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Abstract: Comprehensive analytical modeling and simulation of cyber-physical sys-
tems is an integral part of the process that brings to life novel designs and products.
But the effort needed to go from analytical models to running simulation code can im-
pede or derail this process. Our thesis is that this process is amenable to automation,
and that automating it will accelerate the pace of innovation. This paper reviews some
basic concepts that we found interesting or thought provoking, and articulates some
questions that may help prove or disprove this thesis. While based on ideas drawn
from different disciplines outside programming languages, all these observations and
questions pertain to how we need to reason and compute with real numbers.

1 Introduction

It is widely anticipated that much of tomorrow’s innovations will be in the form of cyber-
physical systems, that is, systems that include computating, communicating, and physi-
cally dynamic components. A vivid example of such a system is a team of robots playing
soccer, or a fleet of vehicles functioning collectively as an intelligent transportation system.
Because we need to communicate about, reflect on, and reason about designs, modeling
is an integral part of conceiving and developing new products in such domains. Because
many important problems defined in terms of mathematical models do not have closed
solutions, simulation also becomes an integral part of the same process. Unfortunately, the
formidable time and effort needed to convert analytical models to running simulation co-
de can impede or even derail the innovation process. Our thesis is that this transformation
process can be more reliably and predictably automated, and that such automation can play
a crucial role in training the cadre of future innovators and making them more productive.

Although a vast range of modeling and simulation tools already exists, automating the
mapping from models to simulation codes remains a challenging and elusive goal — even
for seemingly elementary domains such as rigid-body dynamics, which is a fairly simpli-
fied type of mechanical models that can be used to develop basic models of robot dynamics
[Zhu et al 2010]. While this first work succeeds in identifying some basic problems and
showing how programming language techniques such as partial evaluation can play a role
in addressing them, the automation problem is larger than what can be addressed with a
handful of research papers, and success in demonstrating this thesis can be of far reaching
consequences that maybe be of interest to other researchers. At the same time, entering
the domain of cyber physical systems can be challenging, primarily because of the vast
diversity of technical disciplines that touch on this domain. This diversity of sources is an
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obstacle not just for researchers but also for education.

In an attempt to reduce the effort needed to overcome this problem, this paper reviews basic
concepts from several related areas that we found interesting or insightful, and articulates
some questions that may assist in investigating this thesis. While drawn from different
disciplines outside programming languages, all of these observations and questions pertain
to how we need to reason and compute with real numbers.

Contributions and Organization: While it can be intuitively obvious from the outset
that modeling systems that involve real-valued and time-varying quantities is somehow at
odds with traditional approaches to computing, it is less obvious precisely what needs to
be done to integrate real numbers with these approaches. With the aim of shedding some
light on what is missing, this paper reviews basic concepts and puts forth some questions
about:

e Analytical modeling and differential equations,

Traditional numerical methods and floating-point arithmetic,

e Basic properties of real numbers,

Interval arithmetic,
e Exact real arithmetic,
e A closer look at functions and initial value problems, and

e The educational challenge.

Our hope is that this review can serve as a quick introduction for language researchers into
aspects of numerical computing that could play an important role in the future of modeling
and simulation of cyber-physical systems.

2 Analytical Modeling and Differential Equations

The first real challenge in understanding how engineers and scientists need to reason and
compute with real numbers is that it requires understanding the type of physical modeling
problems that give rise to this need in the first place. This challenge actually consists of two
parts, one which is domain-specific and pertains to understanding how mathematics can be
used to model any given physical system, and the second is concerned with understanding
the nature of the mathematical problems that arise from modeling. To enable engineers
to design novel cyber-physical systems, we need to train them in modeling. Fortunately,
excellent courses exist that introduce students to this art (see for example [Cellier and
Greifeneder 1991]). Understanding the nature of the mathematical problems that arise
from different types of models — at least from the programming languages point of view
— is a bit more challenging.
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The analytical models used for studying physical systems are remarkably diverse. For ex-
ample, even in the absence of a time dimension (in which case the systems are called
static), we have two large classes: linear systems and non-linear systems. Linear systems
problems are solved by techniques of linear algebra, which require a fair degree of techni-
cal sophistication, but non-linear systems are a much more advanced topic. But even in the
context of static systems we notice the familiar yet highly effective mathematical pattern of
reducing hard problems to problems that we know how to solve. In this case, a non-linear
system can often be handled through linearization, a process that essentially consists of
computing the symbolic derivative of the system around a certain point (called working
point), and pretending that the system is “almost linear” around this working point. Two
ingredients of this technique will also recur frequently in the treatment of (dynamic) pro-
blems that have a time-dimension: differentiation, and approximation.

