INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Parametrizing Motion Controllers of Humanoid Robots
by Evolution

Dietmar Schreiner and Clemens Punzengruber
Vienna University of Technology
Institute of Computer Languages, Compilers and Languages Group

dietmar.schreiner@tuwien.ac.at cpunzengruber @ gmail.com

Abstract: Autonomous mobile robots are devices that operate within a highly indeter-
ministic environment, the real world. Even worse, robots are physical devices that are
part of the real world and hence are inherently nondeterministic by construction w.r.t.
mechanical precision and sensor noise. In consequence, robotic control software has
to cope with discrepancies between a robot’s specification and its de-facto physical
properties as achieved in production. Finding feasible parameters for robust motion
controllers is a time consuming and cumbersome work. This paper contributes by
demonstrating how to utilize an evolutionary process, a genetic algorithm, to automat-
ically find terrain specific optimized parameter sets for off-the-shelf motion controllers
of humanoid robots. Evolution is performed within a physical accurate simulation in
order to speed up and automate the process of parameter acquisition, while results are
devolved to the real devices that benefit noticeably.

1 Introduction

Due to enormous progress in mechanics and electrical engineering, autonomous mobile
robots are no longer science fiction. State-of-the-art robotic devices are already applied
to mission critical tasks that could not be solved by humans due to inherent danger or
hostile environments (e.g., urban search and rescue, deep sea exploration, inspection of
nuclear power plants). Moreover, demand for intelligent autonomous devices even in ev-
eryday life has tremendously increased. Robotic vacuum cleaners, lawn mowers, or social
robots have reached mass production, while domestic housekeepers, personal assistants,
or autonomous transportation vehicles will appear in near future.

However, reaching the market introduces additional burdens to those devices: develop-
ment cost, time to market, and maintenance cost. In consequence, manufacturers have to
develop robots that are affordable, have a rather short time to market, and that do require
as little maintenance as possible. Therefore, general purpose motion controllers have to be
deployed that are robust in a wide range of environments and can cope with material and
production related inexactness. Unfortunately, those controllers clearly underperform in
various terrains. This disadvantage could be overcome by providing sets of terrain specific
controller configurations for defined environments. However, finding these configurations
is again time and resource consuming due to the huge variability in environmental factors.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Our over-all intention is to automatically generate complex motion controllers via genetic
programming. These complex controllers are programs that operate over primitive actions
(the off-the-shelf general purpose controllers)!. In order to “breed” near optimal complex
controllers, the programs’ building blocks also have to be optimized. Hence, this paper
provides a solution for automatically (and hence cost efficiently) finding adequate param-
eters for primitive actions for specific environments. We focused on a walk controller for
a humanoid robot in presence of varying floor materials, but our findings can easily be
transferred to other types of controllers and robots.

To find optimized parameters, a genetic algorithm as a specialized type of blind search
was used, as we did not get a precise specification of the robot’s control algorithm from
the manufacturer. Hence, we had to treat the controller itself as a black box, which can
be fed with certain inputs via a well defined API, and that in return calculates output
which is directly fed into the robot’s actuators. A physical accurate simulation of the robot
and its environment as much as a simulation of the robot’s middleware (provided by the
manufacturer) were used to evaluate generated parameters for specific floor materials in
terms of evolutionary fitness.

The remainder of this paper is structured as follows: Section 2 discusses related work and
outlines the context for the work presented in this paper. Section 3 provides a short intro-
duction to the concept of genetic algorithms and how one was used for our specific pur-
pose. Section 4 provides an outline of the robot we used for our experiments, its software
architecture and the simulation that came to use for the simulated process of evolution. In
Section 5 we describe our experimental setup and provide measurements that prove our
approach valid. Finally, Section 6 provides our conclusion, as much as an outlook to our
future work.

2 Related Work

Davidor [Dav91] outlines three potential fields of application for genetic algorithms in
robotics: (i) the system design (mechanics, electrical control etc.), (ii) programmable
hardware parameters for individual systems, and (iii) trajectories and motion programs for
individual applications. As our work is related to computer science, systems design is
off-topic and hence is not considered. Our over-all work is related to genetic program-
ming [Koz10, Cra85] for complex robotic motion controllers. Therefore, we generally
contribute to the third field. However, this paper’s contribution deals with optimizing
parameters for primitive motion controllers (the building blocks of complex motion pro-
grams that come to use in our genetic programming efforts) and hence is part of the second
category.

