
Robotics

Kinematics

Kinematic map, Jacobian, inverse kinematics
as optimization problem, motion profiles,

trajectory interpolation, multiple simultaneous
tasks, special task variables,

configuration/operational/null space,
singularities

Marc Toussaint
U Stuttgart

• Two “types of robotics”:
1) Mobile robotics – is all about localization & mapping
2) Manipulation – is all about interacting with the world
[0) Kinematic/Dynamic Motion Control: same as 2) without ever making it to

interaction..]

• Typical manipulation robots (and animals) are kinematic trees
Their pose/state is described by all joint angles

2/61

Basic motion generation problem

• Move all joints in a coordinated way so that the endeffector makes a
desired movement

01-kinematics: ./x.exe -mode 2/3/4

3/61

Outline

• Basic 3D geometry and notation

• Kinematics: φ : q 7→ y

• Inverse Kinematics: y∗ 7→ q∗ = minq ||y∗ − φ(q)||+ ||∆q||W
• Basic motion heuristics: Motion profiles

• Additional things to know
– Many simultaneous task variables
– Singularities, null space,

4/61

Basic 3D geometry & notation

5/61

Pose (position & orientation)

• A pose is described by a translation p ∈ R3 and a rotation R ∈ SO(3)

– R is an orthonormal matrix (orthogonal vectors stay orthogonal, unit
vectors stay unit)

– R-1 = R>

– columns and rows are orthogonal unit vectors
– det(R) = 1

– R =


R11 R12 R13

R21 R22 R23

R31 R32 R33


6/61

Frame and coordinate transforms

• Let (o, e1:3) be the world frame, (o′, e′1:3) be the body’s frame.
The new basis vectors are the columns in R, that is,
e′1 = R11e1 +R21e2 +R31e3, etc,

• x = coordinates in world frame (o, e1:3)

x′ = coordinates in body frame (o′, e′1:3)

p = coordinates of o′ in world frame (o, e1:3)

x = p+Rx′

7/61

Rotations

• Rotations can alternatively be represented as
– Euler angles – NEVER DO THIS!
– Rotation vector
– Quaternion – default in code

• See the “geometry notes” for formulas to convert, concatenate & apply
to vectors

8/61

Homogeneous transformations

• xA = coordinates of a point in frame A
xB = coordinates of a point in frame B

• Translation and rotation: xA = t+RxB

• Homogeneous transform T ∈ R4×4:

TA�B =

R t

0 1



xA = TA�B xB =

R t

0 1


x
B

1

 =

Rx
B + t

1



in homogeneous coordinates, we append a 1 to all coordinate vectors

9/61

Is TA�B forward or backward?

• TA�B describes the translation and rotation of frame B relative to A
That is, it describes the forward FRAME transformation (from A to B)

• TA�B describes the coordinate transformation from xB to xA

That is, it describes the backward COORDINATE transformation

• Confused? Vectors (and frames) transform covariant, coordinates
contra-variant. See “geometry notes” or Wikipedia for more details, if
you like.

10/61

Composition of transforms

TW�C = TW�A TA�B TB�C

xW = TW�A TA�B TB�C xC 11/61

Kinematics

12/61

Kinematics

W

A

A'

B'

C

C'

B eff

link
transf.

joint
transf.

relative
eff.

offset

• A kinematic structure is a graph (usually tree or chain)
of rigid links and joints

TW�eff(q) = TW�A TA�A′(q) TA′�B TB�B′(q) TB′�C TC�C′(q) TC′�eff

13/61

Joint types

• Joint transformations: TA�A′(q) depends on q ∈ Rn

revolute joint: joint angle q ∈ R determines rotation about x-axis:

TA�A′(q) =



1 0 0 0

0 cos(q) − sin(q) 0

0 sin(q) cos(q) 0

0 0 0 1



prismatic joint: offset q ∈ R determines translation along x-axis:

TA�A′(q) =



1 0 0 q

0 1 0 0

0 0 1 0

0 0 0 1



others: screw (1dof), cylindrical (2dof), spherical (3dof), universal
(2dof)

14/61

15/61

Kinematic Map

• For any joint angle vector q ∈ Rn we can compute TW�eff(q)

by forward chaining of transformations

TW�eff(q) gives us the pose of the endeffector in the world frame

• The two most important examples for a kinematic map φ are

1) A point v on the endeffector transformed to world coordinates:

φpos
eff,v(q) = TW�eff(q) v ∈ R3

2) A direction v ∈ R3 attached to the endeffector transformed to world:

φvec
eff,v(q) = RW�eff(q) v ∈ R3

Where RA�B is the rotation in TA�B .

