INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Requirements and a Case-Study for SLE from Robotics:
Event-oriented Incremental Component Construction

Ingo Liitkebohle and Sven Wachsmuth
Applied Informatics Group
Bielefeld University
{iluetkeb,swachsmu} @techfak.uni-bielefeld.de

Abstract: Research in the area of human-robot interaction requires a tight interleav-
ing of incremental system development and experimentation across different robotic
platforms. In terms of software engineering this proposes certain challenges to system
development that are only partially covered by component-based robotic engineering.
For the incremental component composition, we introduce an explicit ganularity level
above functions but below components using an event-driven data-flow model. Two
different case studies show its impact on the re-use and maintenance of software com-
ponents. We discuss requirements and possible impact of software languages for the
graph-based decomposition approach.

1 Introduction

Robotics is a sub-area of cyber-physical systems that is highly diverse, internally,
with hardware ranging from nano-scale robots through robots acting in human envi-
ronments to industrial and field robots. The software eco-system in robotics is at least
as diverse — if not more. Correspondingly, platform independence and re-use across
platforms and software frameworks is of high importance in this area. Moreover, re-
search systems in robotics — especially in the area of human-robot interaction — are
changing rapidly, in order to explore and test novel ideas. Although, re-use is an en-
abling key factor, software components practically need significant adaptation before
being applied on a new or changed system environment. We believe that language
engineering can contribute here, by making re-use more efficient.

Our foundation is the component-based software architecture approach, which is
now the dominant mode for building large robot software systems. In the last years,
different component models and operating cores have been put forward in this regard,
like OROCOS [BsK03], SmartSoft [Sch07], CLARAty [Nes07], and ROS [QCG™09].
These address how to compose a system from components, but they say little about
the creation of the components themselves. As in many other areas, components are
usually created from both new and existing code. The writing of the necessary compo-
sition code is usually done in the same language as the combined code, which is often
C/C++ or a similar language. The effort for composing and changing such components
is typically underestimated, especially if functionality is not already isolated into a li-
brary. In this case, it can be even difficult to extract the functionality for re-use in new
components. In order to address these challenges, the development model needs to
explicitly support fast changes or re-use. Rapid component construction should make
this easier, and in robotics, it can take advantage of the fact that many changes are sim-
ilar. If a new sensor or a new output is added, many processing steps typically re-occur
in different combinations, like data parsing, filtering, fusion, communication setup, or

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

device access. To exploit this structure for re-use, we developed a graph-based com-
ponent model, where the nodes have a granularity level above functions/objects but
below components. Nodes are implemented in an object-oriented programming lan-
guage (currently Java), but the exchange of data between them is specified in the graph,
which is easily changed. This also makes the input-output interface of the nodes very
regular. In effect, the graph makes it easy to add new functionality, and the regular
node interface and granularity facilitates re-use.

The main contribution in this paper is to evaluate the actual efficency of this type
of component composition in two case studies that are typical in robotics: Firstly, data
fusion, which means the combination of sensor data from multiple sources, and sec-
ondly, achieving a form of platform independence by implementing hardware control
drivers that map differing hardware semantics to a consistent interface. Furthermore,
we suggest a novel way to determine node granularity and, finally, introduce our first
steps towards an explicit language support for the approach. This last part emphasizes
potential improvements through and requirements for a systematic exploration of SLE
techniques. Parts[3]and[d] of this contribution are scheduled to appear in [LWT1]] and
are reproduced here for completeness. In both cases, they constitute abbreviated re-
ports on the case studies, with full details available in [Lil1].

2 Software Engineering Aspects of Robotics

While many aspects discussed so far apply to robotics in general, our own work
is in Human-Robot-Interaction and contributes to the goal of enabling more natural
interaction using speech and vision. To introduce our assumptions, the next part will
shortly sketch the concrete scenario used. We expect that, at least regarding re-use
and platform independence, our use-cases are fairly representative for issues faced by
other robot software systems. After that, we will give a short overview of related
architectural approaches.

2.1 The Curious Robot Scenario

The so-called “Curious Robot” scenario [LPS™09] has the goal to learn object la-
bels and grips in a natural, speech- and vision-based interaction between a human and
a robot. Its visible components are depicted in figure 2(a)] It is composed out of an
anthropomorphic platform (originally the upper-torso-robot BARTHOC [HSE™05])
and a hand-arm system based on the anthropomorphic Shadow hand [RHSRO7]. The
former of these serves as an intuitive contact point for the human but has no manip-
ulation capabilities, the latter resembles a traditional industrial system, but enables
powerful manipulation (in fact, on a level considerably beyond most traditional in-
dustrial manipulators). In the basic scenario, the robot identifies interesting object
candidates through visual saliency and first asks for their label, trains an object rec-
ognizer, asks for the grip type to be applied, and then puts the object away using the
specified grip. Even though this is a simple, linear process, both the environment and
the speech-based interaction create many diversions, such as non-objects being asked
for due to spurious bottom-up detections, speech being mis-understood, gestures being
mis-interpreted, the human interrupting the robot during actions, and so on. Dealing
with these issues in appropriate manners created many architectural challenges regard-
ing the coordination of the interaction and action sub-systems. Moreover, a parallel
sub-system produces social cues, such as gaze feedback, to aid interaction. In more
recent work, instead of the BARTHOC torso, we have constructed and applied a new
robot head called “Flobi” [LHS™10], depicted in ﬁgurem Flobi sports an expres-
sive face, and has been designed to elicit a sympathetic response, mainly due to its

