

Robotics

Kinematics

Kinematic map, Jacobian, inverse kinematics as optimization problem, motion profiles, trajectory interpolation, multiple simultaneous tasks, special task variables, configuration/operational/null space, singularities

> Marc Toussaint U Stuttgart

- Two "types of robotics":
 - 1) Mobile robotics is all about localization & mapping
 - 2) Manipulation is all about interacting with the world
 - [0) Kinematic/Dynamic Motion Control: same as 2) without ever making it to interaction..]
- Typical manipulation robots (and animals) are kinematic trees Their pose/state is described by all joint angles

Basic motion generation problem

 Move all joints in a coordinated way so that the endeffector makes a desired movement

01-kinematics: ./x.exe -mode 2/3/4

Outline

- Basic 3D geometry and notation
- Kinematics: $\phi: q \mapsto y$
- Inverse Kinematics: $y^* \mapsto q^* = \min_q \|y^* \phi(q)\| + \|\Delta q\|_W$
- Basic motion heuristics: Motion profiles
- Additional things to know
 - Many simultaneous task variables
 - Singularities, null space,

Basic 3D geometry & notation

Pose (position & orientation)

- A *pose* is described by a translation $p \in \mathbb{R}^3$ and a rotation $R \in SO(3)$
 - *R* is an *orthonormal* matrix (orthogonal vectors stay orthogonal, unit vectors stay unit)
 - $R^{-1} = R^{\top}$
 - columns and rows are orthogonal unit vectors

$$- \det(R) = 1$$

-
$$R = \begin{pmatrix} R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33} \end{pmatrix}$$

Frame and coordinate transforms

- Let $(o, e_{1:3})$ be the world frame, $(o', e'_{1:3})$ be the body's frame. The new basis vectors are the *columns* in *R*, that is, $e'_1 = R_{11}e_1 + R_{21}e_2 + R_{31}e_3$, etc,
- $x = \text{coordinates in world frame } (o, e_{1:3})$ $x' = \text{coordinates in body frame } (o', e'_{1:3})$ $p = \text{coordinates of } o' \text{ in world frame } (o, e_{1:3})$

$$x = p + Rx'$$

Rotations

- Rotations can alternatively be represented as
 - Euler angles NEVER DO THIS!
 - Rotation vector
 - Quaternion default in code
- See the "geometry notes" for formulas to convert, concatenate & apply to vectors

Homogeneous transformations

- x^A = coordinates of a point in frame A x^B = coordinates of a point in frame B
- Translation and rotation: $x^A = t + Rx^B$
- Homogeneous transform $T \in \mathbb{R}^{4 \times 4}$:

$$T_{A \to B} = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix}$$
$$x^{A} = T_{A \to B} \ x^{B} = \begin{pmatrix} R & t \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x^{B} \\ 1 \end{pmatrix} = \begin{pmatrix} Rx^{B} + t \\ 1 \end{pmatrix}$$

in homogeneous coordinates, we append a 1 to all coordinate vectors

Is $T_{A \rightarrow B}$ forward or backward?

- $T_{A \rightarrow B}$ describes the translation and rotation of *frame B* relative to *A* That is, it describes the forward FRAME transformation (from *A* to *B*)
- $T_{A \rightarrow B}$ describes the coordinate transformation from x^B to x^A That is, it describes the backward COORDINATE transformation
- Confused? Vectors (and frames) transform *covariant*, coordinates *contra-variant*. See "geometry notes" or Wikipedia for more details, if you like.

Composition of transforms

$$T_{W \to C} = T_{W \to A} T_{A \to B} T_{B \to C}$$
$$x^W = T_{W \to A} T_{A \to B} T_{B \to C} x^C$$
11/61

Kinematics

Kinematics

• A *kinematic structure* is a graph (usually tree or chain) of rigid **links** and **joints**

$$T_{W \to \mathsf{eff}}(q) = T_{W \to A} \ T_{A \to A'}(q) \ T_{A' \to B} \ T_{B \to B'}(q) \ T_{B' \to C} \ T_{C \to C'}(q) \ T_{C' \to \mathsf{eff}}$$

