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Abstract: Focussed Bayesian fusion is a local Bayesian fusion technique by that high
costs caused by Bayesian fusion can get circumvented. This publication addresses
globally optimal decision making on the basis of a focussed Bayesian model. There-
fore, common decision criteria under linear partial information and in particular prin-
ciples of lazy decision making are applied. We also present an interval scheme for
global posterior probabilities whose informativeness is notably high.

1 Introduction

Bayesian theory delivers a powerful methodology for the fusion of homogeneous and het-
erogeneous information sources [BHSG08]. By the Bayesian fusion methodology, a lot of
problems within the context of information fusion can be solved [Koc10]. To reduce the
computational costs of Bayesian fusion, we developed local Bayesian fusion approaches,
at which the actual fusion task gets concentrated on a local context U . See for example
[BHS06, SB08]. A local context is an adequately chosen subset of the space Z that is
spanned by the range of the Properties of Interest (PoI). Ignoring Z \U completely deliv-
ers a straightforward local Bayesian fusion scheme, which we termed focussed Bayesian
fusion. See for example [SHGB09, SHGB10].

On the basis of the resulting focussed posterior distribution1, it is not possible to recon-
struct the global posterior distribution, which would result if Bayesian fusion was per-
formed with respect to whole Z in a unique manner. However, combining facts about the
connection between the focussed and the global posterior distribution with facts about con-
struction rules that lead to an adequately chosen local context U , the unknown global pos-
terior distribution can be bounded from both above and below within U [San09, SHGB10].
Due to additional constraints, the informativeness of the resulting interval scheme for

1According to the nature of the involved quantities, the term distribution has a mixed meaning as discrete
probability function and probability density.
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global posterior probabilities is notably high. Statements with respect to global posterior
probabilities that are surely valid may be obtained by its analysis.

At Bayesian fusion also subsequent decisions could be aimed [BS04, BHS06]. Thereby,
a rational decision maker should maximize the expected utility with respect to the global
posterior distribution. We trace the problem of making globally optimal decisions on
the basis of a focussed Bayesian model back to a decision problem under linear partial
information (LPI) [KM76], which is manageable effectively. We adapt common decision
criteria under LPI and in particular principles of lazy decision making [Pre02] for focussed
Bayesian fusion. If it is not possible to identify globally optimal decisions due to the
focussing, there are different ways to improve the basis for decision making. Such an
improvement corresponds to a shrinking of the intervals for global posterior probabilities.

The next section of this publication constitutes a short introduction into both, Bayesian
fusion and focussed Bayesian fusion. Section 3 addresses interval schemes for the global
posterior distribution and for global posterior probabilities. Section 4 deals with the use of
the theory of LPI and the principles of lazy decision making for globally optimal decision
making in the context of focussed Bayesian fusion. After providing illustrative examples
in section 5, we finish with a short conclusion.

The intervals for global posterior probabilities represent the uncertainty that results addi-
tionally from the focussing explicitly in a non-probabilistic manner. Provided that such
a distinction of uncertainties is not used effectively, facts and corresponding uncertainties
are represented in an adequate manner by probability in the sense of the Degree of Belief
(DoB) interpretation [BS04]. Hence, if the aim of the fusion task is to obtain a compre-
hensive representation of the posterior state of knowledge, a reduction of the intervals to a
unique posterior distribution should be done. The choice of such a unique global posterior
distribution is also a decision [BS04]. For details with regard to the choice of a unique
global posterior distribution, the reader is referred to the technical report [San10], which
is the basis for the current paper. There, the maximum entropy principle is applied and
analyzed with regard to this task.

2 Introduction to (Focussed) Bayesian Fusion

In the following, xs ∈ Xs denotes the information contribution of source number s, s ∈
{1, . . . , S}, S ∈ N, and x := (x1, . . . , xS) embodies all information from the information
sources. Let z ∈ Z denote the PoI, which specify the desired information. As usual in
Bayesian fusion, it is assumed that z adopts a “true” value which is not directly observable.
Prior knowledge and x are used to infer about z.