16/61

Kinematic Map

• For any joint angle vector q ∈ Rn we can compute TW�eff(q)

by forward chaining of transformations

TW�eff(q) gives us the pose of the endeffector in the world frame

• The two most important examples for a kinematic map φ are

1) A point v on the endeffector transformed to world coordinates:

φpos
eff,v(q) = TW�eff(q) v ∈ R3

2) A direction v ∈ R3 attached to the endeffector transformed to world:

φvec
eff,v(q) = RW�eff(q) v ∈ R3

Where RA�B is the rotation in TA�B . 16/61

Kinematic Map

• In general, a kinematic map is any (differentiable) mapping

φ : q 7→ y

that maps to some arbitrary feature y ∈ Rd of the pose q ∈ Rn

17/61

Jacobian

• When we change the joint angles, δq, how does the effector position
change, δy?

• Given the kinematic map y = φ(q) and its Jacobian J(q) = ∂
∂qφ(q), we

have:
δy = J(q) δq

J(q) =
∂

∂q
φ(q) =



∂φ1(q)
∂q1

∂φ1(q)
∂q2

. . . ∂φ1(q)
∂qn

∂φ2(q)
∂q1

∂φ2(q)
∂q2

. . . ∂φ2(q)
∂qn

...
...

∂φd(q)
∂q1

∂φd(q)
∂q2

. . . ∂φd(q)
∂qn


∈ Rd×n

18/61

Jacobian for a rotational joint

i-th joint

point

axis

eff

• The i-th joint is located at pi = tW�i(q) and has rotation axis

ai = RW�i(q)


1

0

0


• We consider an infinitesimal variation δqi ∈ R of the ith joint and see

how an endeffector position peff = φpos
eff,v(q) and attached vector

aeff = φvec
eff,v(q) change.

19/61

Jacobian for a rotational joint

i-th joint

point

axis

eff Consider a variation δqi
→ the whole sub-tree rotates

δpeff = [ai × (peff − pi)] δqi
δaeff = [ai × aeff] δqi

⇒ Position Jacobian:

Jpos
eff,v(q) =



[a
1 ×

(p
eff
−
p

1)]

[a
2 ×

(p
eff
−
p

2)]

...

[a
n
×

(p
eff
−
p
n
)]



∈ R3×n

⇒ Vector Jacobian:

Jvec
eff,v(q) =



[a
1 ×

a
eff]

[a
2 ×

a
eff]

...

[a
n
×
a

eff]


∈ R3×n

20/61

Jacobian

• To compute the Jacobian of some endeffector position or vector, we
only need to know the position and rotation axis of each joint.

• The two kinematic maps φpos and φvec are the most important two
examples – more complex geometric features can be computed from
these, as we will see later.

21/61

Inverse Kinematics

22/61

Inverse Kinematics problem

• Generally, the aim is to find a robot configuration q such that φ(q) = y∗

• Iff φ is invertible
q∗ = φ-1(y∗)

• But in general, φ will not be invertible:

1) The pre-image φ-1(y∗) = may be empty: No configuration can
generate the desired y∗

2) The pre-image φ-1(y∗) may be large: many configurations can
generate the desired y∗

23/61

Inverse Kinematics as optimization problem
• We formalize the inverse kinematics problem as an optimization

problem
q∗ = argmin

q
||φ(q)− y∗||2C + ||q − q0||2W

• The 1st term ensures that we find a configuration even if y∗ is not
exactly reachable
The 2nd term disambiguates the configurations if there are many
φ-1(y∗)

24/61

Inverse Kinematics as optimization problem

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q0||2W

• The formulation of IK as an optimization problem is very powerful and
has many nice properties

• We will be able to take the limit C →∞, enforcing exact φ(q) = y∗ if
possible

• Non-zero C-1 and W corresponds to a regularization that ensures
numeric stability

• Classical concepts can be derived as special cases:
– Null-space motion
– regularization; singularity robutness
– multiple tasks
– hierarchical tasks

25/61

Solving Inverse Kinematics

• The obvious choice of optimization method for this problem is
Gauss-Newton, using the Jacobian of φ

• We first describe just one step of this, which leads to the classical
equations for inverse kinematics using the local Jacobian...

