Robotics

Kinematics

Kinematic map, Jacobian, inverse kinematics as optimization problem, motion profiles, trajectory interpolation, multiple simultaneous tasks, special task variables, configuration/operational/null space, singularities

Marc Toussaint
U Stuttgart

- Two "types of robotics":

1) Mobile robotics - is all about localization \& mapping
2) Manipulation - is all about interacting with the world
[0) Kinematic/Dynamic Motion Control: same as 2) without ever making it to interaction..]

- Typical manipulation robots (and animals) are kinematic trees Their pose/state is described by all joint angles

Basic motion generation problem

- Move all joints in a coordinated way so that the endeffector makes a desired movement

Outline

- Basic 3D geometry and notation
- Kinematics: $\phi: q \mapsto y$
- Inverse Kinematics: $y^{*} \mapsto q^{*}=\min _{q}\left\|y^{*}-\phi(q)\right\|+\|\Delta q\|_{W}$
- Basic motion heuristics: Motion profiles
- Additional things to know
- Many simultaneous task variables
- Singularities, null space,

Basic 3D geometry \& notation

Pose (position \& orientation)

- A pose is described by a translation $p \in \mathbb{R}^{3}$ and a rotation $R \in S O(3)$
- R is an orthonormal matrix (orthogonal vectors stay orthogonal, unit vectors stay unit)
- $R^{-1}=R^{\top}$
- columns and rows are orthogonal unit vectors
$-\operatorname{det}(R)=1$
$-R=\left(\begin{array}{lll}R_{11} & R_{12} & R_{13} \\ R_{21} & R_{22} & R_{23} \\ R_{31} & R_{32} & R_{33}\end{array}\right)$

Frame and coordinate transforms

- Let $\left(\boldsymbol{o}, \boldsymbol{e}_{1: 3}\right)$ be the world frame, $\left(\boldsymbol{o}^{\prime}, \boldsymbol{e}_{1: 3}^{\prime}\right)$ be the body's frame. The new basis vectors are the columns in R, that is, $\boldsymbol{e}_{1}^{\prime}=R_{11} \boldsymbol{e}_{1}+R_{21} e_{2}+R_{31} e_{3}$, etc,
- $x=$ coordinates in world frame $\left(\boldsymbol{o}, \boldsymbol{e}_{1: 3}\right)$
$x^{\prime}=$ coordinates in body frame ($\boldsymbol{o}^{\prime}, \boldsymbol{e}_{1: 3}^{\prime}$)
$p=$ coordinates of \boldsymbol{o}^{\prime} in world frame ($\boldsymbol{o}, \boldsymbol{e}_{1: 3}$)

$$
x=p+R x^{\prime}
$$

Rotations

- Rotations can alternatively be represented as
- Euler angles - NEVER DO THIS!
- Rotation vector
- Quaternion - default in code
- See the "geometry notes" for formulas to convert, concatenate \& apply to vectors

Homogeneous transformations

- $x^{A}=$ coordinates of a point in frame A
$x^{B}=$ coordinates of a point in frame B
- Translation and rotation: $x^{A}=t+R x^{B}$
- Homogeneous transform $T \in \mathbb{R}^{4 \times 4}$:

$$
\begin{aligned}
& T_{A \rightarrow B}=\left(\begin{array}{ll}
R & t \\
0 & 1
\end{array}\right) \\
& x^{A}=T_{A \rightarrow B} x^{B}=\left(\begin{array}{cc}
R & t \\
0 & 1
\end{array}\right)\binom{x^{B}}{1}=\binom{R x^{B}+t}{1}
\end{aligned}
$$

in homogeneous coordinates, we append a 1 to all coordinate vectors

Is $T_{A \rightarrow B}$ forward or backward?

- $T_{A \rightarrow B}$ describes the translation and rotation of frame B relative to A That is, it describes the forward FRAME transformation (from A to B)
- $T_{A \rightarrow B}$ describes the coordinate transformation from x^{B} to x^{A} That is, it describes the backward COORDINATE transformation
- Confused? Vectors (and frames) transform covariant, coordinates contra-variant. See "geometry notes" or Wikipedia for more details, if you like.

Composition of transforms

$$
\begin{aligned}
T_{W \rightarrow C} & =T_{W \rightarrow A} T_{A \rightarrow B} T_{B \rightarrow C} \\
x^{W} & =T_{W \rightarrow A} T_{A \rightarrow B} T_{B \rightarrow C} x^{C}
\end{aligned}
$$

Kinematics

Kinematics

- A kinematic structure is a graph (usually tree or chain) of rigid links and joints

$$
T_{W \rightarrow \text { eff }}(q)=T_{W \rightarrow A} T_{A \rightarrow A^{\prime}}(q) T_{A^{\prime} \rightarrow B} T_{B \rightarrow B^{\prime}}(q) T_{B^{\prime} \rightarrow C} T_{C \rightarrow C^{\prime}}(q) T_{C^{\prime} \rightarrow \text { eff }}
$$

