il
i

Robotics

Dynamics

1D point mass, damping & oscillation, PID,
dynamics of mechanical systems,
Euler-Lagrange equation, Newton-Euler
recursion, general robot dynamics, joint space
control, reference trajectory following,
operational space control

Marc Toussaint
U Stuttgart

Kinematic

instantly change joint velocities ¢:
! *
5q: = J* (y* — o(ar))

accounts for kinematic coupling of
joints but ignores inertia, forces,
torques

gears, stiff, all of industrial robots

Dynamic

instantly change joint torques u:

!
u="?

accounts for dynamic coupling of
joints and full Newtonian physics

future robots, compliant, few re-
search robots

2/36

When velocities cannot be changed/set arbitrarily

e Examples:
— An air plane flying: You cannot command it to hold still in the air, or to
move straight up.
— A car: you cannot command it to move side-wards.
— Your arm: you cannot command it to throw a ball with arbitrary speed
(force limits).
— A torque controlled robot: You cannot command it to instantly change
velocity (infinite acceleration/torque).

e What all examples have in comment:
— One can set controls u; (air plane’s control stick, car’s steering
wheel, your muscles activations, torque/voltage/current send to a
robot’s motors)
— But these controls only indirectly influence the dynamics of state,
Tiy1 = f(@4,ur)

3/36

Dynamics

e The dynamics of a system describes how the controls w; influence the
change-of-state of the system

Ty = o, ur)

— The notation x, refers to the dynamic state of the system: e.g., joint
positions and velocities x; = (g4, ¢t).
— f is an arbitrary function, often smooth

4/36

Outline

e We start by discussing a 1D point mass for 3 reasons:
— The most basic force-controlled system with inertia
— We can introduce and understand PID control

— The behavior of a point mass under PID control is a reference that we can
also follow with arbitrary dynamic robots (if the dynamics are known)

e We discuss computing the dynamics of general robotic systems
— Euler-Lagrange equations
— Euler-Newton method

e We derive the dynamic equivalent of inverse kinematics:
— operational space control

5/36

PID and a 1D point mass

6/36

The dynamics of a 1D point mass

e Start with simplest possible example: 1D point mass
(no gravity, no friction, just a single mass)

™m >

e The state z(¢t) = (¢q(¢), ¢(¢)) is described by:
— position ¢(t) € R
— velocity ¢(t) e R

e The controls u(t) is the force we apply on the mass point

e The system dynamics is:

7/36

1D point mass — proportional feedback

e Assume current position is g.
The goal is to move it to the position ¢*.

What can we do?

8/36

1D point mass — proportional feedback

e Assume current position is g.
The goal is to move it to the position ¢*.

What can we do?

e Idea 1:
“Always pull the mass towards the goal ¢*:”

u=K, (¢" —q)
___JVVV_____.

m i
T

8/36

1D point mass — proportional feedback

o What's the effect of this control law?
mi=u=K,(q"—q)

g = ¢q(t) is a function of time, this is a second order differential equation

9/36

1D point mass — proportional feedback
o What's the effect of this control law?
m{=u=K,(q" —q)

g = ¢q(t) is a function of time, this is a second order differential equation

e Solution: assume ¢(t) = a + be**
(a “non-imaginary” alternative would be ¢(t) = a + b e cos(wt))

9/36

1D point mass — proportional feedback
o What's the effect of this control law?
m{=u=K,(q" —q)

g = ¢q(t) is a function of time, this is a second order differential equation

e Solution: assume ¢(t) = a + be**
(a “non-imaginary” alternative would be ¢(t) = a + b e cos(wt))

mwaGWt:qu*praprbewt
(mbw? + K, b) e =K, (¢* —a)
= mbw? +K,b)=0A (¢ —a)=0

= w=1iy/K,/m

q(t) _ q* +b€i\/Kp/mt

This is an oscillation around ¢* with amplitude b = ¢(0) — ¢* and

frequency /K, /m! 0/36

1D point mass — proportional feedback

mi=u=K, (¢"—q)
q(t) — q* _’_bei«/Kp/mt

Oscillation around ¢* with amplitude b = ¢(0) — ¢* and frequency

VEp/m

10/36

1D point mass — derivative feedback

e Idea 2
“Pull less, when we're heading the right direction already:”
“Damp the system:”

u=Ky(¢"—q) + Ka(§" —q)

¢* is a desired goal velocity
For simplicity we set ¢* = 0 in the following.