Arakawa and Fukuda [AF96] demonstrate how to generate motion trajectories for a biped
forward walk. Like the work described in this paper, their approach mainly contributes
to the second field of applications of genetic algorithms, the parametrization of pro-
grammable hardware. It is based on a kinematic model of the robot and a given reference

lincluding e (NOP)

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

trajectory (a spline function) of joint related parameters. The trajectory itself is optimized
with a genetic algorithm in terms of energy consumption. In contrast, our approach aims at
the optimization of motion trajectories without knowledge of the robot’s kinematic model
or the mathematical model of reference trajectories and hence is well suited to optimize
black boxed off-the-shelf motion controllers.

In [Ger99, ARPGMP*04] genetic algorithms are used for off-line path planning. A full
path for the whole robot between two locations within the real world is optimized. Hence,
these papers contribute to the third field of application of genetic algorithms. The genome
used in both papers encodes geometric information of a path: waypoint coordinates in
[Ger99], distances and angles in [ARPGMP04]. We also aim at optimized paths for a
humanoid robot, However, we do not evolve paths and trajectories but control parameters
for low level motion controllers (described in this paper) and motion programs made of
these low level controllers (out of scope of this paper). Hence, the genomes used in this
paper do not encode path and trajectory specific values but controller specific constraints
and parameters.

3 Evolutionary Computations

The principle of genetic algorithms was developed in the mid seventies of the last century
and is based on the concept of evolution discovered by Charles Darwin. Solutions for a
given problem are considered to be individuals that compete within a process of reproduc-
tion and survival. Therefore, each solution is encoded into a genome that fully represents
the solutions properties. Like in nature, all individuals compete to survive in a process of
selection. Only competitive individuals will survive or even reproduce, in order to create
even more competitive offsprings. In contrast to evolutionary algorithms, genetic algo-
rithms like introduced in [Hol73, Hol75] utilize genetic operators to recombine genomes
during sexual reproduction [Mit98], as much as the concept of generations, to simulate
natural evolution in a more realistic way. The quality and hence the probability to sur-
vive and to reproduce of an individual is determined by a so called fitness-function. This
function provides a quality measure for the solution of the given problem and is one key
element of genetic algorithms.

3.1 Genetic Algorithm

Algorithm 1 outlines the basic structure of a genetic algorithm like the one used for our
work described within this paper. At Line 2 a randomized start population consisting
of sp individuals is generated. The evolutionary process for one generation is executed
between Line 3 and Line 17 and is repeated as long as the quality of evolved solutions
(the individuals) is not sufficient and hence lies below the minimal required quality €, or
until the maximum number of generations {2 is exceeded. In Line 6 two individuals are
randomly selected from the actual population. The process of selection takes each individ-

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

ual’s fitness into consideration: the better the individual fitness, the higher the probability
to be selected. The block from Line 7 to Line 11 denotes the genetic operaton crossover:
from two parents (f,m), two offsprings (c1,c2) are generated. With respect to the crossover
probability p. the genes of the parents are crossed over, or stay untouched producing two
perfect clones. Thereafter, both offsprings are subject to mutation, which is again done
with respect to the mutation probability p,,, in Line 12 and Line 13. Finally, the next gen-
eration is calculated in Line 16, by sorting all individuals (parents and offsprings) in order
of their individual fitness, and selecting the best sp ones while eliminating bad ones.

1: gc=0

2: Population = randomPopulation(sp)
3: repeat

4: NextGeneration «— {}, ge++

s. fork=0tosp/2do

6: f, m = selectParents(Population)
7 do probably(p.)

8 cl, ¢2 =crossover(f,m)

9: or
10: cl,c2=f,m
11: end do
12: do probably(p,,,) mutate(cl)
13: do probably(p,,,) mutate(c2)
14: NeztGeneration — NextGeneration U {cl, 2}

15: end for
16: Population <selectBest(Population U NextGeneration, sp)
17: until gc > Q or bestFitness(Population) > &

Algorithm 1: Genetic algorithm as used in our approach

3.2 Genetic Operators

The heart of each genetic algorithm are its genetic operators: selection, crossover, and
mutation. By carefully selecting proper versions of these operators, quality of solutions
and the over-all runtime of the genetic algorithm have to be balanced.

