Robotics

Dynamics

1D point mass, damping \& oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory following, operational space control

Marc Toussaint
U Stuttgart

Kinematic

instantly change joint velocities \dot{q} :

$$
\delta q_{t} \stackrel{!}{=} J^{\sharp}\left(y^{*}-\phi\left(q_{t}\right)\right)
$$

accounts for kinematic coupling of joints but ignores inertia, forces, torques
gears, stiff, all of industrial robots

Dynamic

instantly change joint torques u :

$$
u \stackrel{!}{=} ?
$$

accounts for dynamic coupling of joints and full Newtonian physics
future robots, compliant, few research robots

When velocities cannot be changed/set arbitrarily

- Examples:
- An air plane flying: You cannot command it to hold still in the air, or to move straight up.
- A car: you cannot command it to move side-wards.
- Your arm: you cannot command it to throw a ball with arbitrary speed (force limits).
- A torque controlled robot: You cannot command it to instantly change velocity (infinite acceleration/torque).
- What all examples have in comment:
- One can set controls u_{t} (air plane's control stick, car's steering wheel, your muscles activations, torque/voltage/current send to a robot's motors)
- But these controls only indirectly influence the dynamics of state,
$x_{t+1}=f\left(x_{t}, u_{t}\right)$

Dynamics

- The dynamics of a system describes how the controls u_{t} influence the change-of-state of the system

$$
x_{t+1}=f\left(x_{t}, u_{t}\right)
$$

- The notation x_{t} refers to the dynamic state of the system: e.g., joint positions and velocities $x_{t}=\left(q_{t}, \dot{q}_{t}\right)$.
- f is an arbitrary function, often smooth

Outline

- We start by discussing a 1D point mass for 3 reasons:
- The most basic force-controlled system with inertia
- We can introduce and understand PID control
- The behavior of a point mass under PID control is a reference that we can also follow with arbitrary dynamic robots (if the dynamics are known)
- We discuss computing the dynamics of general robotic systems
- Euler-Lagrange equations
- Euler-Newton method
- We derive the dynamic equivalent of inverse kinematics:
- operational space control

PID and a 1D point mass

The dynamics of a 1D point mass

- Start with simplest possible example: 1D point mass (no gravity, no friction, just a single mass)

- The state $x(t)=(q(t), \dot{q}(t))$ is described by:
- position $q(t) \in \mathbb{R}$
- velocity $\dot{q}(t) \in \mathbb{R}$
- The controls $u(t)$ is the force we apply on the mass point
- The system dynamics is:

$$
\ddot{q}(t)=u(t) / m
$$

1D point mass - proportional feedback

- Assume current position is q.

The goal is to move it to the position q^{*}.

What can we do?

1D point mass - proportional feedback

- Assume current position is q.

The goal is to move it to the position q^{*}.

What can we do?

- Idea 1:
"Always pull the mass towards the goal q^{*} :"

$$
u=K_{p}\left(q^{*}-q\right)
$$

1D point mass - proportional feedback

- What's the effect of this control law?

$$
m \ddot{q}=u=K_{p}\left(q^{*}-q\right)
$$

$q=q(t)$ is a function of time, this is a second order differential equation

1D point mass - proportional feedback

- What's the effect of this control law?

$$
m \ddot{q}=u=K_{p}\left(q^{*}-q\right)
$$

$q=q(t)$ is a function of time, this is a second order differential equation

- Solution: assume $q(t)=a+b e^{\omega t}$ (a "non-imaginary" alternative would be $q(t)=a+b \epsilon^{-\lambda t} \cos (\omega t)$)

1D point mass - proportional feedback

- What's the effect of this control law?

