

Robotics

Dynamics

1D point mass, damping & oscillation, PID, dynamics of mechanical systems, Euler-Lagrange equation, Newton-Euler recursion, general robot dynamics, joint space control, reference trajectory following, operational space control

> Marc Toussaint U Stuttgart

Kinematic

instantly change joint velocities \dot{q} : $\delta q_t \stackrel{!}{=} J^{\sharp} \left(y^* - \phi(q_t)\right)$

accounts for kinematic coupling of joints but **ignores inertia**, forces, torques

gears, stiff, all of industrial robots

Dynamic

instantly change joint torques u: $u \stackrel{!}{=} ?$

accounts for dynamic coupling of joints and full Newtonian physics

future robots, **compliant**, few research robots

When velocities cannot be changed/set arbitrarily

• Examples:

- An air plane flying: You cannot command it to hold still in the air, or to move straight up.

- A car: you cannot command it to move side-wards.

- Your arm: you cannot command it to throw a ball with arbitrary speed (force limits).

 A torque controlled robot: You cannot command it to instantly change velocity (infinite acceleration/torque).

• What all examples have in comment:

– One can set **controls** u_t (air plane's control stick, car's steering wheel, your muscles activations, torque/voltage/current send to a robot's motors)

– But these controls only indirectly influence the dynamics of state, $x_{t+1} = f(x_t, u_t)$

Dynamics

• The dynamics of a system describes how the controls u_t influence the change-of-state of the system

 $x_{t+1} = f(x_t, u_t)$

- The notation x_t refers to the *dynamic state* of the system: e.g., joint positions *and velocities* $x_t = (q_t, \dot{q}_t)$.
- -f is an arbitrary function, often smooth

Outline

- We start by discussing a **1D point mass** for 3 reasons:
 - The most basic force-controlled system with inertia
 - We can introduce and understand PID control
 - The behavior of a point mass under PID control is a *reference* that we can also follow with arbitrary dynamic robots (if the dynamics are known)
- We discuss computing the dynamics of general robotic systems
 - Euler-Lagrange equations
 - Euler-Newton method
- We derive the dynamic equivalent of inverse kinematics:
 - operational space control

PID and a 1D point mass

The dynamics of a 1D point mass

• Start with simplest possible example: 1D point mass (no gravity, no friction, just a single mass)

- The state $x(t) = (q(t), \dot{q}(t))$ is described by:
 - position $q(t) \in \mathbb{R}$
 - velocity $\dot{q}(t) \in \mathbb{R}$
- The controls u(t) is the force we apply on the mass point
- The system dynamics is:

$$\ddot{q}(t) = u(t)/m$$

• Assume current position is *q*. The goal is to move it to the position *q**.

What can we do?

• Assume current position is *q*. The goal is to move it to the position *q**.

What can we do?

• Idea 1:

"Always pull the mass towards the goal q^* :"

• What's the effect of this control law?

$$m \ddot{q} = u = K_p \left(q^* - q \right)$$

q = q(t) is a function of time, this is a second order differential equation

• What's the effect of this control law?

$$m \ddot{q} = u = K_p \left(q^* - q \right)$$

 $\boldsymbol{q}=\boldsymbol{q}(t)$ is a function of time, this is a second order differential equation

• Solution: assume $q(t) = a + be^{\omega t}$ (a "non-imaginary" alternative would be $q(t) = a + b e^{-\lambda t} \cos(\omega t)$)

• What's the effect of this control law?

$$m \ddot{q} = u = K_p (q^* - q)$$

 $\boldsymbol{q}=\boldsymbol{q}(t)$ is a function of time, this is a second order differential equation

• Solution: assume $q(t) = a + be^{\omega t}$ (a "non-imaginary" alternative would be $q(t) = a + b e^{-\lambda t} \cos(\omega t)$)

$$\begin{split} m \ b \ \omega^2 \ e^{\omega t} &= K_p \ q^* - K_p \ a - K_p \ b \ e^{\omega t} \\ (m \ b \ \omega^2 + K_p \ b) \ e^{\omega t} &= K_p \ (q^* - a) \\ \Rightarrow (m \ b \ \omega^2 + K_p \ b) &= 0 \ \land \ (q^* - a) = 0 \\ \Rightarrow \ \omega &= i \sqrt{K_p/m} \\ q(t) &= q^* + b \ e^{i \sqrt{K_p/m}} \ t \end{split}$$