Joint types

- Joint transformations: $T_{A \rightarrow A^{\prime}}(q)$ depends on $q \in \mathbb{R}^{n}$
revolute joint: joint angle $q \in \mathbb{R}$ determines rotation about x-axis:

$$
T_{A \rightarrow A^{\prime}}(q)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos (q) & -\sin (q) & 0 \\
0 & \sin (q) & \cos (q) & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

prismatic joint: offset $q \in \mathbb{R}$ determines translation along x-axis:

$$
T_{A \rightarrow A^{\prime}}(q)=\left(\begin{array}{cccc}
1 & 0 & 0 & q \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

others: screw (1dof), cylindrical (2dof), spherical (3dof), universal (2dof)
(sigid (no motion)

Kinematic Map

- For any joint angle vector $q \in \mathbb{R}^{n}$ we can compute $T_{W \rightarrow \text { eff }}(q)$ by forward chaining of transformations
$T_{W \rightarrow \text { eff }}(q)$ gives us the pose of the endeffector in the world frame

Kinematic Map

- For any joint angle vector $q \in \mathbb{R}^{n}$ we can compute $T_{W \rightarrow \text { eff }}(q)$ by forward chaining of transformations
$T_{W \rightarrow \text { eff }}(q)$ gives us the pose of the endeffector in the world frame
- The two most important examples for a kinematic map ϕ are

1) A point v on the endeffector transformed to world coordinates:

$$
\phi_{\text {eff }, v}^{\text {poos }}(q)=T_{W \rightarrow \text { eff }}(q) v \quad \in \mathbb{R}^{3}
$$

2) A direction $v \in \mathbb{R}^{3}$ attached to the endeffector transformed to world:

$$
\phi_{\text {eff }, v}^{v \mathrm{vec}}(q)=R_{W \rightarrow \text { eff }}(q) v \quad \in \mathbb{R}^{3}
$$

Where $R_{A \rightarrow B}$ is the rotation in $T_{A \rightarrow B}$.

Kinematic Map

- In general, a kinematic map is any (differentiable) mapping

$$
\phi: q \mapsto y
$$

that maps to some arbitrary feature $y \in \mathbb{R}^{d}$ of the pose $q \in \mathbb{R}^{n}$

Jacobian

- When we change the joint angles, δq, how does the effector position change, δy ?
- Given the kinematic map $y=\phi(q)$ and its Jacobian $J(q)=\frac{\partial}{\partial q} \phi(q)$, we have:

$$
\begin{gathered}
\delta y=J(q) \delta q \\
J(q)=\frac{\partial}{\partial q} \phi(q)=\left(\begin{array}{cccc}
\frac{\partial \phi_{1}(q)}{\partial q_{1}} & \frac{\partial \phi_{1}(q)}{\partial q_{2}} & \ldots & \frac{\partial \phi_{1}(q)}{\partial q_{n}} \\
\frac{\partial \phi_{2}(q)}{\partial q_{1}} & \frac{\partial \phi_{2}(q)}{\partial q_{2}} & \ldots & \frac{\partial \phi_{2}(q)}{\partial q_{n}} \\
\vdots & & & \vdots \\
\frac{\partial \phi_{d}(q)}{\partial q_{1}} & \frac{\partial \phi_{d}(q)}{\partial q_{2}} & \ldots & \frac{\partial \phi_{d}(q)}{\partial q_{n}}
\end{array}\right) \quad \in \mathbb{R}^{d \times n}
\end{gathered}
$$

Jacobian for a rotational joint

- The i-th joint is located at $p_{i}=t_{W \rightarrow i}(q)$ and has rotation axis

$$
a_{i}=R_{W \rightarrow i}(q)\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

- We consider an infinitesimal variation $\delta q_{i} \in \mathbb{R}$ of the i th joint and see how an endeffector position $p_{\text {eff }}=\phi_{\text {eff }, v}^{\text {pos }}(q)$ and attached vector $a_{\text {eff }}=\phi_{\text {eff }, v}^{\text {vec }}(q)$ change.

Jacobian for a rotational joint

Consider a variation δq_{i}
\rightarrow the whole sub-tree rotates

$$
\begin{aligned}
& \delta p_{\text {eff }}=\left[a_{i} \times\left(p_{\text {eff }}-p_{i}\right)\right] \delta q_{i} \\
& \delta a_{\text {eff }}=\left[a_{i} \times a_{\text {eff }}\right] \delta q_{i}
\end{aligned}
$$

\Rightarrow Position Jacobian:

Jacobian

- To compute the Jacobian of some endeffector position or vector, we only need to know the position and rotation axis of each joint.
- The two kinematic maps $\phi^{\text {pos }}$ and $\phi^{\text {vec }}$ are the most important two examples - more complex geometric features can be computed from these, as we will see later.