Joint types

• Joint transformations: $T_{A o A'}(q)$ depends on $q \in \mathbb{R}^n$

revolute joint: joint angle $q \in \mathbb{R}$ determines rotation about *x*-axis:

$$T_{A \to A'}(q) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos(q) & -\sin(q) & 0 \\ 0 & \sin(q) & \cos(q) & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

prismatic joint: offset $q \in \mathbb{R}$ determines translation along *x*-axis:

$$T_{A \to A'}(q) = \begin{pmatrix} 1 & 0 & 0 & q \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

others: screw (1dof), cylindrical (2dof), spherical (3dof), universal (2dof)

Kinematic Map

• For any joint angle vector $q \in \mathbb{R}^n$ we can compute $T_{W \to \text{eff}}(q)$ by *forward chaining* of transformations

 $T_{W \rightarrow \mathrm{eff}}(q)$ gives us the *pose* of the endeffector in the world frame

Kinematic Map

• For any joint angle vector $q \in \mathbb{R}^n$ we can compute $T_{W \to \text{eff}}(q)$ by *forward chaining* of transformations

 $T_{W \rightarrow \text{eff}}(q)$ gives us the *pose* of the endeffector in the world frame

• The two most important examples for a *kinematic map* ϕ are

1) A point v on the endeffector transformed to world coordinates:

$$\phi_{\mathsf{eff},v}^{\mathsf{pos}}(q) = T_{W \to \mathsf{eff}}(q) \ v \quad \in \mathbb{R}^3$$

2) A direction $v \in \mathbb{R}^3$ attached to the endeffector transformed to world:

$$\phi_{\mathsf{eff},v}^{\mathsf{vec}}(q) = R_{W \to \mathsf{eff}}(q) \ v \quad \in \mathbb{R}^3$$

Where $R_{A \rightarrow B}$ is the rotation in $T_{A \rightarrow B}$.

16/61

Kinematic Map

• In general, a kinematic map is any (differentiable) mapping

 $\phi: \ q \mapsto y$

that maps to *some arbitrary feature* $y \in \mathbb{R}^d$ of the pose $q \in \mathbb{R}^n$

Jacobian

- When we change the joint angles, δq , how does the effector position change, δy ?
- Given the kinematic map $y = \phi(q)$ and its Jacobian $J(q) = \frac{\partial}{\partial q}\phi(q)$, we have:

$$\delta y = J(q) \ \delta q$$

$$J(q) = \frac{\partial}{\partial q} \phi(q) = \begin{pmatrix} \frac{\partial \phi_1(q)}{\partial q_1} & \frac{\partial \phi_1(q)}{\partial q_2} & \dots & \frac{\partial \phi_1(q)}{\partial q_n} \\ \frac{\partial \phi_2(q)}{\partial q_1} & \frac{\partial \phi_2(q)}{\partial q_2} & \dots & \frac{\partial \phi_2(q)}{\partial q_n} \\ \vdots & & \vdots \\ \frac{\partial \phi_d(q)}{\partial q_1} & \frac{\partial \phi_d(q)}{\partial q_2} & \dots & \frac{\partial \phi_d(q)}{\partial q_n} \end{pmatrix} \in \mathbb{R}^{d \times n}$$

Jacobian for a rotational joint

- The *i*-th joint is located at $p_i = t_{W \to i}(q)$ and has rotation axis $a_i = R_{W \to i}(q) \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
- We consider an infinitesimal variation $\delta q_i \in \mathbb{R}$ of the *i*th joint and see how an endeffector position $p_{\text{eff}} = \phi_{\text{eff},v}^{\text{pos}}(q)$ and attached vector $a_{\text{eff}} = \phi_{\text{eff},v}^{\text{vec}}(q)$ change.

Jacobian for a rotational joint

Consider a variation δq_i \rightarrow the whole sub-tree rotates

$$\begin{split} \delta p_{\mathsf{eff}} &= \left[a_i \times \left(p_{\mathsf{eff}} - p_i\right)\right] \delta q_i \\ \delta a_{\mathsf{eff}} &= \left[a_i \times a_{\mathsf{eff}}\right] \delta q_i \end{split}$$

 \Rightarrow Position Jacobian:

$$J_{\mathrm{eff},v}^{\mathrm{pos}}(q) = \begin{pmatrix} \begin{bmatrix} a & & & & \\ a_{2} & & & & \\ & \times & \times & & \\ p_{\mathrm{eff}} & & & & \\ & & & & \\ p_{\mathrm{eff}} & & \\ p_{$$

Jacobian

- To compute the Jacobian of some endeffector position or vector, we only need to know the position and rotation axis of each joint.
- The two kinematic maps φ^{pos} and φ^{vec} are the most important two examples – more complex geometric features can be computed from these, as we will see later.