$$
m \ddot{q}=u=K_{p}\left(q^{*}-q\right)
$$

$q=q(t)$ is a function of time, this is a second order differential equation

- Solution: assume $q(t)=a+b e^{\omega t}$ (a "non-imaginary" alternative would be $q(t)=a+b \epsilon^{-\lambda t} \cos (\omega t)$)

$$
\begin{aligned}
& m b \omega^{2} e^{\omega t}=K_{p} q^{*}-K_{p} a-K_{p} b e^{\omega t} \\
& \left(m b \omega^{2}+K_{p} b\right) e^{\omega t}=K_{p}\left(q^{*}-a\right) \\
& \Rightarrow\left(m b \omega^{2}+K_{p} b\right)=0 \wedge\left(q^{*}-a\right)=0 \\
& \Rightarrow \omega=i \sqrt{K_{p} / m} \\
& q(t)=q^{*}+b e^{i \sqrt{K_{p} / m}} t
\end{aligned}
$$

This is an oscillation around q^{*} with amplitude $b=q(0)-q^{*}$ and frequency $\sqrt{K_{p} / m}$!

1D point mass - proportional feedback

$$
\begin{aligned}
& m \ddot{q}=u=K_{p}\left(q^{*}-q\right) \\
& q(t)=q^{*}+b e^{i \sqrt{K_{p} / m} t}
\end{aligned}
$$

Oscillation around q^{*} with amplitude $b=q(0)-q^{*}$ and frequency $\sqrt{K_{p} / m}$

1D point mass - derivative feedback

- Idea 2
"Pull less, when we're heading the right direction already:"
"Damp the system:"

$$
u=K_{p}\left(q^{*}-q\right)+K_{d}\left(\dot{q}^{*}-\dot{q}\right)
$$

\dot{q}^{*} is a desired goal velocity
For simplicity we set $\dot{q}^{*}=0$ in the following.

1D point mass - derivative feedback

- What's the effect of this control law?

$$
m \ddot{q}=u=K_{p}\left(q^{*}-q\right)+K_{d}(0-\dot{q})
$$

- Solution: again assume $q(t)=a+b e^{\omega t}$

$$
\begin{aligned}
& m b \omega^{2} e^{\omega t}=K_{p} q^{*}-K_{p} a-K_{p} b e^{\omega t}-K_{d} b \omega e^{\omega t} \\
& \left(m b \omega^{2}+K_{d} b \omega+K_{p} b\right) e^{\omega t}=K_{p}\left(q^{*}-a\right) \\
& \Rightarrow\left(m \omega^{2}+K_{d} \omega+K_{p}\right)=0 \wedge\left(q^{*}-a\right)=0 \\
& \Rightarrow \omega=\frac{-K_{d} \pm \sqrt{K_{d}^{2}-4 m K_{p}}}{2 m} \\
& q(t)=q^{*}+b e^{\omega t}
\end{aligned}
$$

The term $-\frac{K_{d}}{2 m}$ in ω is real \leftrightarrow exponential decay (damping)

1D point mass - derivative feedback

$$
q(t)=q^{*}+b e^{\omega t}, \quad \omega=\frac{-K_{d} \pm \sqrt{K_{d}^{2}-4 m K_{p}}}{2 m}
$$

- Effect of the second term $\sqrt{K_{d}^{2}-4 m K_{p}} / 2 m$ in ω :

$$
\left.\begin{array}{rl}
K_{d}^{2}<4 m K_{p} \Rightarrow & \begin{array}{l}
\omega \text { has imaginary part } \\
\text { oscillating with frequency } \sqrt{K_{p} / m-K_{d}^{2} / 4 m^{2}}
\end{array} \\
& q(t)=q^{*}+b e^{-K_{d} / 2 m t} e^{i \sqrt{K_{p} / m-K_{d}^{2} / 4 m^{2}} t}
\end{array}\right) \quad \begin{aligned}
& \omega \text { real } \\
& K_{d}^{2}>4 m K_{p} \Rightarrow \begin{array}{l}
\text { strongly damped }
\end{array} \\
& K_{d}^{2}=4 m K_{p} \Rightarrow \begin{array}{l}
\text { second term zero } \\
\text { only exponential decay }
\end{array}
\end{aligned}
$$

