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Path finding examples

Alpha-Puzzle, solved with James Kuffner’s RRTs
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Path finding examples
=

RIGHT CAMERA VIEW

s

LEFT CAMERA VIEW

J. Kuffner, K. Nishiwaki, S. Kagami, M. Inaba, and H. Inoue. Footstep
Planning Among Obstacles for Biped Robots. Proc. IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems (IROS), 2001. 3/61



Path finding examples

T. Bretl. Motion Planning of Multi-Limbed Robots Subject to Equilibrium
Constraints: The Free-Climbing Robot Problem. International Journal
of Robotics Research, 25(4):317-342, Apr 2006.
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Path finding examples

S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning.
International Journal of Robotics Research, 20(5):378—400, May 2001.
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Feedback control, path finding, trajectory optim.

path/finding
rajectory optiqizatia

feedback control

y

start goal

——

e Feedback Control:  E.g., i1 = q: + J*(y* — d(qr))
e Trajectory Optimization:  argmin, . f(qo.7)
e Path Finding: Find some qo.7 with only valid configurations
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Control, path finding, trajectory optimization

e Combining methods:
1) Path Finding
2) Trajectory Optimization (“smoothing”)
3) Feedback Control

path/finding
ra‘ec10r¥ optiizatia

feedback control
start goal

[

e Many problems can be solved with only feedback control (though not
optimally)

e Many more problems can be solved locally optimal with only trajectory
optimization

e Tricky problems need path finding: global search for valid paths
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Outline

e Heuristics & Discretization (slides from Howie CHoset's CMU lectures)
— Bugs algorithm
— Potentials to guide feedback control
— Dijkstra

e Sample-based Path Finding
— Probabilistic Roadmaps
— Rapidly Exploring Random Trees
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CarnegieXellon

A Dbetter bug?

"Bug 2" Algorithm

m-line

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

q
IS
INSTITUTE
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CarnegieXellon

A Dbetter bug?

"Bug 2" Algorithm

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

: Goal

Better or worse than Bugl?

THE
ROBOTICS
INSTITUTE
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CarnegieXellon

A Dbetter bug?

"Bug 2" Algorithm

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again.

3) Leave the obstacle and continue
toward the goal

: Goal

NO! How do we fix T!g!

INSTITUTE
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CarnegieXellon

A Dbetter bug?

"Bug 2" Algorithm

1) head toward goal on the m-line

2) if an obstacle is in the way,
follow it until you encounter the
m-line again closer to the goal.

3) Leave the obstacle and continue
toward the goal

: Goal

Better or worse than Bugl?

THE
ROBOTICS
INSTITUTE
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BUG algorithms — conclusions

e Other variants: TangentBug, VisBug, RoverBug, WedgeBug, . ..
e only 2D! (TangentBug has extension to 3D)
e Guaranteed convergence

o Still active research:
K. Taylor and S.M. LaValle: [-Bug: An Intensity-Based Bug Algorithm

= Useful for minimalistic, robust 2D goal reaching
— not useful for finding paths in joint space
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L Cewsdl.

Start-Goal Algorithm;
Potential Functions
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THE
ROBOTICS
INSTITUTE
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Local Minimum Problem with the Charge Analogy
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Potential fields — conclusions

e Very simple, therefore popular

¢ In our framework: Combining a goal (endeffector) task variable, with a
constraint (collision avoidance) task variable; then using inv. kinematics
is exactly the same as “Potential Fields”

= Does not solve locality problem of feedback control.
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The Wavefront in Action (Part 2)

* Now repeat with the modified cells
— This will be repeated until no 0’s are adjacent to cells

with values >= 2

» 0’s will only remain when regions are unreachable
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ROBOTICS
INSTITUTE

19/61



The Wavefront in Action (Part 1)

« Starting with the goal, set all adjacent cells with

“0” to the current cell + 1

— 4-Point Connectivity or 8-Point Connectivity?