Inverse Kinematics

Inverse Kinematics problem

- Generally, the aim is to find a robot configuration q such that $\phi(q) = y^*$
- Iff ϕ is invertible

$$q^* = \phi^{\text{-}1}(y^*)$$

• But in general, ϕ will not be invertible:

1) The pre-image $\phi^{\text{-}1}(y^*) = \max$ be empty: No configuration can generate the desired y^*

2) The pre-image $\phi^{\text{-}1}(y^*)$ may be large: many configurations can generate the desired y^*

Inverse Kinematics as optimization problem

• We formalize the inverse kinematics problem as an optimization problem

$$q^* = \underset{q}{\operatorname{argmin}} \|\phi(q) - y^*\|_C^2 + \|q - q_0\|_W^2$$

 The 1st term ensures that we find a configuration even if y* is not exactly reachable
 The 2nd term disambiguates the configurations if there are many

 $\phi^{\text{-}1}(y^*)$

$$\phi(q) = y^*$$

$$q \stackrel{\bullet}{=} q_0$$

Inverse Kinematics as optimization problem

$$q^* = \underset{q}{\operatorname{argmin}} \|\phi(q) - y^*\|_C^2 + \|q - q_0\|_W^2$$

- The formulation of IK as an optimization problem is very powerful and has many nice properties
- We will be able to take the limit $C \to \infty,$ enforcing exact $\phi(q) = y^*$ if possible
- Non-zero C⁻¹ and W corresponds to a regularization that ensures numeric stability
- Classical concepts can be derived as special cases:
 - Null-space motion
 - regularization; singularity robutness
 - multiple tasks
 - hierarchical tasks

Solving Inverse Kinematics

- The obvious choice of optimization method for this problem is Gauss-Newton, using the Jacobian of ϕ
- We first describe just one step of this, which leads to the classical equations for inverse kinematics using the local Jacobian...

Solution using the local linearization

• When using the local linearization of ϕ at q_0 ,

$$\phi(q) \approx y_0 + J (q - q_0), \quad y_0 = \phi(q_0)$$

· We can derive the optimum as

$$f(q) = \|\phi(q) - y^*\|_C^2 + \|q - q_0\|_W^2$$

= $\|y_0 - y^* + J (q - q_0)\|_C^2 + \|q - q_0\|_W^2$
 $\frac{\partial}{\partial q}f(q) = 0^{\mathsf{T}} = 2(y_0 - y^* + J (q - q_0))^{\mathsf{T}}CJ + 2(q - q_0)^{\mathsf{T}}W$
 $J^{\mathsf{T}}C (y^* - y_0) = (J^{\mathsf{T}}CJ + W) (q - q_0)$

$$q^* = q_0 + J^{\sharp}(y^* - y_0)$$

with $J^{\sharp} = (J^{\mathsf{T}}CJ + W)^{-1}J^{\mathsf{T}}C = W^{-1}J^{\mathsf{T}}(JW^{-1}J^{\mathsf{T}} + C^{-1})^{-1}$ (Woodbury identity)

- For $C \to \infty$ and $W = \mathbf{I}, J^{\sharp} = J^{\mathsf{T}} (J J^{\mathsf{T}})^{-1}$ is called *pseudo-inverse*
- W generalizes the metric in q-space
- C regularizes this pseudo-inverse (see later section on singularities)

27/61

"Small step" application

- · This approximate solution to IK makes sense
 - if the local linearization of ϕ at q_0 is "good"
 - if q_0 and q^* are close
- This equation is therefore typically used to iteratively compute small steps in configuration space

$$q_{t+1} = q_t + J^{\sharp}(y_{t+1}^* - \phi(q_t))$$

where the target y_{t+1}^* moves smoothly with t

Example: Iterating IK to follow a trajectory

• Assume initial posture q_0 . We want to reach a desired endeff position y^* in T steps:

Input: initial state q_0 , desired y^* , methods ϕ^{pos} and J^{pos} **Output:** trajectory $q_{0:T}$ // starting endeff position 1: Set $y_0 = \phi^{pos}(q_0)$ 2: for t = 1 : T do 3: $y \leftarrow \phi^{\mathsf{pos}}(q_{t-1})$ // current endeff position // current endeff Jacobian 4: $J \leftarrow J^{\mathsf{pos}}(q_{t-1})$ 5: $\hat{y} \leftarrow y_0 + (t/T)(y^* - y_0)$ // interpolated endeff target 6: $q_t = q_{t-1} + J^{\sharp}(\hat{y} - y)$ // new joint positions 7. Command q_t to all robot motors and compute all $T_{W \to i}(q_t)$ 8: end for

01-kinematics: ./x.exe -mode 2/3

Example: Iterating IK to follow a trajectory

• Assume initial posture q_0 . We want to reach a desired endeff position y^* in T steps:

Input: initial state q_0 , desired y^* , methods ϕ^{pos} and J^{pos} **Output:** trajectory $q_{0:T}$ 1: Set $y_0 = \phi^{pos}(q_0)$ // starting endeff position 2: for t = 1 : T do 3: $y \leftarrow \phi^{\mathsf{pos}}(q_{t-1})$ // current endeff position 4: $J \leftarrow J^{\mathsf{pos}}(q_{t-1})$ // current endeff Jacobian 5: $\hat{y} \leftarrow y_0 + (t/T)(y^* - y_0)$ // interpolated endeff target 6: $q_t = q_{t-1} + J^{\sharp}(\hat{y} - y)$ // new joint positions 7. Command q_t to all robot motors and compute all $T_{W \to i}(q_t)$ 8: end for

01-kinematics: ./x.exe -mode 2/3

• Why does this not follow the interpolated trajectory $\hat{y}_{0:T}$ exactly?

– What happens if T = 1 and y^* is far?

Two additional notes

• What if we linearize at some arbitrary q' instead of q₀?

$$\begin{split} \phi(q) &\approx y' + J (q - q') , \quad y' = \phi(q') \\ q^* &= \operatorname*{argmin}_{q} \|\phi(q) - y^*\|_C^2 + \|q - q' + (q' - q_0)\|_W^2 \\ &= q' + J^{\sharp} (y^* - y') + (I - J^{\sharp}J) h , \quad h = q_0 - q' \end{split}$$
(1)

Note that h corresponds to the classical concept of null space motion

- What if we want to find the *exact* (local) optimum? E.g. what if we want to compute a big step (where *q*^{*} will be remote from *q*) and we cannot not rely only on the local linearization approximation?
 - Iterate equation (1) (optionally with a step size < 1 to ensure convergence) by setting the point y' of linearization to the current q^*
 - This is equivalent to the Gauss-Newton algorithm

Where are we?

- We've derived a basic motion generation principle in robotics from
 - an understanding of robot geometry & kinematics
 - a basic notion of optimality

Where are we?

- We've derived a basic motion generation principle in robotics from
 - an understanding of robot geometry & kinematics
 - a basic notion of optimality
- In the remainder:
 - A. Heuristic motion profiles for simple trajectory generation
 - B. Extension to multiple task variables
 - C. Discussion of classical concepts
 - Singularity and singularity-robustness
 - Nullspace, task/operational space, joint space
 - "inverse kinematics" \leftrightarrow "motion rate control"

Heuristic motion profiles

Heuristic motion profiles

• Assume initially $x = 0, \dot{x} = 0$. After 1 second you want $x = 1, \dot{x} = 0$. How do you move from x = 0 to x = 1 in one second?

The sine profile $x_t = x_0 + \frac{1}{2}[1 - \cos(\pi t/T)](x_T - x_0)$ is a compromise for low max-acceleration and max-velocity Taken from http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/motion_profile_wizard/motionprofiles.htm

Motion profiles

· Generally, let's define a motion profile as a mapping

 $\mathsf{MP}:[0,1]\mapsto [0,1]$

with MP(0) = 0 and MP(1) = 1 such that the interpolation is given as

$$x_t = x_0 + \mathsf{MP}(t/T) \ (x_T - x_0)$$

• For example

$$\begin{aligned} \mathsf{MP}_{\mathsf{ramp}}(s) &= s \\ \mathsf{MP}_{\mathsf{sin}}(s) &= \frac{1}{2}[1 - \cos(\pi s)] \end{aligned}$$