Dynamic systems generally give rise to problems where the solution is a function rather
than a simple numeric value. A simple example is the trajectory of a flying ball, which is a
function from time to a three (or, if we want to model spin, six) dimensional point in space.
In principle, all one needs to model dynamic behaviors is to view variables as ranging over
functions of time. In practice, however, it is most often the case that many aspects of such
models are captured as rates of change, or derivatives, rather than direct constraints on
values. For example, in the case of the flying ball, the main constraint (in a Newtonian
model of a point mass flying in a vacuum) is the effect of gravity, which is a constraint
on the second derivative of the position of the ball. Thus, models of dynamic systems are
often differential equations. However, the differential operator is a tremendously express
language feature. For certain domains, it is also useful to use the dual operator, integration,
and in some cases there is no natural way to “differentiate both side of the equation” to get
something that still captures the original problem but makes use only of differentiation.
Such integro-differential equations arise in many different domains, but they are in some
sense the most expressive class of equations, and we can explain and address many diffe-
rent problems in cyber-physical systems before we need to consider a class of equations
that is big enough to include this class.

It may seem natural from the programming-languages point of view to define a simple
context free grammar formed of arithmetic operators and differential and integral ope-
rators and study their semantics. Unfortunately, integro-differential equations are a suffi-
ciently complex subject that it could render such an effort futile. After several rounds of
asking domain experts about the possible existence of any universal numerical methods
that could approach solving problems in this class, we gave up. We then repeatedly con-
vinced ourselves to settle for smaller problems, posed the same question, and gave up;
until we finally reached a class small enough to be tractable, which is, roughly, Ordina-
ry Differential Equations (ODEs), and in particular the non-linear variety. More broadly,
what we learned at this point is that, at a coarse granularity, differential equations can be
classified in order of decreasing generality as follows:

o Integro-differential equations
e Partial differential equations

o Differential algebraic equations (generally non-linear)
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e Ordinary differential equations (linear and non-linear)

This classification is not strict in the sense that the constraints on each class are often ortho-
gonal. Furthermore, it is not always obvious (and maybe not always possible) to make sure
that an equation that appears to be in one class is not a member of a lower class. We choose
to focus on non-linear ODEs as a starting point rather than linear ones because linear ones
have closed form solutions. This is one of many choices that may deserve revisiting, but
the rationale for making this choice is that exploring the semantics of a language that can
model dynamic systems in general will require understanding what numerical methods
achieve. In particular, we were initially naive about what could be achieved with linear
systems and about the existence of closed-form solutions for differential equations. It is
possible that many electrical engineers may fall in this trap as we did, because much of
the courses in undergraduate curricula make extensive use of linear ODEs in modeling
circuits. We were therefore surprised that the model for the dynamics of a mechanical sys-
tem as simple as a two-dimensional pendulum is non-linear. In fact, mechanical systems,
which arguably constitute an essential element of cyber-physical systems, are generally
non-linear when describing systems in more than one dimension. Thus, dealing with non-
linear ODEs as a bare minimum seems necessary.

Glancing upwards from non-linear ODE:s is not unreasonable, in particular because occa-
sionally some equations from higher classes can be relatively easily mapped down to this
class. For example, we discovered that a slightly modified partial evaluator (consisting of
binding-time analysis followed by specialization and symbolic differentiation) can be used
to convert some problems that syntactically appear to be partial differential equations —
because they use partial derivatives — to equations that do not use partial derivatives at all.
This conversion turns out to be highly convenient for expressing an important equation for
rigid-body dynamics, namely, the Euler-Lagrange equation. Glancing upwards again from
non-linear ODEs we find the DAEs, which are basically the same non-linear ODEs, except
that they do not come in the convenient form of X’ = F[X], where X is a vector, X' is
the derivative of that vector, and E[X] is an expression with a hole. The particular form
of ODEs makes a relative-straight forward attach using numerical integration possible, as
integrating both sides leaves us with simply X on the left hand-side, which is very helpful
when the variable X is exactly what we are trying to solve for. Solving for X is precisely
what is needed when we solve what is called an initial value problem (IVP). Simulating
what happens when we actuate a rigid body system is an IVP.