Inverse Kinematics

Inverse Kinematics problem

- Generally, the aim is to find a robot configuration q such that $\phi(q)=y^{*}$
- Iff ϕ is invertible

$$
q^{*}=\phi^{-1}\left(y^{*}\right)
$$

- But in general, ϕ will not be invertible:

1) The pre-image $\phi^{-1}\left(y^{*}\right)=$ may be empty: No configuration can generate the desired y^{*}
2) The pre-image $\phi^{-1}\left(y^{*}\right)$ may be large: many configurations can generate the desired y^{*}

Inverse Kinematics as optimization problem

- We formalize the inverse kinematics problem as an optimization problem

$$
q^{*}=\underset{q}{\operatorname{argmin}}\left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2}
$$

- The 1st term ensures that we find a configuration even if y^{*} is not exactly reachable
The 2nd term disambiguates the configurations if there are many $\phi^{-1}\left(y^{*}\right)$

$$
\phi(q)=y^{*}
$$

$$
q=q_{0}
$$

Inverse Kinematics as optimization problem

$$
q^{*}=\underset{q}{\operatorname{argmin}}\left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2}
$$

- The formulation of IK as an optimization problem is very powerful and has many nice properties
- We will be able to take the limit $C \rightarrow \infty$, enforcing exact $\phi(q)=y^{*}$ if possible
- Non-zero C^{-1} and W corresponds to a regularization that ensures numeric stability
- Classical concepts can be derived as special cases:
- Null-space motion
- regularization; singularity robutness
- multiple tasks
- hierarchical tasks

Solving Inverse Kinematics

- The obvious choice of optimization method for this problem is Gauss-Newton, using the Jacobian of ϕ
- We first describe just one step of this, which leads to the classical equations for inverse kinematics using the local Jacobian...

Solution using the local linearization

- When using the local linearization of ϕ at q_{0},

$$
\phi(q) \approx y_{0}+J\left(q-q_{0}\right), \quad y_{0}=\phi\left(q_{0}\right)
$$

- We can derive the optimum as

$$
\begin{aligned}
f(q)= & \left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2} \\
= & \left\|y_{0}-y^{*}+J\left(q-q_{0}\right)\right\|_{C}^{2}+\left\|q-q_{0}\right\|_{W}^{2} \\
\frac{\partial}{\partial q} f(q)= & 0^{\top}=2\left(y_{0}-y^{*}+J\left(q-q_{0}\right)\right)^{\top} C J+2\left(q-q_{0}\right)^{T} W \\
J^{\top} C\left(y^{*}-y_{0}\right)= & \left(J^{\top} C J+W\right)\left(q-q_{0}\right) \\
& q^{*}=q_{0}+J^{\sharp}\left(y^{*}-y_{0}\right)
\end{aligned}
$$

with $J^{\sharp}=\left(J^{\top} C J+W\right)^{-1} J^{\top} C=W^{-1} J^{\top}\left(J W^{-1} J^{\top}+C^{-1}\right)^{-1}$ (Woodbury identity)

- For $C \rightarrow \infty$ and $W=\mathbf{I}, J^{\sharp}=J^{\top}\left(J J^{\top}\right)^{-1}$ is called pseudo-inverse
- W generalizes the metric in q-space
- C regularizes this pseudo-inverse (see later section on singularities)

"Small step" application

- This approximate solution to IK makes sense
- if the local linearization of ϕ at q_{0} is "good"
- if q_{0} and q^{*} are close
- This equation is therefore typically used to iteratively compute small steps in configuration space

$$
q_{t+1}=q_{t}+J^{\sharp}\left(y_{t+1}^{*}-\phi\left(q_{t}\right)\right)
$$

where the target y_{t+1}^{*} moves smoothly with t

Example: Iterating IK to follow a trajectory

- Assume initial posture q_{0}. We want to reach a desired endeff position y^{*} in T steps:

```
Input: initial state }\mp@subsup{q}{0}{}\mathrm{ , desired }\mp@subsup{y}{}{*}\mathrm{ , methods }\mp@subsup{\phi}{}{\mathrm{ pos }}\mathrm{ and }\mp@subsup{J}{}{\mathrm{ pos}
Output: trajectory q0:T
    1: Set }\mp@subsup{y}{0}{}=\mp@subsup{\phi}{}{\mathrm{ pos }}(\mp@subsup{q}{0}{})\quad// starting endeff positio
    2: for t=1:T do
    3: y
    4: J}\leftarrow\mp@subsup{J}{}{\mathrm{ pos }}(\mp@subsup{q}{t-1}{})\quad// current endeff Jacobian
    5: \hat{y}\leftarrow\mp@subsup{y}{0}{}+(t/T)(\mp@subsup{y}{}{*}-\mp@subsup{y}{0}{})\quad// interpolated endeff target
    6: }\quad\mp@subsup{q}{t}{}=\mp@subsup{q}{t-1}{}+\mp@subsup{J}{}{\sharp}(\hat{y}-y)\quad// new joint position
    7: Command q}\mp@subsup{q}{t}{}\mathrm{ to all robot motors and compute all }\mp@subsup{T}{W->i}{}(\mp@subsup{q}{t}{}
    : end for
```