26/61

Solution using the local linearization
• When using the local linearization of φ at q0,

φ(q) ≈ y0 + J (q − q0) , y0 = φ(q0)

• We can derive the optimum as

f(q) = ||φ(q)− y∗||2C + ||q − q0||2W
= ||y0 − y∗ + J (q − q0)||2C + ||q − q0||2W

∂

∂q
f(q) = 0>= 2(y0 − y∗ + J (q − q0))>CJ + 2(q − q0)TW

J>C (y∗ − y0) = (J>CJ +W) (q − q0)

q∗ = q0 + J](y∗ − y0)

with J] = (J>CJ +W)-1J>C = W -1J>(JW -1J>+ C-1)-1 (Woodbury identity)

– For C →∞ and W = I, J] = J>(JJ>)-1 is called pseudo-inverse
– W generalizes the metric in q-space
– C regularizes this pseudo-inverse (see later section on singularities) 27/61

“Small step” application

• This approximate solution to IK makes sense
– if the local linearization of φ at q0 is “good”
– if q0 and q∗ are close

• This equation is therefore typically used to iteratively compute small
steps in configuration space

qt+1 = qt + J](y∗t+1 − φ(qt))

where the target y∗t+1 moves smoothly with t

28/61

Example: Iterating IK to follow a trajectory

• Assume initial posture q0. We want to reach a desired endeff position
y∗ in T steps:

Input: initial state q0, desired y∗, methods φpos and Jpos

Output: trajectory q0:T
1: Set y0 = φpos(q0) // starting endeff position
2: for t = 1 : T do
3: y ← φpos(qt-1) // current endeff position
4: J ← Jpos(qt-1) // current endeff Jacobian
5: ŷ ← y0 + (t/T)(y∗ − y0) // interpolated endeff target
6: qt = qt-1 + J](ŷ − y) // new joint positions
7: Command qt to all robot motors and compute all TW�i(qt)

8: end for

01-kinematics: ./x.exe -mode 2/3

• Why does this not follow the interpolated trajectory ŷ0:T exactly?
– What happens if T = 1 and y∗ is far?

29/61

Example: Iterating IK to follow a trajectory

• Assume initial posture q0. We want to reach a desired endeff position
y∗ in T steps:

Input: initial state q0, desired y∗, methods φpos and Jpos

Output: trajectory q0:T
1: Set y0 = φpos(q0) // starting endeff position
2: for t = 1 : T do
3: y ← φpos(qt-1) // current endeff position
4: J ← Jpos(qt-1) // current endeff Jacobian
5: ŷ ← y0 + (t/T)(y∗ − y0) // interpolated endeff target
6: qt = qt-1 + J](ŷ − y) // new joint positions
7: Command qt to all robot motors and compute all TW�i(qt)

8: end for

01-kinematics: ./x.exe -mode 2/3

• Why does this not follow the interpolated trajectory ŷ0:T exactly?
– What happens if T = 1 and y∗ is far?

29/61

Two additional notes

• What if we linearize at some arbitrary q′ instead of q0?

φ(q) ≈ y′ + J (q − q′) , y′ = φ(q′)

q∗ = argmin
q
||φ(q)− y∗||2C + ||q − q′ + (q′ − q0)||2W

= q′ + J] (y∗ − y′) + (I − J]J) h , h = q0 − q′ (1)

Note that h corresponds to the classical concept of null space motion

• What if we want to find the exact (local) optimum? E.g. what if we want
to compute a big step (where q∗ will be remote from q) and we cannot
not rely only on the local linearization approximation?