This is an oscillation around q^* with amplitude $b = q(0) - q^*$ and frequency $\sqrt{K_p/m!}$

$$m \ddot{q} = u = K_p (q^* - q)$$
$$q(t) = q^* + b e^{i\sqrt{K_p/m} t}$$

Oscillation around q^* with amplitude $b=q(0)-q^*$ and frequency $\sqrt{K_p/m}$

• Idea 2

"Pull less, when we're heading the right direction already:" "Damp the system:"

$$u = K_p(q^* - q) + K_d(\dot{q}^* - \dot{q})$$

 \dot{q}^* is a desired goal velocity For simplicity we set $\dot{q}^*=0$ in the following.

$$- \boxed{m} \xrightarrow{\cdots} \xrightarrow{q^*}$$

• What's the effect of this control law?

$$m\ddot{q} = u = K_p(q^* - q) + K_d(0 - \dot{q})$$

• Solution: again assume $q(t) = a + be^{\omega t}$

$$m b \omega^{2} e^{\omega t} = K_{p} q^{*} - K_{p} a - K_{p} b e^{\omega t} - K_{d} b \omega e^{\omega t}$$
$$(m b \omega^{2} + K_{d} b \omega + K_{p} b) e^{\omega t} = K_{p} (q^{*} - a)$$
$$\Rightarrow (m \omega^{2} + K_{d} \omega + K_{p}) = 0 \land (q^{*} - a) = 0$$
$$\Rightarrow \omega = \frac{-K_{d} \pm \sqrt{K_{d}^{2} - 4mK_{p}}}{2m}$$
$$q(t) = q^{*} + b e^{\omega t}$$

The term $-\frac{K_d}{2m}$ in ω is real \leftrightarrow exponential decay (damping)

$$q(t) = q^* + b e^{\omega t}$$
, $\omega = \frac{-K_d \pm \sqrt{K_d^2 - 4mK_p}}{2m}$

- Effect of the second term $\sqrt{K_d^2 4mK_p}/2m$ in ω :
 - $\begin{array}{ll} K_d^2 < 4mK_p & \Rightarrow & \omega \text{ has imaginary part} \\ & \text{ oscillating with frequency } \sqrt{K_p/m K_d^2/4m^2} \\ & q(t) = q^* + be^{-K_d/2m \ t} \ e^{i\sqrt{K_p/m K_d^2/4m^2} \ t} \end{array}$
 - $K_d^2 > 4mK_p \Rightarrow \omega$ real strongly damped
 - $K_d^2 = 4mK_p \quad \Rightarrow \quad {\rm second \ term \ zero} \ {\rm only \ exponential \ decay}$

1D point mass – derivative feedback

illustration from O. Brock's lecture

Alternative parameterization:

Instead of the gains K_p and K_d it is sometimes more intuitive to set the

• wave length
$$\lambda = \frac{1}{\omega_0} = \frac{1}{\sqrt{K_p/m}}$$
, $K_p = m/\lambda^2$

• damping ratio
$$\xi = rac{K_d}{\sqrt{4mK_p}} = rac{\lambda K_d}{2m}$$
, $K_d = 2m\xi/\lambda$

- $\xi > 1$: over-damped
- $\xi = 1$: critically dampled
- $\xi < 1$: oscillatory-damped

$$q(t) = q^* + b e^{-\xi \ t/\lambda} \ e^{i\sqrt{1-\xi^2} \ t/\lambda}$$

1D point mass – integral feedback

• Idea 3

"Pull if the position error accumulated large in the past:"

$$u = K_p(q^* - q) + K_d(\dot{q}^* - \dot{q}) + K_i \int_{s=0}^t (q^*(s) - q(s)) \, ds$$

• This is not a linear ODE w.r.t. $x = (q, \dot{q})$. However, when we extend the state to $x = (q, \dot{q}, e)$ we have the ODE

$$\begin{split} \dot{q} &= \dot{q} \\ \ddot{q} &= u/m = K_p/m(q^*-q) + K_d/m(\dot{q}^*-\dot{q}) + K_i/m \ e \\ \dot{e} &= q^*-q \end{split}$$

(no explicit discussion here)

1D point mass – PID control

$$u = K_p(q^* - q) + K_d(\dot{q}^* - \dot{q}) + K_i \int_{s=0}^t (q^* - q(s)) \, ds$$

