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Abstract: In scenarios characterized by a high object density, data association is a
demanding task due to several ambiguities. Especially the assumption that all objects
move independent from each other may lead to physically impossible predicted states,
in which two objects are closer to each other than feasible. Thus, avoiding such impos-
sible states may simplify the data association. Within the random finite set statistics
it is possible to easily incorporate constraints concerning object states and to integrate
them into a multi-target Bayes filter. A drawback of the random finite set statistics is
its computational complexity, especially in the corrector step. In this contribution, a
fast approximation for the calculation of the multi-target likelihood function is pro-
posed. This approximation is used to implement a real-time random finite set particle
filter on a graphical processing unit using real world sensor data.

1 Introduction

In many applications, object individual single-target trackers are used to track multiple
objects. Thus, a data association algorithm is necessary in order to decide which mea-
surement belongs to which single-target tracker. Especially in situations characterized by
high clutter rates or high object densities, data association is often ambiguous. Thus, using
simple algorithms like a nearest neighbor approach [BP99] may lead to poor tracking re-
sults since false associations are irreversible. Hence, algorithms like, e.g., Joint Integrated
Probabilistic Data Association (JIPDA) [MEO4] and Multi-Hypotheses Tracking (MHT)
[BP99] have been developed, which avoid hard decisions by a probabilistic data associa-
tion and propagation of all possible associations, respectively. Due to the propagation of
all association hypotheses in MHT, the correct association is always represented by one
of the hypotheses. A drawback is the huge amount of hypotheses that have to be han-
dled. Especially in case of having a high number of targets and measurements, MHT gets
computationally demanding.

In the multi-target Bayes filter proposed by Mahler [Mah07], a filter state represents the
complete environment and not only one object. Thus, only a multi-target likelihood, which
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is a measure of the affinity between the predicted environment and the received measure-
ment set, has to be calculated. An association between measurements and tracks is not
necessary in this approach. A drawback of the multi-target Bayes filter is the huge compu-
tational load which is necessary to calculate the multi-target likelihood during the corrector
step.

In our scenario, two laser range finders are used to track several persons in an indoor sce-
nario. The laser range finders are located in two corners of the room. For this scenario
a Sequential Monte Carlo (SMC) implementation of the multi-target Bayes (MTB) filter
was proposed in [RD11] which was not real-time capable. Further, an anti collision func-
tion, which keeps a minimum distance between any two persons, and a state dependent
detection probability have been integrated. The MTB filter outperformed a CPHD filter
[MahOQ7] especially in situations where some of the persons were occluded for a short time.

In this contribution, an approximation for the calculation of the multi-target likelihood
function is presented. Additionally, an approximative calculation method for the state
dependent survival probability is proposed. Based on these approximations, a parallel
implementation of the MTB filter on a graphical processing unit (GPU) is introduced to
speed up the MTB filter and achieve real-time performance.

The contribution is organized as follows: First, the multi-target Bayes filter is shortly re-
viewed. In Section 3 the approximative calculation method for the multi-target likelihood
is introduced. Then, the calculation of the survival probability and implementation of
the filter on a GPU are described in detail. Finally, in Section 6 the results of the ap-
proximative algorithm are compared to the results without using the approximation using
real-world sensor data.

2  Multi-Target Bayes Filter

The MTB filter is an extension of the well known single-target Bayes filter. Instead of
a single state x the multi-target Bayes filter propagates a random finite set X through
time. An instantiation of random finite set consists of a random but finite number of state
vectors belonging to different objects. Thus, it is random with respect to both, states and
the number of states. In the following, we briefly summarize the multi-target Bayes filter.
For more details about the multi-target Bayes filter we refer to [MahQ7].

The predictor step of the MTB filter is given by

St kXIZY) = [ fiqw(XIX) - g (X'1Z9)8X, M)

where a set integral is used instead of the vector integral of the single-target filter [MahO7].
The multi-target Markov model of the predictor step has to represent not only the motion
of the targets but also changes in the number of targets, as they may appear and disappear
in the sensor’s filed of view.
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The corrector step of the multi-target Bayes filter is given by

_ e (Zir [X) Sr(X[Z0)
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with the Bayes normalization factor
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The multi-target likelihood function fi1(Zy+1|X) used in the corrector step is discussed
in detail in section 3.

The multi-target Bayes filter can be implemented using Sequential Monte Carlo (SMC)
methods [SW03, Mah07, RD11]. Here, a collection of multi-target particles

X Xl )

and positive weights w}(l o le , with Y7 w};‘ « = | approximate the multi-target poste-

rior distribution fy k(X|Z(k)). Since each of the multi-target particles is an instantiation of
a random finite set, each multi-target particle may consist of a different number of state
vectors. As in the single-target case, the particles tend to degenerate. Thus, well-known
resampling strategies like, e.g., importance sampling [RAG04] have to be used to avoid
degeneracy.