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Figure 1: The Scenario

(a) The “Curious Robot” asks for a label (b) The “Flobi” head

much more friendly exterior [HegI0O]. Both the electrical interfaces and the capabil-
ities of Flobi are quite different from BARTHOC, so its application has also created
a number of typical challenges for the software architecture, being representative for
changing software-hardware interfaces during system evolution.

2.2 Related Architectural Work

The rapid composition of components is a well-known challenge in software archi-
tecture. This is particularly noticeable for distributed systems, because of middleware
integration, and for research-intensive systems, because of the need to rapidly imple-
ment, evaluate and test multiple approaches or iterations. The methods and tools in
place for composition directly affect the quality attributes of the resulting software.
Not surprisingly, the literature contains a number of proposals to achieve this goal,
such as module-interconnection languages (cf. for a discussion), data-flow
and visual programming (reviewed by [JHMO4]), etc. In industry, Model-Driven-
Engineering (MDE) is the newest attempt at these ideas. However, as Schmidt points
out [Sch06], the non-functional qualities of such tools can be decisive for their applica-
bility. For example, CASE tools were widely seen as too far removed from the domain
of application. Every tiny bit had to be modelled, which caused models to become
complex and unmaintainable, quickly. MDE, which adds meta-models, is seen as one
potential way out, but still unproven. The data-flow approach, on the other hand, has
been proven to be practicable in some important domains (such as signal processing,
e.g. and control, e.g. [BHOS]), but it is unclear whether it can also be applied
to more general modeling cases and what kind of domain-specific abstractions will be
necessary. It is also noticeable that data-flow often comes with powerful tool support,
e.g. as provided by TI LabView or Mathworks Simulink.

3 Facilitating Incremental Component Composition

Based on the outlined considerations, we have investigated the data-flow approach
for component composition, particularly regarding the software engineering aspects
of re-use, maintainability and tool-support. Our approach is based on a toolkit that
enables application of the data-flow approach to existing programs, thus substantially

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

27

ActuatorGraph$2
QueueHeadSource

InjectorQueueHeadSource

Advances ﬂsmn Languages CommandGenerator
Mabotic.
GraphSynchronizer$1

\ / / Serial SequenceCorrelator
leader]

=X+Y
C=4%*B [Ta

g
... == true]]

SourceTagCorrelator$2

C

(a) (c) fine-grained data-flow progra(rlj)(from [JHMO4]) (d) coarse-grained dataflow (from [Lull1])

Fig. 1. A sithijge brograimfde zpndgtsrllz{‘m)ﬁndetpldaﬂdhtwtﬁqulvalent (b).
Figure 2: Examples for data-flow programs of differing granularity.
2. THE DATAFIME\DENEEUOWD EXXETRHION MODBken on stnkernomliiafiétswallpof idswulput arcs. It
2.1. The Puzd DitadlBurbiDdedfiow Model then ceasetierecasims erdowtiitn tmiesarits to become

wering the bﬁrd@blen&@mmlr@mﬁﬂmmmmytﬂmloped its imple-

In the dafafiohe mmﬁmm’mm éﬁh%héeﬂﬁﬁmmai& 59®hly in how we use
gram is regnaase: S ML (3077 1 0P WY ST) ()11

[Arvind ad(AﬁquIalﬂBGplllav E Adis7in compre St hoctin s pann %‘%ﬁlon t(; :}lllgtgest the
1982; Denth982:9DénBien 195 4tk i ..., si&% : i %Fw We puggest that re-use,
1975; Karp9ahd Mn}tmﬂaﬂﬂhmﬂ@f A gcideas, several case

o Y d

P W2
of the grafhtlarcgyapinitive PHHHEHARES 1@&%1&@%@%3@@@% gontrol drivers and
such as asitthmesicanithmetperobobdmiarisotadecorepatek pritidatnatisdyshanwhibave examined the level of
ations. Dirdtoed. ddisebicdeensthetweditith entiivtaliesb d it gaiddbdipin datddleyfinding substantial

represent fhpféﬂmﬁmﬂﬁﬂmﬂm%kmmeﬁhakw W@We&eu@ ﬁ?@ﬂﬂf?dpotentlal limits of
the instru¢hienndifustnsks KGR <hikeH 8 L Eﬁfgo‘ﬁ% Fegards global state
D
& mple

tually, dataallyweata fhisens ; QEGHR ﬁ‘f’lﬁ I%Eﬂb
arcs [Denmaircd 9DEnwis d9 Héh: KK

bounded ﬂmﬁnﬂecﬁlﬁtsdsuh(mt)()lml@iﬁﬁgO) Erosudes t}mqmﬂmtthlefpnmakmlrﬁopanaﬁxﬂve parallel
[Kahn 197 aArcd 9ldt. fhovestbhwetrfl avntodeardzavodion akéhetiostatittiendswriction level.