11/36

1D point mass — derivative feedback
e What's the effect of this control law?
m=u=Ky(q¢" —q) + Ka(0 — ¢)
e Solution: again assume ¢(t) = a + be**

mbw? e =K, ¢* — K, a— K, be’" — Kgbwe!
(mbw? + Kgbw+ K, b) e =K, (¢* —a)
= muw+Kqw+Ky)=0A (¢"—a)=0

—-K,+ \/Kg —4mK,
2m

qt) =q¢* +be”?

=w=

The term —% inwisreal <« exponential decay (damping)

12/36

1D point mass — derivative feedback

qt)=q +be*!, w

K+ \/Kg —4mK,
B 2m

o Effect of the second term /K2 — 4mK,,/2m in w:

K? <4mK, = w hasimaginary part
oscillating with frequency /K,,/m — K2 /4m?
q(t) =q" + he—Ka/2m t 6ig/Kp/m—K3/4m2 t
K?>4mK, = wreal
strongly damped

K?=4mK, = second term zero
only exponential decay

13/36

1D point mass — derivative feedback

4

_

~__~ " Oscillatory-damped

t

A 4

Over-damped

f
N

A 4

Critically damped

illustration from O. Brock’s lecture

14/36

1D point mass — derivative feedback

Alternative parameterization:
Instead of the gains K, and K, it is sometimes more intuitive to set the

e wave length A = - = K, =m/\?

«o Kp/m ’

1 1
0

4pr =)\21'r(nd s Kd:2m£/A
& > 1: over-damped

& = 1: critically dampled

¢ < 1: oscillatory-damped

e damping ratio £ =

q(t) — q* —|—b€7§ t/A ei\/17§2 t/A

15/36

1D point mass — integral feedback

e Idea 3
“Pull if the position error accumulated large in the past:”

W= Kyfa” =)+ Kl =)+ K (@) —ale) ds

e Thisis not a linear ODE w.r.t. z = (g, q).
However, when we extend the state to = = (q, ¢, ¢) we have the ODE

Gg=4q
§=u/m=Kp/m(q" —q) + Ka/m(d* — ¢) + Ki/me
e=q"—q

(no explicit discussion here)

16/36

1D point mass — PID control

w=Kyla’)+ Kald ~ D)+ Ko [(@ —ats) ds

e PID control
— Proportional Control (“Position Control”)

foc Kp(g* —q)

— Derivative Control (“Damping”)
fx Kq(¢* —¢) (&* =0 — damping)

— Integral Control (“Steady State Error”)
foc Ki [1_o(q*(s) = q(s)) ds

17/36

Controlling a 1D point mass — lessons learnt

e Proportional and derivative feedback (PD control) are like adding a
spring and damper to the point mass

e PD control is a linear control law

(¢:4) = u=Ky(¢" —q) + Ka(¢" — q)
(linear in the dynamic system state x = (q, ¢))
¢ With such linear control laws we can design approach trajectories (by

tuning the gains)
— but no optimality principle behind such motions

18/36

Dynamics of mechanical systems

19/36

Two ways to derive dynamics equations for
mechanical systems

e The Euler-Lagrange equation

Used when you want to derive analytic equations of motion (“on paper”)

e The Newton-Euler recursion (and related algorithms)
f?szL, ui:Iiu')—waIw

Algorithms that “propagate” forces through a kinematic tree and numerically
compute the inverse dynamics v = NE(q, ¢, §) or forward dynamics

d= f(q,¢,u).