– Iterate equation (1) (optionally with a step size < 1 to ensure
convergence) by setting the point y′ of linearization to the current q∗

– This is equivalent to the Gauss-Newton algorithm

30/61

Where are we?

• We’ve derived a basic motion generation principle in robotics from
– an understanding of robot geometry & kinematics
– a basic notion of optimality

• In the remainder:
A. Heuristic motion profiles for simple trajectory generation
B. Extension to multiple task variables
C. Discussion of classical concepts

– Singularity and singularity-robustness
– Nullspace, task/operational space, joint space
– “inverse kinematics”↔ “motion rate control”

31/61

Where are we?

• We’ve derived a basic motion generation principle in robotics from
– an understanding of robot geometry & kinematics
– a basic notion of optimality

• In the remainder:
A. Heuristic motion profiles for simple trajectory generation
B. Extension to multiple task variables
C. Discussion of classical concepts

– Singularity and singularity-robustness
– Nullspace, task/operational space, joint space
– “inverse kinematics”↔ “motion rate control”

31/61

Heuristic motion profiles

32/61

Heuristic motion profiles

• Assume initially x = 0, ẋ = 0. After 1 second you want x = 1, ẋ = 0.
How do you move from x = 0 to x = 1 in one second?

The sine profile xt = x0 + 1
2 [1− cos(πt/T)](xT − x0) is a compromise

for low max-acceleration and max-velocity
Taken from http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/

motion_profile_wizard/motionprofiles.htm

33/61

http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/motion_profile_wizard/motionprofiles.htm
http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/motion_profile_wizard/motionprofiles.htm

Motion profiles

• Generally, let’s define a motion profile as a mapping

MP : [0, 1] 7→ [0, 1]

with MP(0) = 0 and MP(1) = 1 such that the interpolation is given as

xt = x0 + MP(t/T) (xT − x0)

• For example

MPramp(s) = s

MPsin(s) =
1

2
[1− cos(πs)]

34/61

Joint space interpolation

1) Optimize a desired final configuration qT :
Given a desired final task value yT , optimize a final joint state qT to minimize
the function

f(qT) = ||qT − q0||2W/T + ||yT − φ(qT)||2C

– The metric 1
T
W is consistent with T cost terms with step metric W .

– In this optimization, qT will end up remote from q0. So we need to iterate
Gauss-Newton, as described on slide 30.

2) Compute q0:T as interpolation between q0 and qT :
Given the initial configuration q0 and the final qT , interpolate on a straight line
with a some motion profile. E.g.,

qt = q0 + MP(t/T) (qT − q0)

35/61

Task space interpolation

1) Compute y0:T as interpolation between y0 and yT :
Given a initial task value y0 and a desired final task value yT , interpolate on a
straight line with a some motion profile. E.g,

yt = y0 + MP(t/T) (yT − y0)

2) Project y0:T to q0:T using inverse kinematics:
Given the task trajectory y0:T , compute a corresponding joint trajectory q0:T
using inverse kinematics

qt+1 = qt + J](yt+1 − φ(qt))

(As steps are small, we should be ok with just using this local linearization.)

36/61

peg-in-a-hole demo

37/61

Multiple tasks

38/61

Multiple tasks

39/61

Multiple tasks

LeftHand
position

RightHand
position

40/61

Multiple tasks
• Assume we have m simultaneous tasks; for each task i we have:

– a kinematic mapping yi = φi(q) ∈ Rdi

– a current value yi,t = φi(qt)

– a desired value y∗i
– a precision %i (implying a task cost metric Ci = %i I)

• Each task contributes a term to the objective function

q∗ = argmin
q
||q − q0||2W + %1 ||φ1(q)− y∗1 ||2 + %2 ||φ2(q)− y∗2 ||2 + · · ·

which we can also write as

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

where Φ(q) :=



√
%1 (φ1(q)− y∗1)√
%2 (φ2(q)− y∗2)

...