In the Bayesian theory, all quantities are assumed to be random and all available informa-
tion is represented probabilistically in the sense of the DoB interpretation. The prior distri-
bution p(z) and the Likelihood function l(x|z) are combined via the Bayesian theorem to
the posterior distribution p(z|x) ∝ l(x|z) p(z). Since the computational complexity for
the necessary operations to obtain this quantity is O(|Z|), Bayesian fusion is prohibitive
in many real world tasks [BHS06].
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At focussed Bayesian fusion, the actual Bayesian fusion is performed only with respect
to the local context U ⊂ Z which lowers the computational complexity to O(|U |). As
explained in [SHGB09], the corresponding fusion scheme is

p(z|x,U) ∝ l(x|z) p(z|U) , z ∈ U . (1)

In the focussed Bayesian model, Z \U is ignored completely and the posterior probability
of events2 E ⊆ U gets distorted according to the global posterior probability3 P (U |x) =∫
U
p(z|x) dz of the local context U . More precisely, it holds

P (E|x,U) =

∫
E

p(z|x,U) dz with p(z|x,U) =
p(z|x)
P (U |x)

, z ∈ U . (2)

A local context U is specified adequately if it contains at least these values of the PoI
for which the standardized Likelihood function lst(x|z) := l(x|z)

maxz∗ l(x|z∗) is larger than a
suitable threshold. We addressed the rationale behind this specification, its extensions, and
the threshold determination in previous publications, see [SB08, SHGB09, SKB10].

If the information contributions x1, . . . , xS are conditionally independent given z, we
have l(x|z) =

∏S
s=1 l(xs|z) and Bayesian fusion is realizable sequentially in an uncom-

plicated manner [BHS06]. In this case, for the determination of the local context U , the
information contributions can be also evaluated individually. Here, it is reasonable to
chose U such that it contains at least these values of the PoI for that there exists at least
one s ∈ {1, . . . , S} such that lst(xs|z) is larger than a suitable threshold. Compare also
[SB08, SHGB09, SKB10].

3 Probability Intervals at Focussed Bayesian Fusion

Assume that l(x|z) ≤ δ holds for all z /∈ U with δ := δ̃ ·maxz∗ l(x|z∗) and a suitable
threshold δ̃ ∈ (0, 1). Then, the following lower bound for the global posterior probability
P (U |x) of the local context U results [San09, SHGB10]:

P (U |x) ≥
∫
U
l(x|z) p(z|U) dz∫

U
l(x|z) p(z|U) dz + ( 1

P (U) − 1) δ
=: β . (3)

β is computable in the focussed Bayesian model provided that the prior probabilityP (U) =∫
U
p(z) dz of the local context U is ratable.

Assume that x1, . . . , xS are conditionally independent given z and assume that, for all
s ∈ {1, . . . , S} and for all z /∈ U , l(xs|z) ≤ δs holds with δs = δ̃ ·maxz∗ l(xs|z∗) and
δ̃ ∈ (0, 1). Then, (3) is valid with l(x|z) =

∏S
s=1 l(xs|z) and δ =

∏S
s=1 δs.

Combining (2) and (3), one obtains for z ∈ U that it holds

p(z|x) ∈ [a(z),b(z)] := [β p(z|x,U), p(z|x,U)] . (4)
2Events are sets to that a probability is assigned.
3We use an integral notation is for both, the summation of discrete and the integration of continuous quantities.

A summation sign is used only if the respective formula is to refer exclusively to the discrete case.
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Hence, an interval scheme for global posterior probabilities results:

P (E|x) ∈ [a(E),b(E)] :=

{
[β P (E|x,U), P (E|x,U)] , E ⊆ U ,

[0, 1− β] , ∅ 6= E ⊆ Z \U .
(5)

Thereby, it is not possible that the posterior probabilities of events that are contained in the
local context U vary arbitrarily within the corresponding intervals [SHGB10]. From (2),
one obtains additionally for events E∗,E∗∗ ⊆ U the connection

P (E∗|x,U)

P (E∗∗|x,U)
=

P (E∗|x)
P (E∗∗|x)

=: o(E∗,E∗∗) . (6)

Let E∗∗ ⊆ U be arbitrary but fixed. If we assume that P (E∗∗|x) is equal to a certain value
in the interval [a(E∗∗), b(E∗∗)], the posterior probabilities of all other events E ⊆ U are
uniquely determined because, according to (6), we have

P (E|x) = o(E,E∗∗)P (E∗∗|x) . (7)

Thereby, o(E,E∗∗) is computable within the focussed Bayesian model.

