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Abstract: In this paper, we aim to perform scalable multi-target particle filter tracking.
Previously, the authors presented an approach to track initiation and deletion which
maintains an existence probability on each track, including a “search track” which
represents the existence probability and state distribution of an unconfirmed track.
This approach was seen to perform well even in cases of low detection probability and
high clutter levels, but modelling all unconfirmed tracks by a single-target search track
can be problematic if more than one target appears in a sensor’s field of view at the
same time. To address this, we replace the search track with a Probabilistic Hypothesis
Density (PHD) filter which can maintain a density over several unconfirmed tracks. A
method is proposed to derive probabilities of measurements originating from targets,
allowing us to confirm tracks when these probabilities reach a threshold. We observe
that in so doing, we implicitly solve the track-labelling challenge that otherwise exists
with PHD filters. This is shown to maintain good tracking performance for high-
clutter, low-detection scenarios while addressing the shortcomings of the single-target
search track approach. We also show results from a scenario with obscured regions
where the target cannot be detected, and show that targets can be tracked through the
obscurations.

1 Introduction

In [4], we considered the problem of track initiation and deletion using existence
probabilities on each track, including a “search track” which searches the target space
for new targets. When the existence probability of the search track reaches a threshold,
we create a confirmed track with the probability distribution of the search track, and
create a new search track to search for additional targets. Confirmed tracks are deleted
when their existence probabilities drop below a deletion threshold.

This was shown to perform well in a tracking scenario with high clutter and a low
probability of detecting the target, but there are problems with the approach which we
address in the current paper:

• Since more than one unconfirmed target may potentially be in the search region,
the distribution of a newly confirmed track may be multi-modal. This can create
artefacts where the track mean is initially between two or more targets and shoots
across the target space when the filter collapses onto a single mode.

• Since the search track implicitly assumes that there is at most one undiscovered
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target in the target space at a time, it can only confirm one track at a time, leading
to a delay in confirmation and targets being missed.

The PHD filter proposed by Mahler [7] performs multi-target tracking by maintaining
a measure of the mean number of targets over the state space. It does not store explicit
track labels, but its ability to maintain a density of several tracks with a single set of
samples makes it an attractive replacement for the search track of [4].

In this paper, we show how to use the PHD filter to derive a probability, for each
measurement in the current scan, that the measurement originated from an uncon-
firmed target. When these probabilities reach a specified threshold, we show how to
obtain the distributions of newly promoted tracks and remove them from the PHD den-
sity to allow it to search for additional targets. The distributions of newly promoted
tracks will only depend on one of the measurements of the current scan, avoiding the
problem of initially multi-modal tracks. Furthermore, a new track may potentially be
promoted for each measurement of the current scan, removing the restriction that only
one track can be promoted at a time.

Track labelling using a PHD filter has been performed before — for example, in
[6], peaks are extracted by using a finite resolution grid, approximating the particles in
a resolution cell by a single weight and the weighted average of particles in that cell.
Alternatively, in [11], the PHD filter estimate is represented as a mixture of Gaussian
components, and track estimates are taken to be the components whose weight ex-
ceeds a threshold. Our approach allows labelled tracking without the need for a grid
approximation, and without constraining us to a Gaussian mixture representation.

2 Problem formulation

The problem of interest is essentially the same as that in [4], which we recap
here. Suppose that at time stepk ∈ N we haveNk confirmed tracks. Each track
i = 1, . . . , Nk has a binary existence variableei

k representing whether or not it corre-
sponds to a real target. Conditional on the existence eventEi

k , {ei
k = 1}, the track

has a statexi
k.

At each time stepk we receive a scan ofMk measurements

Y k = {y1
k, . . . ,y

Mk
k } (1)

of the targets. These measurements may include spurious measurements (clutter) and
targets may not necessarily be detected. Also, which measurements originated from
which targets is not known.