3 Approximation of the Multi-Target Likelihood

In order to calculate the corrector step, the multi-target likelihood function fi i1 (Zg1/X)
has to be evaluated. The multi-target likelihood function averages over all association
hypotheses 6 : {1,...,n} — {0,1,...,m}, where n is the number of states and m is the
number of measurements. Since there is no a priori knowledge available on the correct
association, all hypotheses are taken into account with an identical weighting factor. In
case that only missed detections occur and no false alarms, the likelihood function is given
by [Mah07]

S (ZIX) = firn(0X) ) T1 Po(%i) - fir1(Zo (%)

; &)

0 i:6(i)>0 1= pp(xi)
where each association hypothesis is represented by one summand and pp(x;) is the de-
tection probability. The factor fi11(0|X) is given by

n

Sen(@1X) =T = pp (x1)), (6)

i=1

where 0 denotes the empty set.
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In a SMC implementation, the multi-target likelihood has to be calculated for all multi-
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Since the complexity of the association tree for each multi-target particle increases approx-
imately exponentially in the number of measurements, an approximation of the calculation
is necessary to achieve real-time performance. In Fig. 1 the possible associations for the
second particle in the set depend explicitly on the association for the first particle due to
the assumption that one measurement is generated by at most one target. Thus, each path
of the tree has to be calculated separately.

To simplify calculations, we propose to neglect the assumption that a measurement is
generated by at most one target during the construction of the tree. This leads to the
approximate tree shown in Fig. 2. Here, the possible associations for the second particle
in the set do not depend on the associations for the first particle any more. In this example,
the exact value of multi-target likelihood is approximately 0.901 while the result of the
approximation is 0.91. Thus, there is only a small deviation of roughly one percent.

Using this approximation, the calculation of the multi-target likelihood simplifies to

Jir1(ZIX) = fk+1((/)\X)l£I <1 + f" pD(le) 'fk+l(zj|xi)> . o

i=1 i=1 — pp(Xi)

The sum in this equation represents all possible associations for particle n of the set. The
product multiplies the association values of all particles. The complexity of equation (7)
increases only linear in the number of tracks as well as in the number of measurements
while the complexity of (5) increases approximately exponentially. Further, equation (7)
can be implemented using two for-loops instead of a recursive function.
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In our scenario, the size of a person is approximately as large as the 3 o error ellipse of
the measurements. Since the multi-target particles represent the whole environment, it is
possible to integrate an anti-collision function [RD11] into the prediction step, which keeps
a minimum distance between any two particles in the set, to avoid physically impossible
predictions. Fig. 3 shows one measurement located exactly in the middle between two
objects. Due to the necessary minimum distance between the objects, the spatial likelihood

Figure 3: Two objects (ellipses) and their cen- Figure 4: Two objects (ellipses) and their cen-
ters (crosses) and one measurement (star) with ters (crosses) and two measurements (stars)
according 3 ¢ bound. with according 3 ¢ bound.

of the measurement is very small for both of the objects. Fig. 4 shows two measurements
located close to the centers of the two objects. In this case, the spatial likelihoods for the
correct association are very high. Further, only one of the objects is in the 3 ¢ bound of the
measurements. Thus, the expected error in the calculation of the multi-target likelihood is
considered to be very small in our application.
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4 Detection and Survival Probability

Due to the small distance between the pedestrians and the sensors, each of the pedestri-
ans causes a large area which is occluded for the sensor. Thus, it is necessary to use a
state dependent detection probability. The adapted method of the occupancy grid mapping
approach [TBFO05] introduced in [RD11] is used to calculate these detection probabilities.

Further, the calculated occupancy grid allows to integrate state dependent survival prob-
abilities. In observable areas, a survival probability of pg = 0.995 is used. Obviously, a
pedestrian can not be located at grid cells where the occupancy grid is occupied by a static
obstacle. Thus, a survival probability of pg = 0.1 is assigned to a particle located in one
of these cells. The occupancy grid also provides us the information, which grid cells have
never been observed by the sensor up to the current time step. In order to avoid objects
spinning around in the unobservable area for a long time, the survival probability for these
grid cells is set to pg = 0.8. Thus, it is possible that an object crosses a small unobservable
area without the need of re-initialization. The survival probabilities for the three states
have been determined experimentally by comparing the results of the tracking algorithm
for several different values.