1D point mass - derivative feedback

illustration from O. Brock's lecture

1D point mass - derivative feedback

Alternative parameterization:
Instead of the gains K_{p} and K_{d} it is sometimes more intuitive to set the

- wave length $\lambda=\frac{1}{\omega_{0}}=\frac{1}{\sqrt{K_{p} / m}}, \quad K_{p}=m / \lambda^{2}$
- damping ratio $\xi=\frac{K_{d}}{\sqrt{4 m K_{p}}}=\frac{\lambda K_{d}}{2 m}, \quad K_{d}=2 m \xi / \lambda$
$\xi>1$: over-damped
$\xi=1$: critically dampled
$\xi<1$: oscillatory-damped

$$
q(t)=q^{*}+b e^{-\xi t / \lambda} e^{i \sqrt{1-\xi^{2}} t / \lambda}
$$

1D point mass - integral feedback

- Idea 3
"Pull if the position error accumulated large in the past:"

$$
u=K_{p}\left(q^{*}-q\right)+K_{d}\left(\dot{q}^{*}-\dot{q}\right)+K_{i} \int_{s=0}^{t}\left(q^{*}(s)-q(s)\right) d s
$$

- This is not a linear ODE w.r.t. $x=(q, \dot{q})$.

However, when we extend the state to $x=(q, \dot{q}, e)$ we have the ODE

$$
\begin{aligned}
& \dot{q}=\dot{q} \\
& \ddot{q}=u / m=K_{p} / m\left(q^{*}-q\right)+K_{d} / m\left(\dot{q}^{*}-\dot{q}\right)+K_{i} / m e \\
& \dot{e}=q^{*}-q
\end{aligned}
$$

(no explicit discussion here)

1D point mass - PID control

$$
u=K_{p}\left(q^{*}-q\right)+K_{d}\left(\dot{q}^{*}-\dot{q}\right)+K_{i} \int_{s=0}^{t}\left(q^{*}-q(s)\right) d s
$$

- PID control
- Proportional Control ("Position Control")
$f \propto K_{p}\left(q^{*}-q\right)$
- Derivative Control ("Damping")
$f \propto K_{d}\left(\dot{q}^{*}-\dot{q}\right) \quad\left(\dot{x}^{*}=0 \rightarrow\right.$ damping $)$
- Integral Control ("Steady State Error")
$f \propto K_{i} \int_{s=0}^{t}\left(q^{*}(s)-q(s)\right) d s$

Controlling a 1D point mass - lessons learnt

- Proportional and derivative feedback (PD control) are like adding a spring and damper to the point mass
- PD control is a linear control law

$$
(q, \dot{q}) \mapsto u=K_{p}\left(q^{*}-q\right)+K_{d}\left(\dot{q}^{*}-\dot{q}\right)
$$

(linear in the dynamic system state $x=(q, \dot{q})$)

- With such linear control laws we can design approach trajectories (by tuning the gains)
- but no optimality principle behind such motions

Dynamics of mechanical systems

Two ways to derive dynamics equations for mechanical systems

- The Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=u
$$

Used when you want to derive analytic equations of motion ("on paper")

- The Newton-Euler recursion (and related algorithms)

$$
f_{i}=m \dot{v}_{i}, \quad u_{i}=I_{i} \dot{w}+w \times I w
$$

Algorithms that "propagate" forces through a kinematic tree and numerically compute the inverse dynamics $u=\mathrm{NE}(q, \dot{q}, \ddot{q})$ or forward dynamics $\ddot{q}=f(q, \dot{q}, u)$.

The Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=u
$$

- $L(q, \dot{q})$ is called Lagrangian and defined as

$$
L=T-U
$$

where $T=$ kinetic energy and $U=$ potential energy.