are said to dnecisgiditaros tophaidhids Tl ddd taflolm Molle bixdatpltow! Wataiow trersus a tra-
those thatthosedhay fAoe smichyoare satg}ub beﬂmtltmad sd;nmmh]smugrﬁmhpmigwm in shown in

arcs from #ras fimde.that node. ASE EI% d th
;‘, ions and the arcs
en the Bibog X gmglsa GaS %:%}?éo‘f@ms when it was
vation nodwmhamdekapm pilow gr é
input arcsjnpiggaringﬂdhggms Y, the nodes were

U LI r&his was identified

gram. Wherewar Wipesfiesa
havieonsddHardhiadethgranvddadies, with our own

ofanode (aﬁ]ﬂﬂimiﬁtméledtal’immmtlatﬂlﬂ&m praeeheits

the node iglsaidotbelis Saxied boe hd&nglmhalﬂfumﬂgmﬂd) Bhiylatteribe gt nt
Culler 1986nllemt8&6; 3@0119&8@‘ Sﬁ%@mp&ﬂ?m eelition. Classically,
Keller 198KleAefirk282é Aol Yubtrer the input(s) of a

some undefimed tinde fafied: firh %ﬁ e
e e T e RO WS B e A uiTe ’1 VRN %% fﬁ% ¢ fufput arc(s). Execu-
token frontekeh frode Bachafidoninddte fierng sebdpphcahsddmﬂldztmbmﬁdﬂaimnnt&edlﬂown each

forms its ofsaratios, gpet placesenmd pladasa npathata path.

ACM Computidg8h Swygiohg36uNeyk, Mard6 20@4.1, March 2004.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

tion thus follows the data, as it flows through the graph — hence the name.

The classical model assumes infinite hardware parallelism, which is not realiz-
able. The pure data-driven approach may also waste computation on results which are
not needed. Therefore, other models have been suggested, such as Kahn process net-
works (KPN) [KM77]. These are demand-driven, i.e. nodes are only activated when
their outputs are requested. Other models, such as SDF [LM87] use node-metadata to
statically schedule execution as needed. However, these approaches also come with
complexity, are not always realizable (e.g. SDF still uses dynamic scheduling for con-
ditionals) and are primarily necessary for fine-grained data-flow. Therefore, in our
approach, we have opted for the classical data-driven execution. Our toolkit supports
both one-thread-per-graph (optimized for minimal scheduling overhead) as well as
one-thread-per-node (optimized for minimal latency) execution models.

3.2 The Filter-Transform-Select Decomposition Principle

The granularity of nodes has a major effect not only on the execution but also on
modeling and understanding of dataflow graphs. Our primary concern is the reduc-
tion of unnecessary complexity, while increasing functional re-use. Taking inspira-
tion from event-based integration [BCTWO90], we suggest a decomposition into filters,
transformations and selection (FTS) nodes [LSWOQ9J|. These are defined as follows:

Filter. A filter decides whether a particular graph section is used. This is directly rele-
vant for re-use, as we may want to re-use functionality in different circumstances
than originally envisioned.

Transform. The processing nodes themselves are transformations.

Select. Whenever there are multiple options, at least one of which must be taken, a
select node chooses the path. It is an error if no condition is met, which promotes
a structured dataflow design that reduces mistakes.

Besides these distinctions, the decomposition also depends on the level of inter-
est. For example, an algorithm often contains many conditions. As outlined above,
describing a graph structure on that level is considered too fine. Therefore, the decom-
position into filters, transformations and selectors is suggested to be performed at the
highest possible level, just below the component boundary.

As a last aspect, we have also carried forward these distinctions into a domain-
specific-language for the creation of graphs. It separates the implementation from
the model and, due to its higher level of specification, supports rapid application de-
velopment. While our language is just a prototype so far, it has already been used
successfully for several of the case studies presented in the following.

4 Case Studies

Our main interest has been to evaluate the applicability of the data-flow approach
across several domains. Therefore, we have conducted several case studies, where we
compare conventional implementations with FTS-based ones, as well as successive
iterations of data-flow applications. These allow us a quantitative assessment of the
level of re-use seen and also feedback on the maintenance operations necessary, i.e.
the maintainability.

It should be noted, however, that the intent of these comparisons is not to make
absolute value judgments — far too many variables would be a factor. Instead, the
intent is to gain insight into what kind of issues to expect when changing between
approaches. In the following, we will summarize the case studies and present our

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Saliency

Regions Interest-Region

Figure 3: Typical input data (from [LPS™09]).

conclusions. The full studies are available as part of a PhD thesis [Liil1]. The graphi-
cal representation of models is based on UML activity diagrams [UMLO0S], with plate
model extension [Liil1].