20/36

The Euler-Lagrange equation

e L(q,q) is called Lagrangian and defined as
L=T-U

where T'=kinetic energy and U=potential energy.

e ¢ is called generalized coordinate — any coordinates such that (g, ¢)
describes the state of the system. Joint angles in our case.

e v are external forces

21/36

The Euler-Lagrange equation

e How is this typically done?
e First, describe the kinematics and Jacobians for every link i:

(4,9) = {Tw—i(g), vi, wi}

Recall Tw—i(q) = Tw—a Taa(q) Tar s T (q) -
Further, we know that a link’s velocity v; = J;¢ can be described via its position Jacobian.
Similarly we can describe the link’s angular velocity w; = J}* ¢ as linear in 4.

e Second, formulate the kinetic energy
1 T . _ Ji T miI3 0 Ji
= Z v + “’1[““ Ziq Mg, M= (J;v) (0 11-) (J{”)
where I; = R;I; R} and I; the inertia tensor in link coordinates
e Third, formulate the potential energies (typically independent of ¢)
U = gm;height(3)

e Fourth, compute the partial derivatives analytically to get something like

w = 4OL 0L _ . 070U
—~~ dtdq Oq \/ dq Oq
control inertia N——

Coriolis gravity

which relates accelerations ¢ to the forces 22/36

Example: A pendulum

m
o Generalized coordinates: angle ¢ = (0)
e Kinematics:
— velocity of the mass: v = (10 cos 0,0, 10sin 0)
— angular velocity of the mass: w = (0, —6,0)

e Energies:
1 2 1 T 1 2)2
T= 5 + SV Iw = §(ml +15)0°, U= —mglcosb
e Euler-Lagrange equation:
_dOoL 0L

T atag ag

d . i
= £(ml2 + 1,)0 + mglsin@ = (mi® + I5)0 + mgl sin 0

23/36

Newton-Euler recursion

¢ An algorithms that compute the inverse dynamics

u=NE(q,¢,¢")

by recursively computing force balance at each joint:
— Newton’s equation expresses the force acting at the center of mass for
an accelerated body:
fi = mi)i
— Euler’s equation expresses the torque (=control!) acting on a rigid body
given an angular velocity and angular acceleration:

w; = Liw +w X Tw

e Forward recursion: (= kinematics)
Compute (angular) velocities (v;, w;) and accelerations (v;, w;) for
every link (via forward propagation; see geometry notes for details)

e Backward recursion:
For the leaf links, we now know the desired accelerations ¢* and can
compute the necessary joint torques. Recurse backward. 24/36

Numeric algorithms for forward and inverse
dynamics

o Newton-Euler recursion: very fast (O(n)) method to compute inverse
dynamics
u = NE(q,4,4")
Note that we can use this algorithm to also compute
— gravity terms: u = NE(q,0,0) = G(q)
— Coriolis terms: u = NE(q,¢,0) = C(q,q) ¢
— column of Intertia matrix: « = NE(q,0,e;) = M(q) e;

¢ Articulated-Body-Dynamics: fast method (O(n)) to compute forward
dynamics § = f(q, 4, u)

25/36

Some last practical comments

e [demo]
e Use energy conservation to measure dynamic of physical simulation
e Physical simulation engines (developed for games):
— ODE (Open Dynamics Engine)
— Bullet (originally focussed on collision only)
— Physx (Nvidia)
Differences of these engines to Lagrange, NE or ABD:
— Game engine can model much more: Contacts, tissues, particles, fog, etc
— (The way they model contacts looks ok but is somewhat fictional)
— On kinematic trees, NE or ABD are much more precise than game engines
— Game engines do not provide inverse dynamics, u = NE(q, ¢,)

e Proper modelling of contacts is really really hard

26/36

Dynamic control of a robot

27/36

e We previously learnt the effect of PID control on a 1D point mass

e Robots are not a 1D point mass
— Neither is each joint a 1D point mass

— Applying separate PD control in each joint neglects force coupling
(Poor solution: Apply very high gains separately in each joint <+ make
joints stiff, as with gears.)

e However, knowing the robot dynamics we can transfer our
understanding of PID control of a point mass to general systems

