
A Software System for Autonomous Rescue Robots

Zaheer Aziz, Dirk Fischer, Tobias Kotthäuser, and Bärbel Mertsching

GET LAB, University of Paderborn
33098 Paderborn, Germany
{last name}@get.upb.de

http://getwww.uni-paderborn.de

Abstract:
Rescue robots are prime examples of cyber-physical systems which are character-

ized by a tight combination of the system’s computational and physical elements. In
this paper we analyze the requirements of such a system and propose a generic formu-
lation that can be used to design software frameworks for this field. We present the
rescue robot system GETbot organized and configured according to the design pro-
posed. Finally, testing in order to validate the efficiency and robustness of individual
modules as well as their interconnection is addressed.

1 Introduction

Natural disasters result in casualties of various types. One of the important immediate
tasks in such situations is to get trapped survivors out of the zone of imminent danger.
Having a huge potential of being extremely helpful rescue robotics is gaining increasing
research attention. These systems could be used for different purposes such as construct-
ing a map of the disaster site indicating accessible areas, searching for living survivors,
delivering life saving material to victims, and conveying their location and routing human
paramedics. On finding a victim these systems may also transmit detailed sensor readings
reflecting the victim’s vital functions, such as body temperature, carbon dioxide emission,
and appearance to the rescue base station. These system must also be able to explore an
area as large as possible in order to increase the probability of saving lives. Apart from
these mission specific tasks rescue systems must also care about their self sustainment for
example avoiding collisions, keeping away from terrain beyond their hardware capabili-
ties, and refrain from dropping from high cliffs.

Rescue robot systems can be found in two major categories, namely, teleoperated and
autonomous. The teleoperated systems provide facilities to an operator to control a robot
and observe its sensor readings from remote locations. E. g. human controlled victim
search using video and thermal cameras are described in [KSS05] and [KUS+06]. Another
system presented in [KL09] can navigate autonomously in rubble and perform human
assisted search for body heat. Autonomous rescue systems have to perform all involved
tasks without any contact to a human operator. A variety of sensing and maneuvering

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



technology can be found on these systems. An example of an autonomous rescue system
using video and thermal imaging can be seen in [KK07]. Application of hyper spectral
imaging for detecting presence of victims is discussed in [TPPB08]. A system able to
classify 3D terrain using a rotatable LRF can be seen in [FK09]. Despite all these efforts,
the current rescue robots remain prototypes and still have to prove their value as the recent
earthquake in Japan showed. Here only teleoperated systems came into use at a very late
stage of the catastrophe.

Following the above task description rescue robots are prime examples of cyber-physical
systems which are characterized by a tight combination of the system’s computational and
physical elements. Sensors, embedded processors and network components monitor and
control permanently the entire robot which is subject to intrinsic and extrinsic physical
processes. Environmental changes which cannot be predicted influence computations and
vice versa. These systems are considerable challenges, particularly because the physi-
cal components of such systems introduce safety and reliability requirements qualitatively
different from those in general- purpose computing. Moreover, physical components are
qualitatively different from object-oriented software components. Standard abstractions
based on method calls and threads do not work [Lee08].

Rescue systems consist of a complex combination of heterogeneous hardware and soft-
ware components working concurrently on different time scales. Establishing timeliness
by coordinating and synchronizing the components of the system turns out to be com-
plicated since the number of components and their interdependency become fairly large.
Therefore programming models and methods are required which support spatiotemporal
actions and reasoning in highly dynamic environments. If no adequate software architec-
ture with different abstraction levels exist, the maintenance and trouble shooting become
difficult or impossible. Demanding flexibility and scalability for such systems result also
in major problems to deal with. A small change in one component may force rewriting of
many other modules if interdependency is not carefully handled. Hence, there is a need
of standardization of software development framework for increasing the pace of develop-
ment in this field. An important issue is the testing of the whole system in an environment
providing the challenges expected in a catastrophe scenario.

