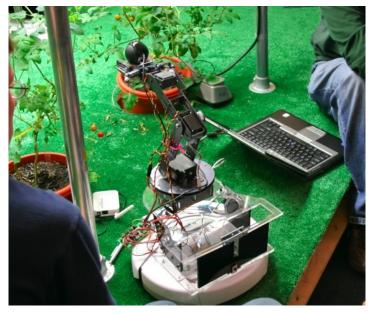


Robotics

Introduction

Marc Toussaint U Stuttgart

Why Robotics?


http://www.saintpatrick.org/index.aspx/Health_Services/da_Vinci_Surgery

(robot "wife" aico)

http://people.csail.mit.edu/nikolaus/drg/

Why Robotics?

 Commercial: Industrial, health care, entertainment, agriculture, surgery, etc

Why Robotics?

- Commercial:
 Industrial, health care, entertainment, agriculture, surgery, etc
- · Critical view:
 - International Committee for Robot Arms Control

http://www.icrac.co.uk/

- Noel Sharkey's articles on robot ethics (Child care robots PePeRo...)

http://www.nec.co.jp/products/robot/en/

Robotics as intelligence research

Al in the real world

Al: Machine Learning, probabilistic reasoning, optimization

Real World: Interaction, manipulation, perception, navigation, etc

Why Al needs to go real world

Why Al needs to go real world

Tunicates digest their brain once they settled!

9/17

- Motion was the driving force to develop intelligence
 - motion needs control & decision making \leftrightarrow fast information processing
 - motion needs anticipation & planning
 - motion needs perception
 - motion needs spatial representations
- Manipulation requires to acknowledge the structure (geometry, physics, objects) of the real world. Classical AI does not

Robotics as intelligence research

- Machine Learning and AI are computational disciplines, which had great success with statistical modelling, analysis of data sets, symbolic reasoning. But they have not solved autonomous learning, acting & reasoning in real worlds.
- Neurosciences and psychology are descriptive sciences, either on the biological or cognitive level, e.g. with geat sucesses to describe and cure certain deceases. But they are not sufficient to create intelligent systems.
- Robotics is the only synthetic discipline to understand intelligent behavior in natural worlds. Robotic tells us what the actual problems are when trying to organize behavior in natural worlds.

History

little movie...

```
( http://www.csail.mit.edu/videoarchive/history/aifilms
http://www.ai.sri.com/shakey/ )
```

Four chapters

Kinematics & Dynamics

goal: orchestrate joint movements for desired movement in task spaces

Kinematic map, Jacobian, optimality principle of inverse kinematics, singularities, configuration/operational/null space, multiple simultaneous tasks, special task variables, trajectory interpolation, motion profiles; 1D point mass, damping & oscillation, PID, general dynamic systems, Newton-Euler, joint space control, reference trajectory following, optimal operational space control

Planning & optimization

goal: planning around obstacles, optimizing trajectories

Path finding vs. trajectory optimization, local vs. global, Dijkstra, Probabilistic Roadmaps, Rapidly Exploring Random Trees, differential constraints, metrics; trajectory optimization, general cost function, task variables, transition costs, gradient methods, 2nd order methods, Dynamic Programming

Control Theory

theory on designing optimal controlers

Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability, stability, eigenvalue analysis, Lyapunov function

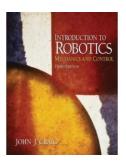
Mobile robots

goal: localize and map yourself

State estimation, Bayes filter, odometry, particle filter, Kalman filter, Bayes smoothing, SLAM, joint Bayes filter, EKF SLAM, particle SLAM, graph-based SLAM

• Is this a practical or theoretical course?

"There is nothing more practical than a good theory." (Vapnik, others...)


· Is this a practical or theoretical course?

"There is nothing more practical than a good theory." (Vapnik, others...)

Essentially, the whole course is about
 reducing real-world problems to mathematical problems
 that can be solved efficiently

Books

There is no reference book for this lecture. But a basic well-known standard text book is:

Craig, J.J.: Introduction to robotics: mechanics and control. Addison-Wesley New York, 1989. (3rd edition 2006)

Books

An advanced text book on planning is this:

Steven M. LaValle: *Planning Algo-rithms*. Cambridge University Press, 2006.

online: http://planning.cs.uiuc.edu/

Online resources

- VideoLecture by Oussama Khatib: http://academicearth.org/courses/introduction-to-robotics http://www. virtualprofessors.com/introduction-to-robotics-stanford-cs223a-khatib (focus on kinematics, dynamics, control)
- Oliver Brock's lecture http://courses.robotics.tu-berlin.de/mediawiki/index.php/Robotics: _Schedule_WT09
- Stefan Schaal's lecture Introduction to Robotics: http://www-clmc.usc.edu/Teaching/TeachingIntroductionToRoboticsSyllabus (focus on control, useful: Basic Linear Control Theory (analytic solution to simple dynamic model → PID), chapter on dynamics)
- Chris Atkeson's "Kinematics, Dynamic Systems, and Control"
 http://www.cs.cmu.edu/~cga/kdc/
 (uses Schaal's slides and LaValle's book, useful: slides on 3d kinematics
 http://www.cs.cmu.edu/~cga/kdc/ewhitman1.pptx)
- CMU lecture "introduction to robotics" http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/16311/www/current/syllabus.html (useful: PID control, simple BUGs algorithms for motion planning, non-holonomic constraints)
- Handbook of Robotics (partially online at Google books) http://tiny.cc/u6tzl
- LaValle's Planning Algorithms http://planning.cs.uiuc.edu/

Organization

· Course webpage:

```
http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/
```

- Slides, exercises & software (C++)
- Links to books and other resources
- Secretary, admin issues:

```
Carola Stahl, Carola.Stahl@ipvs.uni-stuttgart.de, room 2.217
```

- Rules for the tutorials:
 - Doing the exercises is crucial!
 - At the beginning of each tutorial:
 - sign into a list
 - mark which exercises you have (successfully) worked on
 - Students are randomly selected to present their solutions
 - You need 50% of completed exercises to be allowed to the exam