Given the measurementsY 1:k = {Y 1, . . . , Y k} received so far, we wish to main-
tain for each tracki at time stepk a probability of existence

p(Ei
k|Y 1:k) (2)

and a representation of the target state distribution conditional on its existence

p(xi
k|Y 1:k, Ei

k). (3)

When the existence probability of a confirmed track falls below a deletion thresh-
old, the track is deleted.

As well as maintaining a number of confirmed tracks, we also wish to have a means
of searching for and confirming new tracks. This is achieved by using a PHD filter to
propagate a density of the number of unconfirmed tracks over the target state space, as
described in Section 4.
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2.1 Target births, deaths and motion models

We assume that an existing target at time stepk−1 will cease to exist by time step
k with some known probabilityP k

death, independently of the other targets, i.e.

P (Ei
k|Ei

k−1) = 1− P k
death. (4)

Furthermore, the expected density of new targets appearing in the state space be-
tween time stepsk − 1 andk is given byγk(·). Targets which continue to exist are
assumed to move independently of each other with a given Markov transition

f(xi
k|xi

k−1) = p(xi
k|xi

k−1, E
i
k−1, E

i
k). (5)

2.2 Measurement model

At time stepk, we receive a scan of measurements from a sensor. Note that we
can have different sensors reporting at different time steps so we are not restricted to
having a single sensor. However, since we receive measurements from a single known
sensor at each time step, we can omit the sensor index from the notation.

Multiple sensors reporting simultaneously can be accommodated by considering
them as sequential with a zero-time time step. We accept that there is some debate in
the literature [8], [10] as to whether this approximation is optimal; we acknowledge
our approach may be suboptimal and perceive that the approximation we adopt can be
approved upon. However, we do not regard the multi-sensor PHD component of our
algorithm as critical to its performance and so have simply opted for an approximation
strategy that eases our software engineering effort at this stage.

We assume that each target is detected independently with some probabilityPd(x)
depending on its statex. Given that the target is detected, let

g(y|x) (6)

be the density function of the probability distribution of the resulting measurementy.
In addition to measurements generated by targets, a number of clutter measure-

ments are generated. The number of clutter measurements is Poisson-distributed with
meanλV , whereV is the volume of the measurement space andλ is a known parame-
ter representing the clutter density. Each clutter measurement is uniformly distributed
over the measurement space.

The Mk measurements are assumed to be shuffled in some random order, with
each of theMk! permutations equally likely. Hence which measurements correspond
to which targets is not directly known and association probabilities must be inferred.

3 Tracking the confirmed tracks

In tracking the confirmed tracks, we follow the standard approach of predicting
forward the target states and then updating based on the current scan of received mea-
surements. This is almost identical to the approach used in [4] except for the omission
of the search track. The PHD filter used for initiation is processed separately, as de-
scribed in Section 4.

This part of our approach also similar to others’ previous work [9], though we con-
sider particle filters for each target, rather than a more restrictive Gaussian or Gaussian
mixture approximation.
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3.1 Prediction

As in [4], we see by (4) and (5) that

p(Ei
k|Y 1:k−1) = (1− P k

death)p(Ei
k−1|Y 1:k−1) (7)

p(xi
k|Ei

k, Y 1:k−1) =

∫
f(xi

k|xi
k−1)p(xi

k−1|Ei
k, Y 1:k−1) dxi

k−1. (8)

3.2 Update

For each confirmed tracki = 1, . . . , Nk, let ai
k be the index of the measurement

generated by tracki, or 0 if the track is not detected. Then as in [4], we can write the
updated track distribution as a mixture over the measurement hypotheses:

p(xi
k|Ei

k, Y 1:k) =

Mk∑

ai
k
=0

p(xi
k|ai

k,y
ai

k
k , Ei

k, Y 1:k−1)p(ai
k|Ei

k, Y 1:k). (9)

The updated existence probabilities can be calculated by normalizing out the associa-
tion variables as follows:

p(Ei
k|Y 1:k) =

Mk∑

ai
k
=0

p(ai
k, Ei

k|Y 1:k). (10)

Hence to calculate the updated existence probability and the track state conditional on
existence, it is sufficient to calculate the track state conditional on the measurement
hypothesis

p(xi
k|ai

k,y
ai

k
k , Ei

k, Y 1:k−1) (11)

and the measurement hypotheses probabilities

p(ai
k, Ei

k|Y 1:k). (12)

The necessary calculations are given in [4]. We also use the EHM2 algorithm [3] to
enforce the mutual exclusion constraint that no more than one of the confirmed tracks
can use each measurement.

