
libSOC
Stochastic Optimal Control Library

Marc Toussaint

April 16, 2010

When using this library, please cite [1].

Contents

1 Installation 1

2 Scope & overview 1

3 Programmer’s guide 1
3.1 ORS data structures 2
3.2 Stochastic Optimal Control 2
3.3 Control (task) variables 4
3.4 The OrsSocImplementation 4
3.5 Motion algorithms 5

4 User’s guide 5
4.1 ors editor and the ors-file format 5
4.2 ors fileConverter 6

1 Installation

The README file has more detailed installation instruc-
tions. The super quick way: on Ubuntu/Debian copy this
to your console:

sudo apt−get install liblapack−dev freeglut3−dev libqhull−dev libf2c2−dev
wget http: // user.cs.tu-berlin.de/ mtoussai/source-code/soc.09.2.tgz
tar xvzf soc.09.2.tgz
cd libSOC
make
cd test /soc
./ x.exe

2 Scope & overview

The primary scope of this lib is the implementation of
Stochastic Optimal Control (SOC) methods (namespace
soc) – that is, methods to compute (approximatly) opti-
mal controllers and trajectories, typically in the context of
robot motion. In particular, this includes

• Approximate Inference Control [1],

• iLQG (iterative Linear-Quadratic-Gaussian)

• gradient/spline trajectory optimization

• methods for 1-step control (optimal dynamic control,
regularized/Bayesian motion rate control, etc)

The secondary scope of this lib is a robot simulator
(namespace ors) that provides the necessary inputs to
the methods above. Using this simulator is optional – it
is provided only for completeness of the lib (and I use
it in my work). But all the methods above can also be
linked to your own simulation environment. My ors im-
lementation tries to be minimalistic in its core, but can
link to many conventient external libraries and engines:
it defines basic data structures to describe robot config-
urations (trees/graphs of rigid bodies), implements the
basic computation of kinematic/Jacobian/Hessian func-
tions, and of course implements the SocAbstraction. It
uses:

• SWIFT++ to compute shape distances/collisions

• Featherstone’s Articulated Body Dynamics as an im-
plementation of exact dynamics on articulated tree
structures (much more precise than IBDS or ODE)

• IBDS (a rather robust impuls-based physical simula-
tor)

• ODE (I don’t like it)

• OpenGL for display

• read/write of file formats for robot configurations,
shape/mesh files (e.g., obj files), etc

The interface between the SOC methods and the sim-
ulator is the soc::SocAbstraction: a class that de-
fines functions that the SOC methods need access to and
that need to be provided by the simulator. This SocAb-
straction tries to be as close as possible to the typical
mathematical notation used for Stochastic Optimal Con-
trol problems. If you’re only interested in the SOC meth-
ods and not in the ORS simulator, you should start read-
ing from section 3.2.

3 Programmer’s guide

There are three headers which, in the end, you should
understand:

1

file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/namespacesoc.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/namespaceors.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structsoc_1_1SocAbstraction.html

2
libSOC

Stochastic Optimal Control Library, Marc Toussaint—April 16, 2010

– array.h
– ors.h and ors_control.h

– soc.h
They implement quite a lot – the following should give

some orientation.

3.1 ORS data structures

• Check the Array class in array.h - it’s yet another
generic container class. There are many reasons why
I decided reimplementing such a generic container
(instead of using std::vector, blast, or whatever):

– it’s fully transparent

– very robust range checking, easy debugging

– direct linkage to LAPACK

– tensor (multi-dimensional array) functions which
are beyond most existing matrix implementations

– etc

Anyway, the Array class is central in all my code. To
get a first impression of its usage, check the test/ar-
ray. In the context of SOC, we mainly use double
arrays to represent vectors, matrices and do linear
algebra, note the typedef

typedef MT::Array<double> arr;

• Lists, Graphs, etc In my convention a List is simply an
array of pointers. Since arrays allow memmove op-
erations, insertion, deletion etc are all O(1). I also
represent graph structures via lists: e.g. a list of
nodes and a list of edges, a node may maintain a list
of adjoint edges, etc.