Joint space interpolation

1) Optimize a desired final configuration q_T : Given a desired final task value y_T , optimize a final joint state q_T to minimize the function

$$f(q_T) = \|q_T - q_0\|_{W/T}^2 + \|y_T - \phi(q_T)\|_C^2$$

- The metric $\frac{1}{T}W$ is consistent with *T* cost terms with step metric *W*. - In this optimization, q_T will end up remote from q_0 . So we need to iterate Gauss-Newton, as described on slide 30.
- 2) Compute $q_{0:T}$ as interpolation between q_0 and q_T : Given the initial configuration q_0 and the final q_T , interpolate on a straight line with a some motion profile. E.g.,

$$q_t = q_0 + \mathsf{MP}(t/T) (q_T - q_0)$$

Task space interpolation

1) Compute $y_{0:T}$ as interpolation between y_0 and y_T : Given a initial task value y_0 and a desired final task value y_T , interpolate on a straight line with a some motion profile. E.g,

$$y_t = y_0 + \mathsf{MP}(t/T) (y_T - y_0)$$

2) Project $y_{0:T}$ to $q_{0:T}$ using inverse kinematics: Given the task trajectory $y_{0:T}$, compute a corresponding joint trajectory $q_{0:T}$ using inverse kinematics

$$q_{t+1} = q_t + J^{\sharp}(y_{t+1} - \phi(q_t))$$

(As steps are small, we should be ok with just using this local linearization.)

peg-in-a-hole demo

- Assume we have m simultaneous tasks; for each task i we have:
 - a kinematic mapping $y_i = \phi_i(q) \in \mathbb{R}^{d_i}$
 - a current value $y_{i,t} = \phi_i(q_t)$
 - a desired value y_i^*
 - a precision ρ_i (implying a task cost metric $C_i = \rho_i \mathbf{I}$)

- Assume we have *m* simultaneous tasks; for each task *i* we have:
 - a kinematic mapping $y_i = \phi_i(q) \in \mathbb{R}^{d_i}$
 - a current value $y_{i,t} = \phi_i(q_t)$
 - a desired value y_i^*
 - a precision ρ_i (implying a task cost metric $C_i = \rho_i \mathbf{I}$)
- · Each task contributes a term to the objective function

$$q^* = \underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \varrho_1 \|\phi_1(q) - y_1^*\|^2 + \varrho_2 \|\phi_2(q) - y_2^*\|^2 + \cdots$$

- Assume we have *m* simultaneous tasks; for each task *i* we have:
 - a kinematic mapping $y_i = \phi_i(q) \in \mathbb{R}^{d_i}$
 - a current value $y_{i,t} = \phi_i(q_t)$
 - a desired value y_i^*
 - a precision ρ_i (implying a task cost metric $C_i = \rho_i \mathbf{I}$)
- · Each task contributes a term to the objective function

$$q^* = \underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \varrho_1 \|\phi_1(q) - y_1^*\|^2 + \varrho_2 \|\phi_2(q) - y_2^*\|^2 + \cdots$$

which we can also write as

$$\begin{aligned} q^* &= \operatorname*{argmin}_{q} \|q - q_0\|_W^2 + \|\Phi(q)\|^2 \\ \text{where } \Phi(q) &:= \begin{pmatrix} \sqrt{\varrho_1} \ (\phi_1(q) - y_1^*) \\ \sqrt{\varrho_2} \ (\phi_2(q) - y_2^*) \\ \vdots \end{pmatrix} \quad \in \mathbb{R}^{\sum_i d_i} \end{aligned}$$

• We can "pack" together all tasks in one "big task" Φ .

Example: We want to control the 3D position of the left hand and of the right hand. Both are "packed" to one 6-dimensional task vector which becomes zero if both tasks are fulfilled.

- The big Φ is scaled/normalized in a way that
 - the desired value is always zero
 - the cost metric is I
- Using the local linearization of Φ at q_0 , $J = \frac{\partial \Phi(q_0)}{\partial q}$, the optimum is

$$q^* = \underset{q}{\operatorname{argmin}} \|q - q_0\|_W^2 + \|\Phi(q)\|^2$$

$$\approx q_0 - (J^{\mathsf{T}}J + W)^{-1}J^{\mathsf{T}} \Phi(q_0) = q_0 - J^{\#}\Phi(q_0)$$

- We learnt how to "puppeteer a robot"
- We can handle many task variables (but specifying their precisions *ρ_i* becomes cumbersome...)
- In the remainder:
 - A. Classical limit of "hierarchical IK" and nullspace motion
 - B. What are interesting task variables?

