
Robotics

Path Planning

Path finding vs. trajectory optimization, local
vs. global, Dijkstra, Probabilistic Roadmaps,

Rapidly Exploring Random Trees,
non-holonomic systems, car system equation,

path-finding for non-holonomic systems,
control-based sampling, Dubins curves

Marc Toussaint
U Stuttgart

Path finding examples

Alpha-Puzzle, solved with James Kuffner’s RRTs

2/61

Path finding examples

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep
Planning Among Obstacles for Biped Robots. Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2001. 3/61

Path finding examples

T. Bretl. Motion Planning of Multi-Limbed Robots Subject to Equilibrium
Constraints: The Free-Climbing Robot Problem. International Journal
of Robotics Research, 25(4):317-342, Apr 2006.

4/61

Path finding examples

S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning.
International Journal of Robotics Research, 20(5):378–400, May 2001.

5/61

Feedback control, path finding, trajectory optim.

goalstart

path finding

trajectory optimization

feedback control

• Feedback Control: E.g., qt+1 = qt + J](y∗ − φ(qt))

• Trajectory Optimization: argminq0:T f(q0:T)

• Path Finding: Find some q0:T with only valid configurations

6/61

Control, path finding, trajectory optimization

• Combining methods:
1) Path Finding

goalstart

path finding

trajectory optimization

feedback control

2) Trajectory Optimization (“smoothing”)
3) Feedback Control

• Many problems can be solved with only feedback control (though not
optimally)

• Many more problems can be solved locally optimal with only trajectory
optimization

• Tricky problems need path finding: global search for valid paths

7/61

Outline

• Heuristics & Discretization (slides from Howie CHoset’s CMU lectures)
– Bugs algorithm
– Potentials to guide feedback control
– Dijkstra

• Sample-based Path Finding
– Probabilistic Roadmaps
– Rapidly Exploring Random Trees

8/61

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

OK ?

m-line
“Bug 2” Algorithm

9/61

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?

10/61

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

NO! How do we fix this?

Goal

Start

“Bug 2” Algorithm

11/61

A better bug?

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again closer to the goal.

3) Leave the obstacle and continue
toward the goal

Goal

Start

“Bug 2” Algorithm

Better or worse than Bug1?

12/61

BUG algorithms – conclusions

• Other variants: TangentBug, VisBug, RoverBug, WedgeBug, . . .

• only 2D! (TangentBug has extension to 3D)

• Guaranteed convergence

• Still active research:
K. Taylor and S.M. LaValle: I-Bug: An Intensity-Based Bug Algorithm

⇒ Useful for minimalistic, robust 2D goal reaching
– not useful for finding paths in joint space

13/61

Start-Goal Algorithm:
Potential Functions

14/61

Repulsive Potential

15/61

Total Potential Function

+ =

)()()(repatt qUqUqU +=

)()(qUqF −∇=

16/61

Local Minimum Problem with the Charge Analogy

17/61

Potential fields – conclusions

• Very simple, therefore popular

• In our framework: Combining a goal (endeffector) task variable, with a
constraint (collision avoidance) task variable; then using inv. kinematics
is exactly the same as “Potential Fields”

⇒ Does not solve locality problem of feedback control.

18/61

The Wavefront in Action (Part 2)

• Now repeat with the modified cells
– This will be repeated until no 0’s are adjacent to cells

with values >= 2
• 0’s will only remain when regions are unreachable

19/61

The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with
“0” to the current cell + 1
– 4-Point Connectivity or 8-Point Connectivity?
– Your Choice. We’ll use 8-Point Connectivity in our example

20/61

The Wavefront in Action (Part 2)

• Now repeat with the modified cells
– This will be repeated until no 0’s are adjacent to cells

with values >= 2
• 0’s will only remain when regions are unreachable

21/61

The Wavefront in Action (Part 3)

• Repeat again...

22/61

The Wavefront in Action (Part 4)

• And again...

23/61

The Wavefront in Action (Part 5)

• And again until...

