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Abstract: In underwater surveillance active sonar is an important technological asset.
Compared to passive sonar it features higher detection ranges and enables the detection
of silent objects. As a drawback the interaction of sound waves with the seabed and
the water surface causes false alarms, named clutter. False alarms usually appear ran-
domly and variable in time and space. To distinguish false alarms from true contacts
the Multi-Hypothesis Tracking approach can be used. This approach incorporates the
density of sonar contacts to extract possible target tracks. Thus, the assumed clutter
density influences, amongst others, the performance of this tracking approach.
This paper presents a method for determining the clutter density adaptively. It consid-
ers positions of all sonar contacts within one measurement and thereby approximates
the actual clutter density precisely. The influence on the tracking results using adap-
tive clutter density in a multi-hypothesis tracker is shown by applying the algorithm
to two multistatic sonar datasets and comparing it to results obtained by tracking us-
ing constant clutter density. Tracking performance is quantified by existing tracking
performance metrics.

1 Introduction

The technological development of submarines has advanced enormously since the end of
the Second World War. Modern submarines can stay submerged for weeks or even months.
In addition they are not detectable by radar systems due to the high attenuation of elec-
tromagnetic waves in the water. Hence SONAR, a technology using sound waves, is used
to detect and track submarines. Modern submarines are remarkably quiet, making them
hard to detect by passive sonar. Therefore, active sonar is used. It can not only detect
silent submarines but also features high detection ranges. As a drawback the interaction
of the actively emitted sound waves with the seabed and the water surface can cause high
amounts of false detections, also called clutter. This results in the necessity of automatic
tracking and data association methods. One of these methods is Multi-Hypothesis Track-
ing (MHT) which is used to distinguish false alarms from true contacts. Using MHT, track
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hypotheses are calculated from all contacts and weighted according to their probability of
being a target-originated contact.
The tracking performance of MHT algorithms is heavily influenced by certain input pa-
rameters such as the clutter density which is the spatial density of false detections. In
many tracking realizations it is assumed that the clutter density is constant at any loca-
tion [vK98]. But as the seabed is not uniformly shaped and the water surface changes
permanently, the clutter density actually varies with time and space.
In the following we present a method to calculate the variable clutter density based on
the location of all sonar contacts detected from one sonar transmission, named ping. The
variable clutter density is included into a MHT algorithm. Tracking results are obtained
by applying the algorithm to the ARL:UT and SEABAR07 datasets and evaluated by dif-
ferent tracking-performance metrics proposed in [CdT06]. Tracking results are compared
to results of the MHT for which a constant clutter density is used.
This paper is structured as follows: Section 2 presents the Multi-Hypothesis Tracking al-
gorithm. In section 3 the method to calculate a variable clutter density is described. The
tracking results and the comparison are shown in Section 4. A conclusion and an outlook
is given in section 5.

2 Multi-Hypothesis Tracking

MHT is based on sequential state estimation realized by Kalman filtering. The idea of
MHT described in [KKU06] is to generate tracks by stating different hypotheses for asso-
ciation of noisy sonar contacts to target tracks. Thereby, the decision, whether a contact
is target-originated or a false contact is delayed until enough information is available. De-
spite missing detections and high false alarm rates the MHT can generate tracks consisting
of target-originated contacts. The association of clutter contacts results in unlikely hy-
potheses represented by low hypothesis weights. The MHT includes an estimation step to
provide accurate target state estimates. Due to the nonlinearities between the sonar mea-
surement and the target state, estimation is realized by a nonlinear variant of the Kalman
filter, namely the Unscented Kalman filter [JU04]. Since the number of sonar contacts
within one ping may be high, the number of hypotheses representing one target track in-
creases fast with time. Thus, different methods to limit the number of hypotheses are
included in the MHT.