For Lists (Arrays of pointers) it makes sense to have
additional methods, like calling delete for all point-
ers, or writing the referenced objects to some output
– at the bottom of array.h there are a number of
template functions for lists and graphs.

• See the ors.h file. It defines a number of triv-
ial data structures and methods that should be self-
explanatory:

– Vector

– Matrix

– Quaternion

– Frame (a coordinate system)

– Mesh (a triangulated surface)

– Spline

• Given these types, a dynamic physical configuration
is defined by lists of the following objects

– Body: describes the physical (inertial) properties
of a rigid body. This is mainly simply a Frame (po-
sition, orientation, velocities). Optionally (for dy-
namic physical simulation) this also includes inertial
properties (mass etc) and forces.

– Joint: desribes how two bodies are geometrically
linked and what/where its degree of freedom is. The
geometry of a Joint is given by a rigid transformation
A (from body1 into the joint frame), a free transfor-
mation Q (the transformation of the degrees of free-
dom), and a rigid transformation B (from the joint
frame to body2). Overall, the transformation from
body1 to body2 is the concatenation B ◦Q ◦A.

– Shape: describes the collision and shape properties
of a rigid body. To each rigid body we may associate
multiple Shapes, like primitive shapes (box, sphere,
etc) or Meshes; each shape has a relative transforma-
tion from its body.

– Proxy: describes a proximity between two shapes,
i.e., when two shapes are close to each other. This
includes information like the closest points on the
two shapes and the normal. This information is com-
puted from external libraries like SWIFT.

• The Graph data structure contains the lists of these
objects and thereby describes the configuration of
the whole physical system. It includes a number of
low level routines, in particular for computing kine-
matics, Jacobians, dynamics etc. We don’t describe
these routines here – the SOC abstraction will pro-
vide a higher-level interface to such quantities which
is closer to the mathematical notation of stochastic
optimal control.

Use the ors editor application to define your own
physical configuration (described later in the user’s
guide). Learning to define a configuration should
also give you sufficient understanding of the Body,
Joint, and Shape data structures.

3.2 Stochastic Optimal Control

You should read this when you want to use your own
simulator and thereby have to implement the SocAbstra-
tion. Otherwise, when you use ORS, you may skip this
section (although it’s interesting in itself :-)).

We consider a discrete time stochastic controlled sys-
tem of the form

P (xt+1 |ut, xt) = N(xt+1 | ft(xt, ut), Qt) (1)

with time step t, state xt ∈ Rn, control ut ∈ Rm, and
Gaussian noise ξ of covariance Q; where

N(x|a,A) ∝ exp{−1
2

(x− a)>A-1 (x− a)} (2)

is a Gaussian over x with mean a and covariance A. For a
given state-control sequence x0:T , u0:T we define the cost
as

C(x0:T , u0:T) =
T∑
t=0

ct(xt, ut) . (3)

file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/array_8h-source.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/ors_8h-source.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/ors_control_8h-source.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/soc_8h-source.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/array_8h-source.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/array_8h-source.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/ors_8h-source.html

libSOC
Stochastic Optimal Control Library, Marc Toussaint—April 16, 2010 3

The optimal value function Jt(x) gives the expected fu-
ture cost when in state x at time t for the best controls
and obeys the Bellman optimality equation

Jt(x) = min
u

[
ct(x, u) +

∫
x′
P (x′ |u, x) Jt+1(x′)

]
. (4)

The closed-loop (feedback) control problem is to find a
control policy π∗t : xt 7→ ut (that uses the true state obser-
vation in each time step and maps it to a feedback control
signal) that minimizes the expected cost.