Our modified partial evaluator generated DAEs from the Euler-Lagrange equation. As it
turns out, for the problems that we used for testing the system, an ad hoc solver was able
to convert all the generated DAEs into the ODE form, which could be simulated using in-
tegration. In general, however, highly sophisticated methods are needed to convert general
DAE:s into ODEs, and extensive use of these technologies is made in implementations of
the Modelica modeling language (see for example [Broman 2010]). However, in general,
it seems that these techniques generally produce ODEs, and so the issue of using DAEs
rather than ODEs in models seems to be fairly orthogonal to all other concerns relating
to numerical methods (such as floating point issues an integration in the context of IVP

problems).
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A big challenge in solving numerical problems is whether it is possible to give the user mi-
nimal expectations for what kinds of problems a certain numerical library can reasonably
solve. Right now the state of the art seems to be either 1) to use numerical methods which
are susceptible to all sorts of accuracy errors, 2) to use symbolic methods, in which case
we should expect that for most problems no solution will exist, and worse, that for most
systems the solution will be very expensive to compute. There is a desperate need for a se-
mantics of real-valued computations that would allow much more moderate expectations
to be set and met.

Before moving to issues specific to numerical methods and floating-point numbers, three
points seem noteworthy. The first is that the problem of simulating the behavior of me-
chanical systems seems to be primarily an IVP problem. When a system of equation has
been cast (possibly after some transformations) as an ODE, this type of problem becomes
primarily a matter of performing integration. There are other problems where the initia-
lization constraints are not provided about one starting point from which we can sweep
forward in one direction, but rather, as a collection of constraints that somehow must si-
multaneously be satisfied by the solution, even though this collection does not fall on one
point in time and space. These problems, known as boundary-value problems (BVPs), are
different from IVPs. And although they can in some case be recast as IVPs or optimization
problems on IVPs, we have so far considered them to be beyond our initial investigation,
and can only hope that the techniques we develop for IVPs maybe also used for BVPs.

The second point is that differential equation textbooks tend to classify problems by whe-
ther they can be in their entirety cast in a particular form, which is generally a isolated, rat-
her concisely described equation with some parameters that can be instantiated differently
for different problems. Then, for each type of equation there is a different solution tech-
nique. Familiar names such as Maxwell’s equations, the wave equation, the Navier-Stokes
equations, and the like, are examples of such families. We have not yet encountered a sys-
tematic way of dealing with equations that are composites of different types by isolating
the distinct subparts.

The third and final point is whether there are principles for effective modeling and simu-
lation, and whether we can articulate them sufficiently clearly so that we can teach them
effectively to students? Today we find that simulation codes sometimes demand the full
power of super computers that effectively need a small power station to operate, a reaso-
nable question to ask is whether the right phenomena is being modeled in the first place.
Answering this question is hampered by the fact that there is a distinction between mo-
deling and codes that run simulations to solve problems relating to these models. When it
takes several man months to manually go from the mathematical models to the actual im-
plementations, parties on both sides can easily view the two as being completely distinct
entities. It becomes easy to argue that the models are just about capturing the essence of
the phenomena and have nothing to do with simulation concerns, and that the codes are
just about “the computation” and not the physical phenomena. If the gap between models
and simulations is replaced by an automatic mapping, it would disappear, making it much
more feasible to experiment with radically different approaches to modeling while keeping
an eye on the computation cost of different models. Of course, this does not automatically
solve the problem of articulating and explaining clearly to students how cost-efficient mo-
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dels can be constructed, but it is necessary to offer a starting point for the investigation of
this possibility.

3 Traditional Numerical Methods and Floating Point Arithmetic (FPA)

Traditional numerical methods and simulation technologies have carried us a long way,
allowing us to build airplanes, space ships, and many other advances as well as mundane
innovations. However, part of the difficulty in going from analytical models to simulation
codes is due to the nature of the codes that are built using traditional numerical methods
techniques. Numerical methods for solving virtually any type of problem are highly varied
and yield qualitatively different results when solving the same problem. Yet the user of
these methods still has to bear the responsibility of choosing the right method for dealing
with each different kind of model that they formulate and wish to simulate. This is a huge
distraction for a user who’s concern is to study the system that is being modeled, rather
than how to implement the solver for different components of the system being modeled.
Because it requires making a choice between more than two options for each component,
it is a problem that has work-hour cost with an order of complexity exponential in the
number of components. This is an optimistic estimate, given that testing whether a certain
method works well for a certain type of components is usually done using a certain data
set, and this result does not necessarily imply that it will work equally well for other data
sets. Even with this simplifying assumption, it is a serious impediment to productivity.