Hierarchical IK & nullspace motion

- In the classical view, tasks should be executed *exactly*, which means taking the limit *ρ_i* → ∞ in some prespecified hierarchical order.
- We can rewrite the solution in a way that allows for such a hierarchical limit:
- One task plus "nullspace motion":

$$\begin{split} f(q) &= \|q - a\|_{W}^{2} + \varrho_{1} \|J_{1}q - y_{1}\|^{2} \\ &\propto \|q - \hat{a}\|_{\widehat{W}}^{2} \\ &\widehat{W} = W + \varrho_{1} J_{1}^{\mathsf{T}} J_{1} , \quad \hat{a} = \widehat{W}^{\mathsf{-1}} (Wa + \varrho_{1} J_{1}^{\mathsf{T}} y_{1}) = J_{1}^{\#} y_{1} + (\mathbf{I} - J_{1}^{\#} J_{1}) a \\ &J_{1}^{\#} = (W/\varrho_{1} + J_{1}^{\mathsf{T}} J_{1})^{\mathsf{-1}} J_{1}^{\mathsf{T}} \end{split}$$

• Two tasks plus nullspace motion:

$$\begin{split} f(q) &= \|q - a\|_{W}^{2} + \varrho_{1} \|J_{1}q - y_{1}\|^{2} + \varrho_{2} \|J_{2}q - y_{2}\|^{2} \\ &= \|q - \hat{a}\|_{\widehat{W}}^{2} + \|J_{1}q + \Phi_{1}\|^{2} \\ q^{*} &= J_{1}^{\#}y_{1} + (\mathbf{I} - J_{1}^{\#}J_{1})[J_{2}^{\#}y_{2} + (\mathbf{I} - J_{2}^{\#}J_{2})a] \\ J_{2}^{\#} &= (W/\varrho_{2} + J_{2}^{\top}J_{2})^{-1}J_{2}^{\top}, \quad J_{1}^{\#} = (\widehat{W}/\varrho_{1} + J_{1}^{\top}J_{1})^{-1}J_{1}^{\top} \end{split}$$

Hierarchical IK & nullspace motion

- The previous slide did nothing but rewrite the nice solution $q^* = -J^{\#}\Phi(q_0)$ (for the "big" Φ) in a strange hierarchical way that allows to "see" nullspace projection
- The benefit of this hierarchical way to write the solution is that one can take the hierarchical limit $\rho_i \to \infty$ and retrieve classical hierarchical IK
- The drawbacks are:
 - It is somewhat ugly
 - In practise, I would recommend regularization in any case (for numeric stability). Regularization corresponds to NOT taking the full limit $\varrho_i \to \infty$. Then the hierarchical way to write the solution is unnecessary. (However, it points to a "hierarchical regularization", which might be numerically more robust for very small regularization?)
 - The general solution allows for arbitrary blending of tasks

What are interesting task variables?

The following slides will define 10 different types of task variables. This is meant as a reference and to give an idea of possibilities...

Position

Position of some point attached to link i	
dimension	d = 3
parameters	link index i , point offset v
kin. map	$\phi_{iv}^{pos}(q) = T_{W \to i} \ v$
Jacobian	$J_{iv}^{pos}(q)_{\cdot k} = [k \prec i] \ a_k \times (\phi_{iv}^{pos}(q) - p_k)$

Notation:

- $-a_k, p_k$ are axis and position of joint k
- $[k \prec i]$ indicates whether joint k is between root and link i
- $J_{\cdot k}$ is the kth column of J

Vector

Vector attached to link <i>i</i>	
dimension	d = 3
parameters	link index i , attached vector v
kin. map	$\phi_{iv}^{\rm vec}(q) = R_{W \to i} \; v$
Jacobian	$J_{iv}^{\rm vec}(q) = A_i \times \phi_{iv}^{\rm vec}(q)$

Notation:

- A_i is a matrix with columns $(A_i)_{\cdot k} = [k \prec i] a_k$ containing the joint axes or zeros
- the short notation " $A \times p$ " means that each *column* in A takes the cross-product with p.