24/61

The Wavefront in Action (Done)

• You’re done
– Remember, 0’s should only remain if unreachable

regions exist

25/61

The Wavefront, Now What?
• To find the shortest path, according to your metric, simply always

move toward a cell with a lower number
– The numbers generated by the Wavefront planner are roughly proportional to their

distance from the goal

Two
possible
shortest

paths
shown

26/61

Dijkstra Algorithm

• Is efficient in discrete domains
– Given start and goal node in an arbitrary graph
– Incrementally label nodes with their distance-from-start

• Produces optimal (shortest) paths

• Applying this to continuous domains requires discretization
– Grid-like discretization in high-dimensions is daunting! (curse of
dimensionality)
– What are other ways to “discretize” space more efficiently?

27/61

Sample-based Path Finding

28/61

Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]

q ∈ Rn describes configuration
Qfree is the set of configurations without collision

29/61

Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]

q ∈ Rn describes configuration
Qfree is the set of configurations without collision

29/61

Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]
Probabilistic Road Map
– generates a graph G = (V,E) of configurations
– such that configurations along each edges are ∈ Qfree 30/61

Probabilistic Road Maps

Given the graph, use (e.g.) Dijkstra to find path from qstart to qgoal.

31/61

Probabilistic Road Maps – generation

Input: number n of samples, number k number of nearest neighbors
Output: PRM G = (V,E)

1: initialize V = ∅, E = ∅
2: while |V | < n do // find n collision free points qi
3: q ← random sample from Q

4: if q ∈ Qfree then V ← V ∪ {q}
5: end while
6: for all q ∈ V do // check if near points can be connected
7: Nq ← k nearest neighbors of q in V
8: for all q′ ∈ Nq do
9: if path(q, q′) ∈ Qfree then E ← E ∪ {(q, q′)}

10: end for
11: end for

where path(q, q′) is a local planner (easiest: straight line)

32/61

Local Planner

tests collisions up to a specified resolution δ

33/61

Problem: Narrow Passages

The smaller the gap (clearance %) the more unlikely to sample such
points.

34/61

PRM theory
(for uniform sampling in d-dim space)

• Let a, b ∈ Qfree and γ a path in Qfree connecting a and b.

Then the probability that PRM found the path after n samples is

P (PRM-success |n) ≥ 1− 2|γ|
%

e−σ%
dn

σ = |B1|
2d|Qfree|

% = clearance of γ (distance to obstacles)
(roughly: the exponential term are “volume ratios”)

• This result is called probabilistic complete (one can achieve any
probability with high enough n)

• For a given success probability, n needs to be exponential in d

35/61

Other PRM sampling strategies

illustration from O. Brock’s lecture

Gaussian: q1 ∼ U; q2 ∼ N(q1, σ); if q1 ∈ Qfree and q2 6∈ Qfree, add q1 (or vice versa).

Bridge: q1 ∼ U; q2 ∼ N(q1, σ); q3 = (q1 + q2)/2; if q1, q2 6∈ Qfree and q3 ∈ Qfree, add q3.

• Sampling strategy can be made more intelligence: “utility-based
sampling”

• Connection sampling
(once earlier sampling has produced connected components)

36/61

Other PRM sampling strategies

illustration from O. Brock’s lecture

Gaussian: q1 ∼ U; q2 ∼ N(q1, σ); if q1 ∈ Qfree and q2 6∈ Qfree, add q1 (or vice versa).

Bridge: q1 ∼ U; q2 ∼ N(q1, σ); q3 = (q1 + q2)/2; if q1, q2 6∈ Qfree and q3 ∈ Qfree, add q3.

• Sampling strategy can be made more intelligence: “utility-based
sampling”

• Connection sampling
(once earlier sampling has produced connected components) 36/61

Probabilistic Roadmaps – conclusions

• Pros:
– Algorithmically very simple
– Highly explorative
– Allows probabilistic performance guarantees
– Good to answer many queries in an unchanged environment

• Cons:
– Precomputation of exhaustive roadmap takes a long time

(but not necessary for “Lazy PRMs”)

37/61

Rapidly Exploring Random Trees
2 motivations:

• Single Query path finding: Focus computational efforts on paths for
specific (qstart, qgoal)

• Use actually controllable DoFs to incrementally explore the search
space: control-based path finding.

(Ensures that RRTs can be extended to handling differential
constraints.)