4.1 Data fusion

The first object of study has been the action selection component in the “Curious
Robot” scenario [LPST09, [LPS™11]. Action selection is an important part of any
autonomous system. In such components, communication and interaction with other
components, as well as data fusion often make up a substantial part of the code. These
are exactly the areas where we expect re-use potential. Furthermore, data fusion is
typically tree structured, which constitutes a baseline processing case.

To realize action selection in this instance the following functions are necessary:
Visual event receiption, ranking of visual regions, integration of background knowl-
edge, selecting the most salient region and proposing an action that acquires the next
most interesting piece of information. See figure [3]for example inputs and results.

An initial, independent version of the action selection component has been imple-
mented by a colleague of the authors, for the first iteration of the “Curious Robot”
demonstrator [LPST09, section 2.D]. The implementation is small-to-mid-size, with
778 source lines of code distributed amongst 22 classes, 5 of which are small inner
classes. From the code size, the basic COCOMO [Boe&4|] model would put such a
component at 1.87 person-months, without overhead. While this may be an overesti-
mate, given that it assumes a typical commercial development process, the component
interfaces with many others, adding developer communication, so it seems realistic.

Re-use The component uses a middleware and associated marshaling routines.
Otherwise, its implementation is primarily influenced by communication and data-
management. The action selection implementation itself is simple, and thus fairly
small, and distributed amongst the other code. This is not an ideal situation, if the
selection algorithm would need to be upgraded.

After re-implementation using a data-flow formulation, the resulting graph consists
of 39 nodes, with 25 different types, containing 696 lines of code. Most importantly,
only two node types are specific to the component, the other 23 are potentially generic
and 13 (52%) of them have already been re-used in other, unrelated applications. The
remaining two nodes contain only 103 lines of code, with another 131 lines in the
graph model (using verbose XML syntax).

This high-level of re-use is consistent with expectations about such components,
but has only been made actual through the data-flow based composition method. The
resulting graph is shown in figure[d]

Maintenance Having demonstrated a substantially increased level of re-use, we
now consider maintenance aspects. For this, we have added visualization functional-
ity, displaying the inputs and choices of the component. This is mainly needed for
debugging, so we have realized it as an optional, second application. Ordinarily, such

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

vnpack
to-ObjectRegionArray

INFORMATIK 2011 - Informatik schafft Communities ‘ www.informatik2011.de

41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

NonEmptyArray]

rray]

ArrayToList

ArrayToList

FusionSourceTag FusionSourceTag
[tag=fuse.background] [tag=regions.objects]

FusionSourceTag
[tag=regions.saliency]

CountingTagggdFusionNode

RegioninfoRank

Periodic
ter. @645td]

Pack
to-ObjectRegion

FusionSourceTag
[tag=fuse.target]

MemorySource | (‘MemorySource (MemorySource
ShortTerm ShortTerm ShortTerm
MemorySource
ShortTerm

XcfEventX OMDocument
XcfEvent

[XdEveanOM Dccumen(]

XcfEvent
ListClear

TaggedFusionNode

CompareAndFuse

X cfEventX OMDocument
XcfEvent

Unpack

to-ObjectRegionArray XPathMatcher

On/STATUS)]

XPathSingle
XPath = /*

AddChildElement

ray]

ListCollector
ArrayToList

[XPathMatcher

TXPathMatcher| X PathMatcher
. ot (Grip)]]

..serLabel)]]

ArrayToList
[Fusmnsuurce'rag] [FuslnnSuurceTag [‘h“‘ej (tStatl "'bu‘ej [“’Ulej

[tag=fuse.background] [tag=regions.objects]

FusionSourceTag
[tag=regions.saliency]

CountingTagggaFusionNode

RegioninfoRank

Periodic
.ter.@645fd]

Pack
to-ObjectRegion
FusionSourceTag
[tag=fuse.target]

TaggedFulionNode

DocumentSerializer DocumentX OP

TextFrame) [Tasksubmission
TaskService on ShortTerm

part (b) lower part

eajruppes

X Pathl atcher

Figure 4: Visual'zepieSentation of the action selection component model.

XPathSingle
XPath = /*

a choice would resultin-substantial reimplementation, processing the same inputs, etc.
However, in the data-flow approach using a textual model, all nodes can be re-used
v needs few modifications.

Specifically zﬁﬁﬂ%dpm 'za@gmes new node types have been added, mainly for

on operations consisted of three node insertions,
inging up the GUI) and a removal of another

4.1.1 Case study 2: Hardware independent serial robot control

After looking at data-fusion, which is a popular but not particularly robotics-specific
function, the second’Zase-study will consider a subject closer to robotics, motor con-

trol through . ks are popular, as they allow to implement control

TextFrame) [TaskSubmission
TaskService on ShortTerm

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

algorithms in a dedicated, real-time capable microcontroller with fairly low effort, but
still control them in detail from a more powerful host PC. It requires implementing a
control protocol, however, which can be specific to the controller manufacturer.

The requirements for such protocols are as follows:

e Transduce abstract control commands to the vendor protocol and inversely for
sensor data. This may sometimes be dependent on current device state.

e Manage access to the serial link — many protocols prohibit sending a command
before a reply for the previous one has been received.

e Realize a blend mode — protocols differ in whether a new command overwrites
a previous one, is queued or is refused. Some protocols allow a choice, in others
this must be realized through explicit queuing or cancellation.

e Deliver feedback information on start of command execution.