2.1 System modeling

In the considered model, tracking is done in the Cartesian plane. Hence, a state vector at
time tk is defined by

xk = (x, vx, y, vy)
>. (1)

x and y are the Cartesian coordinates of the target’s position and vx and vy are the cor-
responding velocities. Choosing a Nearly Constant Velocity model [BSRLK01] for the
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assumed target behavior, the system dynamic is linear:

xk = Axk−1 +wk−1. (2)

A is the system matrix, and the process noise representing deviations from the assumed
behavior is modeled as white Gaussian noise wk−1.
The measurement vector yk consists of the bearing ϕ and the distance r between receiver
and target:

yk = (r, ϕ)>. (3)

The functional relation between the measurement and the state vector is described by the
nonlinear function h distorted by additive white Gaussian noise v modelling the unavoid-
able measurement errors:

yk = h(xk) + vk. (4)

2.2 Kalman filtering

The estimation of the target state x includes the stochastic components w and v. Thus,
a Kalman filter is used [WB06] to incorporate knowledge on these components in the
estimation procedure. The process of filtering is divided into two steps: time update and
measurement update.
In the time update step an a priori estimation x̂k|k−1 of the target state xk at time step
tk is obtained by using the assumptions on the target dynamics. The a priori estimation
considers all measurements up to the time step tk−1 as it is indicated by the subscript
k|k − 1. The measurement update processes the new measurement yk and calculates the
a posteriori estimation x̂k|k based on all measurements up to the current time step tk.
The Kalman filter algorithm is described in [WB06] in detail. Due to the nonlinear function
h the Unscented Kalman filter [JU04] is used in this paper.

2.3 Building up Hypotheses

In order to take multiple contacts at each time step into account, the target state is re-
presented by different hypotheses states. Having a set of hypotheses states Xk−1 =

{x̂1
k−1|k−1, x̂

2
k−1|k−1, ..., x̂

n̂k−1

k−1|k−1} at tk−1 with n̂k−1 being the number of states, hy-
potheses states at tk can be obtained by associating each element of Xk−1 with each
element of the set of contacts Y k = {y1

k,y
2
k, ...,y

nk

k }. nk is the number of contacts at tk.
The probability of a hypothesis state being the actual target state is given by the weight w.
The preliminary weights are calculated as [KKU06]

ŵij
k =

{
wi

k−1
Pd

fc
N (yj

k;hUT (x̂
i
k|k−1),S

ij
k ), j > 0

wi
k−1(1− Pd), j = 0

(5)

with 1 ≤ i ≤ n̂k−1 and 0 ≤ j ≤ nk. i is the index of a hypothesis state at tk−1 and j is the
index of the contact associated with this state. hUT (x̂

i
k|k−1) is the result of the Unscented
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Transformation of x̂i
k|k−1, representing the a priori estimation of the Kalman filter. S is

the innovation covariance resulting from the Kalman filter measurement update. j = 0
considers the case that none of the contacts belongs to the target. fc denotes the clutter
density whose determination is described in section 3.
The actual probabilities are obtained by normalizing the preliminary weights:

wij
k =

ŵij
k

n̂k−1∑
i=1

nk∑
j=0

ŵij
k

. (6)

As the number of hypotheses increases by the factor nk + 1 each time step the computa-
bility could not be ensured without reducing the number of hypotheses. For this purpose
different techniques such as gating, pruning and merging are used [DE10].

2.4 Track Confirmation and Termination

In general, there is no a priori information about the time of occurrence of targets. In
fact each contact might be target-originated. Hence the tracking procedure is initiated at
any contact, i.e. each contact is considered to be the starting point of a new track where
hypotheses are generated independently from hypotheses of other tracks.
Assuming a severely cluttered environment, many sonar contacts are processed from which
at most one contact is target-originated for every target present. Thus, most of the tracks
are false tracks. To distinguish false and true tracks, sequential track extraction (STE) is
applied [vK98]. STE is based on a likelihood ratio test and can be described as follows:
Let a = 1, 2, ...,mk be the index of a track andmk the number of tracks at tk. Furthermore
two hypothesesH0 andH1 are stated. H0 considers that the contacts Y a

1 ,Y
a
2 , ...,Y

a
k used

to generate the hypotheses of a certain track T a
k are false alarms only. H1 considers that

the contacts are target-originated and false alarms. The likelihood ratio L(T a
k ) is defined

as

L(T a
k ) =

p(T a
k |H1)

p(T a
k |H0)

. (7)