This paper addresses the above mentioned problems. An analysis of the requirements of
a robotic system specialized to rescue applications and a generic formulation are provided
that can serve as a basis for the design software frameworks in this field. Furthermore,
a design for arranging working modules of a rescue system according to the proposed
framework is described. Some recently developed tools are used to implement this mod-
ular system architecture. A solution for a complete system level software testing is also
discussed that can be helpful in rapid performance analysis of robotic software.

2 Generic Formulation of a Rescue System

As introduced in the previous section, a rescue assistance system has to perform differ-
ent concurrent complex tasks under a synchronized strategy. In order to cope with these

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



demands a system model with different abstraction levels is required. To fulfill these re-
quirements a generic formulation of a rescue system is needed. There exist proposals for
architectures of general purpose robots for example [SSK08] and [O’H11]. Work can also
be found in the direction of rescue robot architecture, for example [CFOP08]. However,
the main problem there is the tight coupling of algorithms with sensors which can hinder
parallel processing of algorithms that need input from the same sensors. We propose here
an architecture for rescue systems that rectifies the mentioned problems.

The set of software components controlling the system can be categorized into at least three
layers according to the level of their tasks: The layer nearest to hardware should contain
elementary processes. The secondary layer should consist of building-blocks that convert
raw sensor data into information usable by high level control algorithms at a third layer.
A master control algorithm may also be considered in the third layer that orchestrates the
individual components to let the whole system perform the task of rescue operation. We
discuss the important components involved in each layer in the following subsections.

2.1 Elementary Level Components

We consider an encapsulation of hardware drivers and the application program interface
(API) to hardware control functions, for each sensor and actuator, as part of the elementary
layer. In a generic context, software components to sense (acquire data from individual
sensors), making sensor saccades (rotating the sensor head), performing robot motility,
and doing self tracking belong to this level.

In terms of sensing there should be a software component for each sensor responsible
to make data of that sensor available for the rest of the system. Some sensors could be
mounted on a rotatable head for which the related software should allow focusing towards
a given point in space. Such sensor movements are necessary due to the limited field-of-
view of sensors which is usually too small to perceive the entire required section of the
environment at a given location with one gaze.

Self motility of a system is necessary to increase volume of the search space by reaching
different locations. Self tracking can be a helpful tool to estimate the system’s position and
orientation after going through spatial transformations. Under many situations in rescue
scenarios global positioning information may not be available or its resolution may not be
sufficient for localization purposes. Hence, odometry can serve as a useful solution for
self tracking.

2.2 Secondary Level Components

Under this category we put those system components that directly use the elementary layer
and could run in parallel without causing a conflict with other components. Commonly,
these components can be used as building-blocks or feedback mechanism for implement-
ing high level behaviors. In a generalized point of view, this layer includes modules for the

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



interpretation of data in the current sensor view, environment modeling, and integration of
self into the environment.

There may exist a separate software component for each sensor for the purpose of cur-
rent view interpretation. The complexity of these tasks may range from determination of
absolute locations of points in range data for the detection of objects in 3D point clouds.
Apart from processing data from a single sensor, fusion of multiple sensors may also be
used for these purposes. The environment modeling modules can construct models of the
environment in one or more of the various possible formats ranging from occupancy grids
to 3D object structures. In context of self-environment integration the system detects its
own location and orientation in the modeled environment.

2.3 Highs Level Components

The third layer consists of modules which contain algorithms, each of them implementing
a high level behavior. They may compete with each other to access or control one or more
of the elementary level resources. It may not always be possible to let these processes run
in parallel, rather a coordination scheme has to be designed to achieve the objectives of
the application domain. In the area of rescue robots the modules of target existence check,
target conformation, getting close-up sensor readings of the target, obstacle avoidance,
navigation between two spatial locations, and exploration strategy are counted as high
level system components.

It could be argued that modules like obstacle avoidance, point-to-point navigation, and tar-
get existence check should be regarded as secondary level components. Generally, move-
ments for obstacle avoidance and navigation to reach a planned target location conflict
with each other. Hence, according to the proposed definitions they belong to the third
level layer. In our design of the rescue system the target existence check is done after
stopping the robot and performing a head scan around the current location. Therefore, it
belongs to the third layer due to competing for motility resources.