Example: Iterating IK to follow a trajectory

- Assume initial posture q_{0}. We want to reach a desired endeff position y^{*} in T steps:

```
Input: initial state }\mp@subsup{q}{0}{}\mathrm{ , desired }\mp@subsup{y}{}{*}\mathrm{ , methods }\mp@subsup{\phi}{}{\mathrm{ pos }}\mathrm{ and }\mp@subsup{J}{}{\mathrm{ pos}
Output: trajectory q0:T
    1: Set }\mp@subsup{y}{0}{}=\mp@subsup{\phi}{}{\mathrm{ pos }}(\mp@subsup{q}{0}{})\quad// starting endeff position
    2: for t=1:T do
    3: }y\leftarrow\mp@subsup{\phi}{}{\mathrm{ pos }}(\mp@subsup{q}{t-1}{})\quad// current endeff position
    4: J}\leftarrow\mp@subsup{J}{}{\mathrm{ pos }}(\mp@subsup{q}{t-1}{})\quad// current endeff Jacobian
    5: \hat{y}\leftarrow\mp@subsup{y}{0}{}+(t/T)(\mp@subsup{y}{}{*}-\mp@subsup{y}{0}{})\quad// interpolated endeff target
    6: }\quad\mp@subsup{q}{t}{}=\mp@subsup{q}{t-1}{}+\mp@subsup{J}{}{\sharp}(\hat{y}-y)\quad// new joint position
    7: Command q}\mp@subsup{q}{t}{}\mathrm{ to all robot motors and compute all }\mp@subsup{T}{W->i}{}(\mp@subsup{q}{t}{}
    : end for
```

01-kinematics: ./x.exe -mode $2 / 3$

- Why does this not follow the interpolated trajectory $\hat{y}_{0: T}$ exactly?
- What happens if $T=1$ and y^{*} is far?

Two additional notes

- What if we linearize at some arbitrary q^{\prime} instead of q_{0} ?

$$
\begin{align*}
\phi(q) & \approx y^{\prime}+J\left(q-q^{\prime}\right), \quad y^{\prime}=\phi\left(q^{\prime}\right) \\
q^{*} & =\underset{q}{\operatorname{argmin}}\left\|\phi(q)-y^{*}\right\|_{C}^{2}+\left\|q-q^{\prime}+\left(q^{\prime}-q_{0}\right)\right\|_{W}^{2} \\
& =q^{\prime}+J^{\sharp}\left(y^{*}-y^{\prime}\right)+\left(I-J^{\sharp} J\right) h, \quad h=q_{0}-q^{\prime} \tag{1}
\end{align*}
$$

Note that h corresponds to the classical concept of null space motion

- What if we want to find the exact (local) optimum? E.g. what if we want to compute a big step (where q^{*} will be remote from q) and we cannot not rely only on the local linearization approximation?
- Iterate equation (1) (optionally with a step size <1 to ensure convergence) by setting the point y^{\prime} of linearization to the current q^{*}
- This is equivalent to the Gauss-Newton algorithm

Where are we?

- We've derived a basic motion generation principle in robotics from
- an understanding of robot geometry \& kinematics
- a basic notion of optimality

Where are we?

- We've derived a basic motion generation principle in robotics from
- an understanding of robot geometry \& kinematics
- a basic notion of optimality
- In the remainder:
A. Heuristic motion profiles for simple trajectory generation
B. Extension to multiple task variables
C. Discussion of classical concepts
- Singularity and singularity-robustness
- Nullspace, task/operational space, joint space
- "inverse kinematics" \leftrightarrow "motion rate control"

Heuristic motion profiles

Heuristic motion profiles

- Assume initially $x=0, \dot{x}=0$. After 1 second you want $x=1, \dot{x}=0$. How do you move from $x=0$ to $x=1$ in one second?

The sine profile $x_{t}=x_{0}+\frac{1}{2}[1-\cos (\pi t / T)]\left(x_{T}-x_{0}\right)$ is a compromise for low max-acceleration and max-velocity
Taken from http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/ motion_profile_wizard/motionprofiles.htm

Motion profiles

- Generally, let's define a motion profile as a mapping

$$
\text { MP : }[0,1] \mapsto[0,1]
$$

with $\mathrm{MP}(0)=0$ and $\mathrm{MP}(1)=1$ such that the interpolation is given as

$$
x_{t}=x_{0}+\mathrm{MP}(t / T)\left(x_{T}-x_{0}\right)
$$

- For example

$$
\begin{aligned}
\mathrm{MP}_{\text {ramp }}(s) & =s \\
\operatorname{MP}_{\text {sin }}(s) & =\frac{1}{2}[1-\cos (\pi s)]
\end{aligned}
$$

Joint space interpolation

1) Optimize a desired final configuration q_{T} :

Given a desired final task value y_{T}, optimize a final joint state q_{T} to minimize the function

$$
f\left(q_{T}\right)=\left\|q_{T}-q_{0}\right\|_{W / T}^{2}+\left\|y_{T}-\phi\left(q_{T}\right)\right\|_{C}^{2}
$$

- The metric $\frac{1}{T} W$ is consistent with T cost terms with step metric W.
- In this optimization, q_{T} will end up remote from q_{0}. So we need to iterate Gauss-Newton, as described on slide 30.

