il
i

Robotics

Kinematics

Kinematic map, Jacobian, inverse kinematics
as optimization problem, motion profiles,
trajectory interpolation, multiple simultaneous
tasks, special task variables,
configuration/operational/null space,
singularities

Marc Toussaint
U Stuttgart

e Two “types of robotics”:
1) Mobile robotics — is all about localization & mapping
2) Manipulation — is all about interacting with the world
[0) Kinematic/Dynamic Motion Control: same as 2) without ever making it to
interaction..]

¢ Typical manipulation robots (and animals) are kinematic trees
Their pose/state is described by all joint angles

2/61

Basic motion generation problem

e Move all joints in a coordinated way so that the endeffector makes a
desired movement

Ol-kinematics: ./x.exe -mode 2/3/4

3/61

Outline

Basic 3D geometry and notation

Kinematics: ¢: ¢—y

Inverse Kinematics: y* — ¢* = min, |y* — ¢(¢)| + [Aq|w

Basic motion heuristics: Motion profiles

Additional things to know
— Many simultaneous task variables
— Singularities, null space,

4/61

Basic 3D geometry & notation

5/61

Pose (position & orientation)

€2

o ¢,
€3

e A pose is described by a translation p € R? and a rotation R € SO(3)
— R s an orthonormal matrix (orthogonal vectors stay orthogonal, unit
vectors stay unit)
- R'=—RT
— columns and rows are orthogonal unit vectors
det(R) =1

Ri1 Ri2 Ris
R21 Rz Ros
R31 R32 Rss

R =

6/61

Frame and coordinate transforms

e Let (0, e;.3) be the world frame, (¢/, e].5) be the body’s frame.
The new basis vectors are the columnsin R, that is,
e} = Rj1e; + Rores + Rsies, efc,
e 2 = coordinates in world frame (o, e1.3)
a’ = coordinates in body frame (o', e].5)
p = coordinates of o’ in world frame (o, e;.3)

x=p+ R
7/61

Rotations

e Rotations can alternatively be represented as
— Euler angles — NEVER DO THIS!
— Rotation vector
— Quaternion — default in code

e See the “geometry notes” for formulas to convert, concatenate & apply
to vectors

8/61

Homogeneous transformations

e 24 = coordinates of a point in frame A
2B = coordinates of a point in frame B

e Translation and rotation: z4 =t + Rz®

e Homogeneous transform 7' € R**4:

R t
Tap =
o (0 1)
B B
A_mp, B:Rt T :R:c +t
* A-B T 0 1)1 1

in homogeneous coordinates, we append a 1 to all coordinate vectors

9/61

Is T4 5 forward or backward?

e T,_p describes the translation and rotation of frame B relative to A
That is, it describes the forward FRAME transformation (from A to B)

e T,4_ p describes the coordinate transformation from z% to z4
That is, it describes the backward COORDINATE transformation

e Confused? Vectors (and frames) transform covariant, coordinates
contra-variant. See “geometry notes” or Wikipedia for more details, if
you like.

10/61

Composition of transforms

Twoc =Tw-aTass Teoc

w C
€T = TW—>A TA_>B TB—>C T 11/61

Kinematics

12/61

Kinematics

Ts_p

~

TA’—»B s TB'—»C »
e \ eff

joint
transf. Ta—a A
f relative
Toreff eft.
offse
N
Tecr

link
transf. Twa

e A kinematic structure is a graph (usually tree or chain)
of rigid links and joints

Twoeff(q) = Tw-a Tasn(q) Tareg Tp-p/(q) Tprmc To-cr(q) Torsef
13/61

Joint types

e Joint transformations: T4 .4/(¢) depends on q € R"

revolute joint: joint angle ¢ € R determines rotation about z-axis:

1 0 0

0 cos(q) —sin(q)
0 sin(g) cos(q)
0 0 0

Taoa(q) =

— o O O

prismatic joint: offset ¢ € R determines translation along z-axis:

Tyoa(q) =

o O O =
o o= O
O = OO
— O O

others: screw (1dof), cylindrical (2dof), spherical (3dof), universal
(2dof)

14/61

¥
Rigid (no motion) Prisroatic Resrolute Paralle] Cylindrical
L4 ¥ ¥
Cylindrical Spherical Planar Edge Slider
I3 @ 7 .
A X A
I ¥ ’ 4
’
Crylindrical Slider Point Slhider Spherical Shider Crossed Cylinder