Target confirmation requires focusing of a sensor head towards the candidate location and
target close-up requires navigating the robot near to the target position and focusing the
sensor head to get detailed readings. An exploration strategy has to maximize the area
scanned by the system while minimizing repeated scanning of already visited areas.

2.4 Inter-Component Coordination

Encapsulation of sensor input and motor control within a software component can cause
coordination problems when integrating these components in an entire system. Letting
sensor data, intermediate results, and control commands flow on a shared data stream is a
better option. This means in the practical implementation that modules handling sensors
only provide data to the stream and secondary (or higher) level components may pick it
for processing. This can usually occur in parallel for different sensors without causing

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



Figure 1: A generic formulation of a software system for autonomous rescue robot.

conflicts among them. For elementary components related to actuators it has to be assured
that only one maneuver action can be done by an actuator at a time. Conflict resolution or
pre-planned coordination has to be incorporated for different system components trying to
send control commands to the actuators. These commands might conflict with each other:
e. g. a navigational behavior may require a right turn of the robot whereas the obstacle
avoidance may ask for a left turn.

A generic solution for coordination is to use a finite state machine (FSM) that sets the
system into a particular state according to a master control strategy designed to achieve
the system level objectives. Only a specific software module will be allowed to access an
actuator under a given system state.

In the light of the above mentioned formulation, a generic abstraction of a rescue system
may be sketched as given in fig. 1. On the elementary level, the sensors usually need only
write-access to the shared data stream while actuators have read-access. The secondary
level should have read and write access however, its components should not address the
actuators directly. The high level modules use processed information from secondary level
and may also merge it with the raw sensor data to reach a decision for further actions. The
master control coordinates between the high level modules and allow only one command
to a particular actuator at a time.

3 Rescue Robot System GETbot

In this section, we present the robotic rescue system, GETbot which has been organized
and configured according to the design proposed in section 2. The complete system is
depicted in fig. 2(a). The design of the GETbot is based on a Pioneer 3-AT which is a
four wheel skid steering drive system. In terms of sensors, it is equipped with encoders
to provide basic odometry information, a laser range finder, a monocular camera and a

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



web camera

pan-tilt unit

laser range finder
tilt-roll unit

inertial
measurement

unit

Kinect camera

thermal camera

(a)

map

victim
positions

Exploration Victim
Search

Mapping Navigation

Master
Control

path

feedback

path
request

search

target
location

(b)

Figure 2: Rescue robot system GETbot: (a) Platform with its sensors and actuators. (b) Interaction
of the main components within our rescue system (simplified).

3D camera to visually monitor the area, a thermal camera to measure the temperature
of objects present in the environment, and an inertial measurement unit. The actuators
include two sensor heads, each capable to move with two degrees of freedom.

Fig. 2(b) illustrates the scheme of inter-component interactions in our rescue system.
A map of the environment is continuously updated using range and odometry data. The
exploration module uses this map to determine a path to the next optimal exploration target.
The master control module requests a path from the exploration module. All intermediate
points on this path are forwarded to the navigation module one by one to safely drive to
the next location to be explored. Feedback of the navigation module is used to examine
conditions, e.g. is the target point reached or not. Each time the system reaches a new
exploration location, the master control triggers the victim search module. The number and
positions of possible victims are used to decide whether to continue exploring or approach
to the closest victim location.

The individual software components of the system according to the three levels of task
hierarchy are discussed in the following subsections.

3.1 Elementary Level Software Components

For each sensor and actuator installed on the robot, an object-oriented control software is
provided that initiates the hardware drivers and allows data reading and writing. For the
case of sensors, obviously, only the reading interfaces are needed. For actuators, writing
interfaces allow sending control commands whereas reading functions can be used to query
status information from the device.

