

Robotics

Path Optimization

very briefly

Marc Toussaint U Stuttgart

Outline

- These are only some very brief notes on path optimization
- The aim is to explain how to *formulate* the optimization problem. Concerning the optimization algorithm itself, refer to the *Optimization* lecture.

From inverse kinematics to path costs

Recall our optimality principle of inverse kinematics

$$\underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \|\Phi(q)\|^2$$

- A trajectory $q_{0:T}$ is a sequence of robot configurations $q_t \in \mathbb{R}^n$
- Consider the cost function

$$f(q_{0:T}) = \sum_{t=0}^{T} \|\Psi_t(q_{t-k}, ..., q_t)\|^2 + \sum_{t=0}^{T} \|\Phi_t(q_t)\|^2$$

(where $(q_{-k}, .., q_{-1})$ is a given prefix)

• $\Psi_t(q_{t-k}, ..., q_t)$ represents **control costs** k denotes the **order** of the control costs $\Phi_t(q_t)$ represents **task costs** (More generally, task costs could depend on $\Phi_t(q_{t-k}, ..., q_t)$)

Control costs

• The $\Psi_t(q_{t-k}, ..., q_t)$ can penalize various things:

k = 0	$\Psi_t(q_t) = q_t - q_0$	penalize offset from zero
k = 1	$\Psi_t(q_{t-1}, q_t) = q_t - q_{t-1}$	penalize velocity
k = 2	$\Psi_t(q_{t-2},,q_t) = q_t - 2q_{t-1} + q_{t-2}$	penalize acceleration
k = 3	$\Psi_t(q_{t-3},,q_t) = q_t - 3q_{t-1} + 3q_{t-2} - q_{t-3}$	penalize jerk

• The big $\Phi_t(q_t)$ imposes tasks as for inverse kinematics

Choice of optimizer

$$f(q_{0:T}) = \sum_{t=0}^{T} \|\Psi_t(q_{t-k}, ..., q_t)\|^2 + \sum_{t=0}^{T} \|\Phi_t(q_t)\|^2$$

Is in the form of the so-called **Gauss-Newton** optimization problem, and can be solved using such 2nd order methods.

(Note that the pseudo Hessian is a banded, symmetric, positive-definite matrix.)

Alternativ: formulate hard constraints in the framework of constrained optimization