An important question from the software engineering point of view is whether there is a
way to hide these implementation choices from the user in such a way that the right one
is always chosen (if it exists). A key technical challenge in approaching this question is to
determine whether or not there exists a single method (or semantics) that can be viewed
as a golden standard, and which can be used for both statically proving or dynamically
checking the correctness of any given method. Since dynamic checking will always allow
us to validate more methods than static techniques (due to the reduction in the number of
quantifiers in the problem), the natural and important question to ask becomes whether
there are also universal numerical methods that can enable the automatic selection of the
right method for the given problem dynamically. The existence of such methods could be
most insightful if they end up being simpler than many of the other prevailing methods, as
it is likely that they would be revealing of some deeper ideas that are today only implicit
in such methods.

Thus, traditional numerical codes only work correctly if certain assumptions about their
inputs are satisfied, and these assumptions are usually not checked by the code. Further-
more, these codes generally do not raise any errors to indicate that the output that they
produce is meaningless, nor do they generally confirm the level of accuracy in the answer
that they produce. Traditional methods do involve careful analysis of how the values in the
model are represented in the computation. But this analysis is generally done at the meta-
level and not in the code. In essence, this approach allows the programmer to bake into
the implementation ad hoc assumptions about how they expect the code to be used. We
believe that it is these restrictions that result in significant loss in usability and reusability
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of numerical codes developed using traditional methods.

A large fraction of the analysis that must be carried out and the problems that arise when
trying to use such codes relate directly to the question of how real numbers are repre-
sented. Today, the vast majority of numerical codes are based on floating-point arithmetic
(FPA). Again, floating-point technology has been very successful in that it enabled the
development of numerous highly successful and highly useful numerical codes that have
enabled numerous real-world innovations. However, it is reasonable to consider alternati-
ves. In particular, while FPA is highly well suited for hardware implementation, it remains
in essence a static data structure that can represent only a finite set of values. As a result,
rounding must be done with almost every arithmetic operation. Rounding can introduce
enough error that it can be extremely difficult to evaluate simple polynomial expressions
(See for example [Tucker 2011]).

The most noteworthy feature of floating point numbers is that they do not explicitly tell
us how many digits (or bits) of the result are truly valid or representative of the real ans-
wer that such a computation should produce if we were computing with some idealized
form of real numbers. When we consider this feature together with the fact that numerical
computations usually involve an extremely large number of operations, putting aside the
problem that this feature creates for users of such codes, it is really impressive that any
large numeric codes can be built correctly. Clearly correctness can only be achieved with
significant meta-level reasoning. However, it remains an important question to determine
how we can express the precise conditions needed to guarantee that a particular result of
numeric computation is truly valid to a given number of significant digits. If this is achie-
ved, it maybe possible to consider more ambitious questions, such as formally proving
these theorems, or generating code guaranteed to be correct. In contrast to the overarching
goal of mapping models to simulation codes, the last question is focused specifically on
the issue of producing code that implements a real arithmetic computation using floating
points correctly.

Stepping back from the questions of understanding traditional numerical techniques, it is
important to note that from a software engineering point of view, floating point numbers
are a somewhat curious choice for implementing real numbers. In particular, they are a
completely static data structure being used to represent values that, in general, may need
an unbounded number of digits to represents. Interestingly, much care is needed if we
wish to address this problem. For example, seemingly plausible alternatives such variable
precision numbers may simultaneously achieve less than what we might expect at first, and
they may also bring more complexity to the problem than we started off with. Before we
consider promising alternatives to floating point numbers, it will be useful to recall some
basic mathematical properties of numbers.

4 Basic Properties of Real Numbers

Real numbers are a concept so widely used in science and engineering to model both
abstract and concrete systems that it hard to imagine the world without it. For example,
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the distance between two points on two-dimensional space is a real number. Similarly, the
ratio between features of simple geometric forms such as the circle is a real number. The
integral of 1/x is the natural logarithmic function. The non-zero function that is equal to
its derivative is the natural exponential function. Thus, much of the analytical component
of engineering and science disciplines rely heavily on this concept.

Real numbers derive both their power and their troublesomeness from their ability to tran-
scend simpler forms of numbers, such as natural numbers, integers, and rational (fractio-
nal) numbers. For example, none of these sets are big enough to include numbers like 7
or e. It is therefore remarkable that scientific computing has been able to achieve so much
while using a finite representation for real numbers, namely the floating-point representa-
tion.

Keeping in mind some basic mathematical theoretic properties of real numbers can help
us navigate the complex space of alternative representations for real numbers. A basic
example of these types of properties is cardinality, or the size of a set (See for example
[Beals 2004)):

e The set of different values that a floating point number can take is finite,
e The set of rational numbers is countably infinite, and

e The set of real is uncountably infinite.