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



3.2 Secondary Level Software Components

For a rescue system the environment is mostly unknown as the previously known struc-
ture might be damaged. Unknown environments require to build a model of the explored
environment along with sufficient details about the objects that are present in that area.
In terms of sensor data interpretation the components making major contribution to res-
cue application are analysis of the data from thermal, video, and 3D cameras. A brief
description of these components of GETbot is given below.

3.2.1 Environment Modeling and Self-Environment Integration

The environment models may exist in terms of geographical maps and/or 3D representa-
tions. The correct mapping procedure fundamentally needs an accurate estimation of the
robot position, i. e. performing a self localization. The main input for this process is the
range data obtained from a laser range finder. Mapping and robot localization has been an
area of research for quite a time, hence, several algorithms are available that perform envi-
ronment modeling and integration of the robot into this model by determining its current
position and orientation. Localization and mapping are usually coined together as simul-
taneous localization and mapping (SLAM) [Fre06]. The current system makes use of an
iterative technique to perform scan matching for the localization purpose [MML06]. This
method proved successful for different environments however, scan matching has its own
failures which are attributed to noise and limitations of the employed sensors. Lately, we
have implemented a generic SLAM framework to make use of different SLAM techniques
to map the explored area [GSB07]. Further research is underway to make these processes
more robust and efficient.

3.2.2 Thermal and Video Image Processing

The thermal signal is the most reliable symptom from living survivors. Two features are
analyzed to determine the existence of a victim in the current thermal view; the first is
the human body temperature and the second is the extent of those regions possessing body
temperatures. In the context of visual perception there exist special challenges in the rescue
scenario. The target can appear in various colors that are hard to define in advance, for
example different skin shades and clothing. We have developed a simplified solution by
defining a few colors that could not belong to a victim, e. g. dirt, rocks, mud, and ash, etc.
After rejecting these defined colors the rest will lead to signals that most probably belong
to the target. In order to optimize the processing time, thermal and visual image processing
is activated when the system goes into the state of running the high level component for
scanning for victims (discussed below).

3.2.3 Terrain Analysis

An important part of the autonomous navigation in unknown and unstructured environ-
ments is the assessment of the terrain the robot intends to maneuver on to ensure a save

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



(a) (b)

Figure 3: Terrain Analysis: (a) RGB image of the terrain in front of the robot. (b) Classified point
cloud. Red patches represent terrain with obstacles which is not accessible to the robot while green
patches indicate areas which can be passed.

navigation. This is important for avoiding damage to the robot that can occur by going
into terrains beyond the capacity of its actuators. A laser scanner monitors the area on a
fixed level and thus, covering only obstacles at exactly this height. Hence, it can not detect
obstacles above or below the scanning plane. To solve this problem, sensors generating
three-dimensional data of the environment can be used to estimate the structure of terrain
in front of the robot. GETbot uses a Kinect camera which allows a fast and reasonably
high resolution 3D image data acquisition. Fig. 3 shows the result of the implemented
method based on a principal component analysis as described in [LVHH06]. Feedback
of this elementary module helps the high level exploration module in determining further
explorable paths.

3.3 High Level Software Components

The high level software components of GETbot are divided into two blocks. The first one,
labeled navigation, bundles the modules exploration strategy, point-to-point navigation,
and obstacle avoidance while the second one which is called victim search groups the
modules target existence check, target confirmation, and close-up to target. The function-
ality of these two groups of components is as follows:

3.3.1 Exploration

This set of software components deals with the issues of exploring an unknown environ-
ment and ensuring a safe trip of the robot through the environment. One of the main tasks
of a rescue system is to explore maximum possible area without colliding with any object
present in the environment. The exploration strategy implemented on GETbot is based
upon frontier-based exploration [FO05]. This strategy collects the unexplored locations as
a set of target points on the, so far, constructed map. Hence, the strategy is tightly coupled
with the SLAM procedures discussed above. The map of the explored area is utilized to

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



(a) (b) (c)

Figure 4: Results of the robot navigation module: (a) Occupancy grid map of the so far explored
environment. (b) Map displaying target points: Targets still to be investigated are marked by green
circles, already covered target points are marked by red rectangles, and unreachable points by red
circles. (c) A safe map generated to be used by the path planner.

carry out the path planning between the current robot location and one of the target points.
Obstacle detection and avoidance is running continuously while the robots is moving. Ob-
stacle avoidance has been achieved after implementing variations of a smooth nearness
diagram [DB08] algorithm. Fig. 4 presents results of the exploration bundle obtained
during one of the experiments.