15/61

Kinematic Map

e For any joint angle vector ¢ € R™ we can compute Ty ()
by forward chaining of transformations

Tw-f(q) gives us the pose of the endeffector in the world frame

16/61

Kinematic Map

e For any joint angle vector ¢ € R™ we can compute Ty ()
by forward chaining of transformations

Tw-f(q) gives us the pose of the endeffector in the world frame

e The two most important examples for a kinematic map ¢ are

1) A point v on the endeffector transformed to world coordinates:

pos

eito(@) = Twoei(q) v € R3

2) A direction v € R? attached to the endeffector transformed to world:

;?Ffv(q) = RW%eff(Q) v € Rs

Where R p is the rotation in T4 . 16/61

Kinematic Map

¢ In general, a kinematic map is any (differentiable) mapping

¢ gy

that maps to some arbitrary feature y € R¢ of the pose ¢ € R”

17/61

Jacobian

e When we change the joint angles, dq, how does the effector position

change, 0y?
e Given the kinematic map y = ¢(q) and its Jacobian J(q) = B%QS(q), we
have:
oy = J(q) oq
0¢1(q) 991(q) 0¢1(q)
Oqy _Oqy T Ogn
9 B;ﬁ;(fz) daga(Q) o dgz(Q) .
J E—— — q1 q2 dn cR xXn
(q) B4 (9) : :
O0¢a(q) Odalq) 99a(q)
Oq 0q2 T 0qn

18/61

Jacobian for a rotational joint

axis @, A \

i -
[‘
point pi& ~ 1

i-th joint

e The i-th joint is located at p; = tw—;(q) and has rotation axis

1
a; = Rw-i(q) (0]
0

e We consider an infinitesimal variation d¢; € R of the ith joint and see
how an endeffector position perr = ¢g, (¢) and attached vector
Geff = ;feffv(q) change.

19/61

Jacobian for a rotational joint

»*
N

Xai xd
yneﬁ
ff

M et
d <7 \

axis@; S \

-7 |

point pi& = \
i-th joint

= Position Jacobian:

) =)

= [\V) S

X X X
pos s < f) 3xn
Jeff,v(q)i E E E ER

\ \ \

s s

Consider a variation dg;
— the whole sub-tree rotates

Opest = [a;i X (peff — Pi)] 04
daefr = [a; X aef] 9

= Vector Jacobian:

vec

eff,v(Q) = € Rgxn

[#D x Tp]
[#°D x D]
[#D x YD)

20/61

Jacobian

e To compute the Jacobian of some endeffector position or vector, we
only need to know the position and rotation axis of each joint.

e The two kinematic maps ¢P°s and ¢"*¢ are the most important two
examples — more complex geometric features can be computed from
these, as we will see later.

21/61

Inverse Kinematics

22/61

Inverse Kinematics problem

e Generally, the aim is to find a robot configuration ¢ such that ¢(q) = y*
e Iff ¢ is invertible

e But in general, ¢ will not be invertible:

1) The pre-image ¢ (y*) = may be empty: No configuration can
generate the desired y*

2) The pre-image ¢! (y*) may be large: many configurations can
generate the desired y*

23/61

Inverse Kinematics as optimization problem
e We formalize the inverse kinematics problem as an optimization
problem
¢" = argmin |¢(q) — y* 2 + g — qoliy
q

e The 1st term ensures that we find a configuration even if * is not
exactly reachable
The 2nd term disambiguates the configurations if there are many

¢ (y*)

24/61

Inverse Kinematics as optimization problem
¢" = argmin |¢(q) — y* & + lg — qoliv
q

e The formulation of IK as an optimization problem is very powerful and
has many nice properties

e We will be able to take the limit C' — oo, enforcing exact ¢(q) = y* if
possible

e Non-zero C-! and W corresponds to a regularization that ensures
numeric stability

e Classical concepts can be derived as special cases:
— Null-space motion
— regularization; singularity robutness
— multiple tasks
— hierarchical tasks

25/61

Solving Inverse Kinematics

e The obvious choice of optimization method for this problem is
Gauss-Newton, using the Jacobian of ¢

e We first describe just one step of this, which leads to the classical
equations for inverse kinematics using the local Jacobian...