Relative position

Position of a point on link i relative to point on link j	
dimension	d = 3
parameters	link indices i, j , point offset v in i and w in j
kin. map	$\phi_{iv jw}^{pos}(q) = R_j^{-1}(\phi_{iv}^{pos} - \phi_{jw}^{pos})$
Jacobian	$J_{iv jw}^{pos}(q) = R_j^{-1}[J_{iv}^{pos} - J_{jw}^{pos} - A_j \times (\phi_{iv}^{pos} - \phi_{jw}^{pos})]$

Derivation:

For y = Rp the derivative w.r.t. a rotation around axis a is $y' = Rp' + R'p = Rp' + a \times Rp$. For $y = R^{-1}p$ the derivative is $y' = R^{-1}p' - R^{-1}(R')R^{-1}p = R^{-1}(p' - a \times p)$. (For details see http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf)

Relative vector

Vector attached to link i relative to link j	
dimension	d = 3
parameters	link indices i, j , attached vector v in i
kin. map	$\phi_{iv j}^{\rm vec}(q) = R_j^{-1} \phi_{iv}^{\rm vec}$
Jacobian	$J_{iv j}^{vec}(q) = R_j^{-1}[J_{iv}^{vec} - A_j \times \phi_{iv}^{vec}]$

Alignment

Alignment of a vector attached to link i with a reference v^*	
dimension	d = 1
parameters	link index i , attached vector v , world reference v^*
kin. map	$\phi_{iv}^{align}(q) = v^{*\top} \phi_{iv}^{vec}$
Jacobian	$J_{iv}^{align}(q) = v^{*\top} J_{iv}^{vec}$

Note: $\phi^{\text{align}} = 1 \leftrightarrow \text{align}$ $\phi^{\text{align}} = -1 \leftrightarrow \text{anti-align}$ $\phi^{\text{align}} = 0 \leftrightarrow \text{orthog.}$

Relative Alignment

Alignment a vector attached to link i with vector attached to j	
dimension	d = 1
parameters	link indices i, j , attached vectors v, w
kin. map	$\phi^{\text{align}}_{iv jw}(q) = (\phi^{\text{vec}}_{jw})^{\!\!\top} \phi^{\text{vec}}_{iv}$
Jacobian	$J^{\text{align}}_{iv jw}(q) = (\phi^{\text{vec}}_{jw})^{\top} J^{\text{vec}}_{iv} + \phi^{\text{vec}\top}_{iv} J^{\text{vec}}_{jw}$

Joint limits

Penetration of joint limits	
dimension	d = 1
parameters	joint limits q_{low}, q_{hi} , margin m
kin. map	$\phi_{\text{limits}}(q) = \frac{1}{m} \sum_{i=1}^{n} [m - q_i + q_{\text{low}}]^+ + [m + q_i - q_{\text{hi}}]^+$
Jacobian	$J_{\text{limits}}(q)_{1,i} = -\frac{1}{m}[m - q_i + q_{\text{low}} > 0] + \frac{1}{m}[m + q_i - q_{\text{hi}} > 0]$

 $[x]^+ = x > 0$?x : 0 [···]: indicator function

Collision limits

Penetration of collision limits	
dimension	d = 1
parameters	margin m
kin. map	$\phi_{\rm col}(q) = \frac{1}{m} \sum_{k=1}^{K} [m - p_k^a - p_k^b]^+$
Jacobian	$J_{\rm col}(q) = \frac{1}{m} \sum_{k=1}^{K} [m - p_k^a - p_k^b > 0]$
	$(-J_{p_k^a}^{pos} + J_{p_k^b}^{pos})^{\top} rac{p_k^a - p_k^b}{ p_k^a - p_k^b }$

A collision detection engine returns a set $\{(a, b, p^a, p^b)_{k=1}^K\}$ of potential collisions between link a_k and b_k , with nearest points p_k^a on a and p_k^b on b.