∈ R

∑
i di

41/61

Multiple tasks
• Assume we have m simultaneous tasks; for each task i we have:

– a kinematic mapping yi = φi(q) ∈ Rdi

– a current value yi,t = φi(qt)

– a desired value y∗i
– a precision %i (implying a task cost metric Ci = %i I)

• Each task contributes a term to the objective function

q∗ = argmin
q
||q − q0||2W + %1 ||φ1(q)− y∗1 ||2 + %2 ||φ2(q)− y∗2 ||2 + · · ·

which we can also write as

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

where Φ(q) :=



√
%1 (φ1(q)− y∗1)√
%2 (φ2(q)− y∗2)

...


∈ R

∑
i di

41/61

Multiple tasks
• Assume we have m simultaneous tasks; for each task i we have:

– a kinematic mapping yi = φi(q) ∈ Rdi

– a current value yi,t = φi(qt)

– a desired value y∗i
– a precision %i (implying a task cost metric Ci = %i I)

• Each task contributes a term to the objective function

q∗ = argmin
q
||q − q0||2W + %1 ||φ1(q)− y∗1 ||2 + %2 ||φ2(q)− y∗2 ||2 + · · ·

which we can also write as

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

where Φ(q) :=



√
%1 (φ1(q)− y∗1)√
%2 (φ2(q)− y∗2)

...


∈ R

∑
i di

41/61

Multiple tasks

• We can “pack” together all tasks in one “big task” Φ.

Example: We want to control the 3D position of the left hand and of the right
hand. Both are “packed” to one 6-dimensional task vector which becomes zero
if both tasks are fulfilled.

• The big Φ is scaled/normalized in a way that
– the desired value is always zero
– the cost metric is I

• Using the local linearization of Φ at q0, J = ∂Φ(q0)
∂q , the optimum is

q∗ = argmin
q
||q − q0||2W + ||Φ(q)||2

≈ q0 − (J>J +W)-1J>Φ(q0) = q0 − J#Φ(q0)

42/61

Multiple tasks

LeftHand
position

RightHand
position

• We learnt how to “puppeteer a robot”

• We can handle many task variables
(but specifying their precisions %i be-
comes cumbersome...)

• In the remainder:
A. Classical limit of “hierarchical IK” and
nullspace motion
B. What are interesting task variables?

43/61

Hierarchical IK & nullspace motion
• In the classical view, tasks should be executed exactly, which means taking the

limit %i →∞ in some prespecified hierarchical order.

• We can rewrite the solution in a way that allows for such a hierarchical limit:

• One task plus “nullspace motion”:

f(q) = ||q − a||2W + %1||J1q − y1||2

∝ ||q − â||2
Ŵ

Ŵ = W + %1J
>
1J1 , â = Ŵ -1(Wa+ %1J

>
1y1) = J#

1 y1 + (I− J#
1 J1)a

J#
1 = (W/%1 + J>1J1)-1J>1

• Two tasks plus nullspace motion:

f(q) = ||q − a||2W + %1||J1q − y1||2 + %2||J2q − y2||2

= ||q − â||2
Ŵ

+ ||J1q + Φ1||2

q∗ = J#
1 y1 + (I− J#

1 J1)[J#
2 y2 + (I− J#

2 J2)a]

J#
2 = (W/%2 + J>2J2)-1J>2 , J#

1 = (Ŵ/%1 + J>1J1)-1J>1

• etc... 44/61

Hierarchical IK & nullspace motion

• The previous slide did nothing but rewrite the nice solution
q∗ = −J#Φ(q0) (for the “big” Φ) in a strange hierarchical way that
allows to “see” nullspace projection

• The benefit of this hierarchical way to write the solution is that one can
take the hierarchical limit %i →∞ and retrieve classical hierarchical IK

• The drawbacks are:
– It is somewhat ugly
– In practise, I would recommend regularization in any case (for numeric

stability). Regularization corresponds to NOT taking the full limit %i →∞.
Then the hierarchical way to write the solution is unnecessary. (However,
it points to a “hierarchical regularization”, which might be numerically more
robust for very small regularization?)

– The general solution allows for arbitrary blending of tasks

45/61

What are interesting task variables?

The following slides will define 10 different types of task variables.
This is meant as a reference and to give an idea of possibilities...