26/61

Solution using the local linearization

e When using the local linearization of ¢ at qo,

#(q) ~yo+J (@—qo0), Yo =d(qo)

e We can derive the optimum as

f(@) = 19(a) — ¥ & + la — aoliv

=lyo—y* +J (¢ —q)|& + g — qolw
8 *
97 (@ = 0" =2(yo —y" +J (¢~ 90) CJ +2(q — q0)" W

J'C(y* —yo) = (JICT+W) (¢ — q0)
¢* =qo+ JHy* — o)
with J¥ = (JTCT + W)J'C = WrJ (JwJ" + C1)? (Woodbury identity)

— ForC s ocoand W =1, J* = J(JJ")! is called pseudo-inverse
— W generalizes the metric in ¢g-space
— (' regularizes this pseudo-inverse (see later section on singularities) 27/61

“Small step” application

e This approximate solution to IK makes sense
— if the local linearization of ¢ at qo is “good”
— if go and ¢* are close

e This equation is therefore typically used to iteratively compute small
steps in configuration space

Gt41 = Gt + Jﬁ(yz;l — ¢(qt))

where the target y;, ;, moves smoothly with ¢

28/61

Example: Iterating IK to follow a trajectory

e Assume initial posture ¢qo. We want to reach a desired endeff position
y* in T steps:

Input: initial state qo, desired y*, methods ¢P°s and JP°s
Output: trajectory qo.1

1: Set yo = ¢P°*(qo) // starting endeff position
2: fort=1:7do
3y ¢P%(qe1) // current endeff position
4: J <+ JP%(gs1) // current endeff Jacobian
5§+ yo+ (/T)(y* —yo) // interpolated endeff target
6 q=qu1+JG—y) // new joint positions
7: Command g; to all robot motors and compute all Ty —;(g¢)
8: end for
Ol-kinematics: ./x.exe -mode 2/3

29/61

Example: Iterating IK to follow a trajectory

e Assume initial posture ¢qo. We want to reach a desired endeff position
y* in T steps:

Input: initial state qo, desired y*, methods ¢P°s and JP°s
Output: trajectory qo.1

1: Set yo = ¢P°*(qo) // starting endeff position
2: fort=1:7do
3y ¢P%(qe1) // current endeff position
4: J <+ JP%(gs1) // current endeff Jacobian
5§+ yo+ (/T)(y* —yo) // interpolated endeff target
6 q=qu1+JG—y) // new joint positions
7: Command g; to all robot motors and compute all Ty —;(g¢)
8: end for
Ol-kinematics: ./x.exe -mode 2/3

e Why does this not follow the interpolated trajectory 7. exactly?
— What happens if T'=1 and y* is far?

29/61

Two additional notes
e What if we linearize at some arbitrary ¢’ instead of ¢o?
d) =y +J(g—4q), ¥y =)
q" = argmin ¢(q) - YlE+la—d + (4 —)l
=+ -y)+U-TNh, h=qg-4 (1)

Note that & corresponds to the classical concept of null space motion

e What if we want to find the exact (local) optimum? E.g. what if we want
to compute a big step (where ¢* will be remote from ¢) and we cannot
not rely only on the local linearization approximation?

— lterate equation (1) (optionally with a step size < 1 to ensure
convergence) by setting the point ¢ of linearization to the current ¢*

— This is equivalent to the Gauss-Newton algorithm

30/61

Where are we?

e We've derived a basic motion generation principle in robotics from
— an understanding of robot geometry & kinematics
— a basic notion of optimality

31/61

Where are we?

e We've derived a basic motion generation principle in robotics from
— an understanding of robot geometry & kinematics
— a basic notion of optimality

e In the remainder:
A. Heuristic motion profiles for simple trajectory generation
B. Extension to multiple task variables
C. Discussion of classical concepts

— Singularity and singularity-robustness
— Nullspace, task/operational space, joint space
— “inverse kinematics” «» “motion rate control”

31/61

Heuristic motion profiles

32/61

Heuristic motion profiles

e Assume initially x = 0,2 = 0. After 1 second youwant z = 1,z = 0.
How do you move from x = 0 to = 1 in one second?