4 Performing track initiation using the PHD filter

To maintain a belief on the number and positions of unconfirmed tracks, we use
a PHD filter [7]. This maintains a measure of the expected number of targets across
the state space. We perceive the novelty of our approach stems from the method we
propose for extricating a track from the PHD filter (as described in Section 4.2.2).

Let αk be the a density function of the expected number of unconfirmed targets
at measurement epochk, i.e. if A is a measurable subset of the target space, then the
expected number of targets inA is

∫

A

αk(x) dx. (13)
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Note thatαk is not generally a probability density since it integrates to the expected
number of unconfirmed targets present. A natural way to approximate this density is
by a set ofLk weighted particles{wi

k,xi
k} [12]

αk(x) =

Lk∑
i=1

wi
kδxi

k
(x). (14)

The PHD filter propagates this density. This is done using the usual tracking approach
of predicting the density from time epochk − 1 to epochk, then updating based on
the current scan of measurementsY k.

4.1 Predicting the PHD filter

From [12], the prediction operatorΦk|k−1 is defined as

(Φk|k−1α)(x) =

∫
(1− P k

death)f(x|ξ)α(ξ) dξ + γk(ξ) (15)

for an integrable functionα on the state space. [12] also provides a method of ob-
taining a particle approximation toαk|k−1 = Φk|k−1αk using importance sampling.
Generally, it is desirable to sample from a proposal distribution which is conditional
on the current scan of measurementsY k, especially when sampling birth particles,
to avoid wasting computational effort on large numbers of particles in areas of low
measurement likelihood.

4.2 Updating the PHD filter and confirming new tracks

4.2.1 Accounting for measurements being used by the confirmed tracks

Unlike the PHD implementation in [12], our PHD filter is being used in conjunction
with a separate tracker for the confirmed tracks. This means that it is necessary to
account for the fact that some measurements are used by confirmed tracks and we do
not want these measurements to start up additional tracks.

One possible solution is to only pass measurements which are not in the gates of
any of the confirmed tracks to the initiator. This is undesirable since if a track’s gate
is large or targets are closely spaced, measurements from unconfirmed targets may
appear in the gates of confirmed tracks and these targets may be missed by the tracker.
Another approach is to weight the impact of measurements by the probability that they
are unused. The probability that measurementyi

k is unused by any of the confirmed
tracks can be approximated by

p(yi
k unused) ≈

Nk∏
t=1

(1− p(at
k = 0|Y k)). (16)

This can be easily calculated from quantities calculated during the confirmed tracking
stage which we perform prior to the update of new tracks. We set this to beρi, a
weighting factor for the measurement which we use in the PHD update step.

Another potential application of estimating the probability of a measurement being
used is in online estimation of clutter density, with the impact of a measurement on
the clutter density estimate being related to its probability of being unused. This is a
possible avenue of future work.
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4.2.2 Confirming new tracks

Adapting the PHD update operator given in [12] to incorporate the weighting factors
specified in Subsection 4.2.1 gives the update operatorΨk:

(Ψkαk|k−1)(x) = (17)
[
(1− Pd(x)) +

Mk∑
i=1

ρiPd(x)g(yi
k|x)

λ +
∫

Pd(x′)g(yi
k|x′)αk|k−1(x′) dx′

]
αk|k−1(x).