5 GPU Implementation of the Multi-Target Bayes Filter

Particle filters are very suitable for parallel processing, since the prediction and corrector
step of each particle are independent of all the other particles. Thus, a graphical processing
unit (GPU) is used to compute the computationally intensive parts of the particle filter. The
filter is implemented using CUDA [Nvill]. The Nvidia CURAND library [Nvil1] is used
to generate the necessary random numbers on the GPU.

occup
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corrector

segmentation f
data :

state estimation
CPU GPU

Figure 5: Distribution of functions between CPU and GPU. Blocks with black background are cal-
culated on the CPU, white ones on GPU. Computation of gray colored boxes is partly on CPU and

on GPU.
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Figure 5 shows an overview of the implemented system. The CPU calculates the occu-
pancy grid and the associated detection probability map and uploads them to the GPU.
Further, the CPU generates segments based on the fuzzy segmentation algorithm intro-
duced in [RD09] using the raw measurements of the laser range finders and transmits
them to the GPU. The GPU is used to calculate the predictor and the corrector step of the
multi-target Bayes particle filter.

The predictor step consists of three parts: motion, persistence and appearance. The multi-
target particles are predicted to the next time step using a standard Markov model which
assumes independent motion of all the objects in the multi-target particle. Then, the per-
sisting state vectors of a multi-target particle are determined by drawing a sample of a
multi-target multi-Bernoulli distribution [MahO7]. The anti collision function introduced
in [RD11] adapts the weights of the persisting multi-target particles based on the mini-
mum distance between any two of the objects in the multi-target particle. A measurement
driven appearance model creates birth candidates for each multi-target particle based on
the previous measurement set and the multi-target particle. Each measurement, which is
outside the 3 ¢ range of each state vector in a multi-target particle is considered as a birth
candidate [RD11]. A birth candidate is added with a birth probability of pp = 0.001 to the
multi-target particle. Finally, the predicted multi-target particle is given by the union of
the persisting and the appearing set:

i A ~i,persist i,appear
ik = X Y X g - ®)

Due to the use of an appearance model, it is possible to initialize the filter using a zero-
target prior, i.e. there are no objects in the scene.

The corrector step calculates the approximative multi-target likelihood function introduced
in Section 3 for each of the multi-target particles. In order to avoid numerical problems
for large numbers of measurements, equation (7) is calculated in the logarithmic domain.

In the state extraction step, GPU and CPU share the calculations. The number of targets 7
is estimated by calculating the weighted mean

1 i i
VWt X tjgr1l (€))

L

\%
k1 =
=

on the CPU, where |X;€ Flk +1| is the number of states of the multi-target particle. Since
two multi-target particles with the same number of objects 7i do not have to have the same
order of the objects or the same 7i objects, a state estimation using a weighted mean can not
be applied directly. Thus, a grid map is implemented on GPU for a PHD-based state esti-
mation [Mah07]. For each of the state vectors in the multi-target particles, the according
grid coordinates are calculated and the value of the grid cell is increased by the weight of
the multi-target particle. Then, the 7 1|x41 highest peaks of the grid deliver the estimated

states.

The resampling step is again shared between CPU and GPU. First, the weight vector is
transmitted from GPU to CPU. The CPU uses the weight vector to calculate a vector which
holds the indexes of the samples to draw. Then, the GPU uses the indexes to perform the
resampling step.
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6 Results

The multi-target Bayes filter is applied to real-world sensor data of two laser range finders.
In the scene, up to seven pedestrians with up to three pedestrians per square meter occur.
Due to the large number of measurements, the measurements are clustered. First, the
measurements of each sensor are clustered using a fuzzy segmentation algorithm [RD09].
The fuzzy segments of the sensors are combined using cross-validation. Since the torso of
a pedestrian has an approximately elliptical shape, the least squares approach introduced
in [FF99] is used to fit ellipses into the clusters. Fig. 6 shows the results of the applied
clustering algorithm. We observe, that each of the five persons generates at least one
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Figure 6: Segmentation Results: Estimated locations and sizes of the persons are illustrated by the
red ellipses. Blue stars are measurements of sensor 1, green stars of sensor 2. The black stars are
measurements of non-moving objects. The area which is occluded for both sensors is marked by
magenta circles.

segmentation result. Further, the range measurements of the sensors are separated into
stationary and non-stationary measurements using the occupancy grid and the occluded
area is marked by magenta circles. Currently, the implemented SMC-MTB filter does not
use the size of the objects. Thus, the centers of the ellipses are used as measurements.

Fig. 7 shows the estimated states of the approximative (cyan) and the exact (blue) multi-
target likelihood calculation of a MTB filter with 10000 multi-target particles. The EM-
clustering algorithm [DLR77] is used in this figure to estimate the states of the objects as
well as the according state uncertainties. Although the three pedestrians at the top are very
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close to each other, the results of the approximation are almost identical to the ones of the
exact calculation. The usage of the anti collision function in the prediction step is in this
situation an important factor to achieve the accurate estimation results.
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Figure 7: Comparison of approximative and exact multi-target likelihood calculation: Estimated ob-
ject states of approximative (cyan) and exact (blue) calculation marked by crosses. Ellipses illustrate
the uncertainties. Red stars are the raw range data of the laser range finder.