Ramp Trapezoidal

”~x
-y
o
o -
IR
-
‘-V
) o
o oo B~
L rgr s o
& & o = oo
=a

05
e 1-2
02 0 02 04 05 08 1 1.2 a2 o0 02 04 06 08 1 1.2
time time
Cubic e - Sine
12 & e 8
05 1 4 (il 4
== 00 0 => 00 0w
1t [B]
05 -1 4 08 -1 4
12 8 12 8
02 0 02 04 0B 08 1 12 a2 o 02 04 0B 0B 1 12
time time

The sine profile z;, = 2 + 3[1 — cos(nt/T))(xr — o) is a compromise
for low max-acceleration and max-velocity
Taken from http://www.20sim. com/webhelp/toolboxes/mechatronics_toolbox/

motion_profile_wizard/motionprofiles.htm

33/61

http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/motion_profile_wizard/motionprofiles.htm
http://www.20sim.com/webhelp/toolboxes/mechatronics_toolbox/motion_profile_wizard/motionprofiles.htm

Motion profiles

e Generally, let’s define a motion profile as a mapping
MP : [0, 1] — [0, 1]
with MP(0) = 0 and MP(1) = 1 such that the interpolation is given as

xy = x0 + MP(t/T) (zp — 20)

e For example

M Pramp (S) =
MPgin(s) =

[1 — cos(ms)]

N — »

34/61

Joint space interpolation

1)

Optimize a desired final configuration q¢r:
Given a desired final task value yr, optimize a final joint state ¢r to minimize
the function

flar) = lar — qoltv/r + lyr — d(ar)|&

— The metric - W is consistent with 7" cost terms with step metric .
— In this optimization, ¢r will end up remote from ¢o. So we need to iterate
Gauss-Newton, as described on slide 30.

Compute qo.r as interpolation between ¢ and ¢r:
Given the initial configuration go and the final ¢r, interpolate on a straight line
with a some motion profile. E.g.,

gt = qo + MP(t/T) (g7 — qo)

35/61

Task space interpolation

1) Compute yo.7 as interpolation between yo and yr:
Given a initial task value yo and a desired final task value yr, interpolate on a
straight line with a some motion profile. E.g,

Yt = Yo +MP(t/T) (yr — o)

2) Project yo.r to go.7 using inverse kinematics:
Given the task trajectory yo.7, compute a corresponding joint trajectory go.r
using inverse kinematics

Qo1 = G + T (g1 — B(qr))

(As steps are small, we should be ok with just using this local linearization.)

36/61

peg-in-a-hole demo

37/61

Multiple tasks

38/61

Multiple tasks

39/61

Multiple tasks

LeftHand
position

40/61

Multiple tasks

e Assume we have m simultaneous tasks; for each task : we have:

— akinematic mapping y; = ¢:(q) € R%

a current value y; : = ¢i(q:)

a desired value y;

a precision g; (implying a task cost metric C; = p; I)

41/61

Multiple tasks

e Assume we have m simultaneous tasks; for each task i we have:
— akinematic mapping y; = ¢:(q) € R%
— acurrent value y; + = ¢i(qt)
— adesired value y;
— aprecision g; (implying a task cost metric C; = o; I)

e Each task contributes a term to the objective function

¢" = argmin [q — qo[fy + o1 [¢1(0) — yil* + 02 [é2(a) — w31 + -
q

41/61

Multiple tasks
e Assume we have m simultaneous tasks; for each task : we have:
— akinematic mapping y; = ¢:(q) € R%
— acurrent value y; + = ¢:(q:)
— adesired value y;
— aprecision g; (implying a task cost metric C; = p; I)
e Each task contributes a term to the objective function
¢" = argmin [q — qo[§y + 01 61(0) — ¥ I* + 02 [62(q) — w5 * + -
q
which we can also write as

q" = argmin ||q — qo||%/v + ”(I)(Q)HQ
q

vor (¢1(q) —vi)
where ®(q) := |02 (#2(q) —y3)| e RZ:id

41/61

Multiple tasks

o We can “pack” together all tasks in one “big task” ®.

Example: We want to control the 3D position of the left hand and of the right
hand. Both are “packed” to one 6-dimensional task vector which becomes zero
if both tasks are fulfilled.

e The big ® is scaled/normalized in a way that
— the desired value is always zero
— the cost metricis I

e Using the local linearization of ® at ¢o, J = %{f‘)), the optimum is

q" = argmin g — qo[3 + |2(q)|?
q
~qo— (JT T+ W) ®(q0) = g0 — J# D(qo)

42/61

Multiple tasks

e We learnt how to “puppeteer a robot”

e We can handle many task variables
(but specifying their precisions p; be-
comes cumbersome...)