38/61

n = 1

39/61

n = 100

39/61

n = 300

39/61

n = 600

39/61

n = 1000

39/61

n = 2000

39/61

Rapidly Exploring Random Trees

Simplest RRT with straight line local planner and step size α

Input: qstart, number n of nodes, stepsize α
Output: tree T = (V,E)

1: initialize V = {qstart}, E = ∅
2: for i = 0 : n do
3: qtarget ← random sample from Q

4: qnear ← nearest neighbor of qtarget in V
5: qnew ← qnear +

α
|qtarget−qnear|

(qtarget − qnear)

6: if qnew ∈ Qfree then V ← V ∪ {qnew}, E ← E ∪ {(qnear, qnew)}
7: end for

40/61

Rapidly Exploring Random Trees

RRT growing directedly towards the goal

Input: qstart, qgoal, number n of nodes, stepsize α, β
Output: tree T = (V,E)

1: initialize V = {qstart}, E = ∅
2: for i = 0 : n do
3: if rand(0, 1) < β then qtarget ← qgoal
4: else qtarget ← random sample from Q

5: qnear ← nearest neighbor of qtarget in V
6: qnew ← qnear +

α
|qtarget−qnear|

(qtarget − qnear)

7: if qnew ∈ Qfree then V ← V ∪ {qnew}, E ← E ∪ {(qnear, qnew)}
8: end for

41/61

n = 1

42/61

n = 100

42/61

n = 200

42/61

n = 300

42/61

n = 400

42/61

n = 500

42/61

Bi-directional search

• grow two trees starting from qstart and qgoal

let one tree grow towards the other
(e.g., “choose qnew of T1 as qtarget of T2”)

43/61

Summary: RRTs

• Pros (shared with PRMs):
– Algorithmically very simple
– Highly explorative
– Allows probabilistic performance guarantees

• Pros (beyond PRMs):
– Focus computation on single query (qstart, qgoal) problem
– Trees from multiple queries can be merged to a roadmap
– Can be extended to differential constraints (nonholonomic systems)

• To keep in mind (shared with PRMs):
– The metric (for nearest neighbor selection) is sometimes critical
– The local planner may be non-trivial

44/61

References
Steven M. LaValle: Planning Algorithms,
http://planning.cs.uiuc.edu/.

Choset et. al.: Principles of Motion Planning, MIT Press.

Latombe’s “motion planning” lecture, http:
//robotics.stanford.edu/~latombe/cs326/2007/schedule.htm

45/61

http://planning.cs.uiuc.edu/
http://robotics.stanford.edu/~latombe/cs326/2007/schedule.htm
http://robotics.stanford.edu/~latombe/cs326/2007/schedule.htm

Non-holonomic systems

46/61

Non-holonomic systems

• We define a nonholonomic system as one with differential
constraints:

dim(ut) < dim(xt)

⇒ Not all degrees of freedom are directly controllable

• Dynamic systems are an example!

• General definition of a differential constraint:
For any given state x, let Ux be the tangent space that is generated by
controls:

Ux = {ẋ : ẋ = f(x, u), u ∈ U}
(non-holonomic ⇐⇒ dim(Ux) < dim(x))

The elements of Ux are elements of Tx subject to additional differential
constraints.

47/61

Car example

ẋ = v cos θ

ẏ = v sin θ

θ̇ = (v/L) tanϕ

|ϕ| < Φ

State q =


x

y

θ

 Controls u =

v
ϕ



Sytem equation


ẋ

ẏ

θ̇

 =


v cos θ

v sin θ

(v/L) tanϕ



48/61

Car example

• The car is a non-holonomic system: not all DoFs are controlled,
dim(u) < dim(q)

We have the differential constraint q̇:

ẋ sin θ − ẏ cos θ = 0

“A car cannot move directly lateral.”

• Analogy to dynamic systems: Just like a car cannot instantly move sidewards,
a dynamic system cannot instantly change its position q: the current change in
position is constrained by the current velocity q̇.

49/61

Path finding with a non-holonomic system
Could a car follow this trajectory?

This is generated with a PRM in the state space q = (x, y, θ) ignoring
the differntial constraint.