Center of gravity

Center of gravity of the whole kinematic structure	
dimension	d = 3
parameters	(none)
kin. map	$\phi^{\text{cog}}(q) = \sum_{i} \max_{i} \phi^{\text{pos}}_{ic_{i}}$
Jacobian	$J^{\text{cog}}(q) = \sum_i \text{mass}_i \ J^{\text{pos}}_{ic_i}$

 c_i denotes the center-of-mass of link i (in its own frame)

Homing

The joint angles themselves	
dimension	d = n
parameters	(none)
kin. map	$\phi_{qitself}(q) = q$
Jacobian	$J_{qitself}(q) = \mathbf{I}_n$

Example: Set the target $y^* = 0$ and the precision ρ very low \rightarrow this task describes posture comfortness in terms of deviation from the joints' zero position. In the classical view, it induces "nullspace motion".

Task variables – conclusions

- There is much space for creativity in defining task variables! Many are extensions of ϕ^{pos} and ϕ^{vec} and the Jacobians combine the basic Jacobians.
- What the *right* task variables are to design/describe motion is a very hard problem! In what task space do humans control their motion? Possible to learn from data ("task space retrieval") or perhaps via Reinforcement Learning.
- In practice: Robot motion design (including grasping) may require cumbersome hand-tuning of such task variables.

Discussion of classical concepts

- Singularity and singularity-robustness
- Nullspace, task/operational space, joint space
- "inverse kinematics" \leftrightarrow "motion rate control"

Singularity

- In general: A matrix J singular \iff rank(J) < d
 - rows of J are linearly dependent
 - dimension of image is < d
 - $\delta y = J \delta q \Rightarrow$ dimensions of δy limited
 - Intuition: arm fully stretched

Singularity

- In general: A matrix J singular \iff rank(J) < d
 - rows of J are linearly dependent
 - dimension of image is < d
 - $\delta y = J \delta q \Rightarrow$ dimensions of δy limited
 - Intuition: arm fully stretched
- Implications:

 $\det(JJ^{\!\top\!})=0$

- \rightarrow pseudo-inverse $J^{\top}(JJ^{\top})^{-1}$ is ill-defined!
- \rightarrow inverse kinematics $\delta q = J^{\top} (J J^{\top})^{-1} \delta y$ computes "infinite" steps!
- Singularity robust pseudo inverse $J^{\top}(JJ^{\top} + \epsilon \mathbf{I})^{-1}$ The term $\epsilon \mathbf{I}$ is called regularization
- Recall our general solution (for $W=\mathbf{I})$ $J^{\sharp}=J^{\mathrm{T}}(JJ^{\mathrm{T}}+C^{\text{-}1})^{\text{-}1}$

is already singularity robust

Null/task/operational/joint/configuration spaces

 The space of all q ∈ ℝⁿ is called joint/configuration space The space of all y ∈ ℝ^d is called task/operational space Usually d < n, which is called redundancy

Null/task/operational/joint/configuration spaces

- The space of all q ∈ ℝⁿ is called joint/configuration space The space of all y ∈ ℝ^d is called task/operational space Usually d < n, which is called redundancy
- For a desired endeffector state *y** there exists a whole manifold (assuming φ is smooth) of joint configurations *q*:

$$\mathsf{nullspace}(y^*) = \{q \mid \phi(q) = y^*\}$$

• We found earlier that

$$\begin{split} q^* &= \operatorname*{argmin}_{q} \|q - a\|_{W}^{2} + \varrho \|Jq - y^*\|^2 \\ &= J^{\#}y^* + (\mathbf{I} - J^{\#}J)a \;, \quad J^{\#} = (W/\varrho + J^{\top}J)^{-1}J^{\top} \end{split}$$

In the limit $\rho \to \infty$ it is guaranteed that $Jq = y^*$ (we are exactly on the manifold). The term *a* introduces additional "nullspace motion".

Inverse Kinematics and Motion Rate Control

Some clarification of concepts:

- The notion "kinematics" describes the mapping $\phi: q \mapsto y$, which usually is a many-to-one function.
- The notion "inverse kinematics" in the strict sense describes some mapping g : y → q such that φ(g(y)) = y, which usually is non-unique or ill-defined.
- In practice, one often refers to $\delta q = J^{\sharp} \delta y$ as inverse kinematics.
- When iterating δq = J[#]δy in a control cycle with time step τ (typically τ ≈ 1 − 10 msec), then y = δy/τ and q = δq/τ and q = J[#]y. Therefore the control cycle effectively controls the endeffector velocity—this is why it is called **motion rate control**.