Righiaee ¢ In the remainder:
L A. Classical limit of “hierarchical IK” and
¢y LeftHand
position nullspace motion
B. What are interesting task variables?

43/61

Hierarchical IK & nullspace motion

¢ In the classical view, tasks should be executed exactly, which means taking the
limit o; — oo in some prespecified hierarchical order.

e We can rewrite the solution in a way that allows for such a hierarchical limit:

One task plus “nullspace motion”:

(@ =lg—aliy + a1l vg — w1 |
o |q — af%
W=W+oadiJ, a=W'Wa+onJiy)=Jy+0A-JF)a
I = (W/or + HLn)" gl

Two tasks plus nullspace motion:

£(@) =g = aliv + o1l Jig — w1 |* + 0211729 — v2 |
=g —al% + | g+ @1
¢ = Iy + A= JF) Iy + X - JF J2)d]
JF = (W/oa+ BR)' IS, JF =W /e + L) J]

e efc... 44/61

Hierarchical IK & nullspace motion

e The previous slide did nothing but rewrite the nice solution
q* = —J*®(q) (for the “big” ®) in a strange hierarchical way that
allows to “see” nullspace projection

e The benefit of this hierarchical way to write the solution is that one can
take the hierarchical limit p; — oo and retrieve classical hierarchical IK

e The drawbacks are:
— It is somewhat ugly

— In practise, | would recommend regularization in any case (for numeric
stability). Regularization corresponds to NOT taking the full limit o; — oc.
Then the hierarchical way to write the solution is unnecessary. (However,
it points to a “hierarchical regularization”, which might be numerically more
robust for very small regularization?)

— The general solution allows for arbitrary blending of tasks

45/61

What are interesting task variables?

The following slides will define 10 different types of task variables.
This is meant as a reference and to give an idea of possibilities...

46/61

Position

Position of some point attached to link 4
dimension d=3
parameters link index i, point offset v
kin. map P (q) = Tw-i v
Jacobian JE%(q) .k = [k < i) ak X (¢25°(q) — pk)
Notation:
— ak, pk are axis and position of joint &

— [k <] indicates whether joint k is between root and link i

— Jx isthe

kth column of J

47/61

Vector

Vector attached to link i
dimension d=3
parameters link index i, attached vector v
kin. map ¥*(¢) = Rw-i v
Jacobian Jrec(q) = A; x ¢¥e<(q)
Notation:

— A, is a matrix with columns (A;).x = [k < i] ax containing the joint axes or

zZeros

— the short notation “A x p” means that each columnin A takes the

cross-product with p.

48/61

Relative position

Position of a point on link i relative to point on link j

dimension d=3

parameters | link indices i, j, point offset v in ¢ and w in j

kin. map P (@) = B3 (95, — ¢5%)
Jacobian | JP% (q) = R} TR — TR0 — Ay x (857 — o8]
Derivation:

For y = Rp the derivative w.r.t. a rotation around axis a is

y' = Rp' + R'p = Rp’ + a x Rp. For y = R'p the derivative is

y =R'p — RYR)R'p = R (p' —a x p). (For details see
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf)

49/61

http://ipvs.informatik.uni-stuttgart.de/mlr/marc/notes/3d-geometry.pdf

Relative vector

Vector attached to link i relative to link j
dimension d=3
parameters link indices 1, j, attached vector v in i
kin. map veri(a) = Rj' o
Jacobian Jisti(a) = Bj [J35° — Aj x 93]

50/61

Alignment

Alignment of a vector attached to link ¢ with a reference v*
dimension d=1
parameters link index i, attached vector v, world reference v*
kin. map 657" (q) = v*T P
Jacobian JA (q) = v*T Jyee
Note: 19" =1 < align ¢?19" = —1 « anti-align ¢219" = 0 + orthog.