3.2.1 Selection

As implied by its name, the selection operator chooses those individuals of a population
that may reproduce in order to build the next generation. In general high quality individuals
should be selected to improve the individuals over generations. However, keeping a certain
diversity is of great importance to avoid convergence at local optima. Hence, a proper
selection operator will favor superior individuals but will not exclude inferior ones from
reproduction. In literature, various selection operators have been evaluated and discussed.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Some improve the runtime performance of a genetic algorithm, others guarantee higher
diversity.

For our approach, we combined two well known operators creating the o-operator, which
provides lower execution times but also establishes a high diversity. The genetic algorithm
used for our work utilizes two parent individuals in order to create two offsprings. In order
to combine two selection operators, the two parent individuals are selected by distinct
operators. Algorithm 2 sketches this process.

1: function selectParents(Population) returns f,m
2 f = tournamentSelection(Population)

3: m = truncationSelection(Population)

4 return f,m

5: end function

Algorithm 2: Selection operation as used in our approach

The first selection operator that comes to use is called tournament selection [GD91]. In
contrast to most selection operators tournament selection does not require the calculation
of fitness values for the whole population. Instead it randomly chooses a subset of individ-
uals, the so called tournament. To find the winner of the tournament, fitness values for this
small subset of individuals has to be calculated only. The process of creating tournaments
and finding the winners is repeated as often as parent individuals have to be selected.

The second selection operator is that of truncation selection. Operators of this type select
a predefined number of parents p that produce a fixed number of offsprings A. The so
called (u, A) selection operator chooses the p best offsprings as individuals for the next
generation, while the actual generation is eliminated. A modified version of this operator
that is used in our work is called (z + A) selection operator. It chooses the y individuals
for the next generation from the set union of the actual generation and the offsprings.

3.2.2 Crossover

In sexual reproduction multiple (typically two) individuals are used to procreate offsprings.
The parents’ genomes are recombined in order to “construct” new individuals that unite
properties of their parents. As two full genomes—the ones of the parent individuals—have to
be combined into one genome per offspring, they are typically spitted into fragments that
are randomly combined. Typical crossover operators split genomes in two (Single-point
Crossover) or multiple halves (Multi-point Crossover). Our approach uses a Parameterized
Uniform Crossover operator [SJ91], which uses separate crossover probabilities for each
locus of the genome, and hence allows fine grained control of the reproduction process.

3.2.3 Mutation

In each iteration of the genetic algorithm defined in Algorithm 1 the genetic operation for
mutation is applied to each “newborn” individual with a given probability p,,. This muta-
tion operator is used to reduce the risk of getting stuck in local extrema with the performed

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

blind search by adding randomness to temporary results. Mutation on the one hand has to
be used very carefully in terms of frequency and impact. Only a small number of individ-
uals should undergo mutation as genetic algorithms provide good means of diversification
by sexual reproduction via the crossover operator. The other important issue on mutation
is the impact: altering information, for example flipping a bit, has to be done at seman-
tically defined locations. Like in molecular biology, these locations are called locus and
cluster all symbols that represent one specific fact. A locus of a byte value for example
denotes a sequence of 8 bits within a bit-streamed chromosome. If this locus has to be
mutated, only one of those eight bits must be affected by the alteration.

function mutate(individual)

1:

2: genome = getGenome(individual)

3: for locus in genome

4: do probably(p;) locus = randomValue()
5: end for

6: end function

Algorithm 3: Mutation operation as used in our approach

Algorithm 3 schematically denotes the mutation operator as implemented for our work.
The loop starting at Line 3 iterates over all loci of an individual’s genome. Mutation is done
in Line 4, where each locus may be affected by a separate probability of mutation p; that
is independent from all other locis’ probabilities. If a locus is mutating in accordance to
the probability function, it is simply overwritten by a semantically correct but randomized
fact. Randomization can be pure random or can be a randomized deviation of the original
locus, thus producing changes that are located within the original’s neighborhood.

4 Robotic System

The work described in this paper is motivated by our work with standardized “near mass
production” devices, the Aldebaran Nao robots> [GHB08]. This product is currently
used in academic research and education, and hence has been manufactured in numbers of
several hundreds. However, the company aims at mass market, and thus much larger lot,
which underlines our considerations of cost and time to market. The following sections
provide a summary of the robots’ hardware and software architecture.