4 A Framework Based on the Theory of LPI

4.1 Decisions under Risk, Partial Information, and LPI

Let A be a set of available actions. The utility of action a ∈ A provided that z ∈ Z is the
“true” value of the PoI is denoted by u(a, z). If the global posterior distribution p(z|x)
was known completely, the decision making was done under risk [Rüg99]. According to
the principle of expected utility [BS04], a rational decision maker should chose an action
a∗ ∈ A that maximizes the global posterior expected utility, i.e.,

a∗ = argmax
a∈A

Ep(z|x)[u(a,z)] with Ep(z|x)[u(a,z)] =

∫
Z

u(a,z) p(z|x) dz .
(8)

In this publication, we assume all used utility functions to be bounded and an act that is
optimal in the sense of (8) to exist.

Global decision making on the basis of a focussed Bayesian model is decision making
under partial information [Pre02]. Here, it is only known that p(z|x) is contained in the
set PF of all probability distributions on Z that are consistent with the constraints (2) and
(3). As consequence, a set of possible values for the global posterior expected utility of an
action has to be considered explicitly at decision making–instead of one unique value as
at decision making under risk.

In the following, Z\U is regarded as a (possibly large) finite set4: Z\U = {z1, . . . ,zM},
M ∈ N. Then, the global decision problem which has to be solved on the basis of a

4To our mind, this assumption is justifiable in many tasks. However, in [San10], also a generalization of the
derived concept for the solution of arbitrary decision problems is sketched additionally.
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focussed Bayesian model is traceable back to a decision problem under LPI. The following
definition of LPI is based on [KM76]:

Definition 1. Partial information about a probability distribution over a finite set of car-
dinality k is LPI if the respective subarea W of the k-dimensional probability simplex
[0, 1]k can be specified by a system of inequalities such that it holds

W =

{
p = (p1, . . . , pk)T ∈ Rk

∣∣∣∣∣
k∑
i=1

pi = 1, 0 ≤ pi for i ≤ k,Bp ≥ c

}
. (9)

with B ∈ Rl×k and c ∈ Rl, k, l ∈ N.

Lemma 1. Assume that it is only known that p(z|x) ∈ PF holds. For each action a ∈ A,
the set of possible values for the global posterior expected utility Ep(z|x)[u(a, z)] of a is
identical to the set of possible values for the expected utility of a in a decision problem
under LPI over ZF := {z1, . . . ,zM , zM+1} with zM+1 := U if the respective subarea
of [0, 1]M+1 is given by

W F :=

{
p = (p1, . . . , pM+1)T

∣∣∣∣∣
M+1∑
i=1

pi = 1, 0 ≤ pi for i ≤M,β ≤ pM+1

}
(10)

and if the respective utility function is

uF(a,z
i) :=

{
u(a, zi) , i ∈ {1, . . . ,M} ,
Ep(z|x,U)[u(a,z)] , i =M + 1 .

(11)

Proof. We set

pi := p(zi|x) , i ∈ {1, . . . ,M} , and pM+1 := P (U |x) . (12)

W F contains exactly all global posterior distributions p(z|x) on Z that satisfy the condi-
tion (3). According to the structure of W F, (3) specifies LPI about p.
Because of (2), for each action a ∈ A, it holds:

Ep(z|x)[u(a, z)] =

∫
Z\U

u(a,z) p(z|x) dz + P (U |x) Ep(z|x,U)[u(a, z)] . (13)

Because Ep(z|x)[u(a,z)] is identical to

Ep[uF(a,z
i)] =

M∑
i=1

u(a, zi) pi + pM+1 Ep(z|x,U)[u(a,z)] , (14)

the utility function uF(a,z
i) on A×ZF that has been introduced in (11) is compatible to

the original utility function u(a, z) on A×Z.

A set W of probability functions that is specified by LPI constitutes a convex polyhedron
[Fis01, KM76]. The next known lemma connects this geometric consideration and linear
optimization. For a polyhedron W ⊆ Rk, let V (W ) denote the set of edges of W .
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Lemma 2 (see [NM04] or [Fis01] ). Let f : Rk → R be a linear function and W ⊆ Rk a
convex polyhedron, k ∈ N. Then, there exist points wmin ∈ V (W ) and wmax ∈ V (W )
such that f(wmin) = minw∈W f(w) and f(wmax) = maxw∈W f(w).

The next lemma shows that V (W F) has a convenient structure:

Lemma 3. pT = (p1, . . . , pM+1)T ∈ RM+1 is an edge of W F iff it holds

pi =

{
0 , i ≤M ,

1 , i =M + 1 ,
or pi =


1− β , for one i0 ∈ {1, . . . ,M} ,
0 , i ≤M ∧ i 6= i0 ,

β , i =M + 1 .