Fig. 8 shows the mean value of the estimated number of objects over 18 Monte Carlo runs.
The mean value is compared to the total number of pedestrians in the scene and the number
of pedestrians which can be observed by the sensors. The filter needs approximately 150
cycles (12 seconds) to initialize to the correct number of objects due to some occlusions
during this time interval and a small birth probability. After the initialization, the mean
value for the number of pedestrians is very close to the number of pedestrians in the scene,
if the pedestrians are only occluded for a short time (up to approximately 0.7 seconds).
During long-time occlusions (e.g. for approx. 380 < k < 460), the estimated number
of objects slightly decreases. Since some of the multi-target particles still represent the
proposition that there are 6 objects in the scene, the estimated number of objects rapidly
increases to the true number of objects after the occlusion. At k ~ 1180 and k ~ 1250 we
observe the effect, that the mean value of the estimated number of objects increases after
occlusions. This is caused by the fact, that some of the particles of the occluded person are
located outside of the measurement uncertainty in an occluded area. In order to mitigate
this effect, a more sophisticated birth model has to be developed. At k ~ 730 and k ~ 1330,
the estimated number of objects drops rapidly for a short time due to several false negative
measurements in a row for one of the objects.

Fig. 9 compares the results of the GPU implementation to the results of the CPU imple-
mentation. While the GPU uses the approximative calculation of the multi-target likeli-
hood, the CPU uses the exact calculation. For k < 235, the results of both implementations

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4



INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

7.5
—— visible objects
657" existing objects i

| | | | | |
200 400 600 800 1,000 1,200
k

Figure 8: Estimated number of pedestrians: Mean value of the estimated number of objects over 18
Monte Carlo runs (blue stars). Further, the total number of pedestrians in the scene (dashed line) and
the number of visible pedestrians (solid line) are shown.

are almost identical. During the occlusion of one of the pedestrians for 235 < k < 270, the
estimated number of objects of the GPU implementation is closer to the ground truth than
the one of the CPU implementation. When the pedestrian re-appears in the field of view at
k=270 and k = 341, the CPU implementation delivers better results than the GPU version.
This is caused by the fact, that the predicted particles of the occluded pedestrian are to far
away from the received measurement at the time of re-appearing. Thus, the measurements
lead to the appearance of an additional object and consequently the estimated number of
objects becomes higher than the actual number of objects. Since the minimum distance
between any two of the pedestrians is at least about 5o at the time of re-appearance, it
is unlikely, that the difference between GPU and CPU implementation is mainly caused
by the approximation of the multi-target likelihood. Thus, other factors like the usage of
different random number generators on GPU and CPU might be responsible for this effect,
too.

On a Core2-Quad CPU with 2.83 GHz, one cycle of the MTB filter (prediction, correction,
state estimation, resampling) with 10000 multi-target particles takes around 500 millisec-
onds for 10 measurements and 6 tracks. Due to the measurement rate of 12.5 Hz, it is not

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4



INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

7.5 -
—— E(ft)cpu

—— E(A)cpy
7 H visible objects
= = = existing objects

| | | | | | | |
0 50 100 150 200 250 300 350 400 450

k

Figure 9: Estimated number of pedestrians: Mean value of the estimated number of objects over 18
Monte Carlo runs for GPU (blue stars) and CPU (red circles) algorithm. GPU version calculates the
approximative multi-target likelihood, CPU version calculates the exact multi-target likelihood. Fur-
ther, the total number of pedestrians in the scene (dashed line) and the number of visible pedestrians
(solid line) are shown.

possible to use this implementation in a real-time application. On a GPU, one cycle of
the MTB filter takes only approximately 4 milliseconds for the same calculation, which is
approximately 100 times faster. Due to the linear complexity of the approximative multi-
target likelihood, an application of the algorithm to a larger number of measurements and
tracks is possible without losing the real-time capability.

7 Conclusion

In this contribution a real-time implementation of a random finite set particle filter on a
graphical processing unit has been presented and applied to real world sensor data. To
achieve real-time performance, an approximative calculation of the multi-target likelihood
has been introduced which dramatically reduces the complexity from exponential to linear.
Due to the usage of an anti collision function in the predictor step, the results of the exact
and the approximative multi-target likelihood calculation are almost identical.

In future, we plan to integrate more interactions between the pedestrians and the envi-
ronment by applying more sophisticated models. Further, the performance of the random
finite set particle filter will be evaluated regarding the state accuracy. In order to improve
the performance of the filter concerning the estimated number of objects, an enhanced
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modeling of the birth and survival probabilities has to be developed.
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