- PID control
 - Proportional Control ("Position Control") $f \propto K_p(q^* - q)$
 - Derivative Control ("Damping") $f \propto K_d(\dot{q}^* - \dot{q}) \quad (\dot{x}^* = 0 \rightarrow \text{damping})$
 - Integral Control ("Steady State Error") $f \propto K_i \int_{s=0}^t (q^*(s) - q(s)) ds$

Controlling a 1D point mass – lessons learnt

- Proportional and derivative feedback (PD control) are like adding a spring and damper to the point mass
- PD control is a *linear control law*

$$(q,\dot{q})\mapsto u=K_p(q^*-q)+K_d(\dot{q}^*-\dot{q})$$

(linear in the *dynamic system state* $x = (q, \dot{q})$)

- With such linear control laws we can design approach trajectories (by tuning the gains)
 - but no optimality principle behind such motions

Dynamics of mechanical systems

Two ways to derive dynamics equations for mechanical systems

• The Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = u$$

Used when you want to derive analytic equations of motion ("on paper")

• The Newton-Euler recursion (and related algorithms)

$$f_i = m\dot{v}_i$$
, $u_i = I_i\dot{w} + w \times Iw$

Algorithms that "propagate" forces through a kinematic tree and numerically compute the *inverse* dynamics $u = NE(q, \dot{q}, \ddot{q})$ or *forward* dynamics $\ddot{q} = f(q, \dot{q}, u)$.

The Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = u$$

• $L(q, \dot{q})$ is called **Lagrangian** and defined as

$$L = T - U$$

where T=kinetic energy and U=potential energy.

- *q* is called generalized coordinate any coordinates such that (q, \dot{q}) describes the state of the system. Joint angles in our case.
- u are external forces

The Euler-Lagrange equation

- How is this typically done?
- First, describe the kinematics and Jacobians for every link i:

 $(q, \dot{q}) \mapsto \{T_{W \to i}(q), v_i, w_i\}$

Recall $T_{W \to i}(q) = T_{W \to A} T_{A \to A'}(q) T_{A' \to B} T_{B \to B'}(q) \cdots$ Further we know that a link's velocity $w = I \cdot a$ can be described via

Further, we know that a link's velocity $v_i = J_i \dot{q}$ can be described via its position Jacobian. Similarly we can describe the link's *angular velocity* $w_i = J_i^w \dot{q}$ as linear in \dot{q} .

• Second, formulate the kinetic energy

$$T = \sum_{i} \frac{1}{2} m_i v_i^2 + \frac{1}{2} w_i^\top I_i w_i = \sum_{i} \frac{1}{2} \dot{q}^\top M_i \dot{q} , \quad M_i = \begin{pmatrix} J_i \\ J_i^w \end{pmatrix}^\top \begin{pmatrix} m_i \mathbf{I}_3 & 0 \\ 0 & I_i \end{pmatrix} \begin{pmatrix} J_i \\ J_i^w \end{pmatrix}$$

where $I_i = R_i \bar{I}_i R_i^{\top}$ and \bar{I}_i the inertia tensor in link coordinates

• Third, formulate the potential energies (typically independent of \dot{q})

$$U = gm_i \text{height}(i)$$

• Fourth, compute the partial derivatives analytically to get something like

$$\underbrace{u}_{\text{control}} = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q} = \underbrace{M}_{\text{inertia}} \ddot{q} + \underbrace{\dot{M}\dot{q} - \frac{\partial T}{\partial q}}_{\text{Coriolis}} + \underbrace{\frac{\partial U}{\partial q}}_{\text{gravity}}$$

which relates accelerations \ddot{q} to the forces

Example: A pendulum

- Generalized coordinates: angle $q = (\theta)$
- Kinematics:
 - velocity of the mass: $v = (l\dot{\theta}\cos\theta, 0, l\dot{\theta}\sin\theta)$
 - angular velocity of the mass: $w = (0, -\dot{\theta}, 0)$
- Energies:

$$T = \frac{1}{2}mv^2 + \frac{1}{2}w^{\mathsf{T}}Iw = \frac{1}{2}(ml^2 + I_2)\dot{\theta}^2 , \quad U = -mgl\cos\theta$$