(15)

Proof. It is known [KM76, Pre02] that a point of W F is an edge iff M + 1 of the M +
2 conditions in (10) are satisfied as equations. Here, this means that the values of M
components of p must be equal to the respective lower bounds.

4.2 Decision Criteria under LPI

Because of lemma 1, criteria for global decision making on the basis of a focussed Bayesian
model result if we consider the respective decision problem under LPI.

Theorem 1 (Expected Utility Intervals). If it is only known that p(z|x) ∈ PF holds,
for each action a ∈ A, the set of possible values for the global posterior expected utility
Ep(z|x)[u(a,z)] is identical to the interval

IWF [uF(a,z
i)] :=

[
EWF

[uF(a,z
i)],EWF [uF(a,z

i)]
]

(16)

whereby

EWF
[uF(a,z

i)] = min

{
(1− β) min

1≤i≤M
u(a,zi) + β Ep(z|x,U)[u(a, z)],

Ep(z|x,U)[u(a,z)]

}
, (17)

EWF
[uF(a, z

i)] = max

{
(1− β) max

1≤i≤M
u(a,zi) + β Ep(z|x,U)[u(a, z)],

Ep(z|x,U)[u(a,z)]

}
. (18)

Proof. Ep[uF(a,z
i)] is a linear function with respect to p, compare (14). Because W F is

a convex polyhedron and lemma 2 holds, the set of values of the global posterior expected
utility of a that results if p varies within W F is an interval and we have

IWF
[uF(a,z

i)] =

[
min

p∈V (WF)
Ep[uF(a,z

i)], max
p∈V (WF)

Ep[uF(a,z
i)]

]
. (19)
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V (W F) has been identified in lemma 3 and from (14), we obtain{
Ep[uF(a,z

i)]
∣∣∣p ∈ V (W F)

}
=
{
Ep(z|x,U)[u(a,z)]

}
⋃{

(1− β)u(a,zi) + β Ep(z|x,U)[u(a, z)]
∣∣∣i = 1, . . . ,M

}
. (20)

zi0 ∈ {z1, . . . ,zM} minimizes the term contained in the second set on the right side if
it holds that u(a, zi0) = min1≤i≤M u(a,zi). This proves (17). An analog consideration
with respect to maximization delivers (18).

An action a∗ ∈ A dominates another action a∗∗ ∈ A \ {a∗} if, in terms of expected
utility, a∗ is surely at least as good as a∗∗ is. The condition

EWF [uF(a
∗∗, zi)] ≤ EWF

[uF(a
∗, zi)] (21)

is sufficient to guarantee that a∗ dominates a∗∗. The next theorem provides an additional
criterion by which dominance relations may be identified also if (21) does not hold.

Theorem 2 (Additional Dominance Criterion). Provided that it is known that p(z|x) ∈
PF, an action a∗∗ ∈ A is dominated by another action a∗ ∈ A \ {a∗∗} if the following
criterion is satisfied:

max

{
(1− β) max

1≤i≤M

{
u(a∗∗, zi)− u(a∗, zi)

}
+β Ep(z|x,U)[u(a

∗∗, z)− u(a∗, z)],Ep(z|x,U)[u(a
∗∗, z)− u(a∗, z)]

}
≤ 0 . (22)

Condition (22) can be only satisfied if a∗ dominates a∗∗ in the focussed model, i.e., if
Ep(z|x,U)[u(a

∗∗, z)] ≤ Ep(z|x,U)[u(a
∗, z)] holds.

Proof. a∗∗ is dominated by a∗ if, for all p ∈WF, it holds that

Ep[uF(a
∗∗, zi)]− Ep[uF(a

∗, zi)] = Ep[uF(a
∗∗, zi)− uF(a∗, zi)] ≤ 0 . (23)

This condition is satisfied if we have

max
p∈WF

Ep[uF(a
∗∗, zi)− uF(a∗, zi)] ≤ 0 . (24)

Because Ep[uF(a
∗∗, zi)−uF(a∗, zi)] is also a linear function with respect to p, it adopts

its maximum at least in one edge of W F. Compare lemma 2. Introducing the notation
v(a∗,a∗∗, z) := u(a∗∗, zi)− u(a∗, zi), we obtain{

Ep[uF(a
∗∗, zi)− uF(a∗, zi)]

∣∣∣p ∈ V (WF)
}
=
{
Ep(z|x,U)[v(a

∗,a∗∗, z)]
}

⋃{
(1− β) v(a∗,a∗∗, z) + β Ep(z|x,U)[v(a

∗,a∗∗, z)]
∣∣∣i = 1, . . . ,M

}
. (25)

From this, it becomes clear that condition (22) is a sufficient dominance criterion: taking
the maximum over (25), we just have to eliminate from the second set of the right side
these elements for that Ep[v(a

∗,a∗∗, z)] is surely not maximal.