The linear quadratic gaussian (LQG) case plays an im-
portant role as a local approximation model. LQG is a
linear control process with Gaussian noise,

P (xt+1 |xt, ut) = N(xt+1 |Atxt + at +Btut, Qt) ,

and quadratic costs,

ct(xt, ut) = x>tRtxt − 2r>txt + u>tHtut . (5)

The LQG process is defined by matrices and vectors
A0:T , a0:T , B0:T , Q0:T , R0:T , r0:T , H0:T . In the LQG case,
the optimal controller can be computed exactly using the
Ricatti equation – and the optimal controller will always
be a linear controller in the form

u∗t (xt) = Gt (xt − gt) (6)

and we can also compute the most likely trajectory x∗0:T ,
which is also the optimal (cost minimal) trajectory in the
zero-noise case Q = 0.

Robotic systems are typically non-LQG. Nevertheless,
we can approximate the system locally (i.e., around a cur-
rent robot state) as LQG. This is exactly what the robot
simulator has to provide and what the SocAbstraction
defines. In other terms, a simulator needs to provide a
mapping

xt 7→ (At, at, Bt, Qt, Rt, rt, Ht) (7)

which gives the approximate system matrices for a cur-
rent robot state xt.

(NOTE: future implementations will also provide
non-Gaussian messages/approximations of task con-
straints...)

In the following we list how to compute these matrices
for typical robot motion optimization scenarios:

Kinematic motion rate control The robot state is sim-
ply the posture xt ≡ qt ∈ Rn (not velocities). We assume
direct motion rate control. The process is simply

qt+1 = qt + ut + ξ (8)

and therefore

At = 1 , Bt = 1 , at = 0 (9)

Dynamic torque control The robot state is xt ≡ q̄t =0BB@qt
q̇t

1CCA. We assume torque control where the system process

is given (approximately) in terms of the local mass matrix
M and force vector F ,

P (qt+1 | q̇t, qt) = N(qt+1 | qt + τ q̇t+1,W
-1) , (10)

P (q̇t+1 | q̇t, ut) = N(q̇t+1 | q̇t + τM -1(ut + F), Q) , (11)0BB@qt+1
q̇t+1

1CCA =
0BB@1 τ
0 1

1CCA
0BB@qt
q̇t

1CCA +
0BB@τ

2

τ

1CCAM -1(ut + F) + ξ

〈
dξdξ>

〉
=

0BB@W
-1 0

0 Q

1CCA (12)

A =
0BB@1 τ
0 1

1CCA , B =
0BB@τ

2M -1

τM -1

1CCA , a =
0BB@τ

2M -1F
τM -1F

1CCA (13)

Pseudo-dynamic control A simplification of dynamic
control which still yields nice and dynamically smooth

trajectories is this: The robot state is xt ≡ q̄t =
0BB@qt
q̇t

1CCA. And

we assume the control directly determines accelerations,

P (qt+1 | q̇t, qt) = N(qt+1 | qt + τ q̇t+1,W
-1) , (14)

P (q̇t+1 | q̇t, ut) = N(q̇t+1 | q̇t + τut, Q) , (15)0BB@qt+1
q̇t+1

1CCA =
0BB@1 τ
0 1

1CCA
0BB@qt
q̇t

1CCA +
0BB@τ

2

τ

1CCAut + ξ

〈
dξdξ>

〉
=

0BB@W
-1 0

0 Q

1CCA (16)

A =
0BB@1 τ
0 1

1CCA , B =
0BB@τ

2

1

1CCA , a = 0 (17)

Kinematic task costs The robot state xt ≡ qt ∈ Rn is
kinematic. We have m task variables yi ∈ Rdim(yi). For
isntance, these could be the 3D endeffector position, the
2D horizontal balance, a 1D collision cost variable, a 1D
joint limit cost variable, etc. For each we have a kinematic
function φi(q) = yi and a Jacobian Ji(q) = ∂qφi(q). We
are given task targets y∗i,0:T and want to follow them with
(time-dependent) precisions %i,0:T . We have

ct(qt, ut) =
m∑

i=1

%i,t[y∗i,t − φi(qt)]2 + u>tHtut

≈
m∑

i=1

%i,t[y∗i,t − φi(q̂t) + Jiq̂t − Jiqt]2 + u>tHtut , Ji = Ji(q̂t)