• Euler-Lagrange equation:

$$u = \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} - \frac{\partial L}{\partial q}$$
$$= \frac{d}{dt} (ml^2 + I_2)\dot{\theta} + mgl\sin\theta = (ml^2 + I_2)\ddot{\theta} + mgl\sin\theta$$

Newton-Euler recursion

• An algorithms that compute the inverse dynamics

$$u = \mathsf{NE}(q, \dot{q}, \ddot{q}^*)$$

by recursively computing force balance at each joint:

 Newton's equation expresses the force acting at the center of mass for an accelerated body:

$$f_i = m\dot{v}_i$$

- **Euler's equation** expresses the torque (=control!) acting on a rigid body given an angular velocity and angular acceleration:

$$u_i = I_i \dot{w} + w \times I w$$

• Forward recursion: (~ kinematics)

Compute (angular) velocities (v_i, w_i) and accelerations (\dot{v}_i, \dot{w}_i) for every link (via forward propagation; see geometry notes for details)

• Backward recursion:

For the leaf links, we now know the desired accelerations q^* and can compute the necessary joint torques. Recurse backward. 24/36

Numeric algorithms for forward and inverse dynamics

• Newton-Euler recursion: very fast (*O*(*n*)) method to compute *inverse* dynamics

$$u = \mathsf{NE}(q, \dot{q}, \ddot{q}^*)$$

Note that we can use this algorithm to also compute

- gravity terms: u = NE(q, 0, 0) = G(q)
- Coriolis terms: $u = NE(q, \dot{q}, 0) = C(q, \dot{q}) \dot{q}$
- column of Intertia matrix: $u = NE(q, 0, e_i) = M(q) e_i$
- Articulated-Body-Dynamics: fast method (*O*(*n*)) to compute *forward* dynamics $\ddot{q} = f(q, \dot{q}, u)$

Some last practical comments

- [demo]
- Use energy conservation to measure dynamic of physical simulation
- Physical simulation engines (developed for games):
 - ODE (Open Dynamics Engine)
 - Bullet (originally focussed on collision only)
 - Physx (Nvidia)

Differences of these engines to Lagrange, NE or ABD:

- Game engine can model much more: Contacts, tissues, particles, fog, etc
- (The way they model contacts looks ok but is somewhat fictional)
- On kinematic trees, NE or ABD are much more precise than game engines
- Game engines do not provide *inverse* dynamics, $u = NE(q, \dot{q}, \ddot{q})$
- Proper modelling of contacts is really really hard

Dynamic control of a robot

- We previously learnt the effect of PID control on a 1D point mass
- Robots are not a 1D point mass
 - Neither is each joint a 1D point mass
 - Applying separate PD control in each joint neglects force coupling (Poor solution: Apply very high gains separately in each joint ↔ make joints stiff, as with gears.)
- However, knowing the robot dynamics we can transfer our understanding of PID control of a point mass to general systems

General robot dynamics

- Let (q, \dot{q}) be the dynamic state and $u \in \mathbb{R}^n$ the controls (typically joint torques in each motor) of a robot
- Robot dynamics can generally be written as:

 $M(q) \; \ddot{q} + C(q, \dot{q}) \; \dot{q} + G(q) = u$

- $$\begin{split} M(q) \in \mathbb{R}^{n \times n} & \text{ is positive definite intertia matrix} \\ & (\text{can be inverted} \to \text{forward simulation of dynamics}) \\ C(q, \dot{q}) \in \mathbb{R}^n & \text{ are the centripetal and coriolis forces} \\ G(q) \in \mathbb{R}^n & \text{ are the gravitational forces} \\ & u & \text{ are the joint torques} \\ (\text{cf. to the Euler-Lagrange equation on slide 22}) \end{split}$$
- We often write more compactly:

$$M(q) \ddot{q} + F(q, \dot{q}) = u$$

Controlling a general robot

- From now on we jsut assume that we have algorithms to efficiently compute M(q) and $F(q,\dot{q})$ for any (q,\dot{q})
- Inverse dynamics: If we know the desired \ddot{q}^* for each joint,

$$u = M(q) \ddot{q}^* + F(q, \dot{q})$$

gives the necessary torques

• Forward dynamics: If we know which torques u we apply, use

$$\ddot{q}^* = M(q)^{-1}(u - F(q, \dot{q}))$$

to simulate the dynamics of the system (e.g., using Runge-Kutta)

Controlling a general robot – joint space approach

• Where could we get the desired \ddot{q}^* from? Assume we have a nice smooth **reference trajectory** $q_{0:T}^{\text{ref}}$ (generated with some motion profile or alike), we can at each *t* read off the desired acceleration as

$$\ddot{q}_t^{\text{ref}} := \frac{1}{\tau} [(q_{t+1} - q_t)/\tau - (q_t - q_{t-1})/\tau] = (q_{t-1} + q_{t+1} - 2q_t)/\tau^2$$

However, tiny errors in acceleration will accumulate greatly over time! This is Instable!!