3.3.2 Victim Search

In the current status of the system, the robot stops after covering a certain amount of dis-
tance in the exploration state and switches into victim search mode to scanning. This
strategy for mode switching has at least three advantages over continuous victim scanning
during exploration. Firstly, the camera-head movements from right to left or vice versa
during motion of the whole system can result in non-scanned patches in the explored envi-
ronment. Secondly, motion blur due to robot movements combined with head rotations can
be avoided. Thirdly, more computational resources would be required to run exploration
and scanning algorithms in parallel.

The search process includes rotating the camera head carrying the thermal and video cam-
era in a 180 degree span at two levels of tilt angles. The step between the pan and tilt
angles are adjusted in such a way that there is a minimal overlap in the consecutive frames
of thermal input. A panorama image is created using filtered input provided by the thermal
image processing module discussed in the secondary level components. The warm region
in the panorama image satisfying the most conditions to be a human body is focused by the
sensor head to get further data in order to confirm existence of a human victim. The con-
firmation process includes analyzing the victim hypotheses delivered by the video camera.
The intermediate results and victim localization is shown in fig. 5. After confirmation,
the robot moves closer towards the victim location using a local navigation scheme and
delivers detailed sensor readings after reaching the target location. Details of this victim
search scheme were published in [AM10].

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



Figure 5: Results of victim confirmation after focusing sensor head on the selected candidate: The
hypotheses in thermal camera input are used to identify candidate locations where victims could be
present and the sensor head is focused on the most probable candidate. Color information in the
video data is used to confirm existence of the target.

3.4 Inter-Component Coordination and Master Control

In order to realize communication and control as shown in fig. 1 a convenient software
framework is needed. Since our research focus lies mainly on the intermediate and high
level system components, we decided to choose one of the existing robotic frameworks
instead of developing a novel one. We evaluated state-of-the-art robotic middleware ap-
plications such as Player [GVH03], OpenRDK [CCIN08], Orocos [SDLC+08] and Robot
Operating System (ROS) [QGC+09]. Important requirements for an appropriate frame-
work to use were: open source software, hardware abstraction, drivers readily available
for a large number of sensors, actuators and robots, network support, facilities to sup-
port testing and parametrization of the components, detailed documentation and an active
developer community. ROS came up as a suitable choice since it is the most flexible frame-
work which comes with detailed documentation, tutorials and a wide range of ready-to-use
software modules.

Software modules in ROS are called nodes and each node runs as a separate process.
The communication between nodes is possible using two concepts; at one hand a node
can subscribe certain topics while other nodes are publishing on these topics. This pub-
lish/subscribe messaging pattern conforms to the proposed design of a shared data stream.
On the other hand nodes can offer services which all other nodes can call. An important
role in an ROS application plays a node called master. The master provides name and
parameter services, in this way nodes can find topics and services at run-time.

The software components of our system described above, that communicate with each
other as sketched in fig. 2(b), have been implemented as nodes for ROS. Communication
between these nodes has been established by deploying subscribers and publishers based
upon the concerned data types.

In our design of a rescue system, the conceptual base of a hierarchical finite state machine
(HFSM) has matched well with the requirements of the master control component. A
library package is available in the ROS framework called SMACH (State MACHine) that
facilitates to deploy the concept of HFSM (http://www.ros.org/wiki/smach). We have used
the same to implement the master control component that runs the system under different
pre-defined states and coordinates the activities of the individual components by changing
these states.

