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Abstract: Qualitative conditionals of the form If A then normally B can be viewed
as default rules, and they require a semantical treatment going beyond the models
used in classical logic. Ranking functions assigning degrees of plausibility to each
possible world have been proposed as an appropriate semantic formalism. In this
paper, we discuss the computation of c-representations corresponding to particular
ranking functions for a setR of qualitative conditionals. As a challenge for constraint
programming, we formulate a constraint satisfaction problem CR(R) as a declarative
specification of all c-representations for R, and we argue that employing constraint
programming techniques will be advantageous for computing all minimal solutions of
CR(R).

1 Introduction

Knowledge in every-day life, in many scientific and technical disciplines, in textbooks,
or in knowledge-based systems is very often expressed in the form of if-then rules like
If A then (normally) B. Such a conditional expresses that there is a plausible relationship
between A and B, i.e. if A is the case then it is plausible to assume that also B is the case.
To give a concrete example, let A stand for The car does not start and let B stand for The
battery is flat. If we observe that the car does not start, it is plausible to assume that the
battery is flat.

However, assigning a truth value to If the car does not start then normally the battery is
flat, is not obvious at all; indeed such a truth value does not make sense for instance in
cases where the car does start. Instead, we say that a rational agent accepts the conditional
If the car does not start then normally the battery is flat, if the agent deems a world where
“The car does not start and the battery is flat” is true less suprising than a world where
“The car does not start and the battery is not flat” is true. Note that this is fundamentally
different from saying that from the car does not start it necessarily follows that the battery
is flat, since the agent’s belief about possible worlds still allows for exceptions, i.e. for a
possible world where “The car does not start and the battery is not flat” is true.

In this paper, we deal with semantical approaches for conditionals that can be viewed
as default rules as illustrated above. These approaches employ so-called ranking func-
tions that order possible worlds according to their degree of surprise or their degree of
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plausibility resp. implausibility (cf. [Spo88, GMP93, GP96]). In [KI01, KI02] a criterion
when a ranking function respects the conditional structure of a set R of conditionals is
defined, leading to the notion of c-representation for R, and it is argued that ranking func-
tions defined by c-representations are of particular interest for model-based inference. In
[BKIK08] a system that computes a c-representation for any such R that is consistent is
described, but this c-representation may not be minimal. While the problem of finding a
minimal ranking function for R involves an exponential search space, [Bou99] presents
an algorithm for computing a minimal ranking function, but this algorithm fails to find all
minimal ranking functions if there is more than one minimal one. In [Mül04] an extension
of that algorithm being able to compute all minimal c-representations for R is presented.
The algorithm developed in [Mül04] uses a non-declarative approach and is implemented
in an imperative programming language.

The aim of the present paper is three-fold: First, we will present the problem of specifying
all c-representations for R and formalize it explicitly as a high-level, problem-oriented
constraint satisfaction problem CR(R). Second, since solving CR(R) efficiently and
finding all its minimal solutions is still a difficult task, we present CR(R) as a challenge
for constraint programming. Finally, we argue that using a declarative approach based
on constraint programming will be advantageous with respect to the flexibility of adding
or modifying constraints, e.g. in order to further reduce the number of minimal solutions
which is a topic of ongoing research.

This paper is organized as follows: In Section 2, we recall the formal background of con-
ditional logics as it is given in [BKI08] and as far as it is needed here. In Section 3,
we present an illustrative example for a conditional knowledge base and for what can be
inferred from it. In Section 4, the notion of c-representation [KI02] for a set R of condi-
tionals is given, and the constraint satisfaction problem CR(R) whose solution set denotes
all c-representations for R is defined and illustrated in Section 5. Section 6 concludes the
paper and points out further work.

2 Background

We start with a propositional language L, generated by a finite set Σ of atoms a, b, c, . . ..
The formulas of L will be denoted by uppercase Roman letters A, B,C, . . .. For concise-
ness of notation, we will omit the logical and-connective, writing AB instead of A ∧ B,
and overlining formulas will indicate negation, i.e. A means ¬A. Let Ω denote the set of
possible worlds over L; Ω will be taken here simply as the set of all propositional interpre-
tations over L and can be identified with the set of all complete conjunctions over Σ. For
ω ∈ Ω, ω |= A means that the propositional formula A ∈ L holds in the possible world ω.