51/61

Relative Alignment

Alignment a vector attached to link ¢ with vector attached to j
dimension d=1
parameters link indices i, j, attached vectors v, w
kin. map 6500 (@) = (¢5ee) gy
Jacobian TE (9) = (U0)T Jyse + gl Ty

52/61

Joint limits

Penetration of joint limits

dimension d=1

parameters joint limits giow, gni, Margin m

kin. map Plimits (q) = % Z;L:l[m — qi + qow] T + [m 4 i — gni]t

Jacobian Jiimits (9) 1,6 = _%[m_Qi‘FQIow > 0}+%[m+qi—qhi > 0]

[t =2>0%72:0

[- -]: indicator function

53/61

Collision limits

Penetration of collision limits

dimension d=1
parameters margin m
kin. map beol(q Zk; 1[- \pﬁ —pﬁ\]+
Jacobian Jco|(q) =L Im—Ipg — p] > 0]
(_JPOS JPOS)T Pr— 1”
ph 7 |pg—phl

A collision detection engine returns a set {(a, b, p*, p®)&_, } of potential

collisions between link ax and by, with nearest points p¢ on a and p} on b.

54/61

Center of gravity

Center of gravity of the whole kinematic structure
dimension d=3
parameters (none)
kin. map ¢°9(q) = >_, mass; ¢f
Jacobian J%9(q) = 3, mass; J}.*

¢; denotes the center-of-mass of link 7 (in its own frame)

55/61

Homing

The joint angles themselves
dimension d=n
parameters (none)
kin. map Pqitselt (q) = ¢
Jacobian Jyitsel (q) = I,

Example: Set the target y* = 0 and the precision g very low — this task
describes posture comfortness in terms of deviation from the joints’ zero
position. In the classical view, it induces “nullspace motion”.

56/61

Task variables — conclusions

€col
D nearest
distance

LeftHand
position

e There is much space for creativity in defin-

ing task variables! Many are extensions of
¢P* and ¢"*¢ and the Jacobians combine
the basic Jacobians.

What the right task variables are to de-
sign/describe motion is a very hard prob-
lem! In what task space do humans con-
trol their motion? Possible to learn from
data (“task space retrieval”) or perhaps via
Reinforcement Learning.

In practice: Robot motion design (includ-
ing grasping) may require cumbersome
hand-tuning of such task variables.

57/61

Discussion of classical concepts

— Singularity and singularity-robustness
— Nullspace, task/operational space, joint space
— “inverse kinematics” «» “motion rate control”

58/61

Singularity

e In general: A matrix J singular <= rank(J) <d
— rows of J are linearly dependent
— dimension of image is < d
— dy = Jéq = dimensions of Jy limited

Intuition: arm fully stretched

59/61

Singularity

e In general: A matrix J singular <= rank(J) <d
— rows of J are linearly dependent
— dimension of image is < d
— dy = Jéq = dimensions of Jy limited
— Intuition: arm fully stretched

e Implications:
det(JJT) =0
— pseudo-inverse J'(JJ") ! is ill-defined!
— inverse kinematics 6q = J'(JJ")'6y computes “infinite” steps!

e Singularity robust pseudo inverse J'(J.J" + I)!
The term €l is called regularization
e Recall our general solution (for W =1)
JE=JN(JJT 4+ Ch)

is already singularity robust 59/61

Null/task/operational/joint/configuration spaces

e The space of all ¢ € R™ is called joint/configuration space
The space of all y € R? is called task/operational space
Usually d < n, which is called redundancy

60/61

Null/task/operational/joint/configuration spaces

e The space of all ¢ € R™ is called joint/configuration space
The space of all y € R? is called task/operational space
Usually d < n, which is called redundancy

e For a desired endeffector state y* there exists a whole manifold
(assuming ¢ is smooth) of joint configurations ¢:

nullspace(y*) = {q | ¢(q) =y}

o We found earlier that
q* = argmin |q — a3y + of Jg — y* |
q
= J*y + (I —J*T)a, J*=W/o+JJ)J"

In the limit p — oo it is guaranteed that Jq = y* (we are exacty on the

manifold). The term « introduces additional “nullspace motion”. 60/61

Inverse Kinematics and Motion Rate Control

Some clarification of concepts:

e The notion “kinematics” describes the mapping ¢ : ¢ — y, which
usually is a many-to-one function.

e The notion “inverse kinematics” in the strict sense describes some
mapping g : y — ¢ such that ¢(g(y)) = y, which usually is non-unique
or ill-defined.

e In practice, one often refers to 6q = J*5y as inverse kinematics.

e When iterating §¢ = J%dy in a control cycle with time step 7 (typically
T~ 1 — 10 msec), then y = dy/7 and ¢ = dq¢/7 and ¢ = J*5. Therefore
the control cycle effectively controls the endeffector velocity—this is
why it is called motion rate control.

61/61