28/36

General robot dynamics

e Let (¢, ¢) be the dynamic state and « € R™ the controls (typically joint
torques in each motor) of a robot

¢ Robot dynamics can generally be written as:
M(q) §+C(q,q) ¢+ G(q) = u

M(q) e R™*™ s positive definite intertia matrix
(can be inverted — forward simulation of dynamics)

C(q,q) € R™ are the centripetal and coriolis forces
G(g) eR" are the gravitational forces
U are the joint torques
(cf. to the Euler-Lagrange equation on slide 22)
¢ We often write more compactly:

M(q) §+ F(q,q) = u

29/36

Controlling a general robot

e From now on we jsut assume that we have algorithms to efficiently
compute M(q) and F(q, ¢) for any (q, q)

¢ Inverse dynamics: If we know the desired ¢* for each joint,
u=M(q) ¢+ F(q,9)

gives the necessary torques
e Forward dynamics: If we know which torques u we apply, use

§* = M(q) (u— F(q,q))

to simulate the dynamics of the system (e.g., using Runge-Kutta)

30/36

Controlling a general robot — joint space approach

e Where could we get the desired ¢* from?
Assume we have a nice smooth reference trajectory q{ffT (generated
with some motion profile or alike), we can at each ¢ read off the desired
acceleration as

1
..ref
q;e .

“l(ar = a)/7 = (a0 = 4e1)/7) = (@1 + Gusr = 2q4) /7

However, tiny errors in acceleration will accumulate greatly over time!
This is Instable!!

31/36

Controlling a general robot — joint space approach

e Where could we get the desired ¢* from?
Assume we have a nice smooth reference trajectory q{ffT (generated
with some motion profile or alike), we can at each ¢ read off the desired
acceleration as

. 1

AR ;[<Qt+1 —q) /T = (gt — qe1)/7) = (@1 + G1 — 241) /77
However, tiny errors in acceleration will accumulate greatly over time!
This is Instable!!

e Choose a desired acceleration §; that implies a PD-like behavior

around the reference trajectory!

df = G + Kp(af® — ar) + Ka(df® — ¢v)
This is a standard and very convenient heuristic to track a reference trajectory
when the robot dynamics are known: All joints will exactly behave like a 1D
point particle around the reference trajectory!

31/36

Controlling a robot — operational space approach

e Recall the inverse kinematics problem:
— We know the desired step dy* (or velocity ¢*) of the endeffector.
— Which step dq (or velocities ¢) should we make in the joints?

e Equivalent dynamic problem:
— We know how the desired acceleration ¢j* of the endeffector.
— What controls u should we apply?

32/36

Operational space control

e Inverse kinematics:

q* = argmin |¢(q) — y*|& + la — ol
q

e Operational space control (one might call it “Inverse task space
dynamics”):
u* = argmin |¢(q) — §*& + Jul?

33/36

Operational space control

e We can derive the optimum perfectly analogous to inverse kinematics
We identify the minimum of a locally squared potential, using the local
linearization (and approx. J = 0)

. d . d, ; ..
$la) = 2 0(0) = 2 (Ja+Jq) = JG+2Jg =M (u—F)+2Jg
We get

u* =T " —2J¢+TF)
with 7 = JM™* | T =(T'CT + H)'T'C

(C— o0 = T=HIT(TH'TT)?)

34/36

Controlling a robot — operational space approach

e Where could we get the desired 3* from?
— Reference trajectory y/°!. in operational space
— PD-like behavior in each operational space:
g =i + Kp(yle' — o) + Ka(9p® —)

Joint Space Operational Space

illustration from O. Brock’s lecture

e Operational space control: Let the system behave as if we could
directly “apply a 1D point mass behavior” to the endeffector 35/36

Multiple tasks

e Recall trick last time: we defined a “big kinematic map” ®(¢) such that

¢* = argmin |q — qol 3 + [®(g)]?
q

e Works analogously in the dynamic case:

u* = argmin ul} + [®(q)]?
u

36/36