By introducing a new binary operator |, we obtain the set

(L | L) = {(B|A) | A, B ∈ L}

of conditionals over L. (B|A) formalizes “if A then (normally) B” and establishes a plau-
sible, probable, possible etc connection between the antecedent A and the consequence B.
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Here, conditionals are supposed not to be nested, that is, antecedent and consequent of a
conditional will be propositional formulas.

A conditional (B|A) is an object of a three-valued nature, partitioning the set of worlds
Ω in three parts: those worlds satisfying AB, thus verifying the conditional, those worlds
satisfying AB, thus falsifying the conditional, and those worlds not fulfilling the premise
A and so which the conditional may not be applied to at all. This allows us to represent
(B|A) as a generalized indicator function going back to [DeF74] (where u stands for
unknown or indeterminate):

(B|A)(ω) =


1 if ω |= AB
0 if ω |= AB
u if ω |= A

To give appropriate semantics to conditionals, they are usually considered within richer
structures such as epistemic states. Besides certain (logical) knowledge, epistemic states
also allow the representation of preferences, beliefs, assumptions of an intelligent agent.
Basically, an epistemic state allows one to compare formulas or worlds with respect to
plausibility, possibility, necessity, probability, etc.

Well-known qualitative, ordinal approaches to represent epistemic states are Spohn’s ordi-
nal conditional functions, OCFs, (also called ranking functions) [Spo88], and possibility
distributions [BDP92], assigning degrees of plausibility, or of possibility, respectively, to
formulas and possible worlds. In such qualitative frameworks, a conditional (B|A) is valid
(or accepted), if its confirmation, AB, is more plausible, possible, etc. than its refutation,
AB; a suitable degree of acceptance is calculated from the degrees associated with AB
and AB.

In this paper, we consider Spohn’s OCFs [Spo88]. An OCF is a function

κ : Ω → N

expressing degrees of plausibility of propositional formulas where a higher degree denotes
“less plausible” or “more suprising”. At least one world must be regarded as being normal;
therefore, κ(ω) = 0 for at least one ω ∈ Ω. Each such ranking function can be taken as
the representation of a full epistemic state of an agent. Each such κ uniquely extends to a
function (also denoted by κ) mapping sentences and rules to N ∪ {∞} and being defined
by

κ(A) =

{
min{κ(ω) | ω |= A} if A is satisfiable
∞ otherwise

(1)

for sentences A ∈ L and by

κ((B|A)) =

{
κ(AB)− κ(A) if κ(A) 6= ∞
∞ otherwise

(2)

for conditionals (B|A) ∈ (L | L). Note that κ((B|A)) > 0 since any ω satisfying AB
also satisfies A and therefore

κ(A) = min
ω|=A

κ(ω) 6 min
ω|=AB

κ(ω) = κ(AB),
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ensuring that κ(AB)− κ(A) > 0.

The belief of an agent being in epistemic state κ with respect to a default rule (B|A) is
determined by the satisfaction relation |=O defined by:

κ |=O (B|A) iff κ(AB) < κ(AB) (3)

Thus, (B|A) is believed in κ iff the rank of AB (verifying the unquantified conditional) is
strictly smaller than the rank of AB (falsifying the unquantified conditional). We say that
κ accepts the conditional (B|A) iff κ |=O (B|A).

3 Example

We will illustrate the concepts presented in the previous section with a simple example.
Suppose we want to formalize the following default rules:

• Sea animals have gills.

• Sea animals are not mammals.

• Dolphins are sea animals.

• Dolphins are mammals.

Example 1 Using the propositional variables {s, g, m, d} for sea animal, gills, mammal,
and dolphin we get the knowledge base R = {R1, . . . , R4} with

R1: (g|s)
R2: (m|s)
R3: (s|d)
R4: (m|d)

Figure 1 shows a ranking function κ that accepts all conditional given in R (this ranking
function has been computed using the CONDOR@AsmL system [BKIK08]). Thus, for any
i ∈ {1, 2, 3, 4} it holds that κ |=O Ri.

For the conditional (g|d) that is not contained in R, we get κ(dg) = 1 and κ(dg) = 2 and
therefore κ |=O (g|d).

On the other hand, for the conditional (d|s) that is also not contained inR, we get κ(sd) =
1 and κ(sd) = 0 and therefore κ /|=O (d|s) so that the conditional (d|s) is not accepted by
κ.
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ω κ(ω)

s g m d 1
s g m d 1
s g m d 2
s g m d 0
s g md 2
s g md 2
s g m d 3
s g m d 1
s g m d 2
s g m d 0
s g m d 4
s g m d 0
s g md 2
s g md 0
s g m d 4
s g m d 0

Figure 1: Ranking function κ accepting the rule setR given in Example 1

4 C-Representations and Ranking Functions

Given a set R = {R1, . . . , Rn} of conditionals, a ranking function κ that accepts every
Ri repesents an epistemic state of an agent acceptingR. If there is no κ that accepts every
Ri then R is inconsistent. For the rest of this paper we assume that R is consistent.