4.1 Hardware

The Nao is a two-legged robot, which is 58cm tall and weighs approximately 4.3kg. The
robot has a total of 21 degrees of freedom, where a degree of freedom denotes a joint
that can be changed within one dimension by the robot’s actuators. The Nao’s actuators

Zhttp://www.aldebaran-robotics.com/

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

are driven by two types of motors: type one operates at a nominal speed of 6330rpm by
a nominal torque of 12.3mNm, type two operates at a nominal speed of 8810rpm by a
nominal torque of 3.84mNm.

The motherboard contains a 500M Hz x86 AMD Geode CPU, 256 M B SDRAM, and
2G B flash memory, and is operated by a custom based distribution of Open Embedded
Linux (32 bit x86 ELF).

4.2 Software

As the Nao robot is delivered with a proprietary middleware based framework for ser-
vice oriented applications, namely NaoQi, the software implemented for our experi-
ments was designed w.r.t. the service oriented computing paradigm and hence is based
on SOAP [NYO07]. NaoQi provides a service container for application services as much
as abstraction of the robot’s operating system, the firmware, and the device drivers. In
addition, NaoQi includes a set of behavioral services, like motion primitives. The walk
controller and its parametrization targeted by our work here is one of those black-box low
level motion primitives supplied by Aldebaran. The robotic application itself—artificial
intelligence, computer vision, and complex motions—is implemented as modules issuing
services at the application layer

NACQI
AK.Control < > AMotion ARMsion
n
) A 4
Shared Memory

Figure 1: Software architecture

Figure 1 depicts an overview of this system: The application modules are embedded into
a NaoQi container. Thus, calls to low level functionality as much as service requests are
issued via the NaoQi SOAP interface. Following main application modules are relevant
for the experiments described within this paper:

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

AKControl: This module’s main responsibility is the Al, as much as motion planning and
scheduling.

AKMotion: The motion module executes and monitors motion primitives in order to per-
form complex motions. High-level motion commands like walk to position are split
down to primitive commands that are then issued to the NaoQi middleware in or-
der to feed low level motion controllers. The parameter sets evolved by the genetic
algorithm proposed in this paper are injected here.

AKVision: To monitor motion efforts sensor feedback is required by the motion module.
The vision module provides this information and stores it into shared memory for
further use.

5 The Experiment

As described in the introduction of this paper, the off-the-shelf motion controller
parametrization is not competitive for most floor types due to its universality. Conse-
quently, the process of parametrization has to be done for each device on each considerable
ground type. In absence of a feasible automated solution for this problem, in a first try this
work was manually done and took several months to get a stable but competitive walk for
5 robots on a small set of floor types. To overcome this resource consuming and dull task,
the solution to evolve parameter sets for the motion controller via a genetic algorithm was
finally developed.

5.1 Setup

In a genetic algorithm, a population has to be evaluated. Hence, the fitness of all indi-
vidual has to be calculated for each generation. For our experiment precision and speed
of a parametrized walk have to be measured in order to asset its fitness. As early ex-
periments showed, measuring one individual’s fitness takes up to 20 seconds of runtime
and about 30-40 seconds setup time for the robot, and several measures have to be done
for one evaluation to calculate a satisfying averaged value. This leads to an overall time
of approximately 3 minutes required per individual of one generation. It is obvious that
this number is too large for manually conducted experiments with adequate population
sizes and a sufficient number of generations. Therefore, the evolutionary process has been
carried out within a physically accurate simulation, introducing a noticeable speed up in
evaluating the individuals’ fitness in absence of a human operator.

The developed software framework hence integrates (i) the simulator and a vendor sup-
plied binary of the robots kernel for adequate simulation, (ii) an existing framework for
genetic algorithms, (iii) and the robotic application software described in Section 4.2.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

ECJ

NAO Controller

1

Problem

v

ECJ-Webots Bridge

Y

Python

Webots | Y
NADQI |

AKMotion

ECJ-Webots Bridge

n
A 4

[
L 4

GP Controller

Figure 2: Software architecture for evolutionary simulation

For the robotic simulation, the Cyberbotics Webots simulator® was chosen [LT05, Mic98].
The simulator is based on the open source physics engine ODE* that is rather robust,
customizable, and accurate in terms of precision and runtime performance. In addition,
Aldebaran provides correct models of the Nao robot and its controllers for Webots. For
the genetic algorithm, the ECJ framework® was used, as it is well known and accepted in
academia.