=
m∑

i=1

%i,t[q>tJ
>
i Jiqt − 2(y∗i,t − φi(q̂t) + Jiq̂t)>Jiqt + const]

+ u>tHtut (18)

Rt =
m∑

i=1

%i,tJ
>
i Ji (19)

rt = −2
m∑

i=1

%i,tJ
>
i (y∗i,t − φi(q̂t) + Jiq̂t) (20)

Dynamic task costs The robot state xt ≡ q̄t =
0BB@qt
q̇t

1CCA
is dynamic. We have m task variables yi ∈ Rdim(yi)

4
libSOC

Stochastic Optimal Control Library, Marc Toussaint—April 16, 2010

with kinematic function φi(q) = yi and Jacobian Ji(q) =
∂qφi(q). We are given task targets y∗i,0:T and ẏ∗i,0:T and
want to follow them with (time-dependent) precisions
%i,0:T and νi,0:T . We have

c(qt, q̇t, ut) =
m∑

i=1

%i,t[y∗i,t − φi(qt)]2 + νi,t[ẏ∗i,t − Jiq̇t]2 + u>tHtut

≈
m∑

i=1

%i,t[q>tJ
>
i Jiqt − 2(y∗i,t − φi(q̂t) + Jiq̂t)>Jiqt + const]

+ νi,t[q̇>tJ
>
i Jiq̇t − 2(ẏ∗i,t)

>Jiq̇t + const] + u>tHtut (21)

Rt =
m∑

i=1

0BB@%i,tJ
>
i Ji 0

0 νi,tJ
>
i Ji

1CCA (22)

rt = −2
m∑

i=1

0BB@%i,tJ
>
i (y∗i,t − φi(q̂t) + Jiq̂t)

νi,tJ
>
i ẏ
∗
i,t

1CCA (23)

The SocAbstraction should implement exactly these
computations of the system matrices.

3.3 Control (task) variables

IT’S ALL ABOUT
COUPLED VARIABLES!

The whole philosophy of my approaches is that we
are faced with a problem of coupled (random) variables,
which refer to goals, constraints, observations, states, etc,
and the problem is to find values for these variables con-
sistent with all given information (a posterior distribu-
tion over undetermined variables conditioned on the de-
termined variables).

So, the central aspect of using this code is to define such
variables, and define whether/how they should be con-
strained to desired target values and by which precision
these constraints should be fulfilled.

The ORS simulator includes a number of ways to
declare task variables – which in the code are called
ControlVariable (sorry for this overload of names...). Defin-
ing such ControlVariables means to specify the actual
motion problem and objectives. Let’s start with an ex-
ample.

In test/soc there is an example program. The test.ors
file defines a really simple configuration with a 7DoF
arm, a green target ball, and a red obstacle ball. The in-
teresting parts of the code are:

// ...
// [setup the ORS simulator, swift, opengl, and the SocAbstraction]

// – setup the control variables (problem definition)
ControlVariable ∗pos = new ControlVariable(

”position ” ,ors, posCVT,”arm7”,”<t(0 0 .2)>”,0,0,ARR());
pos−>x target = arr(ors.getName(”ball”)−>X.p.v,3);
pos−>setInterpolatedTargetTrajectory(T);
pos−>setPrecisionTrajectoryFinal(T,1e−2,1e4);

ControlVariable ∗col = new ControlVariable(
” collision ” ,ors, collCVT,0,0,0,0,ARR(.1));

col−>x target = ARR(0.);
col−>setInterpolatedTargetTrajectory(T);
col−>setPrecisionTrajectoryConstant(T,1e6);

soc.setControlVariables(TUPLE(pos,col));

// [use inverse kinematics or planning to compute the motion]
// ...