It may seem that because rational numbers closer in cardinality than floating-point num-
bers to that of real numbers (“At least rational numbers are infinite”) that they could make
a more natural approximation of real-numbers. But closer inspection suggests that they ac-
centuate the fact that it is too easy to introduce unnecessary ad hoc decisions when trying
to devise representations of real numbers. Indeed, rational numbers can be easily represen-
ted exactly on a computer through the use of dynamic data-structures. The basic arithmetic
operators of addition, multiplication, and division for rational numbers can all be compu-
ted exactly on a computer. However, rational numbers are still insufficient for representing
real numbers (A fact long known in mathematics [Cantor 1874]). When programming, this
mathematical fact is reflected by the absence of an obvious way to compute with rational
numbers in place of real numbers. This difficulty arises when we try to carefully explain
why we cannot extend our set of operators to trigonometric functions if we limit ourselves
to rational numbers as a representation. Mathematically, the problem can be seen as the
absence of a best rational number approximation for the result of the trigonometric functi-
on. It is too tempting to take a pragmatic approach and make an ad hoc choice and choose
some rational number to return when the result is not really rational, but then we begin
to fall in the same traps that make it easy to abuse FPA to produce completely incorrect
results. From the software engineering point of view, such choices are baking-in magic
numbers into our code, which will eventually make it brittle and hard to maintain. Thus,
rational numbers do not seem very well suited as a direct representation for real numbers,
and without building significant additional machinery around them. What is interesting
here is that the consideration of the cardinality of the sets seems to provide the clearest
indication of this mismatch, which is then echoed when we try to build implementations
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by a need for making ad hoc choices. It is useful here also to be aware of the cardinality
of various types of irrational real numbers, such as algebraic and transcendental numbers.

5 Interval Arithmetic

Interval arithmetic [Moore et al 2009] is a powerful method for addressing one of the most
basic problems with working with plain floating-point numbers: We can get information
about the actual precision of the answer. Interval arithmetic uses two floating-point num-
bers to bound the exact answer of a real-valued computation from above and from below.
Thus, interval arithmetic provides us with an immediate warning if rounding error has
grown too large to make the result of any use. Qualitatively, this additional information
about precision is a huge improvement over allowing results to be silently corrupted by
rounding. With this kind of information, the programmer or user can redo the full compu-
tation with a higher precision, and hope that this produces an answer with an acceptable
level of precision.

Interval arithmetic is not a plug-and-play replacement for floating-point arithmetic. In fact,
conceptually, interval arithmetic provides us with great concrete examples of why the float-
point way of doing business may in fact not be the way we will ultimately want to compute
with real numbers. For example, the rather simple operation of comparison on float-point
numbers will have to behave differently when we move to intervals. How do we answer
the question of whether the interval [1, 2] is less than [1.5, 2.5]? The answer cannot be
yes or no, but rather, that the two are incomparable. As a result of such a chance, it may
not always be possible to expect that numerical algorithms can work without modification
using intervals rather than arithmetic.

It is interesting to note that a kind of abstract interpretation is almost built into inter-
val arithmetic. It is not clear that this view has been fully developed (exceptions include
[Goubault and Putot 2007] and [Chapoutot SAS 2010]). Interval arithmetic gives rise to
a beautiful theory that can teach us a lot about how how we can compute effectively with
real numbers. A basic result of interval analysis is that performing a computation (that con-
sists of the basic arithmetic operators) with more information about its inputs will always
lead to a result that has no less information. Denotational semantics experts and domain-
theorists will immediately recognize this property as a notion of continuity that provides
an elegant way to characterize well-behaved operators that we may or may not want to
introduce into the language being interpreted using the primitives of interval arithmetic.
An elegant observation from interval analysis is that continuity can occasionally provide
a nice method for producing an answer with higher-precision without necessarily increa-
sing the precision of the intermediate results. For example, because of continuity, we can
always split the input interval into two overlapping parts, compute two results for the two
parts, and merge them together. This can often produce an improved result, especially in
cases where the computation suffers from what is often referred to as the dependence pro-
blem. Evaluating an expression such as z — x with x equal to [1,3] does not produce [0,0]
but rather [-2,2]. Operators such as addition have no way of knowing that there is a special
relation between their two inputs. Splitting the input into smaller parts, however, helps us
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get closer to the most precise answer. For example, if we compute the expression with =
equal to [1,2] we get [-1,1], and with x equal to [2,3] we get [-1,1], which is clearly more
precise than [-2,2].