Trivially, (22) can only hold if a∗ dominates a∗∗ in the focussed Bayesian model .
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Also if no action which maximizes the expected utility with respect to all p(z|x) ∈ PF is
identifiable, the decision maker may be able to make an adequate decision: he may be able
to chose an action which is guaranteed to be good enough with respect to the task at hand.
Therefore, he may consider also regret values. The regret of an action is defined to be the
maximal deficit in terms of expected utility that can arise from the choice of this action.

Theorem 3 (Regret). Provided that it is known that p(z|x) ∈ PF, for each action a∗ ∈
A, the regret RWF

(a∗) of a∗ is bounded from above:

RWF(a
∗) ≤max

{
Rp(z|x,U)(a

∗),

(1− β)max
a∈A

max
1≤i≤M

{
u(a, zi)− u(a∗, zi)

}
+ βRp(z|x,U)(a

∗)

}
. (26)

Thereby, Rp(z|x,U)(a
∗) is the regret in the focussed Bayesian model: Rp(z|x,U)(a

∗) :=
maxa∈A Ep(z|x,U)[u(a, z)]− Ep(z|x,U)[u(a

∗, z)].

Proof. It holds

RWF
(a∗) := max

a∈A
max
p∈WF

{
Ep[uF(a,z

i)]− Ep[uF(a
∗, zi)]

}
. (27)

Basically, the set in (27) is equal to the set in (24). Therefore, theorem 3 follows from
a nearly analogous proceeding as the one applied at the maximization of the set in (24):
performing an additional maximization with respect to a, noting that this maximization is
subadditive, and respecting the definition of Rp(z|x,U)(a

∗) directly leads to (26).

4.3 Improvement of the Basis for Decision Making

The decision maker may render the original LPI from lemma 1 more precisely if it is
not possible to him to chose an adequate action. For this, he may expand the focussed
Bayesian fusion to a superset of the local context U . For simplicity, it is assumed without
loss of generality that U is enlarged to UL := U ∪ {zM} and that it holds p(x|z) ≤ δL
for all z ∈ UL with a threshold δL such that δL ≤ δ holds. Compare the beginning
of section 3. By this, in (10), the inequality 0 ≤ pM gets sharpened to the equality
pM = pM+1 p(zM |x,UL)

1−p(zM |x,UL)
and the inequality pM+1 ≥ β gets sharpened to

pM+1 ≥
∫
UL

l(x|z) p(z|UL) dz∫
UL

l(x|z) p(z|UL) dz + ( 1
P (UL)

− 1) δL
(≥ β) . (28)

Hence, enlarging U to UL results in LPI which is specified by a subset W L of the set W F

in (10). Generally, this leads to a shrinking of the expected utility intervals, a larger set of
dominated actions and smaller regret values. For the numerical evaluation of the decision
criteria, the new LPI can get redrafted: setting ML := M − 1, ZL := {z1, . . . ,zML+1},
p := (p1, . . . , pML+1)T with zML+1 := UL, pi = p(zi|x) for i ∈ {1, . . . ,ML}, and
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pML+1 := P (UL|x), the results from the sections 4.1 and 4.2 are directly applicable by
replacing M by ML.

Alternatively, by making the additional assumption that P (Z \ U |x) is not concentrated
on small parts of Z \U , the decision maker may also precise the LPI by the inclusion of
non-trivial upper bounds for pi, i ∈ {1, . . . ,M}. This also leads to a subset of W F. If
he assumes pi ≤ 1−β

k with a k ∈ {2, . . . ,M}, the edge structure of the resulting polygon
gets changed and formulas (17), (18), (22), and (26) must be modified: the minimal and
maximal values of the utility and utility differences of actions with respect to Z \ U get
substituted by the arithmetic means of the respective k-th lowest and largest values. The
case k = M corresponds to the assumption that either P (Z \ U |x) = 0 or pi = 1−β

M ,
i ∈ {1, . . . ,M}, holds.