- q is called generalized coordinate - any coordinates such that (q, \dot{q}) describes the state of the system. Joint angles in our case.
- u are external forces

The Euler-Lagrange equation

- How is this typically done?
- First, describe the kinematics and Jacobians for every link i :

$$
(q, \dot{q}) \mapsto\left\{T_{W \rightarrow i}(q), v_{i}, w_{i}\right\}
$$

Recall $T_{W \rightarrow i}(q)=T_{W \rightarrow A} T_{A \rightarrow A^{\prime}}(q) T_{A^{\prime} \rightarrow B} T_{B \rightarrow B^{\prime}}(q) \cdots$
Further, we know that a link's velocity $v_{i}=J_{i} \dot{q}$ can be described via its position Jacobian.
Similarly we can describe the link's angular velocity $w_{i}=J_{i}^{w} \dot{q}$ as linear in \dot{q}.

- Second, formulate the kinetic energy

$$
T=\sum_{i} \frac{1}{2} m_{i} v_{i}^{2}+\frac{1}{2} w_{i}^{\top} I_{i} w_{i}=\sum_{i} \frac{1}{2} \dot{q}^{\top} M_{i} \dot{q}, \quad M_{i}=\binom{J_{i}}{J_{i}^{w}}^{\top}\left(\begin{array}{cc}
m_{i} \mathbf{I}_{3} & 0 \\
0 & I_{i}
\end{array}\right)\binom{J_{i}}{J_{i}^{w}}
$$

where $I_{i}=R_{i} \bar{I}_{i} R_{i}^{\top}$ and \bar{I}_{i} the inertia tensor in link coordinates

- Third, formulate the potential energies (typically independent of \dot{q})

$$
U=g m_{i} \text { height }(i)
$$

- Fourth, compute the partial derivatives analytically to get something like

$$
\underbrace{u}_{\text {control }}=\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q}=\underbrace{M}_{\text {inertia }} \ddot{q}+\underbrace{\dot{M} \dot{q}-\frac{\partial T}{\partial q}}_{\text {Coriolis }}+\underbrace{\frac{\partial U}{\partial q}}_{\text {gravity }}
$$

which relates accelerations \ddot{q} to the forces

Example: A pendulum

- Generalized coordinates: angle $q=(\theta)$
- Kinematics:
- velocity of the mass: $v=(l \dot{\theta} \cos \theta, 0, l \dot{\theta} \sin \theta)$
- angular velocity of the mass: $w=(0,-\dot{\theta}, 0)$
- Energies:

$$
T=\frac{1}{2} m v^{2}+\frac{1}{2} w^{\top} I w=\frac{1}{2}\left(m l^{2}+I_{2}\right) \dot{\theta}^{2}, \quad U=-m g l \cos \theta
$$

- Euler-Lagrange equation:

$$
\begin{aligned}
u & =\frac{d}{d t} \frac{\partial L}{\partial \dot{q}}-\frac{\partial L}{\partial q} \\
& =\frac{d}{d t}\left(m l^{2}+I_{2}\right) \dot{\theta}+m g l \sin \theta=\left(m l^{2}+I_{2}\right) \ddot{\theta}+m g l \sin \theta
\end{aligned}
$$

Newton-Euler recursion

- An algorithms that compute the inverse dynamics

$$
u=\mathrm{NE}\left(q, \dot{q}, \ddot{q}^{*}\right)
$$

by recursively computing force balance at each joint:

- Newton's equation expresses the force acting at the center of mass for an accelerated body:

$$
f_{i}=m \dot{v}_{i}
$$

- Euler's equation expresses the torque (=control!) acting on a rigid body given an angular velocity and angular acceleration:

$$
u_{i}=I_{i} \dot{w}+w \times I w
$$

- Forward recursion: (\approx kinematics)

Compute (angular) velocities $\left(v_{i}, w_{i}\right)$ and accelerations $\left(\dot{v}_{i}, \dot{w}_{i}\right)$ for every link (via forward propagation; see geometry notes for details)

- Backward recursion:

For the leaf links, we now know the desired accelerations q^{*} and can compute the necessary joint torques. Recurse backward.