This code defines two control variables. See the con-
structor of the first variable, pos: it is named ” position ”, it
is associated to the simulator ors, its type is a kinematic
position variable (enum posCVT), it refers to the body
named ”arm7”, and it assumes an additional relative trans-
formation ”<t(0 0 .2)>” of the actual reference point rela-
tive to the body coordinate system. This is a 3D variable
and conditioning this variable corresponds to controlling
this point of reference during the motion (corresponds to
standard inverse endeffector kinematics of the 7th arm
body).

The second control variable, col, is named ” collision ”,
is computed from ors, has the type collCVT, and gets as
last parameter an array [0.1] which specifies the distance
threshold (margin) for collision costs. This is a 1D vari-
able that measures the sum of cost of collisions (or shape-
shape distances below the threshold) summed over all
shape pairs that are below the threshold. Conditioning
this variable to zero means that we’ll avoid collisions.

For both variables we first define a (far future) target
x target and then specify a target trajectory (including pre-
cisions) over a time interval of T = 200 time steps. For
pos, the future target is the position of the green ball (the
body called ” ball ”), the target (endeffector) trajectory in-
terpolates linearly from the initial position to the target –
but the precision along the target trajectory is such that
we only require for the last time step high precision (1e4
∼ 1 centimeter standard deviation) whereas time steps
0..T − 1 low precision (1e-2 ∼ 10 meters standard devia-
tion). For the collision variable we require high precision
(1e-6) throughout the time interval 0..T .

Specifying such control variables and their target
trajectories/precisions is the core of defining the mo-
tion problem. Once they are specified, the algorithms
(Bayesian IK, AICO approximate inference control, or
gradient methods) should do the rest of the job.

3.4 The OrsSocImplementation

The soc::OrsSocImplementation is the connecting
interface between the ORS simulator and the control
variables on the one hand, and the SocAbstraction on
the other hand. It is very instructive to have a look
at the implementation of the routines – in particu-
lar when you want to implement another SocAbstrac-
tion based on your own simulator. For instance, con-
sider soc::OrsSocImplementation::setq: the q ar-
ray contains all joint angles, we first set them in the
ors::Graph data structure and recompute all body po-
sitions according to these joint angles. Then we up-

file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structsoc_1_1OrsSocImplementation.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structsoc_1_1OrsSocImplementation.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Graph.html

libSOC
Stochastic Optimal Control Library, Marc Toussaint—April 16, 2010 5

date all ControlVariables by recomputing their state and
their Jacobian w.r.t. the current state. After we’ve set
the state using setq, we can easily access all neces-
sary information from the SocAbstraction. For instance,
soc::OrsSocImplementation::getJtJ simply ac-
cesses the Jacobian of a particular ControlVariable – the
algorithm behind the SocAbstraction doesn’t need to
know any semantics or meaning of that ControlVariable,
it only needs to know its current state, target/precicion,
and the Jacobian. For instance, an easy algorithm for mo-
tion computation is the soc::bayesianIKControl –
have a look at its code: it simply loops through all ex-
isting ControlVariables, queries their state, target/preci-
sion, and Jacobian, adds things up (following equations
(19,20), which implicitly computes a task constraints mes-
sage), and returns the maximum aposteriori step dq in
joint space.

3.5 Motion algorithms

See the documentation of soc.h for a list of all motion
algorithms. All of them are implemented on the basis of
the SocAbstraction.

4 User’s guide

4.1 ors editor and the ors-file format

• ors editor is a very simple program that helps editing
ors-files. ors-files contain the definition of a phys-
ical configuration. See the directory test/ors_

editor, the binary program is test / ors editor /x.exe, a
symbolic link bin/ ors editor exists. It works like this:

> emacs test.ors &
> ./ ors editor test .ors &

Then you edit the test.ors file in your standard text
editor (here, emacs). Whenever you like, you press
enter within the OpenGL window to update the dis-
play – when you made mistakes in the syntax, error
messages will be output to the console.