- Yol
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The Wavefront in Action (Part 2)

* Now repeat with the modified cells
— This will be repeated until no 0’s are adjacent to cells

with values >= 2

» 0’s will only remain when regions are unreachable
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The Wavefront in Action (Part 3)

* Repeat again...

ROBOTICS
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The Wavefront in Action (Part 4)

* And again...

ROBOTICS
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CarnegieXellon

The Wavefront in Action (Part 5)

* And again until...

ROBOTICS
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The Wavefront in Action (Done)

* You’re done

— Remember, 0’s should only remain if unreachable
regions exist
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CarnegieXellon

The Wavefront, Now What?

« To find the shortest path, according to your metric, simply always

move toward a cell with a lower number

— The numbers generated by the Wavefront planner are roughly proportional to their
distance from the goal

Two
possible
shortest

paths

shown
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Dijkstra Algorithm

¢ Is efficient in discrete domains
— Given start and goal node in an arbitrary graph
— Incrementally label nodes with their distance-from-start

e Produces optimal (shortest) paths

e Applying this to continuous domains requires discretization
— Grid-like discretization in high-dimensions is daunting! (curse of
dimensionality)
— What are other ways to “discretize” space more efficiently?
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Sample-based Path Finding
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Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]
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Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]

g € R™ describes configuration

Qree is the set of configurations without collision .
29



Probabilistic Road Maps

[Kavraki, Svetska, Latombe,Overmars, 95]
Probabilistic Road Map
— generates a graph G = (V, E) of configurations

— such that configurations along each edges are € Qfree 30/61



Probabilistic Road Maps

Ggoal

Given the graph, use (e.g.) Dijkstra to find path from gstant t0 ggoal-
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Probabilistic Road Maps — generation

Input: number n of samples, number k& number of nearest neighbors
Output: PRM G = (V, E)
1: initialize V=0, E =0
2: while |V| < n do // find n collision free points g;
3: g < random sample from Q

4 if ¢ € Qfee then V «+— V U {¢}

5. end while

6: forall g € V do // check if near points can be connected
7 Ny + E nearest neighbors of g in V/

8 forall ¢ € N, do

9 if path(q, ¢') € Qtree then £+ EU {(q,4")}
10: end for
11: end for

where path(q, ¢’) is a local planner (easiest: straight line)
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Local Planner
a;

)

/\

d

tests collisions up to a specified resolution §
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Problem: Narrow Passages

Qstart

The smaller the gap (clearance ) the more unlikely to sample such

points.
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PRM theory

(for uniform sampling in d-dim space)
o Leta,b € Qnee and v a path in Qsee cONnecting ¢ and b.

Then the probability that PRM found the path after n samples is

2
P(PRM-success|n) > 1 — 2 eoe'n

| B1|
2d‘eree| .
o = clearance of v (distance to obstacles)

(roughly: the exponential term are “volume ratios”)

o =

e This result is called probabilistic complete (one can achieve any
probability with high enough n)

e For a given success probability, n needs to be exponential in d
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Other PRM sampling strategies

uniform Gaussian

Bridge

illustration from O. Brock’s lecture

Gaussian: g1 ~ U; g2 ~ N(g1,0); if g1 € Qfree and g2 € Qtree, add g1 (Or vice versa).
Bridge: g1 ~ U; g2 ~ N(g1,0); g3 = (g1 +42)/2; if q1, g2 & Qtree @nd g3 € Qjree, add g3.
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Other PRM sampling strategies

Y DY

LY
. 3 .‘. .’

uniform Gaussian Bridge

illustration from O. Brock’s lecture

Gaussian: ¢1 ~ U; g2 ~ N(q1,0); if g1 € Qfree aNd g2 & Qfree, @dd g1 (Or vice versa).
Bridge: g1 ~ U; g2 ~ N(q1,0); g3 = (91 + ¢2)/2;if q1, g2 & Qtree @nd g3 € Qjree, add g3.

e Sampling strategy can be made more intelligence: “utility-based
sampling”

e Connection sampling
(once earlier sampling has produced connected components) 36/61



Probabilistic Roadmaps — conclusions

e Pros:
— Algorithmically very simple
— Highly explorative
— Allows probabilistic performance guarantees
— Good to answer many queries in an unchanged environment

e Cons:
— Precomputation of exhaustive roadmap takes a long time

(but not necessary for “Lazy PRMs”)
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Rapidly Exploring Random Trees

2 motivations:

e Single Query path finding: Focus computational efforts on paths for
specific (gstart; ggoal)

e Use actually controllable DoFs to incrementally explore the search
space: control-based path finding.