It is interesting that the phenomena known as the dependence problem, from the semantics
point of view, is more of a feature than a bug. In particular, it is well matched to the idea of
compositionality of interpretations in denotational semantics, which is often an advantage
both from the point of view of defining and implementing a language.

A curious fact about several recent treatments of interval arithmetic is that they seem to
often resort to opening up the interval, computing with both sides, and putting them back
in again. This is an example of breaking abstraction boundaries, and can easily lead to
breaking the continuity property mentioned earlier. We may have encountered a related
problem, which is not finding simple definitions of transcendental values and trigonome-
tric functions that do not involved separately computing an expected value and an error
term and then adding them together. It also seems that algorithms such as Euler’s forward
method for integration (which is needed for doing integration in the context of solving an
initial value problem, for example) are things that the authors have been told to exist, but
do not quite know how they work, or whether or not they are defined extensionally.

It is instructive to note that interval arithmetic still uses floating point numbers, and in par-
ticular, it does not use rational bounds. This is a rather simple fact that is sometimes easily
overlooked, but is significant both because it is unchangeable and informative about the in-
trinsic nature of interval arithmetic. It is also a fact that is easily omitted either because the
term “interval arithmetic” does not explicitly contain the term “floating” point or because it
is generally described as a way to dealing with the limitations of floating points. The intrin-
sic nature of this observation can be illustrated by considering computing sin([0.9,1.1]).
If we want the result to be a pair of rational numbers, then the only “right answer” would
be the pair of rationals that are closest to the exact answer for sin(0.9) and sin(1.1) from
the outside. But there are not two such best approximations of real numbers in general,
and therefore, there is no ideal rational candidate. This observation is important for rea-
lizing that floating point bounds are not just an implementation convenience for interval
arithmetic, but rather a necessity. Because floating point numbers have maximal degree of
precision, the result of the above computation is well-defined, because there is always a
best floating point approximation to any real number.

We conclude this section with three questions. The first question is whether demand-driven
iteration or incremental evaluation inherent to the way we use interval arithmetic? For ex-
ample, the most basic (albeit not the only) method for improving a result that we attain
with interval arithmetic is to repeat the computation with a higher-precision floating-point
representation for the bounds. What does this really tell about the idea of interval arithme-
tic? It could mean that doing interval arithmetic forward is inherently iterative. Would it
be useful to do it backwards?

The second question is what would constitute a well engineered and conceptually clear
way to build an interval arithmetic library. In particular, real-analysis is usually not effecti-
ve. Constructive analysis is in a sense more effective, but not aimed at computing with real
numbers in the same way. How can we build up such a library in a way that would allow
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us to explain clearly and easily to students how they are expected to program with interval
arithmetic? What is the right way to approach the problem of re-computing with higher
precision? It is reasonable to expect that essentially the same question will also need to be
answered for more sophisticated representations of real numbers.

The third question is whether there are high-level formulations for the computational pro-
blems and solution techniques that arise in this domain. In particular, it seems that im-
portant techniques such as interval arithmetic are typically constructed in ways that isolate
some underlying floating-point infra-structure. While this appears perfectly sensible from
the point of view of efficient implementation, it means that interval arithmetic is typically
not built “from the ground up”. Instead, it depends critically on the idea that floating-point
arithmetic is the most efficient approach to implementing stream-based computation. It
seems plausible that this could be the case on current architectures. It is less obvious why
this approach should be the most appropriate for other emerging architectures such as
GPU, FPGAs, many-core systems, or for future microprocessor designs.

6 Exact Real Arithmetic

From a software engineering point of view, a curious fact about interval arithmetic is that
it does not have a built-in mechanism for deciding what to do when the precision of the
computed answer is not satisfactory. As mentioned earlier, one way of dealing with this
problem is to repeat the entire computation with higher precision everywhere. While this
approach could work for some applications, intuitively it seems unlikely that same pre-
cision is needed everywhere in a large computation. It is also plausible that there will be
certain computations where some parts are needed to a much higher precision than others.
A natural question to ask is therefore weather there is a systematic approach to performing
computations to a higher-precision on an as-needed basis. Exact Real Arithmetic (ERA)
is an approach to representing real numbers that provides this type of automation [Boehm
1986].