Hypothesis H1 is accepted and the track T a
k is confirmed if L(T a

k ) > B. The track T a
k is

terminated if L(T a
k ) < A. In this case,H0 is accepted. A andB are thresholds which have

to be chosen appropriately. The ratio L(T a
k ) can be calculated as the sum of unnormalized

hypothesis weights [KKU06]:

L(T a
k ) =

n̂a
k∑

i=1

ŵi . (8)
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3 Calculating Variable Clutter Density

As indicated by eq. (5) the hypothesis weights depend, among other variables, on the clut-
ter density fc which is the spatial density of false contacts. Clutter occurs randomly from
time step to time step with respect to number and position. In addition the positions are
statistically independent from each other as well as from the target. Although it is assumed
in [vK98] that “clutter targets” are uniformly spaced with density fc, the actual spatial dis-
tribution is usually not uniform. In fact, the density can be very high at certain spots and
very low at other spots and might change from time step to time step. It is simply variable
and not constant.
In order to take this fact into account when tracking the variable clutter density must be
quantified in some ways. Usually the density can be calculated by dividing the number
of contacts by the size of the area in which they are. This method is not suitable for
calculating a variable clutter density due to the smooth transition between areas of high
density and those of low density and the resulting difficulty of setting up appropriate area
boundaries (size, shape and position of the area). To overcome this problem the method
proposed here does not calculate the clutter density for certain areas but for each contact
position individually.
The main idea behind the proposed method is that each contact provides density contribu-
tions to all other contacts. This represents an extension to the determination of a measure
of clutter density proposed in [MMLS05] where only the closest contact is considered.
Here, the sum of all density contributions a contact receives represents the clutter density
for the position of this specific contact. The density contribution F of one contact i to
another contact j depends on the Euclidean distance between the contacts [Ngu10]. It is
defined as

F (i, j) =


1

d̂2ij
, i 6= j

0, i = j

, (9)

with

d̂ij =

{
dmin, dij < dmin

dij , else (10)

and dij being the Euclidean distance between the contacts. dmin is a lower bound for the
distance d̂ij .
Finally the clutter density fcj at the position of the contact j is defined as

fcj =
C

nk

nk∑
i=1

F (i, j) (11)

with nk being the number of contacts at time step tk and C being a normalization factor.
fcj is used in the Kalman filter measurement update step to weight the association between
the predicted track hypothesis and the considered sonar contact. The clutter density refers
to the density within the considered association gate. Thus, C normalizes the density to
the gate volume VG with C ∝ VG. The gate volume VG of an ellipsoidal gate G, as it is
used here, is defined as [BP99]

VG = π
√

det(S)G (12)
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Figure 1: All contacts of a certain ping (a) and the corresponding clutter density map (b).
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for two-dimensional measurements as given in (4). G defines the size of the gate set
appropriately and S is the innovation covariance matrix.
To limit the complexity of the algorithm the consideration of each individual gate volume
is avoided by the approximation of√

det(S) ≈ T 2m

s2
(13)

with T = tk − tk−1 denoting the measurement interval. Thereby, an approximated gate
volume ṼG is used for normalization.
As an example the described method has been applied to all contacts within one ping
shown in Fig. 1(a). The resulting density map is shown in Fig. 1(b). As can be seen
areas with a high and those with a low density were visualized appropriately. Note, that
Fig. 1(b) is just a visualization for the area covered by the contacts. The method itself only
calculates the density for the contact positions.

4 Tracking Simulations and Results

The presented method of calculating a variable clutter density has been implemented in the
MHT algorithm and applied to the multistatic sonar datasets ARL:UT and SEABAR07.
For each dataset tracking has been performed twice, once using a variable and once using
a fixed clutter density. To compare the results several tracking-performance metrics ac-
cording to [CdT06] have been determined. Due to the multistatic sensor systems used in
both scenarios a suitable data fusion technique is necessary. For this paper, the data fusion
is performed by a centralized fusion strategy [SSH10].

