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Kinematic Dynamic

instantly change joint velocities q̇: instantly change joint torques u:

δqt
!
= J] (y∗ − φ(qt)) u

!
= ?

accounts for kinematic coupling of
joints but ignores inertia, forces,
torques

accounts for dynamic coupling of
joints and full Newtonian physics

gears, stiff, all of industrial robots future robots, compliant, few re-
search robots
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When velocities cannot be changed/set arbitrarily

• Examples:
– An air plane flying: You cannot command it to hold still in the air, or to
move straight up.
– A car: you cannot command it to move side-wards.
– Your arm: you cannot command it to throw a ball with arbitrary speed
(force limits).
– A torque controlled robot: You cannot command it to instantly change
velocity (infinite acceleration/torque).

• What all examples have in comment:
– One can set controls ut (air plane’s control stick, car’s steering
wheel, your muscles activations, torque/voltage/current send to a
robot’s motors)
– But these controls only indirectly influence the dynamics of state,
xt+1 = f(xt, ut)
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Dynamics

• The dynamics of a system describes how the controls ut influence the
change-of-state of the system

xt+1 = f(xt, ut)

– The notation xt refers to the dynamic state of the system: e.g., joint
positions and velocities xt = (qt, q̇t).
– f is an arbitrary function, often smooth
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Outline

• We start by discussing a 1D point mass for 3 reasons:
– The most basic force-controlled system with inertia
– We can introduce and understand PID control
– The behavior of a point mass under PID control is a reference that we can

also follow with arbitrary dynamic robots (if the dynamics are known)

• We discuss computing the dynamics of general robotic systems
– Euler-Lagrange equations
– Euler-Newton method

• We derive the dynamic equivalent of inverse kinematics:
– operational space control
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PID and a 1D point mass
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The dynamics of a 1D point mass

• Start with simplest possible example: 1D point mass
(no gravity, no friction, just a single mass)

• The state x(t) = (q(t), q̇(t)) is described by:
– position q(t) ∈ R
– velocity q̇(t) ∈ R

• The controls u(t) is the force we apply on the mass point

• The system dynamics is:

q̈(t) = u(t)/m
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1D point mass – proportional feedback

• Assume current position is q.
The goal is to move it to the position q∗.

What can we do?

• Idea 1:
“Always pull the mass towards the goal q∗:”

u = Kp (q∗ − q)

8/36



1D point mass – proportional feedback

• Assume current position is q.
The goal is to move it to the position q∗.

What can we do?

• Idea 1:
“Always pull the mass towards the goal q∗:”

u = Kp (q∗ − q)

8/36



1D point mass – proportional feedback

• What’s the effect of this control law?

m q̈ = u = Kp (q∗ − q)

q = q(t) is a function of time, this is a second order differential equation

• Solution: assume q(t) = a+ beωt

(a “non-imaginary” alternative would be q(t) = a+ b ε−λt cos(ωt))

m b ω2 eωt = Kp q
∗ −Kp a−Kp b e

ωt

(m b ω2 +Kp b) e
ωt = Kp (q∗ − a)

⇒ (m b ω2 +Kp b) = 0 ∧ (q∗ − a) = 0

⇒ ω = i
√
Kp/m

q(t) = q∗ + b ei
√
Kp/m t

This is an oscillation around q∗ with amplitude b = q(0)− q∗ and
frequency

√
Kp/m!
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1D point mass – proportional feedback

m q̈ = u = Kp (q∗ − q)

q(t) = q∗ + b ei
√
Kp/m t

Oscillation around q∗ with amplitude b = q(0)− q∗ and frequency√
Kp/m
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1D point mass – derivative feedback

• Idea 2
“Pull less, when we’re heading the right direction already:”
“Damp the system:”

u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇)

q̇∗ is a desired goal velocity
For simplicity we set q̇∗ = 0 in the following.
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1D point mass – derivative feedback

• What’s the effect of this control law?

mq̈ = u = Kp(q
∗ − q) +Kd(0− q̇)