5 Examples

5.1 Example 1

As first example, we will prove5 the following theorem by the use of theorem 2:

Theorem 4. For events E∗ ⊆ U , E∗∗ ⊆ Z, we have P (E∗|x) ≥ P (E∗∗|x) if the
corresponding interval bounds satisfy b(E∗∗ ∩ (Z \U)) ≤ a(E∗)− a(E∗∗ ∩U).

Theorem 4 can be formulated as decision problem by defining A = {E∗,E∗∗}, u(E, z) =
1E(z) such that Ep(z|x)[u(E, z)] = P (E|x), E ∈ A. Thereby, 1E(z) has the value 1 if
z ∈ E and the value 0 if z /∈ E.

Proof. Without loss of generality, it can be assumed that we have E∗ ∩ E∗∗ = ∅: if
this does not hold, theorem 4 follows from a comparison of the posterior probabilities of
E∗ \ (E∗ ∩E∗∗) and E∗∗ \ (E∗ ∩E∗∗).
We will show that E∗ dominates E∗∗ if the conditions in theorem 4 hold. It is assumed,
also without loss of generality, that we have E∗∗ = U∗∗ ∪

(⋃
i∈I∗∗ z

i
)

with U∗∗ ⊆ U
and I∗∗ ⊆ {1, . . . ,M}. The dominance criterion (22) delivers the condition

max {b(E∗∗ ∩U)− b(E∗),b(E∗∗ ∩ (Z \U)) + a(E∗∗ ∩U)− a(E∗)} ≤ 0 . (29)

The second element of the set in (29) is not larger than zero if it holds

b(E∗∗ ∩ (Z \U)) ≤ a(E∗)− a(E∗∗ ∩U) . (30)

The condition b(E∗∗ ∩ U) − b(E∗) ≤ 0 holds if a(E∗∗ ∩ U) − a(E∗) ≤ 0. Because
b(E∗∗ ∩ (Z \U)) ≥ 0, the (30) guarantees that E∗ dominates E∗∗.

The case E∗∗ ⊆ U \ E∗ shows that (21) is a sufficient but not necessary condition for
dominance: here, it holds IWF

[uF(E, z
i)] = [a[E],b[E]], E ∈ {E∗,E∗∗}. According

to theorem 4, E∗ dominates E∗∗ if a[E∗∗] ≤ a[E∗], which is a weaker condition than
b[E∗∗] ≤ a[E∗] is.

5An alternative proof, which is completely based on the results of the sections 2 and 3, is given in [San10].
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z1 z2 z3 z4 z5 z6

p(z) 4
15

2
15

2
15

3
20

4
15

1
20

l(x1|z) 1
20

1
40

1
28

1
36

1
40

1
2

l(x2|z) 1
80

1
40

1
36

1
36

1
4

1
12

Table 1: Prior distribution and Likelihood func-
tions at example 2.

z1 z2 z3 z4 z5 z6

u(a1, z) 1 4 3 4 4 9

u(a2, z) 3 8 4 3 4 4

u(a3, z) 2 3 3 3 1 10

Table 2: Utility function at example 2.

5.2 Example 2

To hold the results verifiable easily, we assume in this example that |Z| is rather small:
Z := {z1, . . . ,z6}. Further, we assume that two information sources are available and
that the respective information contributions x1, x2 are conditionally independent given z.
Let p(z), l(x1|z), and l(x2|z) be as in table 1.

We apply a threshold δ̃ on the standardized Likelihood functions l(x1|z) and l(x2|z).
Compare section 2 and section 3. If we chose δ̃ = 1

8 , an element of Z is contained in
the local context U if it holds l(x1|z) > δ1 or if it holds l(x1|z) > δ2 with δ1 = 1

16 and
δ1 = 1

32 . Hence, we obtain U = {z5, z6}.
With δ = δ1 · δ2 = 1

512 , (3) delivers the lower bound β ≈ 0.7375 for P (U |x) and
according to (5), one obtains

p(z|x) ∈ [a(z),b(z)] ≈


[0, 0.2625] if z ∈ Z \U ,

[0.3278, 0.4444] if z = z5 ,

[0.4097, 0.5556] if z = z6 .