(Ensures that RRTs can be extended to handling differential
constraints.)
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n = 100
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[=JE)E]

n = 300
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[=JE)E]

n = 600
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[=JE)E]

n = 1000
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n = 2000
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Rapidly Exploring Random Trees

Simplest RRT with straight line local planner and step size «

Input:  gsiart, NUMber n of nodes, stepsize «
Output: tree T = (V, E)

1: initialize V' = {gstart}, £ =0

2: fori =0:ndo

3: Gtarget +— random sample from Q
4 gnear <— nearest neighbor of giarget iN V/
5: Gnew ¢ gnear + m(%arget — gnear)
6
7

if gnew € Qtree then V «— V U {gnew}, E < E U {(qnear, gnew) }
: end for
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Rapidly Exploring Random Trees

RRT growing directedly towards the goal

Input:  gstart, ggoal, NUMber n of nodes, stepsize a, 3
Output: tree T' = (V, E)

1: initialize V = {gstart}, E = 0

2. fori=0:ndo

3 if rand(0, 1) < /3 then giarget < qgoal

4 else giarget < random sample from Q

5 gnear <— nearest neighbor of garget iN V/

6: Qnew <— gnear + m(%arget - Qnear)

7: if Qgnew € eree thenV «~ Vu {Qnew}, F+— FEU {(Qnear7 Qnew)}

8: end for
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n = 100
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[=JE)E]

n = 200
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[=JE)E]

n = 300
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n = 400
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n = 500
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Bi-directional search

e grow two trees starting from gstart and ggoal

let one tree grow towards the other
(e.g., “choose gnew Of T1 @S Grarget Of 15”)
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Summary: RRTs

e Pros (shared with PRMs):
— Algorithmically very simple
— Highly explorative
— Allows probabilistic performance guarantees

e Pros (beyond PRMs):
— Focus computation on single query (gstart; ggoal) Problem
— Trees from multiple queries can be merged to a roadmap
— Can be extended to differential constraints (nonholonomic systems)

e To keep in mind (shared with PRMs):
— The metric (for nearest neighbor selection) is sometimes critical
— The local planner may be non-trivial
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Non-holonomic systems
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Non-holonomic systems

¢ We define a nonholonomic system as one with differential
constraints:
dim(us) < dim(zy)
= Not all degrees of freedom are directly controllable

e Dynamic systems are an example!

e General definition of a differential constraint:
For any given state z, let U, be the tangent space that is generated by
controls:
Uy =A{2 : &= f(z,u), ue U}
(non-holonomic <= dim(U,) < dim(z))

The elements of U, are elements of T, subject to additional differential
constraints.
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Car example

T =wv cosf
y=wv sinf

0= (v/L) tanep
o] <@

Controls v = (”)
¥

T v cos b
Y| = v sinf
0 (v/L) tane

X
State ¢ = |y
0

Sytem equation
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Car example
e The car is a non-holonomic system: not all DoFs are controlled,
dim(u) < dim(q)
We have the differential constraint :

Zsinf —ycosfd =0

“A car cannot move directly lateral”

e Analogy to dynamic systems: Just like a car cannot instantly move sidewards,
a dynamic system cannot instantly change its position ¢: the current change in
position is constrained by the current velocity q.
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Path finding with a non-holonomic system

Could a car follow this trajectory?