• Solution: again assume q(t) = a+ beωt

m b ω2 eωt = Kp q
∗ −Kp a−Kp b e

ωt −Kd b ωe
ωt

(m b ω2 +Kd b ω +Kp b) e
ωt = Kp (q∗ − a)

⇒ (m ω2 +Kd ω +Kp) = 0 ∧ (q∗ − a) = 0

⇒ ω =
−Kd ±

√
K2
d − 4mKp

2m

q(t) = q∗ + b eω t

The term −Kd

2m in ω is real ↔ exponential decay (damping)
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1D point mass – derivative feedback

q(t) = q∗ + b eω t , ω =
−Kd ±

√
K2
d − 4mKp

2m

• Effect of the second term
√
K2
d − 4mKp/2m in ω:

K2
d < 4mKp ⇒ ω has imaginary part

oscillating with frequency
√
Kp/m−K2

d/4m
2

q(t) = q∗ + be−Kd/2m t ei
√
Kp/m−K2

d/4m
2 t

K2
d > 4mKp ⇒ ω real

strongly damped

K2
d = 4mKp ⇒ second term zero

only exponential decay
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1D point mass – derivative feedback

illustration from O. Brock’s lecture
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1D point mass – derivative feedback
Alternative parameterization:
Instead of the gains Kp and Kd it is sometimes more intuitive to set the

• wave length λ = 1
ω0

= 1√
Kp/m

, Kp = m/λ2

• damping ratio ξ = Kd√
4mKp

= λKd

2m , Kd = 2mξ/λ

ξ > 1: over-damped
ξ = 1: critically dampled
ξ < 1: oscillatory-damped

q(t) = q∗ + be−ξ t/λ ei
√

1−ξ2 t/λ
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1D point mass – integral feedback

• Idea 3
“Pull if the position error accumulated large in the past:”

u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇) +Ki

∫ t

s=0

(q∗(s)− q(s)) ds

• This is not a linear ODE w.r.t. x = (q, q̇).
However, when we extend the state to x = (q, q̇, e) we have the ODE

q̇ = q̇

q̈ = u/m = Kp/m(q∗ − q) +Kd/m(q̇∗ − q̇) +Ki/m e

ė = q∗ − q

(no explicit discussion here)

16/36



1D point mass – PID control

u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇) +Ki

∫ t

s=0

(q∗ − q(s)) ds

• PID control
– Proportional Control (“Position Control”)
f ∝ Kp(q

∗ − q)

– Derivative Control (“Damping”)
f ∝ Kd(q̇

∗ − q̇) (ẋ∗ = 0→ damping)

– Integral Control (“Steady State Error”)
f ∝ Ki

∫ t
s=0

(q∗(s)− q(s)) ds
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Controlling a 1D point mass – lessons learnt

• Proportional and derivative feedback (PD control) are like adding a
spring and damper to the point mass

• PD control is a linear control law

(q, q̇) 7→ u = Kp(q
∗ − q) +Kd(q̇

∗ − q̇)

(linear in the dynamic system state x = (q, q̇))

• With such linear control laws we can design approach trajectories (by
tuning the gains)
– but no optimality principle behind such motions
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Dynamics of mechanical systems
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Two ways to derive dynamics equations for
mechanical systems

• The Euler-Lagrange equation

d

dt

∂L

∂q̇
− ∂L

∂q
= u

Used when you want to derive analytic equations of motion (“on paper”)

• The Newton-Euler recursion (and related algorithms)

fi = mv̇i , ui = Iiẇ + w × Iw

Algorithms that “propagate” forces through a kinematic tree and numerically
compute the inverse dynamics u = NE(q, q̇, q̈) or forward dynamics
q̈ = f(q, q̇, u).
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The Euler-Lagrange equation

d

dt

∂L

∂q̇
− ∂L

∂q
= u

• L(q, q̇) is called Lagrangian and defined as

L = T − U

where T=kinetic energy and U=potential energy.

• q is called generalized coordinate – any coordinates such that (q, q̇)

describes the state of the system. Joint angles in our case.