Study Design For this case study, a hardware independent layer for different robots
has been implemented. The robots are:

1. The BARTHOC humanoid torso [HSF" 05|, manufactured by MABOTIC GmbH.

2. The Sony EVI D31 Pan-Tilt-Zoom camera, using the VISCA protocol [Son99].
This camera is common in many robotic applications and the protocol is also
used for several other cameras by Sony.

3. The “Flobi” anthropomorphic robot head [LHS™ 10], developed jointly by Biele-
feld University and MABOTIC GmbH. It uses an advanced protocol, based on
ideas from both of the above.

All of the above have been realized using the proposed approach. Regarding re-
use, we have examined the size and make-up of the resulting graphs, summarized in
table More details and the full graphs are available in [Liil1]].

l Protocol #Nodes | #Node types \ #Links \ #Custom nodes

MABOTIC 11 11 10 2
VISCA 31 25 51 14
Flobi 14 12 20 5

Table 1: Protocol graph size summary

Reuse From this summary, it is obvious that the MABOTIC and Flobi protocols
could be realized with moderate effort and using only very few custom nodes. The
custom ones are essentially just the transducers for input and output. The rest of the
nodes could be re-used between protocols or from the standard node libraries. Such
standard nodes include serial i/o, data combination, type filters, etc.

In contrast, the VISCA protocol required a much higher number of node types,
much less of which are from the standard set. Furthermore, these nodes are also much
more connected, in contrast to the earlier two protocols, which are mostly chains.
The reason behind this is that the VISCA protocol keeps considerable state on the
controller, some of which is necessary in creating command packets. This unfortunate
fact requires the protocol implementation to keep a global state, which leads to a fair
amount of connections in order to shuffle this state around. It shows that data-flow
modeling, with its local view of data, is not well suited to a global state.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities

www.informatik2011.de

41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

©
: e

‘ActuatorGraph$1
(s, | (mome) (e)

GraphSynchronizer$1
leader]

[Cumm\ EvemTransducer) [REadSensmEvemTransducer]

PacketGenerator

SerialPortGraph$1
Serial Sink

Serial 2Protocol $3
WriteConfirm

(a) vl: read sync only

3

‘ActuatorGraph$1
[QueueHeauSwm InjectorQ ce | (InjectorQ ce

ReadSensorEventTransducer
ControlEventTransducer

GraphSynchronizers1
leader]

Serial PortGraph$1
Serial Sink
Serial 2Protocol $3
WriteConfirm

(b) v2: all commands synced

Figure 5: Command output graphs for Flobi protocol revisions.

Maintenance One other interesting aspect of modeling stems from a look at main-
tenance in the Flobi protocol. This model underwent a change during development
where, at first, only one type of command caused a reply packet. This created problems
when packets were lost due to noise and, consequently, all packets received a reply.
In the graph-based implementation, the necessary synchronization changes could be
accommodated in the write graph purely by re-wiring it, as shown in figure[5} Please
note the edge labeled “GraphSynchronizer” — it is responsible for link access man-
agement and, in the second version, has simply been moved so that it intersects both

paths.

4.2 Summary

The approach has been experimented on a data fusion with visualization applica-
tion and on three different robot control protocols, across three different robot plat-
forms. Both the re-use and the flexibility goals could be demonstrated in these case
studies. As expected, the benefit of flexible graph construction was particularly visible
during evolutionary development, underlining the suitability for rapid development.

We also saw that global state management is not a strong suit of the approach,
whereas local state is no issue and regularly used. This suggests that it should be
coupled with a coordination approach that manages global state, and couple it to the
data-flow graph engine, e.g. to select paths based on external information.

It should also be noted that the case studies presented here only represent a part of
the applications realized through such means. Since the toolkit’s inception, we have
explored a variety of applications. Here, the use of the XML-based textual modeling
format has proven particularly useful to rapidly create and modify components.

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

XML Element | Attributes Description

node type, name, source Node of the given type, with optional name
and source node. If "source’ is not given,
uses predecessor in document order.

arg type Configuration argument for construction.
select - Enclose a number of alternative paths.
target - One of a number of alternatives.

filter type Condition to be met for this path.

fuse sources, required, outputType | Combine output from n named nodes into

a map or pair.

Table 2: Slightly abbreviated summary of XML elements for model specifications.

S Constructing Graphs

Originally, the component graphs have been created using the toolkit implementa-
tion language (Java). This approach is still used at some places, but several drawbacks
were reported by users of the toolkit. Most importantly, constructing the graph and
specifying parameters for the nodes is a configuration task which is conceptually quite
different from the implementation of nodes. Furthermore, from a program understand-
ing point of view, it might be too easy to bypass the intended method of passing data
(edges) though shared state variables. These make it much harder for the engine to en-
sure scheduling constraints, and they also add complexity to analysis and monitoring.