For any consistent R there may be many different κ accepting R, each representing a
complete set of beliefs with respect to every possible formula A and every conditional
(B|A). Thus, every such κ inductively completes the knowledge given by R, and it is a
vital question whether some κ′ is to be preferred to some other κ′′, or whether there is a
unique “best” κ. Different ways of determining a ranking function are given by system Z
[GMP93, GP96] or its more sophistictaed extension system Z∗ [GMP93], see also [BP99];
for an approach using rational world rankings see [Wey98].

For quantitative knowledge bases of the form Rx = {(B1|A1)[x1], . . . , (Bn|An)[xn]}
with probability values xi and with models being probability distributions P satisfying a
probabilistic conditional (Bi|Ai)[xi] iff P (Bi|Ai) = xi, a unique model can be choosen
by employing the principle of maximum entropy [Par94, PV97, KI98]; the maximum en-
tropy model is a best model in the sense that it is the most unbiased one among all models
satisfying Rx.

Using the maximum entropy idea, in [KI02] a generalization of system Z∗ is suggested.
Based on an algebraic treatment of conditionals, the notion of conditional indifference of
κ with respect to R is defined and the following criterion for conditional indifference is
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given: An OCF κ is indifferent with respect to

R = {(B1|A1), . . . , (Bn|An)}

iff
κ(Ai) < ∞

for all i ∈ {1, . . . , n} and there are rational numbers κ0, κ
+
i , κ−i ∈ Q, 1 6 i 6 n, such

that for all ω ∈ Ω,
κ(ω) = κ0 +

∑
16i6n

ω|=AiBi

κ+
i +

∑
16i6n

ω|=AiBi

κ−i . (4)

Note that although κ0, κ
+
i , κ−i may be rational numbers, the world rankings κ(ω) are still

assumed to be natural numbers. Thus finding a κ that is indifferent with respect to R
amounts to choosing κ0, κ

+
i , κ−i such that the constraints given by (4) are satisfied. When

starting with an epistemic state of complete ignorance (i.e., each world ω has rank 0), for
each rule (Bi|Ai) the values κ+

i , κ−i determine how the rank of each satisfying world and
of each falsifying world, respectively, should be changed. κ0 is a normalization constant
ensuring that there is smallest world rank 0.

While (4) allows for multiple ways of adjusting a world rank, [KI02] points out two ways
to simplify the form of κ. Employing the postulate that the ranks of a satisfying world
should not be changed yields the constraints

κ+
i = 0, (5)

and requiring that changing the rank of a falsifying world may not result in an increase of
the world’s plausibility yields the constraints

κ−i > 0 (6)

for all i ∈ {1, . . . , n}. Requiring that κ accepts R can be expressed by the constraints

κ(AiBi) < κ(AiBi) (7)

again for all i ∈ {1, . . . , n}. Note that (7) necessarily implies κ(Ai) < ∞.

Furthermore, under conditions (5) and (6), we have that

κ0 = 0 (8)

since R is assumed to be consistent [KI02].

Whereas in general, c-representations do not require non-negative values for κ−i and trivial
zero-values for κ+

i as in (5) and (6), for the rest of this paper we will be interested only in
special c-representations arising from these restrictions (cf. [KI02]) and that we will just
also call c-representation.

Definition 2 Let R = {(B1|A1), . . . , (Bn|An)}. Any ranking function κ satisfying (4),
(5), (6), (7), and (8) is called a (special) c-representation of R.

Thus, finding a c-representation for R now amounts to choosing appropriate values κ−1 ,
. . . , κ−n .
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5 The Constraint Satisfaction Problem CR(R)

For any set R of conditionals, we will now explicitly formulate the constraint satisfaction
problem CR(R) whose solutions are vectors of the form (κ−1 , . . . , κ−n ) determining c-
representations of R.