Figure 2 depicts the architecture of our simulation framework: An external NaoQi core (a
robot kernel cross compiled for the computer hosting the simulation) is connected to the
Webots simulator via the Webots interface and the Nao models provided by Aldebaran.
In that way, a physically accurate simulation of the Nao robot can be achieved. The ECJ
framework is connected to the simulator via a bridge component that implements bidi-
rectional communication over network sockets. The problem that has to be solved by the

3http://www.cyberbotics.com/products/webots/
‘http://www.ode.org/
Shttp://www.cs.gmu.edu/~eclab/projects/eci/

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

genetic algorithm in addition is connected to the NaoQi core via a python bridge, and is
able to feed parameter sets directly into the robot’s (simulated) motion module.

As the NaoQi middleware provides a set of motion primitives that are related to the robot’s
walking ability, not only a straight walk was parametrized but the full set of available
controllers: (i) Walk Forward, (ii) Walk Backward, (iii) Walk Left, (iv) Walk Right, (v)
Turn Left, and (vi) Turn Right.

5.2 Settings

Following sections specify the parameters we used for the robotic simulation and for the
genetic algorithm.

5.2.1 Robotic Simulation

The Webots simulator Version 6.2.4 was used at its default settings in conjunction with the
original Nao models from Aldebaran as much as the original NaoQi 1.2 core.

As simulated results have to be used on real robots and the real world, the physical friction
coefficients for floor materials had to be determined for the simulation. For our exper-
iment these values have manually been acquired and compared to the ones used by the
simulator. Results showed that the coefficients used were sufficient for the desired preci-
sion (deviations of less than a millimeter are negligible due to tolerances within the robot’s
hardware).

5.2.2 Genetic Algorithm

For the genetic algorithm, a genome was developed that contains 35 loci, each representing
one of the 35 parameters relevant for the walk controller. Properties of interest for the
genome denoted in Table 1 were for example step length, step height, magnitude of arm
movements, and damping coefficients in terms of stiffness of relevant joints®.

The settings for the genetic algorithm that were used to produce the results provided in
Section 5.3 are denoted in Table 2. In accordance to our observations, major improvements
are achieved within the first 20 generations, therefore the maximum number of rounds
(max) for the genetic algorithm was limited to 20. Evolution beyond that point did not
bring any noticeable changes for the individuals fitness. For the process of mutation new
values are generated within a given neighborhood (¢) around the original value instead of
using pure random values in order to keep noise low.

The fitness of each evolved parameter set is evaluated at a given ground material by letting
a robot exactly walk a predefined distance. The time taken and the final position (the
exact distance traveled) of this walk are then used to calculate the corresponding fitness

5By controlling the stiffness of every single joint, the overall elasticity and flexibility of the robot can be

controlled.
erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html

ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

Locus | Parameter min. Value | max. Value
0 MaxStepLength 0.001 0.09
1 MaxStepHeight 0.001 0.08
2 MaxSideStepLength 0.001 0.06
3 MaxTurnAngle 0.001 1.0
4 zmpOffsetX 0.001 0.05
5 zmpOffsetY -0.05 0.05
6 pLHipRollBacklashCompensator | O 15

7 pRHipRollBacklashCompensator | -15 0

8 pHipHeight 0.001 0.9
9 pTorsoYOrientation -20 20
10 pShoulderMedian 1.5 1.9
11 pShoulderAmplitude 0.1 0.5
12 pElbowAmplitude 1.5 1.9
13 pElbowMedian 0.1 0.5
14 pArmsEnable 0.0 1.0
15 pLipYawPitchStiffness 0.0 1.0
16 RHipYawPitchStiffness 0.0 1.0
17 LKneePitchStiffness 0.0 1.0
18 RKneePitchStiffness 0.0 1.0
19 LHippRollStiffness 0.0 1.0
20 RHipRollStiffness 0.0 1.0
21 LHipPitchStiffness 0.0 1.0
22 RHipPitchStiffness 0.0 1.0
23 LAnkleRollStiffness 0.0 1.0
24 RAnkleRollStiffness 0.0 1.0
25 LAnklePitchStiffness 0.0 1.0
26 RAnklePitchStiffness 0.0 1.0
27 LShoulderRollStiffness 0.0 1.0
28 RShoulderRollStiffness 0.0 1.0
29 LShoulderPitch Stiffness 0.0 1.0
30 RShoulderPitchStiffness 0.0 1.0
31 LEIbow YawStiffness 0.0 1.0
32 RElbow YawStiffness 0.0 1.0
33 LElIbowRollStiffness 0.0 1.0
34 REIbowRollStiffness 0.0 1.0
35 SampleRate 18 27