5.1 XML syntax for data-flow graphs

As a first step to address these issues, an XML-based configuration language has
been created, based on four constructs: i) node configuration (including naming), ii)
implicit and explicit linkage between nodes to create edges, iii) fusion constructs to
combine data, and iv) selection. See table [2] for an overview, listing [I] for a simple
example and figure [f] for the resulting graph structure.

Listing 1: Example graph processing two different XML-based sources

1 <model>

2 <node name="fib” type="XMLFibonacciSource”/>

3 <node name="time” source="null” type="XMLTimestampSource”/>
4 <select name="choicel” source="fib,time” selectMax="1">

5 <target>

6 <filter type="XPathFilter”>

7 <arg type="StringChild”>/fibonacci</arg>

8 </filter>

9 <node type="XPathTransformSingle”>

10 <arg type="StringChild”>number (/fibonacci/value)</arg>
11 </node>

12 </target>

13 <target>

14 <filter type="XPathFilter”™>

15 <arg type="StringChild”>/*</arg>

16 </filter>

17 <node type="XPathTransformSingle™>

18 <arg type="StringChild”>string (.)</arg>

19 </node>

20 </target>

21 </select>

22 <node name="static” source="null” type="StaticSource”™>

23 <arg type="StringChild”>something else</arg>

24 </node>

25 <fuse sources="choicel ,static” required="choicel ,static”/>

26 <node type="QueueSink”/>
27 </model>

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

SourceAdapter[name=XOM fibonacci] SourceAdapter[name=XOM timestamp]
Node[name=SelectFirst]

‘ XPath[string(.)] ‘ ‘ XPath[number(/fibonacci/value)] ‘

StaticSource[something else]
FusionSourceTagNode[tag=choicel] FusionSourceTagNode[tag=static]

RequiredNamesTaggedFusionNode[names=[choicel, static], useOnceOnly=true]

Node[name=QueueSink]

Figure 6: Graph corresponding to listing[T]

At this moment, our graph specifications usually run to between 100 and 700 lines
of XML, with much of that taken up by configuration expressions. These represent
components that, while sometimes not overly complex, are still fully running appli-
cations. For example, the robot behaviors from [Liilll chapter 8 and 9], are real-
ized using such models. The present author has so far used about 140 different node
types, with functionality such as middleware connectivity (three different ones), data
marshaling, XML parsing, selection and transformation, simple GUISs, finite-state-
machines, file and serial line I/O, as well as some utility types, for data manipulation,
fusion, and selection.

6 Discussion

While the proposed approach is certainly not a widely used project so far, it has
now been successfully applied in several projects at Bielefeld University for about
three years, by both students and researchers. In these projects, it has been easily
adopted, largely due to its low cost of entry, and use of familiar concepts. Based
on this experience, we will now discuss some aspects that we consider of particular
interest to Software Language Engineering.

6.1 Granularity

We have initially focused the framework on the granularity issue, by suggesting
the FTS decomposition, because we believe that addressing it is key to achieve re-
usability: Re-usable chunks should be large enough to be worth-while, but not so
large as to be overly specific. That said, we do not claim to have identified the one
true granularity. Granularity is always a matter of the detail level: What is a pure
transformation on one level of view may very well have many conditions and branches
contained in its implementation. Thus, the FTS decomposition is more about extract-
ing the filter that determines when to apply a transformation at all. This is the part that
we have seen to change across different domains.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Otherwise, when looking at multiple similar components, determining good gran-
ularity may not be as difficult as initially thought: Pick blocks that re-occur across
applications. Here, the main contribution may very well have been to supply a frame-
work that emphasizes this issue and, thus, both makes people aware that composing
components as a graph of small parts may be a good approach, and assists them in
doing so.

6.2 Re-use and Configuration

As the case studies presented have shown, the proposed approach could achieve its
re-use goal. It has been asked whether this is due to a second system effect: A later
re-implementation could benefit from an improved understanding of a good problem
decomposition. This may be, but for several aspects that have seen increased re-use,
such as middleware communication, even the developers of the original components
already had a good understanding of the problem.

We believe that the seperation of configuration, composition, and computation is
more crucial. The seperation of composition from computation has been the initial
point of adopting a data-flow approach and, thus, has been expected. The more in-
teresting effect is based on the use of configuration expressions. These have been an
almost inadvertant side-effect of the use of a textual specification language: Because
arguments could not be constructed from multiple objects as easily, a textual expres-
sion language has been added instead. In some cases, such a language has already
been used before, e.g. we widely used XPath for conditions and selectors on XML
documents. This experience and its good results, then, led to the adoption of the JEXL
expression language for specifying conditions on other kinds of objects.

6.3 Experiences with the graph specification language

While the described XML syntax has only been intended as a quick stepping stone,
some of its design choices have shown themselves to be both unexpectedly convenient
and unexpectedly inconvenient.

Implicit connectivity In contrast to existing graph specification languages, our
specialized language has been designed for using implicit linkage between nodes as
much as possible. In this mode, unless specified otherwise, two node definitions that
follow each other in document order are linked into a chain. When we set out to design
the specification, our graphs primarily contained chains, with junction nodes being
much rarer. Therefore, using the XML document order when no explicit predecessor
is given saves typing, and also makes re-ordering and inserting nodes easier.