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



4 Testing Environments

Environments to test a complete behavior of a rescue system is hard to construct and
expensive to maintain. In order to evaluate progress of research in this direction, yearly
robot competitions (RoboCup Rescue League) are held in several countries. A simulated
disaster environment is provided with challenging rescue related tasks to robots. The test
environment of these competitions is of course available for only a few days in an year.
Maintaining such a facility is not feasible for every research group because of the huge
requirements in space. After introducing the test environment of RoboCup arenas in the
next subsection we present a solution for the test environment problem.

4.1 RoboCup Rescue Arenas

The RoboCup Rescue competition [JWM03] provides a possibility to test the functionality
of a robot designed to carry out rescue tasks in different scenarios. There are three different
testing arenas, namely, yellow, orange and red. While the orange and red arenas are meant
for testing the mobility of remote controlled robots, the yellow arena is designed with the
focus to tackle the development of fully autonomous robots. For the autonomous arena
the robot has to be able to explore difficult terrain and must be equipped with sufficient
abilities to search and identify the location of victims. The victims are typically simulated
by dolls whose body temperature is emulated with heating pads.

4.2 Virtual Prototyping for Robot Rescue Systems

The development of software components for autonomous rescue applications relies on a
plenitude of repetitive testing methods. In order to validate the efficiency and robustness
of individual software components as well as their interconnection, varying testing condi-
tions, such as hardware configurations or the arrangement of the testing environment have
to be incorporated. Naturally, such test procedures are eminently time consuming. Expe-
diting the testing by introducing collected real-world data might be one solution; due to
the system complexity and the necessity to interact with the environment does not make it
generally suitable in the realm of most autonomous rescue systems.

The prototyping in this work is performed with the help of the simulation framework
SIMORE [KM10] which satisfies the requirements of rescue systems and environments.
SIMORE allows the simulation of sensors, actuators and entire mobile robot platforms in
virtual 3D environments as illustrated (see fig. 6). SIMORE is built upon open-source
libraries, such as the OpenSceneGraph toolkit for scene rendering and the Open Dynamics
Engine to accomplish a solid physical behavior during robot-environment interaction.

In general, simulation frameworks such as SIMORE provide various advantages; virtual
environments have – compared to real world scenarios – less limitations to the number of
used sensors, actuators and robots as well as their arrangement in the environment. Virtual

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



environments support the reproducibility of scenes with manually adjustable complexity
with respect to the number and the appearance of objects; distinct algorithms can be bench-
marked with identical input scenarios. Of particular importance is the opportunity to test
validity and performance of complex algorithms without any risk of damage to the sys-
tem or the environment subject to ill-conceived processing or control. Finally, simulation
in virtual environments offers high debugging capabilities and enables the developers to
focus on principal algorithmic issues; disturbing effects, such as unintended robot mo-
tions or sensor inaccuracies can be neglected; virtual sensors provide ground truth data for
all sensor measurements and virtual actuators can be controlled with high precision and
individual rates.

The activity of the software components stated in section 3 can now be transparently pro-
totyped with SIMORE due to its interfaces to the ROS middleware. Analogous to the
hardware system, the data flow of sensors and actuators in SIMORE is adapted to ROS
communication techniques. Therefore, single software components cannot distinguish,
whether they communicate with real hardware or the simulation. Hence, prototyping the
entire software system can be accomplished without the actual hardware of the robot.

Figure 6: Sample of a simulated rescue scenario and synthesized sensor outputs. Center: User’s
view of the simulator. It depicts a robot that is supposed to detect victims hidden in the environment.
A potential evidence of a victim’s presence is given by the hand sticking out of the left hole of wall
faced by the robot. Top left: Output of a standard camera. Bottom left: Depth image. Top right: 3D
scan with object attributions. Bottom right: Thermal scan.

To satisfy the material demands of a rescue mission SIMORE features the replication
and design of independent virtual catastrophe scenarios that can be rapidly combined to
individual rescue missions. Hence it allows to test the efficacy of a system in a given
situation before sending the actual hardware robots into a mission.