We decompose (17) according to the measurement hypotheses as follows:

(Ψkαk|k−1)(x) =

Mk∑
i=0

(Ψi
kαk|k−1)(x) (18)

where

(Ψ0
kαk|k−1)(x) = (1− Pd(x))αk|k−1(x) (19)

and

(Ψi
kαk|k−1)(x) =

ρiPd(x)g(yi
k|x)αk|k−1(x)

λ +
∫

Pd(x′)g(yi
k|x′)αk|k−1(x′) dx′

(20)

for i = 1, . . . , Mk. We considerΨ0
kαk|k−1 to be the density of the expected number

of targets which were not detected andΨi
kαk|k−1 for i = 1, . . . , Mk to be the density

of the expected number of targets producing measurementyi
k.

Note that
∫

(Ψi
kαk|k−1)(x) dx ≤ 1 for i = 1, . . . , Mk. This is expected since a

measurement can have come from only one target. Furthermore, the expected number
of targets producing measurementyi

k is equal to the probability thatyi
k originated

from a target. Hence we can threshold on this probability to determine whether to
confirm tracks. From this, we obtain a probabilitypi that each measurement derives
from an unconfirmed track:

pi =

∫ (
Ψi

kαk|k−1

)
(x) dx. (21)

Our overall tracking algorithm for each scan of measurements is therefore as fol-
lows, wherePc is a specified confirmation probability threshold:

• Predict the confirmed tracks (as described in Subsection 3.1).

• Predict the PHD filter (as described in Subsection 4.1).

• Update the confirmed tracks (Subsection 3.2) and calculate the values ofρi (Sub-
subsection 4.2.1).

• Update the PHD filter and confirm new tracks:

– Predictαk−1 forward according to the prediction operator:αk|k−1 =
Φk|k−1αk−1.

– For each measurement hypothesisi = 1, . . . , Mk with pi ≥ Pc, start a
new confirmed track with existence probabilitypi and probability density
Ψi

kαk|k−1/pi.
– Updateαk|k−1 using the target densities of the remaining measurement

hypotheses:αk = Ψ0
kαk|k−1 +

∑
i:pi<Pc

Ψi
kαk|k−1.

• Delete the confirmed tracks whose existence probability is less than the deletion
threshold.

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



5 Results

Here we demonstrate the tracking performance in two scenarios with simulated
target trajectories and measurements, the first with a high level of clutter and low
detection probability, and the second with obscured regions in the target space to
demonstrate the utility of a scalable multi-target particle filter in the context of tracking
through the obscurations.

In both scenarios the target position space is taken to be the region[0, 1] × [0, 1].
100 target trajectories are simulated as follows: the initial position of a target is taken to
be uniform over[0, 1]× [0, 1] and the initial velocity in each of thex andy coordinates
is sampled independently from a Gaussian distribution with zero mean and standard
deviation4× 10−4. The trajectory is propagated using a constant velocity model with
noise intensity10−8 in each of thex andy dimensions.

Measurements of detected targets are ofx andy position, with independent Gaus-
sian noise in each coordinate of standard deviation7 × 10−4. Measurement epochs
occur at intervals of 1 second for 180 seconds. Each scan contains a number of clutter
measurements which is different for each of the two scenarios, and the clutter mea-
surements are uniformly distributed over the position space.

The tracker in each scenario will promote new tracks from the PHD filter initiator
if the existence probability calculated in (21) reaches 0.9, and delete confirmed tracks
if their existence probabilities drop below 0.1. We also use importance sampling to
draw birth particles for the PHD filter from a mixture proposal [2] which includes a
component which draws samples from “under” a (randomly sampled for each particle)
measurement [1].

5.1 Tracking through dense clutter

In this scenario, we set the number of clutter measurements per scan to be Poisson-
distributed with mean 500, and the probability of detection to be 0.5. This is to show
the tracker’s performance in a high-clutter, low detection probability environment. The
measurements and true target positions at the first time step are shown in Figure 1(a).
100000 particles are used for the PHD filter and 1000 particles for each of the con-
firmed tracks. The tracker takes 3349 seconds to run on a 3GHz PC.