Numeric algorithms for forward and inverse dynamics

- Newton-Euler recursion: very fast $(O(n))$ method to compute inverse dynamics

$$
u=\mathrm{NE}\left(q, \dot{q}, \ddot{q}^{*}\right)
$$

Note that we can use this algorithm to also compute

- gravity terms: $u=\mathrm{NE}(q, 0,0)=G(q)$
- Coriolis terms: $u=\mathrm{NE}(q, \dot{q}, 0)=C(q, \dot{q}) \dot{q}$
- column of Intertia matrix: $u=\mathrm{NE}\left(q, 0, e_{i}\right)=M(q) e_{i}$
- Articulated-Body-Dynamics: fast method $(O(n))$ to compute forward dynamics $\ddot{q}=f(q, \dot{q}, u)$

Some last practical comments

- [demo]
- Use energy conservation to measure dynamic of physical simulation
- Physical simulation engines (developed for games):
- ODE (Open Dynamics Engine)
- Bullet (originally focussed on collision only)
- Physx (Nvidia)

Differences of these engines to Lagrange, NE or ABD:

- Game engine can model much more: Contacts, tissues, particles, fog, etc
- (The way they model contacts looks ok but is somewhat fictional)
- On kinematic trees, NE or ABD are much more precise than game engines
- Game engines do not provide inverse dynamics, $u=\mathrm{NE}(q, \dot{q}, \ddot{q})$
- Proper modelling of contacts is really really hard

Dynamic control of a robot

- We previously learnt the effect of PID control on a 1D point mass
- Robots are not a 1D point mass
- Neither is each joint a 1D point mass
- Applying separate PD control in each joint neglects force coupling (Poor solution: Apply very high gains separately in each joint \leftrightarrow make joints stiff, as with gears.)
- However, knowing the robot dynamics we can transfer our understanding of PID control of a point mass to general systems

General robot dynamics

- Let (q, \dot{q}) be the dynamic state and $u \in \mathbb{R}^{n}$ the controls (typically joint torques in each motor) of a robot
- Robot dynamics can generally be written as:

$$
M(q) \ddot{q}+C(q, \dot{q}) \dot{q}+G(q)=u
$$

$M(q) \in \mathbb{R}^{n \times n} \quad$ is positive definite intertia matrix (can be inverted \rightarrow forward simulation of dynamics)
$C(q, \dot{q}) \in \mathbb{R}^{n} \quad$ are the centripetal and coriolis forces
$G(q) \in \mathbb{R}^{n} \quad$ are the gravitational forces
$u \quad$ are the joint torques
(cf. to the Euler-Lagrange equation on slide 22)

- We often write more compactly:

$$
M(q) \ddot{q}+F(q, \dot{q})=u
$$

Controlling a general robot

- From now on we jsut assume that we have algorithms to efficiently compute $M(q)$ and $F(q, \dot{q})$ for any (q, \dot{q})
- Inverse dynamics: If we know the desired \ddot{q}^{*} for each joint,

$$
u=M(q) \ddot{q}^{*}+F(q, \dot{q})
$$

gives the necessary torques

- Forward dynamics: If we know which torques u we apply, use

$$
\ddot{q}^{*}=M(q)^{-1}(u-F(q, \dot{q}))
$$

to simulate the dynamics of the system (e.g., using Runge-Kutta)

Controlling a general robot - joint space approach

- Where could we get the desired \ddot{q}^{*} from?

Assume we have a nice smooth reference trajectory $q_{0: T}^{\text {ref }}$ (generated with some motion profile or alike), we can at each t read off the desired acceleration as

$$
\ddot{q}_{t}^{\text {ref }}:=\frac{1}{\tau}\left[\left(q_{t+1}-q_{t}\right) / \tau-\left(q_{t}-q_{t-1}\right) / \tau\right]=\left(q_{t-1}+q_{t+1}-2 q_{t}\right) / \tau^{2}
$$

However, tiny errors in acceleration will accumulate greatly over time! This is Instable!!

Controlling a general robot - joint space approach

- Where could we get the desired \ddot{q}^{*} from?