2) Compute $q_{0: T}$ as interpolation between q_{0} and q_{T} : Given the initial configuration q_{0} and the final q_{T}, interpolate on a straight line with a some motion profile. E.g.,

$$
q_{t}=q_{0}+\operatorname{MP}(t / T)\left(q_{T}-q_{0}\right)
$$

Task space interpolation

1) Compute $y_{0: T}$ as interpolation between y_{0} and y_{T} : Given a initial task value y_{0} and a desired final task value y_{T}, interpolate on a straight line with a some motion profile. E.g,

$$
y_{t}=y_{0}+\mathrm{MP}(t / T)\left(y_{T}-y_{0}\right)
$$

2) Project $y_{0: T}$ to $q_{0: T}$ using inverse kinematics: Given the task trajectory $y_{0: T}$, compute a corresponding joint trajectory $q_{0: T}$ using inverse kinematics

$$
q_{t+1}=q_{t}+J^{\sharp}\left(y_{t+1}-\phi\left(q_{t}\right)\right)
$$

(As steps are small, we should be ok with just using this local linearization.)
peg-in-a-hole demo

Multiple tasks

Multiple tasks

Multiple tasks

Multiple tasks

- Assume we have m simultaneous tasks; for each task i we have:
- a kinematic mapping $y_{i}=\phi_{i}(q) \in \mathbb{R}^{d_{i}}$
- a current value $y_{i, t}=\phi_{i}\left(q_{t}\right)$
- a desired value y_{i}^{*}
- a precision $\varrho_{i} \quad$ (implying a task cost metric $C_{i}=\varrho_{i} \mathbf{I}$)

Multiple tasks

- Assume we have m simultaneous tasks; for each task i we have:
- a kinematic mapping $y_{i}=\phi_{i}(q) \in \mathbb{R}^{d_{i}}$
- a current value $y_{i, t}=\phi_{i}\left(q_{t}\right)$
- a desired value y_{i}^{*}
- a precision $\varrho_{i} \quad$ (implying a task cost metric $C_{i}=\varrho_{i} \mathbf{I}$)
- Each task contributes a term to the objective function

$$
q^{*}=\underset{q}{\operatorname{argmin}}\left\|q-q_{0}\right\|_{W}^{2}+\varrho_{1}\left\|\phi_{1}(q)-y_{1}^{*}\right\|^{2}+\varrho_{2}\left\|\phi_{2}(q)-y_{2}^{*}\right\|^{2}+\cdots
$$

Multiple tasks

- Assume we have m simultaneous tasks; for each task i we have:
- a kinematic mapping $y_{i}=\phi_{i}(q) \in \mathbb{R}^{d_{i}}$
- a current value $y_{i, t}=\phi_{i}\left(q_{t}\right)$
- a desired value y_{i}^{*}
- a precision $\varrho_{i} \quad$ (implying a task cost metric $C_{i}=\varrho_{i} \mathbf{I}$)
- Each task contributes a term to the objective function

$$
q^{*}=\underset{q}{\operatorname{argmin}}\left\|q-q_{0}\right\|_{W}^{2}+\varrho_{1}\left\|\phi_{1}(q)-y_{1}^{*}\right\|^{2}+\varrho_{2}\left\|\phi_{2}(q)-y_{2}^{*}\right\|^{2}+\cdots
$$

which we can also write as

$$
\begin{aligned}
& q^{*}=\underset{q}{\operatorname{argmin}}\left\|q-q_{0}\right\|_{W}^{2}+\|\Phi(q)\|^{2} \\
& \text { where } \Phi(q):=\left(\begin{array}{c}
\sqrt{\varrho_{1}}\left(\phi_{1}(q)-y_{1}^{*}\right) \\
\sqrt{\varrho_{2}}\left(\phi_{2}(q)-y_{2}^{*}\right) \\
\vdots
\end{array}\right) \quad \in \mathbb{R}^{\sum_{i} d_{i}}
\end{aligned}
$$

Multiple tasks

- We can "pack" together all tasks in one "big task" Φ.

Example: We want to control the 3D position of the left hand and of the right hand. Both are "packed" to one 6-dimensional task vector which becomes zero if both tasks are fulfilled.