Note that using (1), the constraint (7) is equivalent to

min
ω|=AiBi

κ(ω)− min
ω|=AiBi

κ(ω) > 0 (9)

when setting min(∅) = ∞. We can now substitute the expression given for κ(ω) in (4)
into (9); doing so and rearranging and simplyfing expressions (see [KI02, KI01] for details)
transforms (9) into the constraint

κ−i > min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

κ−j (10)

for any i ∈ {1, . . . , n}. Furthermore, using (5) and (8), we can simplify (4) by eliminating
κ0 and the sum over the κ+

i , yielding:

κ(ω) =
∑

16i6n

ω|=AiBi

κ−i (11)

In the following, we will consider only solutions with κ−i being natural numbers (and not
just rational numbers).

Definition 3 [CR(R)] Let R = {(B1|A1), . . . , (Bn|An)}. The constraint satisfaction
problem for c-representations ofR, denoted by CR(R), is given by the conjunction of the
constraints (6) and (10) for all i ∈ {1, . . . , n}.

A solution of CR(R) is an n-tupel

(κ−1 , . . . , κ−n )

of natural numbers, and with SolCR(R) we denote the set of all solutions of CR(R).

Proposition 4 For R = {(B1|A1), . . . , (Bn|An)} let (κ−1 , . . . , κ−n ) ∈ SolCR(R). Then
the function κ defined by (11) accepts R.

All c-representations built from (10) and (11) provide an excellent basis for model-based
inference [KI02, KI01]. However, from the point of view of minimal specificity (see e.g.
[BDP92]), those c-representations with minimal κ−i yielding minimal degrees of implau-
sibility are most interesting.

We can define an obvious partial order on SolCR(R) by defining

(κ′−1 , . . . , κ′
−
n ) ¹ (κ−1 , . . . , κ−n )
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iff κ′
−
i 6 κ−i for i ∈ {1, . . . , n}. With ≺ we denote the irreflexive component of ¹.

Obviously, for any (κ−1 , . . . , κ−n ) ∈ SolCR(R) there are infinitely many (κ′−1 , . . . , κ′
−
n ) ∈

SolCR(R) with (κ−1 , . . . , κ−n ) ¹ (κ′−1 , . . . , κ′
−
n ), e.g. by increasing the ranks of all al-

ready most implausible worlds by some fixed amount. As we are interested in minimal
κ−i -vectors, an important question is whether there is always a unique minimal solution.
This is not the case; the following example that is also discussed in [Mül04] illustrates that
SolCR(R) may have more than one minimal element.

Example 5 Let Rbirds = {R1, R2, R3} be the following set of conditionals:

R1 : (f |b) birds fly
R2 : (a|b) birds are animals
R3 : (a|fb) flying birds are animals

From (10) we get
κ−1 > 0
κ−2 > 0−min{κ−1 , κ−3 }
κ−3 > 0− κ−2

and since κ−i > 0 according to (6), the two vectors

sol1 = (κ−1 , κ−2 , κ−3 ) = (1, 1, 0)
sol2 = (κ−1 , κ−2 , κ−3 ) = (1, 0, 1)

are two different solutions of CR(Rbirds) that are minimal in SolCR(Rbirds) with respect
to ¹.

6 Conclusions and Further Work

Whereas in a probabilistic framework, the maximum entropy principle determines a unique
model, there may be different minimal or “best” ranking functions for a set of qualitative
rules R. In general, finding a minimal ranking function involves an exponential search
space since already the set Ω of all worlds is exponential in the number of propositional
variables.

In [Bou99] an algorithm is given that computes a minimal OCF if such an OCF exists,
but it is not able to find all minimal solutions if there are multiple minimal solutions. In
[Mül04], an algorithm is developed returning all minimal c-representations; this algorithm
is implemented in the object-oriented programming language C#.

As demonstrated above, the set of all c-representations for R correspond to the solutions
of the constraint satisfaction problem CR(R), where CR(R) is a direct and declarative
specification of the solution space. Thus, instead of using an imperative programming
language approach as in [Mül04], it seems an obvious and natural choice to use constraint
programming techniques for solving CR(R), taking into account the additional constraint
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that the solutions of interest are the minimal solutions in SolCR(R). Due to the problem’s
complexity, the efficient solving of CR(R) poses a challenge for constraint programming.

By using declarative constraint programming techniques, we additionally expect advan-
tages with respect to modifications of the set of constraints. For instance, one might want
to use an ordering of the solution space that is different from the component-wise ordering
¹ employed above in Section 4. Furthermore, it is an open problem how to strengthen
the constraints defining a c-representation so that a unique solution is guaranteed to ex-
ist. In both cases, the declarative nature of constraint programming might allow for an
easy modification of a solution finding method taking into account a modified constraint
system.
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