Assume we have a nice smooth reference trajectory $q_{0: T}^{\text {ref }}$ (generated with some motion profile or alike), we can at each t read off the desired acceleration as

$$
\ddot{q}_{t}^{\text {ref }}:=\frac{1}{\tau}\left[\left(q_{t+1}-q_{t}\right) / \tau-\left(q_{t}-q_{t-1}\right) / \tau\right]=\left(q_{t-1}+q_{t+1}-2 q_{t}\right) / \tau^{2}
$$

However, tiny errors in acceleration will accumulate greatly over time! This is Instable!!

- Choose a desired acceleration \ddot{q}_{t}^{*} that implies a PD-like behavior around the reference trajectory!

$$
\ddot{q}_{t}^{*}=\dot{q}_{t}^{\text {ref }}+K_{p}\left(q_{t}^{\text {ref }}-q_{t}\right)+K_{d}\left(\dot{q}_{t}^{\text {ref }}-\dot{q}_{t}\right)
$$

This is a standard and very convenient heuristic to track a reference trajectory when the robot dynamics are known: All joints will exactly behave like a 1D point particle around the reference trajectory!

Controlling a robot - operational space approach

- Recall the inverse kinematics problem:
- We know the desired step δy^{*} (or velocity \dot{y}^{*}) of the endeffector.
- Which step δq (or velocities \dot{q}) should we make in the joints?
- Equivalent dynamic problem:
- We know how the desired acceleration \ddot{y}^{*} of the endeffector.
- What controls u should we apply?

Operational space control

- Inverse kinematics:

$$
q^{*}=\underset{q}{\operatorname{argmin}}\left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2}
$$

- Operational space control (one might call it "Inverse task space dynamics"):

$$
u^{*}=\underset{u}{\operatorname{argmin}}\left\|\ddot{\phi}(q)-\ddot{y}^{*}\right\|_{C}^{2}+\|u\|_{H}^{2}
$$

Operational space control

- We can derive the optimum perfectly analogous to inverse kinematics We identify the minimum of a locally squared potential, using the local linearization (and approx. $\ddot{J}=0$)

$$
\ddot{\phi}(q)=\frac{d}{d t} \dot{\phi}(q) \approx \frac{d}{d t}(J \dot{q}+\dot{J} q) \approx J \ddot{q}+2 \dot{J} \dot{q}=J M^{-1}(u-F)+2 \dot{j} \dot{q}
$$

We get

$$
\begin{aligned}
& u^{*}=T^{\sharp}\left(\ddot{y}^{*}-2 \dot{J} \dot{q}+T F\right) \\
& \text { with } T=J M^{-1}, \quad T^{\sharp}=\left(T^{\top} C T+H\right)^{-1} T^{\top} C \\
& \left(C \rightarrow \infty \Rightarrow T^{\sharp}=H^{-1} T^{\top}\left(T H^{-1} T^{\top}\right)^{-1}\right)
\end{aligned}
$$

Controlling a robot - operational space approach

- Where could we get the desired \ddot{y}^{*} from?
- Reference trajectory $y_{0: T}^{\text {ref }}$ in operational space
- PD-like behavior in each operational space:

$$
\ddot{y}_{t}^{*}=\ddot{y}_{t}^{\text {ref }}+K_{p}\left(y_{t}^{\text {ref }}-y_{t}\right)+K_{d}\left(\dot{y}_{t}^{\text {ref }}-\dot{y}_{t}\right)
$$

Joint Space

Operational Space
illustration from O. Brock's lecture

- Operational space control: Let the system behave as if we could directly "apply a 1D point mass behavior" to the endeffector

Multiple tasks

- Recall trick last time: we defined a "big kinematic map" $\Phi(q)$ such that

$$
q^{*}=\underset{q}{\operatorname{argmin}}\left\|q-q_{0}\right\|_{W}^{2}+\|\Phi(q)\|^{2}
$$

- Works analogously in the dynamic case:

$$
u^{*}=\underset{u}{\operatorname{argmin}}\|u\|_{H}^{2}+\|\Phi(q)\|^{2}
$$