Table 1: Genome for the parameter set

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192

ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Parameter Value
A Number of offsprings 150
o Number of parents 15
Q Number of generations (max) 20
Pe Crossover probability 100%
Dm Mutation probability (discrete uniform distribution) 20%
10} Deviation of mutation 0.1

Table 2: Parameters for the genetic algorithm

value in accordance to Formula 1 where m is the number of consecutive tries with the
same parameter set (for the experiment we defined m = 3), n is the actual try, Ad, is
the deviation from the distance to travel (the difference of the distance that was requested
and the way that was de facto walked), and ¢,, is the time that try n took to reach the final
position. For our experiments the robots were programmed to cover a distance of exactly

75cm.
m . .
Fitness = { n=1 Adn + 1555, iftn <trimpour 0
LE ift, > trimEour

5.3 Results

Our approach was able to evolve robust and performant parameter sets for all six gen-
eral purpose motion controllers supplied by the robot’s manufacturer. Using the evolved
parameter sets, the robots have gained an average speedup of 12.1%. At the same time
precision increased by 43.1%. This value is a relative value denoting the improvement of
precision compared to the precision of the original controller. The best improvement was
found for the Walk Forward parameter set, where by an overall walked distance of 75¢cm
our parameters dislocated the robot for 0.55¢m while the original parameters lead to a
displacement of 1.04cm.

Table 3 shows the runtimes of the genetic algorithm for the six controllers. As the back-
ward walk is the slowest of all walks (due to mechanical issues) the genetic algorithm for
this specific walk took the most runtime, while the walk forward was the fastest one.

Finally, Figure 3 and Figure 4 depict the results for the Walk Forward controller. Mea-
surements for the other controllers look similar and are omitted here due to the limited
space within this paper: Figure 4 shows the overall development of the population (de-
noted as Total Moving) and the development of stable solutions (denoted as Total Stable).
Individuals that did not move the robot have been considered to be dead by construction
and have been removed before “birth”. Individuals that did not cause the robot to fall have
been considered to be stable. As one can see, insufficient solutions have been removed

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

Motion Controller | Runtime Motion Controller | Runtime
Walk Forward 32 h 36 min || Walk Backward 45 h 31 min
Walk Left 39 h 52 min || Walk Right 37 h 23 min
Turn Left 34h 09 min || Turn Right 33 h 03 min
Table 3: Execution times of the genetic algorithm
Fitness
54\
2.25 \\
200
1.751
150
1.25 1
1.00
0751 x — T LT T T c
0501
0.251 \\
000 e
o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Generation

— Best Fitness —- Avg. Fitness ---- Avg. Time - - Avg. Precision

Figure 3: Evolution of Walk Forward

from the population’s gene pool rather fast: in the first generation, only 3 individuals have
been stable, while after generation 4 the number of stable individuals was between 78 and
129. Another effect observed was the fluctuation of stable individuals, which varied from
generation to generation, but stayed on a rather high level after generation 5.

The corresponding fitness value for the best individual of a generation as much as the
average fitness of the whole generation is depicted in Figure 3. The diagram also shows
the average time and the average precision’, which are used to calculate the fitness value.
This shows the interaction of speed and precision: At generation 18 for example, speed is

increased (time taken is reduced) while precision is reduced.

TThe y-axis for time and precision is not labeled as these values are only depicted to visualize dependencies.

Time range is [0, 20] seconds, precision range is [0, 20] cm.

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

www.informatik2011.de

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Individuals
150 / - -
125 /
II Y
f ™
100 / b -
II
II i [
751/ i
I
|I -
S0
25
o1 2 3 4 5 &6 7 & 8 10 11 12 13 14 15 186 17 18 12
Generation

Total Stable — Total Maving

Figure 4: Development of population for Walk Forward

6 Conclusion

This paper demonstrates how to automatically calculate improved parameter sets for black
boxed, off-the-shelf motion controllers of humanoid robots by a genetic algorithm. The
evolved parameter sets outperform custom parameters supplied by the manufacturer in
terms of motion speed and precision, and hence can replace the original parameter set for

each covered floor material.