Since virtual simulation is not able to capture the complexity of the real world entirely, it
cannot always be verified that an algorithm that has been successfully tested in the sim-
ulation bears the same success as under real conditions. However, if a tests fails under
simplified simulation conditions, the same tests are likely to fail in the real applications as
well.

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



5 Conclusion

In this work, we discussed the requirements for a robotic software framework involving the
reliable coordination of software modules accessing multiple hardware resources. Using
the example of a rescue robot system, we presented a generic formulation comprising
elementary, secondary level and high level software components.

Other existing architectures for robotic cognitive systems have either encapsulation or
tight coupling between system components belonging to different levels of processing
hierarchy (see [VMS07] for a review). This hinders scalability on the one hand and the
potential of adaptation to distributed and parallel processing on the other. The advantage
of the proposed architecture is the lose coupling among the components lying at different
levels of processing hierarchy. Hence, it favors parallelism and distributed computing for
deployment as a cyber physical system.

We introduced our rescue platform and the software modules significant for the perfor-
mance of a rescue robot framework, namely mapping, exploration, navigation and search-
ing for victims. Further on, we have shown how to prototype individual modules as well
as their interplay within defined testing and simulation environments. Software develop-
ment for the same hardware and simulated platforms was done under a tightly coupled
architecture as well as the one proposed in this work. Challenging circumstances with
strict deployment deadlines and multiple developers concentrating on different modules
provide a testbed for the effectiveness of the software architecture. RoboCup competitions
are an example of such situations where parallel development and enhancement of various
modules have to be done in a strictly limited time. Using the tightly coupled infrastructure
the integration and coordination of software modules became extremely difficult. The pro-
posed architecture, on the other hand, allowed a smooth development by heterogeneous
experts and facilitated quick integration of modules into a unified system. The robot sim-
ulation framework introduced in this paper facilitates simultaneous testing of individual
modules and their integrated functionality.

The main problem using loosely coupled distributed components is the bottleneck of data
communication stream. This can be an issue for robotic systems as some sensors deliver
large packets of data continuously. Sometimes, real-time output cannot be expected from
the system when different components have different speeds of delivering results. These
problems can make the scalability an issue. For application oriented robots this is likely to
happen because they require a large number of input, processing and output channels.

References

[AM10] M. Z. Aziz and B. Mertsching. Survivor Search With Autonomous UGVs Using Multi-
modal Overt Attention. In IEEE International Workshop on Safety, Security & Rescue
Robotics 2010, July 2010.

[CCIN08] D. Calisi, A. Censi, L. Iocchi, and D. Nardi. OpenRDK: a modular framework for
robotic software development. In IEEE/RSJ International Conference on Intelligent

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



Robots and Systems, 2008. IROS 2008, pages 1872–1877, 2008.

[CFOP08] A. Carbone, A. Finzi, A. Orlandini, and F. Pirri. Model-based control architecture for
attentive robots in rescue scenarios. Autonomous Robots, 24(1):87–120, 2008.

[DB08] Joseph W. Durham and Francesco Bullo. Smooth Nearness-Diagram Navigation. In
IROS, pages 690–695, 2008.

[FK09] T. Fujita and Y. Kondo. 3D terrain measurement system with movable laser range
finder. In SSRR 2009, pages 1–6. IEEE, 2009.

[FO05] Luigi Freda and Giuseppe Oriolo. Frontier-Based Probabilistic Strategies for Sensor-
Based Exploration. In ICRA, pages 3881–3887, 2005.

[Fre06] Udo Frese. A Discussion of Simultaneous Localization and Mapping. Autonomous
Robots, 20(1):25–42, 2006.

[GSB07] Giorgio Grisetti, Cyrill Stachniss, and Wolfram Burgard. Improved techniques for
grid mapping with rao-blackwellized particle filters. IEEE Transactions on Robotics,
23:2007, 2007.