(31)

We have b(z) ≤ a(z6) for z ∈ Z \ U and a(z5) ≤ a(z6). From this, we can conclude
that p(z6|x) ≥ p(z|x) holds for all z ∈ Z \ {z6}. Compare theorem 4.

Now, let A = {a1,a2,a3} be a set of available actions and let the utility function u(a,z)
be as in table 2. Then, it holds Ep(z|x,U)[u(a1, z)] =

61
9 , Ep(z|x,U)[u(a2, z)] = 4, and

Ep(z|x,U)[u(a3, z)] = 6. After the determination of the minimum and maximum values
of u(ai, z) for z ∈ Z \U , theorem 1 approximately delivers

Ep(z|x)[u(a|z)] ∈


[5.2611, 6.7778] for a = a1 ,

[3.7375, 5.0500] for a = a2 ,

[4.9501, 6.0000] for a = a3 .

(32)

From (32), one directly obtains that action a1 is always better than action a2. Compare
(21). After the determination of the maximum value of u(a3, z)−u(a1, z) for z ∈ Z \U ,
by the application of the dominance criterion in theorem 2, we can additionally conclude
that a1 dominates a3. Hence, it is sure that action a1 has the maximum posterior expected
utility within the global Bayesian model.
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Now, we assume that only action a2 and action a3 are available, i.e., we assume that it
holds A = {a2,a3}. Also in this case, we can determine the action that has the maxi-
mum posterior expected utility within the global Bayesian model: the application of the
dominance criterion in theorem 2 yields that action a3 dominates action a2.

To demonstrate that it is not always possible to identify the action that is optimal which re-
spect to the global model, we assume again that A = {a2,a3} holds. However, we modify
the value of u(a2, z

1) to 8. This modification has no effect on the expected utility intervals
for Ep(z|x)[u(a2, z)] and Ep(z|x)[u(a3, z)]–although the value of Ep(z|x)[u(a2, z)] has
changed by the modification of u(a,z). If we assume that, globally, it holds that p(z1) =
1 − β, we obtain Ep(z|x)[u(a2, z)] ≈ 5.0500 and Ep(z|x)[u(a3, z)] ≈ 4.9501. Hence,
in this case, action a2 is better than action a3. However, if we assume that, globally, it
holds that p(z4) = 1− β, we obtain Ep(z|x)[u(a2, z)] ≈ 3.7375 and Ep(z|x)[u(a3, z)] ≈
5.2125. Here, action a3 is better than action a2.

In this situation, theorem 3 approximately delivers RWF(a3) ≤ 0.0999. Depending on the
actual task, this upper bound for the regret of action a3 may be low enough therefore that
the decision maker is able to choose this action. If this it not possible, he may expand
the local context U . For example, if he lowers the threshold which is applied to the
standardized Likelihood functions to δ̃ = 1

10 , the local context contains additionally z3

and z4. With δ = 1
800 , (3) delivers the lower bound β ≈ 0.8888 for P (U |x). We

have Ep(z|x,U)[u(a2, z)] ≈ 3.9711, and Ep(z|x,U)[u(a3, z)] ≈ 5.8139. Here, theorem 1
approximately delivers

Ep(z|x)[u(a|z)] ∈

{
[3.9711, 4.4191] for a = a2 ,

[5.3898, 5.8139] for a = a3 .
(33)

Hence, it becomes directly clear that, within the global Bayesian model, the posterior
expected utility of action a3 is larger than the posterior expected utility of action a2.

Of course, by enlarging U , the lower and upper bounds for the global posterior probabili-
ties get sharpened as well. Now, we have

p(z|x) ∈ [a(z), b(z)] ≈



[0, 0.1112] if z ∈ Z \U ,

[0.0294, 0.0331] if z = z3 ,

[0.0257, 0.0289] if z = z4 .

[0.3705, 0.4169] if z = z5 ,

[0.4632, 0.5211] if z = z6 .

(34)

6 Conclusion

Focussed Bayesian fusion is a local Bayesian fusion technique that distinguishes itself by
a straightforward fusion scheme. We developed decision theoretic approaches to make
globally optimal decision making possible in a consistent and timely manner. For this,
an interval scheme for global posterior probabilities and common decision criteria under
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LPI together with principles of lazy decision making have been used profitably. Local
Bayesian fusion approaches are widely new approaches to circumvent high computational
costs of Bayesian fusion. They may also get combined with the concept of conjugate priors
or Markov Chain Monte Carlo Methods. Further research may address this topic in detail.
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