We assert that particle filters are well suited to tracking of targets in dense clut-
ter since, conditional on the path through the state space, the association hypotheses
are independent over time. Hence, for each particle, no association tree needs to be
explored. This is reminiscent of the ML-PDA [5] though our approach has the advan-
tage that the trajectories are inherently stochastic, rather than being parametric curves.
Note that both our approach (and the ML-PDA) completely circumvent the compu-
tational explosion that is encountered by Multi-Hypothesis Trackers (MHTs). MHTs
(whether explicitly or implicitly) consider association histories. When the clutter rate
increases, the breadth of the association tree grows and so the depth that can be ac-
commodated with a given number of hypotheses falls. It is the authors belief that this
phenomenon limits the clutter levels that can be accommodated by MHTs since such
an MHT must hurry when the association becomes more ambiguous. This is highly
undesirable since ambiguity should introduce an implicit lag into the filter while the
ambiguity is resolved. The authors perceive that the particle filter approach described
herein does not suffer from this problem, can delay (implicit) association decisions in
response to ambiguity and so is surprisingly effective relative to the state-of-the-art in
high clutter environments

Figure 1(b) shows the confirmed tracks from the tracker and the true target trajec-
tories. We see that in spite of the high clutter density, the tracker manages to track the
vast majority of the targets.
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5.2 Tracking through obscurations using a map

Using a particle filter-based tracker allows us to deal with nonlinear constraints
such as a state-dependent probability of detection. We demonstrate this with the fol-
lowing tracking scenario.

The target position space is split into a20 × 20 grid of squares, each of which
independently has a 0.2 probability of being obscured. A target in an unobscured
region is assumed to have a probability of 0.9 of being detected in each scan, whereas
targets in obscured regions are not detected. The number of clutter measurements for
each scan is Poisson-distributed with mean 10.

We track the data with two variations — in the first case, we assume that a map
of the obscured regions is available and so we can use the state-dependent probabil-
ity of detection in the algorithm. In the second case, for comparison, we assume no
knowledge of the obscuration regions and use a fixed probability of detection of 0.72
(accounting for the fact that 0.8 of the region is obscured and an unobscured target is
detected with probability 0.9). In both cases, we use 10000 particles for the PHD filter
and 1000 particles for each of the confirmed tracks.

The tracker takes 844 seconds to run for the obscuration map scheme, and 756
seconds for the fixed probability of detection scheme, on the same 3GHz PC as in
Subsection 5.1 above. The difference in timings here is likely due mostly to the in-
creased number of tracks confirmed by the obscuration map tracker.

Figure 2 shows the confirmed tracks output under each scheme. We see that using
an obscuration map to accurately model the state-dependent probability of detection
allows better tracking of targets through the obscurations. To further illustrate the
point, Figure 3(a) shows the number of confirmed tracks at each time step for each
scheme compared to the true number of targets (note that the true number of targets
decreases from 100 since some of them leave the target region). We see that using
the obscuration map does a better job of estimating the number of targets at each time
step. Furthermore, Figure 2(b) shows a histogram of the lengths of tracks, showing
that using a fixed probability of detection in this case produces a large number of
fragmented tracks.

6 Conclusions

We have adapted a previous tracking algorithm which uses existence probabilities
to perform track confirmation and deletion in order to deal with shortcomings arising
from trying to model multiple unconfirmed tracks with a single-target “search” track.
The new approach has been tested on scenarios with many targets present, and found
to perform well even in the presence of high levels of clutter. Provided that the ob-
scurations are known, the tracker can also perform well in the presence of obscured
regions where targets cannot be detected.
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Figure 3: (a) Number of confirmed tracks and true number of targets present over time for the
obscuration scenario. (b) Histogram of track lengths and true target lifetimes for the obscuration
scenario.
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