50/61

Path finding with a non-holonomic system
This is a solution we would like to have:

The path respects differential constraints.
Each step in the path corresponds to setting certain controls. 51/61

Control-based sampling to grow a tree

• Control-based sampling: fulfils none of the nice exploration properties
of RRTs, but fulfils the differential constraints:

1) Select a q ∈ T from tree of current configurations

2) Pick control vector u at random

3) Integrate equation of motion over short duration (picked at random
or not)

4) If the motion is collision-free, add the endpoint to the tree

52/61

Control-based sampling for the car

1) Select a q ∈ T
2) Pick v, φ, and τ
3) Integrate motion from q

4) Add result if collision-free

53/61

J. Barraquand and J.C. Latombe. Nonholonomic Multibody Robots:

Controllability and Motion Planning in the Presence of Obstacles. Algorithmica,

10:121-155, 1993.

car parking
54/61

car parking

55/61

parking with only left-steering

56/61

with a trailer

57/61

Better control-based exploration: RRTs revisited

• RRTs with differential constraints:

Input: qstart, number k of nodes, time interval τ
Output: tree T = (V,E)

1: initialize V = {qstart}, E = ∅
2: for i = 0 : k do
3: qtarget ← random sample from Q

4: qnear ← nearest neighbor of qtarget in V
5: use local planner to compute controls u that steer qnear towards qtarget
6: qnew ← qnear +

∫ τ
t=0 q̇(q, u)dt

7: if qnew ∈ Qfree then V ← V ∪ {qnew}, E ← E ∪ {(qnear, qnew)}
8: end for

• Crucial questions:
– How meassure near in nonholonomic systems?
– How find controls u to steer towards target?

58/61

Metrics
Standard/Naive metrics:

• Comparing two 2D rotations/orientations θ1, θ2 ∈ SO(2):
a) Euclidean metric between eiθ1 and eiθ2

b) d(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}

• Comparing two configurations (x, y, θ)1,2 in R2:
Eucledian metric on (x, y, eiθ)

• Comparing two 3D rotations/orientations r1, r2 ∈ SO(3):
Represent both orientations as unit-length quaternions r1, r2 ∈ R4:

d(r1, d2) = min{|r1 − r2|, |r1 + r2|}
where | · | is the Euclidean metric.
(Recall that r1 and −r1 represent exactly the same rotation.)

• Ideal metric:
Optimal cost-to-go between two states x1 and x2:
– Use optimal trajectory cost as metric
– This is as hard to compute as the original problem, of course!!
→ Approximate, e.g., by neglecting obstacles.

59/61

Metrics
Standard/Naive metrics:

• Comparing two 2D rotations/orientations θ1, θ2 ∈ SO(2):
a) Euclidean metric between eiθ1 and eiθ2

b) d(θ1, θ2) = min{|θ1 − θ2|, 2π − |θ1 − θ2|}

• Comparing two configurations (x, y, θ)1,2 in R2:
Eucledian metric on (x, y, eiθ)

• Comparing two 3D rotations/orientations r1, r2 ∈ SO(3):
Represent both orientations as unit-length quaternions r1, r2 ∈ R4:

d(r1, d2) = min{|r1 − r2|, |r1 + r2|}
where | · | is the Euclidean metric.
(Recall that r1 and −r1 represent exactly the same rotation.)

• Ideal metric:
Optimal cost-to-go between two states x1 and x2:
– Use optimal trajectory cost as metric
– This is as hard to compute as the original problem, of course!!
→ Approximate, e.g., by neglecting obstacles.

59/61

Dubins curves

• Dubins car: constant velocity, and steer ϕ ∈ [−Φ,Φ]

• Neglecting obstacles, there are only six types of trajectories that
connect any configuration ∈ R2 × S1:

{LRL,RLR,LSL,LSR,RSL,RSR}

• annotating durations of each phase:
{LαRβLγ , , RαLβRγ , LαSdLγ , LαSdRγ , RαSdLγ , RαSdRγ}

with α ∈ [0, 2π), β ∈ (π, 2π), d ≥ 0

60/61

Dubins curves

→ By testing all six types of trajectories for (q1, q2) we can define a
Dubins metric for the RRT – and use the Dubins curves as controls!

• Reeds-Shepp curves are an extension for cars which can drive back.
(includes 46 types of trajectories, good metric for use in RRTs for cars)

61/61

Dubins curves

→ By testing all six types of trajectories for (q1, q2) we can define a
Dubins metric for the RRT – and use the Dubins curves as controls!

• Reeds-Shepp curves are an extension for cars which can drive back.
(includes 46 types of trajectories, good metric for use in RRTs for cars)

61/61