• The general syntax of the ors-file is very simple: it
lists elements in the syntax

elem type elem name (list of parents) { attribute list }

(This is a general hypergraph syntax, which I also
use in other contexts (factor graphs), where elements
may connect an arbitrary number of parent elements;
nodes are special case in that they connect no par-
ents, edges are special case in that they connect ex-
actly two parents, etc)

In our case we have three possible types: body, joint,
shape. This is a simple example:

#any comment after a # sign

body torso (){

X=<t(0 0 1)> #coordinate system of this body
}
body arm {}

shape some shape name (torso) {
rel=<d(90 0 1 0)> #rel . transf . torso −> shape
type=3
meshfile=’filename. tri ’
}

joint some joint name (torso arm){
A=<t(0 0 .5) d(90 0 1 0)> #rel . transf . torso −> joint
B=<t(0 0 .5)> #rel . transf . joint −> arm
}

The attribute list is simply a list of tag=something
declarations. The ‘something’ can be a single dou-
ble number, an array [1 2 3 4] of numbers, a string in
quotes, a transformation < · · · >, or a list of strings
in parenthesis (string1 string2 etc). Generally, you
can set any attributes you like. But only some spe-
cial tags have effects right now – the most important
ones are explained in the example. See the routines
ors::Body::read, ors::Joint::read, ors::
Shape::read for details on which attributes have
actually effects. The routine ors::Graph::read

parses a whole ors-file and creates the respective
data structures.

• We need to explain coordinate systems and how
to specify transformations. A transformation is
given as a sequence of primitive transformations
enclosed in brackets <...>. The most impor-
tant primitive transformations are a translation
t (x yz), arotationd(degrees axis x axis yaxisz). Concate-
nating them you can generate any transformation.
See the ors::Frame::read routine to learn about
all primitive transformations.

Every body has its own coordinate system (position
and rotation in world coordinates), which you can
specify with X=<...>. Also every joint has its own co-
ordinate system – we assume that the x-axis is al-
ways the rotation axis of the joint. One can spec-
ify the coordinate system of a joint directly with
X=<...> (in world coordinates), or the relative trans-
formations from parent→joint→child with A=<...>

and B=<...>, respectively. Specifying all these trans-
formation at the same time is redundant, of course.
Whatever transformations you do not specify (in-
cluding body coordinates), the parser tries to com-
pute from the given absolute or relative transforma-
tions and the tree structure of the kinematics. [[This
doesn’t work fully automatically in the current ver-
sion!]]

4.2 ors fileConverter

To view, convert, resize, and cleanup meshfiles, there is
a little application test/ors_fileConverter/x.exe

file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structsoc_1_1OrsSocImplementation.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/namespacesoc.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/soc_8h-source.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Body.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Joint.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Shape.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Shape.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Graph.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Frame.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/../test/ors_fileConverter/x.exe

6
libSOC

Stochastic Optimal Control Library, Marc Toussaint—April 16, 2010

(and a symbolic link bin/ ors fileConverter). It simply pro-
vides an application interface to the functionalities of the
ors::Mesh data structure. Please see the test/ors_

fileConverter/main.cpp to learn about all function-
alities. Test something like

> ./ ors fileConverter filename.obj −view −box
> ./ ors fileConverter filename. stl −view −box −center −qhull −save

References

[1] M. Toussaint. Robot trajectory optimization using ap-
proximate inference. In Proc. of the 26rd Int. Conf. on
Machine Learning (ICML 2009), 2009.

file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/html/structors_1_1Mesh.html
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/../test/ors_fileConverter/main.cpp
file:/home/mtoussai/svn/mlr/share/releases/libSOC/doc/../test/ors_fileConverter/main.cpp

	Installation
	Scope & overview
	Programmer's guide
	ORS data structures
	Stochastic Optimal Control
	Control (task) variables
	The OrsSocImplementation
	Motion algorithms

	User's guide
	orseditor and the ors-file format
	orsfileConverter