The evolutionary process is shifted to a physically accurate robotic simulation and thus
can be run automatically without human interaction. Consequently, a rather huge material
library can be calculated with reasonable effort. In addition, our experiments show that
results from a proper simulation of the Aldebaran Nao robot can be used on real robots
without a noticeable loss of precision and performance. The average precision of a simu-
lated robot has been increased by 43.1% while an average speedup of 12.1% was gained.
At a real robot precision deviated from the simulation results and was increased by 19.2%

only, while the gained speedup was nearly the same.
Measurements prove that excellent results for parametrizing the robot’s custom motion
controllers already converge after 20 rounds (generations) of the genetic algorithm. How-
ever, it is also observable that good enough results can be achieved even after 5 generations.
This fact can be useful, when generating huge material libraries.
Our future work on evolutionary processes for humanoid robots aims at genetic program-
ming of motion controllers [Koz10, Cra85]. For this approach we not only try to evolve
parameter sets for motion primitives, but also full programs for complex composed mo-
tions. First results are promising, and show great potential for future improvements.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

References

[AF96] T. Arakawa and T. Fukuda. Natural motion trajectory generation of biped locomo-
tion robot using genetic algorithm through energy optimization. In Systems, Man,
and Cybernetics, 1996., IEEE International Conference on, volume 2, pages 1495
—1500, oct 1996.

[ARPGMP™04] V. Ayala-Ramirez, A. Perez-Garcia, F.J. Montecillo-Puente, R.E. Sanchez-Yanez,
and E. Martinez-Labrada. Path planning using genetic algorithms for mini-robotic
tasks. In Systems, Man and Cybernetics, 2004 IEEE International Conference on,
volume 4, pages 3746 — 3750, oct. 2004.

[Cra85] Nichael Lynn Cramer. A Representation for the Adaptive Generation of Simple Se-
quential Programs. In Proceedings of the 1st International Conference on Genetic
Algorithms, pages 183—187. Lawrence Erlbaum Associates, 1985.

[Dav9l] Yuval Davidor. Genetic Algorithms and Robotics: Genetic Algorithms and
Robotics - A Heuristic Strategy for Optimism. World Scientific Pub Co, 1991.

[GD91] David E. Goldberg and Kalyanmoy Deb. A Comparative Analysis of Selection
Schemes Used in Genetic Algorithms. In Proceedings of the First Workshop on
Foundations of Genetic Algorithms, pages 69—93. Morgan Kaufmann, 1991.

[Ger99] M. Gerke. Genetic path planning for mobile robots. In American Control Confer-
ence, 1999. Proceedings of the 1999, volume 4, pages 2424-2429, 1999.

[GHBT08] David Gouaillier, Vincent Hugel, Pierre Blazevic, Chris Kilner, Jérome Monceaux,
Pascal Lafourcade, Brice Marnier, Julien Serre, and Bruno Maisonnier. The NAO
humanoid: a combination of performance and affordability. CoRR, abs/0807.3223,
2008.

[Hol73] John H. Holland. Genetic Algorithms and the Optimal Allocation of Trials. SIAM
J. Comput., 2(2):88-105, 1973.

[Hol75] John H. Holland. Adaption in natural and artificial systems. The University of
Michigan Press, Ann Arbor, 1975.

[Koz10] John R. Koza. Human-competitive results produced by genetic programming. Ge-
netic Programming and Evolvable Machines, 11(3-4):251-284, 2010.

[LTO5] Vajta Laszlo and Juhasz Tamas. The Role of 3D Simulation in the Advanced
Robotic Design, Test and Control. In Vedran Kordic, Aleksandar Lazinica, and
Munir Merdan, editors, Cutting edge robotics. pro Literatur, 2005. ISBN: 3-86611-
038-3.

[Mic98] Olivier Michel. Webots: Symbiosis Between Virtual and Real Mobile Robots.
In Jean-Claude Heudin, editor, Virtual Worlds, volume 1434 of Lecture Notes in
Computer Science, pages 254-263. Springer, 1998.

[Mit98] Melanie Mitchell. An Introduction to Genetic Algorithms. The MIT Press, third
printing edition, 1998. ISBN: 9780262631853.

[NYO7] Mitra Nilo and Lafon Yves, editors. SOAP Version 1.2. W3C, 2007.

[SJo1] William M. Spears and Kenneth A. De Jong. On the Virtues of Parameterised

Uniform Crossover. In Proceedings of the 4th International Conference on Genetic
Algorithms, San Diego, CA, USA, July 1991, pages 230-236. Morgan Kaufmann,

1991.
erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html

ISBN 978-3-88579-286-4