- The big Φ is scaled/normalized in a way that
- the desired value is always zero
- the cost metric is I
- Using the local linearization of Φ at $q_{0}, J=\frac{\partial \Phi\left(q_{0}\right)}{\partial q}$, the optimum is

$$
\begin{aligned}
q^{*} & =\underset{q}{\operatorname{argmin}}\left\|q-q_{0}\right\|_{W}^{2}+\|\Phi(q)\|^{2} \\
& \approx q_{0}-\left(J^{\top} J+W\right)^{-1} J^{\top} \Phi\left(q_{0}\right)=q_{0}-J^{\#} \Phi\left(q_{0}\right)
\end{aligned}
$$

Multiple tasks

- We learnt how to "puppeteer a robot"
- We can handle many task variables (but specifying their precisions ϱ_{i} becomes cumbersome...)
- In the remainder:
A. Classical limit of "hierarchical IK" and nullspace motion
B. What are interesting task variables?

Hierarchical IK \& nullspace motion

- In the classical view, tasks should be executed exactly, which means taking the limit $\varrho_{i} \rightarrow \infty$ in some prespecified hierarchical order.
- We can rewrite the solution in a way that allows for such a hierarchical limit:
- One task plus "nullspace motion":

$$
\begin{aligned}
f(q) & =\|q-a\|_{W}^{2}+\varrho_{1}\left\|J_{1} q-y_{1}\right\|^{2} \\
& \propto\|q-\hat{a}\|_{\widehat{W}}^{2} \\
\widehat{W} & =W+\varrho_{1} J_{1}^{\top} J_{1}, \quad \hat{a}=\widehat{W}^{-1}\left(W a+\varrho_{1} J_{1}^{\top} y_{1}\right)=J_{1}^{\#} y_{1}+\left(\mathbf{I}-J_{1}^{\#} J_{1}\right) a \\
J_{1}^{\#} & =\left(W / \varrho_{1}+J_{1}^{\top} J_{1}\right)^{-1} J_{1}^{\top}
\end{aligned}
$$

- Two tasks plus nullspace motion:

$$
\begin{aligned}
f(q) & =\|q-a\|_{W}^{2}+\varrho_{1}\left\|J_{1} q-y_{1}\right\|^{2}+\varrho_{2}\left\|J_{2} q-y_{2}\right\|^{2} \\
& =\|q-\hat{a}\|_{\widehat{W}}^{2}+\left\|J_{1} q+\Phi_{1}\right\|^{2} \\
q^{*} & =J_{1}^{\#} y_{1}+\left(\mathbf{I}-J_{1}^{\#} J_{1}\right)\left[J_{2}^{\#} y_{2}+\left(\mathbf{I}-J_{2}^{\#} J_{2}\right) a\right] \\
J_{2}^{\#} & =\left(W / \varrho_{2}+J_{2}^{\top} J_{2}\right)^{-1} J_{2}^{\top}, \quad J_{1}^{\#}=\left(\widehat{W} / \varrho_{1}+J_{1}^{\top} J_{1}\right)^{-1} J_{1}^{\top}
\end{aligned}
$$

- etc...

Hierarchical IK \& nullspace motion

- The previous slide did nothing but rewrite the nice solution $q^{*}=-J^{\#} \Phi\left(q_{0}\right)$ (for the "big" Φ) in a strange hierarchical way that allows to "see" nullspace projection
- The benefit of this hierarchical way to write the solution is that one can take the hierarchical limit $\varrho_{i} \rightarrow \infty$ and retrieve classical hierarchical IK
- The drawbacks are:
- It is somewhat ugly
- In practise, I would recommend regularization in any case (for numeric stability). Regularization corresponds to NOT taking the full limit $\varrho_{i} \rightarrow \infty$. Then the hierarchical way to write the solution is unnecessary. (However, it points to a "hierarchical regularization", which might be numerically more robust for very small regularization?)
- The general solution allows for arbitrary blending of tasks

What are interesting task variables?

The following slides will define 10 different types of task variables. This is meant as a reference and to give an idea of possibilities...

Position

Position of some point attached to link i	
dimension	$d=3$
parameters	link index i, point offset v
kin. map	$\phi_{i v}^{\text {pos }}(q)=T_{W \rightarrow i} v$
Jacobian	$J_{i v}^{\text {pos }}(q)_{\cdot k}=[k \prec i] a_{k} \times\left(\phi_{i v}^{\text {pos }}(q)-p_{k}\right)$

Notation:

- a_{k}, p_{k} are axis and position of joint k
- $[k \prec i]$ indicates whether joint k is between root and link i
- $J_{\cdot k}$ is the k th column of J

Vector

Vector attached to link i	
dimension	$d=3$
parameters	link index i, attached vector v
kin. map	$\phi_{i v}^{\mathrm{vec}}(q)=R_{W \rightarrow i} v$
Jacobian	$J_{i v}^{\text {vec }}(q)=A_{i} \times \phi_{i v}^{\text {vec }}(q)$

Notation:

- A_{i} is a matrix with columns $\left(A_{i}\right)_{\cdot k}=[k \prec i] a_{k}$ containing the joint axes or zeros
- the short notation " $A \times p$ " means that each column in A takes the cross-product with p.