The theory of ERA reveals a structure that is at least as beautiful and as insightful as
that of interval arithmetic. Mathematically, we can view the basic idea behind ERA is
representing real numbers by a potentially infinite sequence of shrinking intervals. One
way to define a computational representation of this idea is simply to represent a number
by a potentially infinite sequence (or “stream”, for short) of digits. Streams provide a
natural implementation of a demand-driven way to implement the iteration that we perform
over interval arithmetic computation until we reach a satisfactory answer. The stream of
digits approach is intuitively appealing because it is similar to the way we learn about
decimal numbers from an early age. Interestingly, it does reveal some of the more peculiar
issues that can arise when computing with real numbers. For example, in general, real
numbers will not have unique representations [Brouwer 1921]. This discovery is intuitively
illustrated by considering the fact that the two streams 1.000... and 0.999... represent the
same number when the last digit repeats forever. Possibly more interesting is the fact that
operations as simple as addition become undecidable if we work with the traditional (non-
overlapping) interpretation of digits. We can intuitively see this as a problem of carry
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propagation. Deeper explanations in terms of the expressivity of the representation could
offer more insight. For example, with non-overlapping interpretations of digits reveal that
the set of intervals expressible without overlap is tree-structured and that the boundary
between any two adjacent intervals of the same size is a point that cannot be contained in
an interval of the same size. Fortunately, this problem of undecidability of addition with
non-overlapping digit representations is easily solved either by relaxing the interpretation
of the digits or by adding negative digits to achieve essentially the same effect.

Other ERA representations exists besides streams of digits, including representing a real
number (computation) as a function from a tolerance to an interval that has size that is no
greater than that tolerance. In fact, it has long been viewed that this type of representation
can be more efficient than the stream of digit representation [Boehm 1986]. Precisely why
this appears to be the case is debatable. However, we expect that the renewed interested
in this area will enable more extensive investigation of the large space of possible ERA
representations, including the impressively efficient iRRAM model [Miiller 2001].

An interesting but somewhat technical feature of ERA representations is that they are of-
ten based on continued fractions, and this is typically viewed as important for efficiency.
From the software engineering point of view, they are rather mysterious contraptions, as
they are typically implemented with the use of a large number of “magic numbers” that
are actually the result of a wide range of important results discovered by different mathe-
maticians in the past. This feels a bit like bringing in high-voltage cables to power up a
pilot lamp. A more serious concern is that the introduction of such special constants can
get in the way of understanding the real computational foundations underlying computing
with real numbers. It is therefore a compelling question to determine precisely whether or
not continued fractions are essential for the efficient implementation of ERA, or if there
lower-level primitives that are more natural.

Finally, given the performance demands of much of numerical computation, possibly the
most important question to consider is the presence of effective techniques for strictness
analysis that can reduce the need for unnecessary iterations. Another — possibly equally
important — question is the feasibility of defining primitive and composite arithmetic
operators in such a way that they can naturally extract the most amount of information
about the result using the least amount of work by their sub-computations. We are not
currently aware of any works that have addressed this issue.

7 A Closer Look at Functions and Initial Value Problems

As soon as we consider the performance of an abstract data type, understanding the context
in which it is used becomes imperative. As noted earlier, for many applications simulations
will consist of solving initial value problems on differential equations. Mathematically, the
solution to such equations is a function from real numbers to real numbers.

Before looking more closely at the nature of continuous functions, it is useful to note that in
the context of cyber-physical systems solutions are generally not continuous. For example,
if we extend the basic model of a bouncing ball that we mentioned earlier to support the
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possibility of instantaneous bouncing when the ball hits the ground, we suddenly have a
system where the first derivative (speed) is not continuous, as it undergoes an instantaneous
change in direction when it hits the ground. Such hybrid systems which can exhibit both
continuous and discrete behaivor can introduce a wide range of additional complexities to
the solution techniques. For example, a bouncing ball can exhibit Zeno behavior, which
is a real problem for simulation. In particular, if we model a system where the impact is
imperfect and energy is lost, then the ball will stop bouncing after a finite amount of time
but after an infinite number of changes in direction of its speed. Realizing the changes
in direction would lead any simulator that does not have special support for this kind of
behavior to diverge. Engineers often solve this problem by modifying the problem to make
the ball stop bouncing completely after a certain threshold. From a software engineering
point of view, it is clear that we have just introduced a magic number that makes this
otherwise reasonable model much less scalable than it would have been in its pure form.

It is somewhat surprising that a system as simple as a bouncing ball can reveal that discrete
changes can lead to such complexities. The bouncing ball is not wholly artificial, as it is
infact representative of almost any type of impact that occurs in the context of a rigid-
body model of a robotic system. Thus, even in the context of a domain that might seem
elementary at first we are forced to consider whether it is really reasonable to assume that
there is such a thing as a discrete event in the first place. Discrete events are convenient
computationally, because they are easily and naturally handled by a computer. But then it
seems that we run into a myriad of other problems in virtually all aspects of computation to
deal with such issues. An example is the problem of structural dynamism, which generates
a lot of complexities for current tools. Other problems include the treatment of impacts
in mechanical system, and the need to introduce notions such as super-dense time. Is it
better to start off from a foundation where everything is continuous but things can happen
at higher speeds than others, or is it better to start off with a hybrid foundation?