A,
ILL’—EW\\\\\\\\\\\

This is generated with a PRM in the state space ¢ = (z,y, 8) ignoring

the differntial constraint. 50/61



Path finding with a non-holonomic system

This is a solution we would like to have:

The path respects differential constraints.
Each step in the path corresponds to setting certain controls. 51/61



Control-based sampling to grow a tree

e Control-based sampling: fulfils none of the nice exploration properties
of RRTs, but fulfils the differential constraints:

1) Select a ¢ € T from tree of current configurations
2) Pick control vector u at random

3) Integrate equation of motion over short duration (picked at random
or not)

4) If the motion is collision-free, add the endpoint to the tree
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Control-based sampling for the car

1) SelectageT

2) Pick v, ¢, and

3) Integrate motion from ¢
4) Add result if collision-free
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J. Barraquand and J.C. Latombe. Nonholonomic Multibody Robots:
Controllability and Motion Planning in the Presence of Obstacles. Algorithmica,

10:121-155, 1998.
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car parking
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parking with only left-steering

56/61



with a trailer
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Better control-based exploration: RRTs revisited

o RRTs with differential constraints:

Input:  gstart, number k of nodes, time interval =
Output: tree T = (V, E)
1: initialize V = {gstart}, £ = 0
2. fori =0:kdo
3: Gtarget +— random sample from Q
4 gnear <— nearest neighbor of garget iN V/
5: use local planner to compute controls w that steer gnear towards giarget
6: qrew < gnear + [, 4(q, u)dt
7: if gnew € Qfree then V < V U {gnew}, E < E U {(gnear, gnew) }
8: end for

¢ Crucial questions:
— How meassure near in nonholonomic systems?
— How find controls u to steer towards target?
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Metrics

Standard/Naive metrics:

e Comparing two 2D rotations/orientations 61,6, € SO(2):
a) Euclidean metric between e*%* and e*%2
b) d(01,02) = min{|91 — 92|,27T — |91 — 92|}
o Comparing two configurations (z,y,6)1,2 in R?:
Eucledian metric on (z,y, e'’)
e Comparing two 3D rotations/orientations 1,72 € SO(3):
Represent both orientations as unit-length quaternions 1, r, € R*:
d(ri,d2) = min{|r1 — ra|, |r1 + 72|}
where | - | is the Euclidean metric.
(Recall that 1 and —r; represent exactly the same rotation.)
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Metrics

Standard/Naive metrics:

e Comparing two 2D rotations/orientations 61,6, € SO(2):
a) Euclidean metric between e*%* and e*%2
b) d(01,02) = min{|91 — 92|,27T — |t91 — 92|}

o Comparing two configurations (z,y,6)1,2 in R?:
Eucledian metric on (z,y, e'’)

e Comparing two 3D rotations/orientations 1,72 € SO(3):
Represent both orientations as unit-length quaternions 1, r, € R*:

d(ri,d2) = min{|r1 — ra|, |r1 + 72|}

where | - | is the Euclidean metric.
(Recall that 1 and —r; represent exactly the same rotation.)

¢ Ideal metric:
Optimal cost-to-go between two states x; and xs:
— Use optimal trajectory cost as metric
— This is as hard to compute as the original problem, of course!!

A i g i :
— Approximate, e.g., by neglecting obstacles 50/61



Dubins curves

¢ Dubins car: constant velocity, and steer ¢ € [—-®, 9]

¢ Neglecting obstacles, there are only six types of trajectories that

connect any configuration € R? x S':
{LRL,RLR,LSL,LSR, RSL, RSR}

e annotating durations of each phase:
{LoRgL~, ,RoLgR, Lo SqL~y, LoSqRy, RoSqLy, RoSaRy}
with « € [0,27), 8 € (7,27),d > 0
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Dubins curves

RaSaL, R.LsR,

— By testing all six types of trajectories for (¢1, ¢2) we can define a
Dubins metric for the RRT — and use the Dubins curves as controls!
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Dubins curves

R.SqL, RoLgR,

— By testing all six types of trajectories for (¢1, ¢2) we can define a
Dubins metric for the RRT — and use the Dubins curves as controls!

e Reeds-Shepp curves are an extension for cars which can drive back.
(includes 46 types of trajectories, good metric for use in RRTs for cars)
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