46/61

Position
Position of some point attached to link i

dimension d = 3

parameters link index i, point offset v

kin. map φpos
iv (q) = TW�i v

Jacobian Jpos
iv (q)·k = [k ≺ i] ak × (φpos

iv (q)− pk)

Notation:

– ak, pk are axis and position of joint k
– [k ≺ i] indicates whether joint k is between root and link i
– J·k is the kth column of J

47/61

Vector
Vector attached to link i

dimension d = 3

parameters link index i, attached vector v

kin. map φvec
iv (q) = RW�i v

Jacobian Jvec
iv (q) = Ai × φvec

iv (q)

Notation:

– Ai is a matrix with columns (Ai)·k = [k ≺ i] ak containing the joint axes or
zeros

– the short notation “A× p” means that each column in A takes the
cross-product with p.

48/61

Relative position
Position of a point on link i relative to point on link j

dimension d = 3

parameters link indices i, j, point offset v in i and w in j

kin. map φpos
iv|jw(q) = R-1

j (φpos
iv − φ

pos
jw)

Jacobian Jpos
iv|jw(q) = R-1

j [Jpos
iv − J

pos
jw −Aj × (φpos

iv − φ
pos
jw)]

Derivation:
For y = Rp the derivative w.r.t. a rotation around axis a is
y′ = Rp′ +R′p = Rp′ + a×Rp. For y = R-1p the derivative is
y′ = R-1p′ −R-1(R′)R-1p = R-1(p′ − a× p). (For details see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf)

49/61

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf

Relative vector
Vector attached to link i relative to link j

dimension d = 3

parameters link indices i, j, attached vector v in i

kin. map φvec
iv|j(q) = R-1

j φ
vec
iv

Jacobian Jvec
iv|j(q) = R-1

j [Jvec
iv −Aj × φvec

iv]

50/61

Alignment
Alignment of a vector attached to link i with a reference v∗

dimension d = 1

parameters link index i, attached vector v, world reference v∗

kin. map φ
align
iv (q) = v∗> φvec

iv

Jacobian J
align
iv (q) = v∗> Jvec

iv

Note: φalign = 1↔ align φalign = −1↔ anti-align φalign = 0↔ orthog.

51/61

Relative Alignment
Alignment a vector attached to link i with vector attached to j

dimension d = 1

parameters link indices i, j, attached vectors v, w

kin. map φ
align
iv|jw(q) = (φvec

jw)> φvec
iv

Jacobian J
align
iv|jw(q) = (φvec

jw)> Jvec
iv + φvec

iv
> Jvec

jw

52/61

Joint limits
Penetration of joint limits

dimension d = 1

parameters joint limits qlow, qhi, margin m

kin. map φlimits(q) = 1
m

∑n
i=1[m− qi + qlow]+ + [m+ qi − qhi]

+

Jacobian Jlimits(q)1,i = − 1
m [m−qi+qlow > 0]+ 1

m [m+qi−qhi > 0]

[x]+ = x > 0?x : 0 [· · ·]: indicator function

53/61

Collision limits
Penetration of collision limits

dimension d = 1

parameters margin m

kin. map φcol(q) = 1
m

∑K
k=1[m− |pak − pbk|]+

Jacobian Jcol(q) = 1
m

∑K
k=1[m− |pak − pbk| > 0]

(−Jpos
pak

+ Jpos
pbk

)>
pak−p

b
k

|pak−p
b
k|

A collision detection engine returns a set {(a, b, pa, pb)Kk=1} of potential
collisions between link ak and bk, with nearest points pak on a and pbk on b.

54/61

Center of gravity
Center of gravity of the whole kinematic structure

dimension d = 3

parameters (none)

kin. map φcog(q) =
∑
i massi φ

pos
ici

Jacobian Jcog(q) =
∑
i massi J

pos
ici

ci denotes the center-of-mass of link i (in its own frame)

55/61

Homing
The joint angles themselves

dimension d = n

parameters (none)

kin. map φqitself(q) = q

Jacobian Jqitself(q) = In

Example: Set the target y∗ = 0 and the precision % very low→ this task
describes posture comfortness in terms of deviation from the joints’ zero
position. In the classical view, it induces “nullspace motion”.