[GVH03] B. Gerkey, R.T. Vaughan, and A. Howard. The player/stage project: Tools for multi-
robot and distributed sensor systems. In Proceedings of the 11th international confer-
ence on advanced robotics, pages 317–323. Citeseer, 2003.

[JWM03] Adam Jacoff, Brian Weiss, and Elena Messina. Evolution of a Performance Metric for
Urban Search and Rescue Robots. In Proceedings of the 2003 Performance Metrics
for Intelligent Systems (PerMIS) Workshop, page 18, 2003.

[KK07] A. Kleiner and R. Kuemmerle. Genetic MRF model optimization for real-time victim
detection in Search and Rescue. In International Conference on Intelligent Robots and
Systems, 2007.

[KL09] Albert Ko and Henry Y. K. Lau. Robot Assisted Emergency Search and Rescue System
With a Wireless Sensor Network. pages 69–78, 2009.

[KM10] T. Kotthäuser and B. Mertsching. Validating vision and robotic algorithms for dynamic
real world environments. Simulation, Modeling, and Programming for Autonomous
Robots, pages 97–108, 2010.

[KSS05] M. W. Kadous, R. K. Sheh, and C. Sammut. CASTER: A Robot for Urban Search and
Rescue. In Australasian Conference on Robotics & Automation, 2005.

[KUS+06] K. Kon, Y. Urano, N. Shiroma, N. Sato, Y. Fujino, H. Fukushima, and F. Matsuno.
Development of Robot Teleoperation System in Bad Viewing Condition. In IEEE
International Conference on Robotics and Biomimetics, pages 427–432, 2006.

[Lee08] Edward A. Lee. Cyber Physical Systems: Design Challenges. Technical Report
UCB/EECS-2008-8, EECS Department, University of California, Berkeley, Jan 2008.

[LVHH06] Jean-Francois Lalonde, Nicolas Vandapel, Daniel Huber, and Martial Hebert. Natu-
ral terrain classification using three-dimensional ladar data for ground robot mobility.
Journal of Field Robotics, 23(1):839 – 861, November 2006.

[MML06] Javier Minguez, Luis Montesano, and Florent Lamiraux. Metric-based Iterative Clos-
est Point Scan Matching for Sensor Displacement Estimation. IEEE Transactions on
Robotics, 22(5):1047–1054, 2006.

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 



[O’H11] K.J. O’Hara. Towards Robot Systems Architecture. In 2011 AAAI Spring Symposium
Series, 2011.

[QGC+09] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng. ROS: an open-source Robot Operating System. In Open-Source Software
workshop of (ICRA), 2009.

[SDLC+08] R. Smits, T. De Laet, K. Claes, P. Soetens, J. De Schutter, and H. Bruyninckx. Orocos:
A software framework for complex sensor-driven robot tasks. IEEE Robotics and
Automation Magazine, 2008.

[SSK08] F.M.P. StephenBalakirsky, C.J. Scrapper, and T.R. Kramer. A Mobile Robot Control
Framework: From Simulation to Reality. In Simulation, modeling, and programming
for autonomous robots: first international conference, SIMPAR 2008, Venice, Italy,
November 3-6, 2008: proceedings, page 111. Springer-Verlag New York Inc, 2008.

[TPPB08] M. Trierscheid, J. Pellenz, D. Paulus, and D. Balthasar. Hyperspectral Imaing for
Victim Detection with Rescue Robots. In International Workshop on Safety, Security
and Rescue Robotics, pages 7–12, 2008.

[VMS07] D. Vernon, G. Metta, and G. Sandini. A survey of artificial cognitive systems: Implica-
tions for the autonomous development of mental capabilities in computational agents.
Evolutionary Computation, IEEE Transactions on, 11(2):151–180, 2007.

INFORMATIK 2011 - Informatik schafft Communities 
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de 

erschienen im Tagungsband der INFORMATIK 2011 
Lecture Notes in Informatics, Band P192 
ISBN 978-3-88579-286-4

weitere Artikel online: 
http://informatik2011.de/519.html 