4.1 The ARL:UT and SEABAR07 datasets

The ARL:UT sonar dataset is a hybrid dataset. As described in [LCCL06], [LC07] real
experimental sonar data have been collected by a distributed buoy sonar system. The
system consists of one source S and two receivers R1 and R2 which record the acoustic
echoes of the data which was sent every 120 seconds. The duration of the scenario is 120
minutes resulting in 60 sonar transmissions. Two simulated targets were injected into the
recorded data. These targets move with a constant velocity during the scenario. Target 1
moves slowly from east to west with a speed of approximately 2 knots and target 2 is
moving from south-west to north-east. Its velocity is about 10 knots. The geometry of
ARL:UT is shown in Fig. 2(a).
The data of SEABAR07 was collected during a sea trial in 2007 which was carried out by
the NATO Undersea Research Centre (NURC). In the scenario three receivers R1, R2 and
R3 and one transmitter source S were used. R1 was only active during a few pings. Thus,
it is not taken into account for any analysis. The target moves along a zig-zag track. The
scenario consists of 90 pings and the interping time is 60 seconds. The geometry of the
dataset is shown in Fig. 2(b).
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Figure 2: Run geometries of the ARL:UT dataset (a) and the SEABAR’07 data (b).

4.2 Tracking Results

Applying the approach of a variable clutter density to the above described datasets has
a positive influence on the overall tracking result. Fig. 3(a) shows all tracks that have
been extracted during the scenario using a variable clutter density. For comparison, in
Fig. 3(b) all tracks extracted with the MHT using a constant clutter density are shown. It
can be seen, that with an adaptively determined clutter density the number of extracted
false tracks can be significantly reduced. Table 1 lists several tracking performance met-

Table 1: Tracking performance metrics ARL:UT.
fixed clutter density adaptive clutter density

TPD [target 1/ target 2] 0.95/0.78 0.87/0.78
NFT 30 17

TLE [target 1/ target 2] 35/106 37/110

rics. From the table it can be read, that the number NFT of false tracks is reduced from
30 under a constant clutter density to 17 by the inclusion of a variable density. Further
metrics describe the track probability of detection TPD, the ratio of the time the target
is tracked to the time the target is present, and the mean track-localization error TLE.
For target 1 the TPD decreases in case a variable clutter density is implemented. This
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Figure 3: Tracking results for the ARL:UT dataset when applying an adaptive clutter density (a) and
with a fixed clutter density (b).

is because the track is initialized in a dense cluttered area where the STE takes longer for
track extraction. Further performance metrics for both targets are hardly influenced by the
implementation of the variable clutter density.
Fig. 4(a) and Fig. 4(b) show the results obtained by applying the presented approach on
the SEABAR’07 dataset. It can be seen that the results are similar to those obtained with
the ARL:UT data. The number of extracted false tracks is reduced from 29 to 12 tracks.
Simultaneously, further tracking performance metrics are not significantly changed as ta-
ble 2 shows.

Table 2: Tracking performance metrics SEABAR’07.
fixed clutter density adaptive clutter density

TPD 0.93 0.92
NFT 29 12

TLE [m] 131 135

In general, the number of false tracks is determined pessimistically for the two datasets
since there are three known wreck positions and an oil platform in the surveillance area.
Thus, tracks which are extracted at these positions are expected.
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Figure 4: Tracking results for the SEABAR’07 dataset when applying an adaptive clutter density (a)
and with a fixed clutter density (b).

5 Conclusion and Outlook

In this paper the influence of a variable clutter density on the performance of a Multi-
Hypothesis Tracking algorithm has been analyzed. It has been shown that using a variable
clutter density increases the tracking performance. The density was calculated for each
contact position individually. The main concept of the proposed method is that each con-
tact provides density contributions to all other contacts within the same ping. The amount
of the density contribution depends on the Euclidean distance between two contacts and
the sum of all density contributions a contact receives represents the clutter density.
Tracking results were obtained by applying a MHT algorithm to two datasets. They show
that in both cases the usage of a variable clutter density reduces the number of false tracks
significantly compared to the usage of a fixed clutter density. Furthermore the track lo-
calization error and the track probability of detection remained almost unchanged. Thus,
the presented approach reduces the number of false tracks without effecting other tracking
performance metrics. Only for one target of one dataset the TPD was slightly decreased.
To verify the results the approach needs to be applied to further datasets. These should
be obtained in different sea areas with different clutter structures. Moreover, an extensive
testing should be done for datasets with targets moving through dense cluttered areas in
order to analyze the effect of a variable clutter density holistically.
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