In fact, after having used this implicit way of making connections, we consider it
indespensible, and would ask for it in any future tool. A comparison to graphical tools
has been illuminating here. In principle, one would expect a visual tool for creating
graphs to be very natural, and we believe that a visual tool would hold much promise
for our approach, too. However, many graphical tools for creating graphs use a boxes-
and-arrows model, where edges have to be explicitly specified, and changed, whenever
connectivity changes. This makes, for example, moving a node a six-step operation
(1: remove incoming link, 2: remove outgoing link, 3: link previous neighbors, 4:
remove outgoing link from new predecessor, 5: link new predecessor as incoming, 6:
link node to successor), whereas with implicit linkage, it is a two-step operation (1:
cut, 2: paste). The same holds for other manipulations. In our opinion, visual tools
thus need specialized means to achieve connectivity.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Verbosity and Generation Using XML as the syntax creates a fairly verbose
specification syntax which is comparatively tedious to create. While the approach has
served us reasonably well so far, we expect that scaling it up to larger components will
likely require different methods.

That said, in several important cases, our current graph specifications substantially
consist out of configuration expressions, not XML. For example, we embedded state-
machine specifications, or XQuery expressions (XQuery, while being designed for
XML processing, is essentially on an SQL-level of verbosity). For such cases, we
consider the XML overhead to be insignificant.

On option to shorten the specifications, while keeping XML, that have already ex-
perimented with is generating the specification from a more domain-specific specifi-
cation language, which is expected to result in shorter specifications. The tool support
for XML, such as mature support for XSLT transformations, has made such generation
approaches straightforward.

Wiring for data combination While the two points above have been unexpect-
edly positive, one aspect of the current syntax has also proven an unexpected issue:
Collection manipulation for data combination. The way we have implemented this is
that whenever a node requires more than one input element, these will be fused into a
Map with string keys by the “fuse” element. One unfortunate consequence of this im-
plementation choice is that it requires more knowledge about the implementation of a
node at configuration time (the expected key names), which is also harder to determine
automatically, in contrast to the type information for construction, which is available
through reflection. Moreover, once fused, a map may require taking apart again, for
nodes that process only one of its elements. At the moment, the specification language
has no explicit support for such operations, requiring them to be carried out through
transformation nodes. This is clearly sub-optimal.

At the moment, we are undecided as to how to address this best. While it may
appear a simple solution to implement nodes with multiple arguments, we have some
reservations on the grounds of clarity and predictability. In general, however, lan-
guage support to move this collection manipulation into the background is definitely
desirable and planned as a next step.

6.4 Language Tools

One noticeable draw-back when using XML for specification is a lack of modern
development tool support. For example, there is no completion or checking for type
names (which represent the operations, and are essentially an open set, hence not easily
specifiable using schemata), and no suggestion of argument values. While this is not
very different to how much programming used to occur before the advent of IDE’s,
nowadays it feels decidedly inconvenient. We expect that such issues are rather easy
to solve, but they add to the development burden for a DSL.

A more serious issue is that the data-flow approach changes debugging. All user-
code is called by an external engine, similar to the Inversion-of-Control style of user
interface toolkits. Tracing code execution through this engine is very different from
traditional debugging, because user code and framework code is interleaved tightly.
This is somewhat offset by the fact that the separation of functionality into well-defined
building blocks can make other development tasks, such as unit-testing, easier. How-
ever, it is still by no means optimal. A debugger with an awareness of the different
execution model imposed by the data-flow engine would be one approach to address-
ing this issue.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

7 Conclusion

We have presented a graph-based approach for composing components from re-
usable building blocks, that achieves higher re-usability by introducing a middle gran-
ularity level, below full components, but above the functional level. To complement
this, we have proposed a decomposition approach based on event-based systems, the
filter-transform-select (FT'S) decomposition. In several case studies, we could show
that this approach can lead to drastically improved re-use.

Furthermore, we have presented experience reports on using a simple, XML-based
language to specify the component graphs. This language aids construction, by provid-
ing an easily changed configuration language. Furthermore, it is based on the concept
of implicit linkage, which we believe to be an essential feature for data-flow configura-
tion languages, both textual and graphical. From these reports, we have provided some
requirements for future work in software language engineering that will be valueable
in this direction.

References

[BCTWO96] Daniel J. Barrett, Lori A. Clarke, Peri L. Tarr, and Alexander E. Wise. A
framework for event-based software integration. ACM Trans. Softw. Eng.
Methodol., 5(4):378-421, 1996.

[BHO8] B. Bauml and G. Hirzinger. When hard realtime matters: Software
for complex mechatronic systems. Robotics and Autonomous Systems,
56(1):5-13, January 2008.

[Boe84] Barry W. Boehm. Software Engineering Economics. IEEE Transactions
on Software Engineering, SE-10(1):4-21, January 1984.