Hybrid behaviors are not completely orthogonal to how we use real numbers. In parti-
cular, a discrete event such as bouncing requires solving what is sometimes called the
zero-crossing problem, but which seems indistinguishable from the possibly more familiar
problem of root-finding from high-school mathematics. The basic idea is that we need to
determine (up to some precision) when the bouncing should occur. This is typically an
iterative process which can be achieved using bisection or Newton’s method. With both
interval arithmetic or ERA, there is a challenge in translating the uncertainty in the time
dimension about when the event occurred to the precise uncertainty in the speed of the ball
after that time.

Turning to purely continuous segments, possibly the most striking fact is possibly the ex-
tensive use that is made of logical quantifiers in the definition of the most basic properties
of functions. Looking at things from this point of view one sees that there is even a per-
vasive, repeating pattern of quantification (and quantification alternation) that earns the
name of a limit. While for many this term may conjure images of magic tricks with num-
bers, its significance in the context of computing with real numbers is that it gives rise to
the question of whether we are really computing the right kinds of things when we per-
form simulation. Quantification is used in the definition of key notions about functions as
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A limit of a sequence or a function involves quantifiers (the alternation is for all,
there exists, and then for all again)

e Continuity at a point simply says that it is equal to the limit approaching that point
e The derivative is a limit (of a function that is in general not continuous)

o Differentiability is simply whether the derivative exists

o The definition of integration is a limit as the mesh (step size) goes to zero

e An interesting exception is the property of being Lipschitz continuous (bounded gra-
dient), which does not rely on the notion of a limit (but uses quantifiers, of course),
and plays an important role in characterizing the conditions under which solutions
to some differential equations exist and are unique

Writing numerical algorithms involves a lot of reasoning about these properties. The ques-
tion that intrigues us here is whether we should really be computing with logical statements
directly. A useful step in investigating this possibility could be to determine the feasibility
of having a compositional interpretation of equations or even expressions over continuous
functions of time that can satisfy the needs of these quantifiers in a local, efficient manner.

8 The Educational Challenge

Computer science has long focused on systems built up of discrete components. Examples
of such discrete systems include digital circuits, automata, Turing machines, the lambda
calculus, and various forms of concurrent calculi. But with the increasing interest in cyber-
physical systems (CPS), we can no longer isolate ourselves from the worldly concerns of
the physical environment. In particular, keeping up with the demands of the rapidly gro-
wing embedded and real-time systems labor market dictates that we find effective ways
to teach our students the principles of our science in a context where models of computa-
tion are tightly coupled with models of physical systems. This is a formidable challenge,
because so far key concepts of physical modeling, such as real-number quantities and
time-varying functions have generally been viewed as being outside the science. Because
we rarely hold real-numbers to the same standards that we do other core concepts to, they
currently stand more as an appendage than an integral part of the science. This problem is
far from being purely pedagogic. Even the collective knowledge of the research communi-
ty (in multiple fields, combined) remains sparse on systematic treatments of real numbers
that could stand up to the standards to which we hold other types of software. If we do not
fix this problem, future graduates will have an Achilles’ heal: All the principles they learn
for developing correct, reliable, and cost-effective systems will simply fail when they work
in physical contexts. We believe that it is essential to rise up to the challenge of rebuilding
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Computer Science, Computer Engineering, Electrical Engineering, Mechanical Enginee-
ring and several other engineering curricula to take into account CPS. This is a significant
challenge simply because there is not enough time in the day for engineering students to
learn everything there is to know about engineering in all disciplines. Instead, we believe
that it is time to reconsider what are the universal principles underlying these disciplines,
and to make sure that tomorrow’s graduates know them. As a starting point, we are deve-
loping a sequence of courses relating to the development of cyber-physical systems with a
focus on robotics applications. However, succeeding in addressing this challenge will only
happen as a result of a community-wide effort in search for these principles in the context
of a sufficiently wide range of physical phenomena and application domains.

9 Epilogue

Software engineering in general, and in particular programming languages semantics, de-
sign, implementation, and engineering have a lot to contribute the study of cyber-physical
systems. We hope that the observations and questions presented here encourage the reader
to share this view.
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