56/61

Task variables – conclusions

LeftHand
position

nearest
distance

• There is much space for creativity in defin-
ing task variables! Many are extensions of
φpos and φvec and the Jacobians combine
the basic Jacobians.

• What the right task variables are to de-
sign/describe motion is a very hard prob-
lem! In what task space do humans con-
trol their motion? Possible to learn from
data (“task space retrieval”) or perhaps via
Reinforcement Learning.

• In practice: Robot motion design (includ-
ing grasping) may require cumbersome
hand-tuning of such task variables.

57/61

Discussion of classical concepts

– Singularity and singularity-robustness
– Nullspace, task/operational space, joint space
– “inverse kinematics”↔ “motion rate control”

58/61

Singularity

• In general: A matrix J singular ⇐⇒ rank(J) < d

– rows of J are linearly dependent
– dimension of image is < d

– δy = Jδq ⇒ dimensions of δy limited
– Intuition: arm fully stretched

• Implications:
det(JJ>) = 0

→ pseudo-inverse J>(JJ>)-1 is ill-defined!
→ inverse kinematics δq = J>(JJ>)-1δy computes “infinite” steps!

• Singularity robust pseudo inverse J>(JJ>+ εI)-1

The term εI is called regularization

• Recall our general solution (for W = I)
J] = J>(JJ>+ C-1)-1

is already singularity robust

59/61

Singularity

• In general: A matrix J singular ⇐⇒ rank(J) < d

– rows of J are linearly dependent
– dimension of image is < d

– δy = Jδq ⇒ dimensions of δy limited
– Intuition: arm fully stretched

• Implications:
det(JJ>) = 0

→ pseudo-inverse J>(JJ>)-1 is ill-defined!
→ inverse kinematics δq = J>(JJ>)-1δy computes “infinite” steps!

• Singularity robust pseudo inverse J>(JJ>+ εI)-1

The term εI is called regularization

• Recall our general solution (for W = I)
J] = J>(JJ>+ C-1)-1

is already singularity robust
59/61

Null/task/operational/joint/configuration spaces

• The space of all q ∈ Rn is called joint/configuration space
The space of all y ∈ Rd is called task/operational space
Usually d < n, which is called redundancy

• For a desired endeffector state y∗ there exists a whole manifold
(assuming φ is smooth) of joint configurations q:

nullspace(y∗) = {q | φ(q) = y∗}

• We found earlier that

q∗ = argmin
q
||q − a||2W + %||Jq − y∗||2

= J#y∗ + (I− J#J)a , J# = (W/%+ J>J)-1J>

In the limit %→∞ it is guaranteed that Jq = y∗ (we are exacty on the
manifold). The term a introduces additional “nullspace motion”.

60/61

Null/task/operational/joint/configuration spaces

• The space of all q ∈ Rn is called joint/configuration space
The space of all y ∈ Rd is called task/operational space
Usually d < n, which is called redundancy

• For a desired endeffector state y∗ there exists a whole manifold
(assuming φ is smooth) of joint configurations q:

nullspace(y∗) = {q | φ(q) = y∗}

• We found earlier that

q∗ = argmin
q
||q − a||2W + %||Jq − y∗||2

= J#y∗ + (I− J#J)a , J# = (W/%+ J>J)-1J>

In the limit %→∞ it is guaranteed that Jq = y∗ (we are exacty on the
manifold). The term a introduces additional “nullspace motion”. 60/61

Inverse Kinematics and Motion Rate Control
Some clarification of concepts:

• The notion “kinematics” describes the mapping φ : q 7→ y, which
usually is a many-to-one function.

• The notion “inverse kinematics” in the strict sense describes some
mapping g : y 7→ q such that φ(g(y)) = y, which usually is non-unique
or ill-defined.

• In practice, one often refers to δq = J]δy as inverse kinematics.

• When iterating δq = J]δy in a control cycle with time step τ (typically
τ ≈ 1− 10 msec), then ẏ = δy/τ and q̇ = δq/τ and q̇ = J]ẏ. Therefore
the control cycle effectively controls the endeffector velocity—this is
why it is called motion rate control.

61/61