Controlling a general robot – joint space approach

• Where could we get the desired \ddot{q}^* from? Assume we have a nice smooth **reference trajectory** $q_{0:T}^{\text{ref}}$ (generated with some motion profile or alike), we can at each *t* read off the desired acceleration as

$$\ddot{q}_t^{\text{ref}} := \frac{1}{\tau} [(q_{t+1} - q_t)/\tau - (q_t - q_{t-1})/\tau] = (q_{t-1} + q_{t+1} - 2q_t)/\tau^2$$

However, tiny errors in acceleration will accumulate greatly over time! This is Instable!!

 Choose a desired acceleration
 ä^{*}_t that implies a *PD-like behavior around the reference trajectory*!

$$\ddot{q}_t^* = \ddot{q}_t^{\text{ref}} + K_p(q_t^{\text{ref}} - q_t) + K_d(\dot{q}_t^{\text{ref}} - \dot{q}_t)$$

This is a standard and very convenient heuristic to track a reference trajectory when the robot dynamics are known: *All joints will exactly behave like a 1D point particle around the reference trajectory!*

Controlling a robot – operational space approach

- Recall the inverse kinematics problem:
 - We know the desired step δy^* (or velocity \dot{y}^*) of the *endeffector*.
 - Which step δq (or velocities \dot{q}) should we make in the joints?
- Equivalent dynamic problem:
 - We know how the desired acceleration \ddot{y}^* of the *endeffector*.
 - What controls *u* should we apply?

Operational space control

• Inverse kinematics:

$$q^* = \underset{q}{\operatorname{argmin}} \|\phi(q) - y^*\|_C^2 + \|q - q_0\|_W^2$$

• Operational space control (one might call it "Inverse task space dynamics"):

$$u^* = \underset{u}{\operatorname{argmin}} \|\ddot{\phi}(q) - \ddot{y}^*\|_C^2 + \|u\|_H^2$$

Operational space control

• We can derive the optimum perfectly analogous to inverse kinematics We identify the minimum of a locally squared potential, using the local linearization (and approx. $\ddot{J} = 0$)

$$\ddot{\phi}(q) = \frac{d}{dt}\dot{\phi}(q) \approx \frac{d}{dt}(J\dot{q} + \dot{J}q) \approx J\ddot{q} + 2\dot{J}\dot{q} = JM^{\text{-1}}(u - F) + 2\dot{J}\dot{q}$$

We get

$$\begin{aligned} u^* &= T^{\sharp}(\ddot{y}^* - 2\dot{J}\dot{q} + TF) \\ \text{with } T &= JM^{\text{-}1} \;, \quad T^{\sharp} = (T^{\text{-}}CT + H)^{\text{-}1}T^{\text{-}}C \end{aligned}$$

 $(C \to \infty \Rightarrow T^{\sharp} = H^{-1}T^{\top}(TH^{-1}T^{\top})^{-1})$

Controlling a robot – operational space approach

- Where could we get the desired \ddot{y}^* from?
 - Reference trajectory $y_{0:T}^{ref}$ in operational space
 - PD-like behavior in each operational space:

$$\ddot{y}_t^* = \ddot{y}_t^{\text{ref}} + K_p(y_t^{\text{ref}} - y_t) + K_d(\dot{y}_t^{\text{ref}} - \dot{y}_t)$$

Joint Space

Operational Space

illustration from O. Brock's lecture

• Operational space control: Let the system behave as if we could directly "apply a 1D point mass behavior" to the endeffector

Multiple tasks

• Recall trick last time: we defined a "big kinematic map" $\Phi(q)$ such that

$$q^* = \underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \|\Phi(q)\|^2$$

• Works analogously in the dynamic case:

$$u^* = \operatorname*{argmin}_{u} \|u\|_{H}^{2} + \|\Phi(q)\|^{2}$$