Relative position

Position of a point on link i relative to point on link j

dimension	$d=3$
parameters	link indices i, j, point offset v in i and w in j
kin. map	$\phi_{i v \mid j w}^{\text {pos }}(q)=R_{j}^{-1}\left(\phi_{i v}^{\text {pos }}-\phi_{j w}^{\text {pos }}\right)$
Jacobian	$J_{i v \mid j w}^{\text {pos }}(q)=R_{j}^{-1}\left[J_{i v}^{\text {pos }}-J_{j w}^{\text {pos }}-A_{j} \times\left(\phi_{i v}^{\text {pos }}-\phi_{j w}^{\text {pos }}\right)\right]$

Derivation:
For $y=R p$ the derivative w.r.t. a rotation around axis a is
$y^{\prime}=R p^{\prime}+R^{\prime} p=R p^{\prime}+a \times R p$. For $y=R^{-1} p$ the derivative is
$y^{\prime}=R^{-1} p^{\prime}-R^{-1}\left(R^{\prime}\right) R^{-1} p=R^{-1}\left(p^{\prime}-a \times p\right)$. (For details see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf)

Relative vector

Vector attached to link i relative to link j	
dimension	$d=3$
parameters	link indices i, j, attached vector v in i
kin. map	$\phi_{i v \mid j}^{\text {vec }}(q)=R_{j}^{-1} \phi_{i v}^{\text {vec }}$
Jacobian	$J_{i v \mid j}^{\text {vec }}(q)=R_{j}^{-1}\left[J_{i v}^{\text {vec }}-A_{j} \times \phi_{i v}^{\text {vec }}\right]$

Alignment

Alignment of a vector attached to link i with a reference v^{*}

dimension	$d=1$
parameters	link index i, attached vector v, world reference v^{*}
kin. map	$\phi_{i v}^{\text {align }}(q)=v^{* \top} \phi_{i v}^{\text {vec }}$
Jacobian	$J_{i v}^{\text {align }}(q)=v^{* \top} J_{i v}^{\text {vec }}$

Note: $\quad \phi^{\text {align }}=1 \leftrightarrow$ align $\quad \phi^{\text {align }}=-1 \leftrightarrow$ anti-align $\quad \phi^{\text {align }}=0 \leftrightarrow$ orthog.

Relative Alignment

Alignment a vector attached to link i with vector attached to j	
dimension	$d=1$
parameters	link indices i, j, attached vectors v, w
kin. map	$\phi_{i v \mid j w}^{\text {align }}(q)=\left(\phi_{j w}^{\text {vec }}\right)^{\top} \phi_{i v}^{\text {vec }}$
Jacobian	$J_{i v \mid j w}^{\text {align }}(q)=\left(\phi_{j w}^{\text {vec }}\right)^{\top} J_{i v}^{\text {vec }}+\phi_{i v}^{\text {vec } \top} J_{j w}^{\text {vec }}$

Joint limits

Penetration of joint limits	
dimension	$d=1$
parameters	joint limits $q_{\mathrm{low}}, q_{\mathrm{hi}}, \operatorname{margin} m$
kin. map	$\phi_{\text {limits }}(q)=\frac{1}{m} \sum_{i=1}^{n}\left[m-q_{i}+q_{\mathrm{low}}\right]^{+}+\left[m+q_{i}-q_{\mathrm{hi}}\right]^{+}$
Jacobian	$J_{\text {limits }}(q)_{1, i}=-\frac{1}{m}\left[m-q_{i}+q_{\mathrm{low}}>0\right]+\frac{1}{m}\left[m+q_{i}-q_{\mathrm{hi}}>0\right]$

$$
[x]^{+}=x>0 ? x: 0 \quad[\cdots]: \text { indicator function }
$$

Collision limits

Penetration of collision limits	
dimension	$d=1$
parameters	margin m
kin. map	$\phi_{\text {col }}(q)=\frac{1}{m} \sum_{k=1}^{K}\left[m-\left\|p_{k}^{a}-p_{k}^{b}\right\|\right]^{+}$
Jacobian	$J_{\text {col }}(q)=\frac{1}{m} \sum_{k=1}^{K}\left[m-\left\|p_{k}^{a}-p_{k}^{b}\right\|>0\right]$
$\left(-J_{p_{k}^{a}}^{\text {pos }}+J_{p_{k}^{b}}^{\text {pos }}\right)^{\top} \frac{p_{k}^{a}-p_{k}^{b}}{\left\|p_{k}^{a}-p_{k}^{b}\right\|}$	

A collision detection engine returns a set $\left\{\left(a, b, p^{a}, p^{b}\right)_{k=1}^{K}\right\}$ of potential collisions between link a_{k} and b_{k}, with nearest points p_{k}^{a} on a and p_{k}^{b} on b.