[BsK03] H. Bruyninckx, P. soetens, and B. Koninchx. The real-time motion control
core of the orocos project. In Proc. IEEE Int. Conf. on Robotics and
Automation (ICRA), pages 2766-2771, Taipei, Taiwan, Sept. 2003.

[Hegl0] Frank Hegel. Gestalterisch konstruktiver Entwurf eines sozialen Robot-
ers. PhD thesis, Bielefeld University, 2010.

[HSFT05] M. Hackel, St. Schwope, J. Fritsch, B. Wrede, and G. Sagerer. A Hu-
manoid Robot Platform Suitable for Studying Embodied Interaction. In
Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. IEEE, 2005.

[JHMO04] Wesley M. Johnston, J. R. Paul Hanna, and Richard J. Millar. Advances
in dataflow programming languages. ACM Comput. Surv., 36(1):1-34,
March 2004.

[KM77] Gilles Kahn and David MacQueen. Coroutines and networks of parallel
processes. In B. Gilchrist, editor, Information Processing '77: Proceed-
ings of IFIP Congress, pages 993-998, Amsterdam, The Netherlands,
1977. North-Holland Publishing Co.

[Liil1] Ingo Liitkebohle. Coordination and Composition Patterns in the “Curi-
ous Robot” Scenario. PhD thesis, Bielefeld University, 2011. in press.

[LHST10] Ingo Liitkebohle, Frank Hegel, Simon Schulz, Matthias Hackel, Britta
Wrede, Sven Wachsmuth, and Gerhard Sagerer. The Bielefeld Anthropo-
morphic Robot Head “Flobi”. In 2010 IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, 2010. IEEE.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities

41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

[LM87]

[LPST09]

[LPS*11]

[LSWO09]

[LW11]

[Nes07]

[QCGT09]

[RHSRO7]

[Sch06]

[Sch07]

[SGI6]

[Son99]

[UMLO5]

E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings
of the IEEE, 75(9), 1987.

Ingo Liitkebohle, Julia Peltason, Lars Schillingmann, Christof Elbrechter,
Britta Wrede, Sven Wachsmuth, and Robert Haschke. The Curious Robot
- Structuring Interactive Robot Learning. In International Conference
on Robotics and Automation, Kobe, Japan, May 2009. Robotics and Au-
tomation Society, IEEE.

Ingo Liitkebohle, Julia Peltason, Lars Schillingmann, Christof Elbrechter,
Sven Wachsmuth, Britta Wrede, and Robert Haschke. Realizing a Robot
System for Interactive Online Learning. In Towards Service Robots for
Everyday Environments. Springer Verlag, 2011. forthcoming.

Ingo Liitkebohle, Jan Schaefer, and Sebastian Wrede. Facilitating Re-
Use by Design: A Filtering, Transformation, and Selection Architecture
for Robotic Software Systems. In Workshop on Software Development
and Integration in Robotics, Kobe, Japan, 2009.

Ingo Liitkebohle and Sven Wachsmuth. Event-oriented Incremental Com-
ponent Construction. In Towards Service Robots for Everyday Environ-
ments. Springer Verlag, 2011. forthcoming.

I.A. Nesnas. The clarity project: Coping with hardware and software het-
erogenity. Software engineering for experimental robotics (Series STAR),
30, 2007.

Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: an open-source
Robot Operating System. In ICRA Workshop on Open Source Software,
2009.

Frank Rothling, R. Haschke, Jochen J. Steil, and Helge J. Ritter. Platform
Portable Anthropomorphic Grasping with the Bielefeld 20-DOF Shadow
and 9-DOF TUM Hand. In Proc. Int. Conf. on Intelligent Robots and
Systems (IROS). IEEE, 2007.

Douglas C. Schmidt. Guest Editor’s Introduction: Model-Driven Engi-
neering. COMPUTER, 39(02):25-31, 2006.

C. Schlegel. Communication patterns as a key towards component in-
teroperability. Software engineering for experimental robotics (Series
STAR), 30:183-210, 2007.

Mary Shaw and David Garlan. Software Architecture: Perspectives on an
Emerging Discipline. Prentice Hall, April 1996.

Sony Corporation, 4-16-1, Okata, Atsugi-shi, Kanagawa-ken, 243-0021
Japan. Command list — Intelligent Communication Color Video Camera
EVI-D30/D31, v1.21, english edition, 1999.

Unified Modeling Language: Superstructure version 2.0. Technical re-
port, Object Management Group (OMG), Inc, 2005.

www.informatik2011.de

weitere Artikel online:
http://informatik2011.de/519.html

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

	Introduction
	Software Engineering Aspects of Robotics
	The Curious Robot Scenario
	Related Architectural Work

	Facilitating Incremental Component Composition
	The Data-flow Model
	The Filter-Transform-Select Decomposition Principle

	Case Studies
	Data fusion
	Case study 2: Hardware independent serial robot control

	Summary

	Constructing Graphs
	XML syntax for data-flow graphs

	Discussion
	Granularity
	Re-use and Configuration
	Experiences with the graph specification language
	Language Tools

	Conclusion