• u are external forces
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The Euler-Lagrange equation
• How is this typically done?
• First, describe the kinematics and Jacobians for every link i:

(q, q̇) 7→ {TW→i(q), vi, wi}

Recall TW→i(q) = TW→A TA→A′ (q) TA′→B TB→B′ (q) · · ·
Further, we know that a link’s velocity vi = Jiq̇ can be described via its position Jacobian.
Similarly we can describe the link’s angular velocity wi = Jw

i q̇ as linear in q̇.

• Second, formulate the kinetic energy

T =
∑
i

1

2
miv

2
i +

1

2
w>i Iiwi =

∑
i

1

2
q̇>Miq̇ , Mi =

 Ji
Jw
i


>miI3 0

0 Ii


 Ji
Jw
i



where Ii = RiĪiR
>
i and Īi the inertia tensor in link coordinates

• Third, formulate the potential energies (typically independent of q̇)

U = gmiheight(i)

• Fourth, compute the partial derivatives analytically to get something like

u︸︷︷︸
control

=
d

dt

∂L

∂q̇
− ∂L

∂q
= M︸︷︷︸

inertia

q̈ + Ṁq̇ − ∂T

∂q︸ ︷︷ ︸
Coriolis

+
∂U

∂q︸︷︷︸
gravity

which relates accelerations q̈ to the forces 22/36



Example: A pendulum

• Generalized coordinates: angle q = (θ)

• Kinematics:
– velocity of the mass: v = (lθ̇ cos θ, 0, lθ̇ sin θ)

– angular velocity of the mass: w = (0,−θ̇, 0)

• Energies:

T =
1

2
mv2 +

1

2
w>Iw =

1

2
(ml2 + I2)θ̇2 , U = −mgl cos θ

• Euler-Lagrange equation:

u =
d

dt

∂L

∂q̇
− ∂L

∂q

=
d

dt
(ml2 + I2)θ̇ +mgl sin θ = (ml2 + I2)θ̈ +mgl sin θ
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Newton-Euler recursion
• An algorithms that compute the inverse dynamics

u = NE(q, q̇, q̈∗)

by recursively computing force balance at each joint:
– Newton’s equation expresses the force acting at the center of mass for

an accelerated body:
fi = mv̇i

– Euler’s equation expresses the torque (=control!) acting on a rigid body
given an angular velocity and angular acceleration:

ui = Iiẇ + w × Iw

• Forward recursion: (≈ kinematics)
Compute (angular) velocities (vi, wi) and accelerations (v̇i, ẇi) for
every link (via forward propagation; see geometry notes for details)

• Backward recursion:
For the leaf links, we now know the desired accelerations q∗ and can
compute the necessary joint torques. Recurse backward. 24/36



Numeric algorithms for forward and inverse
dynamics

• Newton-Euler recursion: very fast (O(n)) method to compute inverse
dynamics

u = NE(q, q̇, q̈∗)

Note that we can use this algorithm to also compute

– gravity terms: u = NE(q, 0, 0) = G(q)

– Coriolis terms: u = NE(q, q̇, 0) = C(q, q̇) q̇

– column of Intertia matrix: u = NE(q, 0, ei) = M(q) ei

• Articulated-Body-Dynamics: fast method (O(n)) to compute forward
dynamics q̈ = f(q, q̇, u)
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Some last practical comments

• [demo]

• Use energy conservation to measure dynamic of physical simulation

• Physical simulation engines (developed for games):
– ODE (Open Dynamics Engine)
– Bullet (originally focussed on collision only)
– Physx (Nvidia)

Differences of these engines to Lagrange, NE or ABD:
– Game engine can model much more: Contacts, tissues, particles, fog, etc
– (The way they model contacts looks ok but is somewhat fictional)
– On kinematic trees, NE or ABD are much more precise than game engines
– Game engines do not provide inverse dynamics, u = NE(q, q̇, q̈)

• Proper modelling of contacts is really really hard

26/36



Dynamic control of a robot
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• We previously learnt the effect of PID control on a 1D point mass

• Robots are not a 1D point mass
– Neither is each joint a 1D point mass
– Applying separate PD control in each joint neglects force coupling

(Poor solution: Apply very high gains separately in each joint↔ make
joints stiff, as with gears.)