Center of gravity

Center of gravity of the whole kinematic structure	
dimension	$d=3$
parameters	(none)
kin. map	$\phi^{\operatorname{cog}}(q)=\sum_{i} \operatorname{mass}_{i} \phi_{i c_{i}}^{\text {pos }}$
Jacobian	$J^{\operatorname{cog}}(q)=\sum_{i} \operatorname{mass}_{i} J_{i c_{i}}^{\text {pos }}$

c_{i} denotes the center-of-mass of link i (in its own frame)

Homing

The joint angles themselves	
dimension	$d=n$
parameters	(none)
kin. map	$\phi_{\text {qitself }}(q)=q$
Jacobian	$J_{\text {qitself }}(q)=\mathbf{I}_{n}$

Example: Set the target $y^{*}=0$ and the precision ϱ very low \rightarrow this task describes posture comfortness in terms of deviation from the joints' zero position. In the classical view, it induces "nullspace motion".

Task variables - conclusions

- There is much space for creativity in defining task variables! Many are extensions of $\phi^{\text {pos }}$ and $\phi^{\text {vec }}$ and the Jacobians combine the basic Jacobians.
- What the right task variables are to design/describe motion is a very hard problem! In what task space do humans control their motion? Possible to learn from data ("task space retrieval") or perhaps via Reinforcement Learning.
- In practice: Robot motion design (including grasping) may require cumbersome hand-tuning of such task variables.

Discussion of classical concepts

- Singularity and singularity-robustness
- Nullspace, task/operational space, joint space
- "inverse kinematics" \leftrightarrow "motion rate control"

Singularity

- In general: A matrix J singular $\Longleftrightarrow \operatorname{rank}(J)<d$
- rows of J are linearly dependent
- dimension of image is $<d$
- $\delta y=J \delta q \Rightarrow$ dimensions of δy limited
- Intuition: arm fully stretched

Singularity

- In general: A matrix J singular $\Longleftrightarrow \operatorname{rank}(J)<d$
- rows of J are linearly dependent
- dimension of image is $<d$
- $\delta y=J \delta q \Rightarrow$ dimensions of δy limited
- Intuition: arm fully stretched
- Implications: $\operatorname{det}\left(J J^{\top}\right)=0$
\rightarrow pseudo-inverse $J^{\top}\left(J J^{\top}\right)^{-1}$ is ill-defined!
\rightarrow inverse kinematics $\delta q=J^{\top}\left(J J^{\top}\right)^{-1} \delta y$ computes "infinite" steps!
- Singularity robust pseudo inverse $J^{\top}\left(J J^{\top}+\epsilon \mathbf{I}\right)^{-1}$ The term $\epsilon \mathbf{I}$ is called regularization
- Recall our general solution (for $W=\mathbf{I}$)

$$
J^{\sharp}=J^{\top}\left(J J^{\top}+C^{-1}\right)^{-1}
$$

is already singularity robust

Null/task/operational/joint/configuration spaces

- The space of all $q \in \mathbb{R}^{n}$ is called joint/configuration space The space of all $y \in \mathbb{R}^{d}$ is called task/operational space Usually $d<n$, which is called redundancy

Null/task/operational/joint/configuration spaces

- The space of all $q \in \mathbb{R}^{n}$ is called joint/configuration space The space of all $y \in \mathbb{R}^{d}$ is called task/operational space Usually $d<n$, which is called redundancy
- For a desired endeffector state y^{*} there exists a whole manifold (assuming ϕ is smooth) of joint configurations q :

$$
\text { nullspace }\left(y^{*}\right)=\left\{q \mid \phi(q)=y^{*}\right\}
$$

- We found earlier that

$$
\begin{aligned}
q^{*} & =\underset{q}{\operatorname{argmin}}\|q-a\|_{W}^{2}+\varrho\left\|J q-y^{*}\right\|^{2} \\
& =J^{\#} y^{*}+\left(\mathbf{I}-J^{\#} J\right) a, \quad J^{\#}=\left(W / \varrho+J^{\top} J\right)^{-1} J^{\top}
\end{aligned}
$$

In the limit $\varrho \rightarrow \infty$ it is guaranteed that $J q=y^{*}$ (we are exacty on the manifold). The term a introduces additional "nullspace motion".

Inverse Kinematics and Motion Rate Control

Some clarification of concepts:

- The notion "kinematics" describes the mapping $\phi: q \mapsto y$, which usually is a many-to-one function.
- The notion "inverse kinematics" in the strict sense describes some mapping $g: y \mapsto q$ such that $\phi(g(y))=y$, which usually is non-unique or ill-defined.
- In practice, one often refers to $\delta q=J^{\sharp} \delta y$ as inverse kinematics.
- When iterating $\delta q=J^{\sharp} \delta y$ in a control cycle with time step τ (typically $\tau \approx 1-10 \mathrm{msec})$, then $\dot{y}=\delta y / \tau$ and $\dot{q}=\delta q / \tau$ and $\dot{q}=J^{\sharp} \dot{y}$. Therefore the control cycle effectively controls the endeffector velocity-this is why it is called motion rate control.

