s t p(z;v) o< [1+ %]‘UTH
(=Gaussian for v — oo, otherwise

heavy tails)

Exponential p(z;\) = [z > 0] Ae
(distribution over single event time)

Laplace p(x; pu,b) = ﬁe—\m—ul/b
(“double exponential”)

Chi-squared p(x; k) o [z > 0] xF/2~1e—e/2
Gamma p(x;k,0) o [x > 0] xF—te—=/?
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