• However, knowing the robot dynamics we can transfer our
understanding of PID control of a point mass to general systems
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General robot dynamics

• Let (q, q̇) be the dynamic state and u ∈ Rn the controls (typically joint
torques in each motor) of a robot

• Robot dynamics can generally be written as:

M(q) q̈ + C(q, q̇) q̇ +G(q) = u

M(q) ∈ Rn×n is positive definite intertia matrix
(can be inverted→ forward simulation of dynamics)

C(q, q̇) ∈ Rn are the centripetal and coriolis forces

G(q) ∈ Rn are the gravitational forces

u are the joint torques
(cf. to the Euler-Lagrange equation on slide 22)

• We often write more compactly:

M(q) q̈ + F (q, q̇) = u
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Controlling a general robot

• From now on we jsut assume that we have algorithms to efficiently
compute M(q) and F (q, q̇) for any (q, q̇)

• Inverse dynamics: If we know the desired q̈∗ for each joint,

u = M(q) q̈∗ + F (q, q̇)

gives the necessary torques

• Forward dynamics: If we know which torques u we apply, use

q̈∗ = M(q)-1(u− F (q, q̇))

to simulate the dynamics of the system (e.g., using Runge-Kutta)
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Controlling a general robot – joint space approach

• Where could we get the desired q̈∗ from?
Assume we have a nice smooth reference trajectory qref

0:T (generated
with some motion profile or alike), we can at each t read off the desired
acceleration as

q̈ref
t :=

1

τ
[(qt+1 − qt)/τ − (qt − qt-1)/τ ] = (qt-1 + qt+1 − 2qt)/τ

2

However, tiny errors in acceleration will accumulate greatly over time!
This is Instable!!

• Choose a desired acceleration q̈∗t that implies a PD-like behavior
around the reference trajectory!

q̈∗t = q̈ref
t +Kp(q

ref
t − qt) +Kd(q̇

ref
t − q̇t)

This is a standard and very convenient heuristic to track a reference trajectory
when the robot dynamics are known: All joints will exactly behave like a 1D
point particle around the reference trajectory!
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Controlling a robot – operational space approach

• Recall the inverse kinematics problem:
– We know the desired step δy∗ (or velocity ẏ∗) of the endeffector.
– Which step δq (or velocities q̇) should we make in the joints?

• Equivalent dynamic problem:
– We know how the desired acceleration ÿ∗ of the endeffector.
– What controls u should we apply?
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Operational space control

• Inverse kinematics:

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q0||2W

• Operational space control (one might call it “Inverse task space
dynamics”):

u∗ = argmin
u
||φ̈(q)− ÿ∗||2C + ||u||2H
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Operational space control

• We can derive the optimum perfectly analogous to inverse kinematics
We identify the minimum of a locally squared potential, using the local
linearization (and approx. J̈ = 0)

φ̈(q) =
d

dt
φ̇(q) ≈ d

dt
(Jq̇ + J̇q) ≈ Jq̈ + 2J̇ q̇ = JM -1(u− F ) + 2J̇ q̇

We get

u∗ = T ](ÿ∗ − 2J̇ q̇ + TF )

with T = JM -1 , T ] = (T>CT +H)-1T>C

(C →∞ ⇒ T ] = H -1T>(TH -1T>)-1)
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Controlling a robot – operational space approach
• Where could we get the desired ÿ∗ from?

– Reference trajectory yref
0:T in operational space

– PD-like behavior in each operational space:
ÿ∗t = ÿref

t +Kp(y
ref
t − yt) +Kd(ẏ

ref
t − ẏt)

illustration from O. Brock’s lecture

• Operational space control: Let the system behave as if we could
directly “apply a 1D point mass behavior” to the endeffector 35/36



Multiple tasks

• Recall trick last time: we defined a “big kinematic map” Φ(q) such that

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

• Works analogously in the dynamic case:

u∗ = argmin
u
||u||2H + ||Φ(q)||2
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