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Abstract: Companion technologies aim at developing sustained long-term relation-
ships by employing emotional, nonverbal communication skills and empathy. One of
the main challenges is to equip such companions with human-like abilities to reliably
detect and analyze social signals. In this proposal, we focus our investigation on the
modeling of visual processing mechanisms, since evidence in literature suggests that
nonverbal interaction plays a key role in steering, controlling and maintaining social
interaction between humans. We seek to transfer fragments of this competence to
the domain of human computer interaction. Some core computational mechanisms of
extracting and analyzing nonverbal signals are presented, enabling virtual agents to
create socially competent response behaviors.

1 Introduction and Motivation

The development of future companion technologies necessitates creating agents that are

personalized in terms of building relationships with their (human) interlocutors on the ba-

sis of intelligent multimodal interaction. A key functionality of artifacts which function

as true companions is their ability to build human-computer relationships on a long-term

scale [BP05]. The enabling technology to develop such skills for artificial companions is

captured in the five-star model by [BM08] which incorporates contributions along several

dimensions such as utility, the form of the agent and its interactive capabilities, social at-

titudes of the companion’s role and persuation, emotional skills such as expression and

empathy, and aspects of personality and trust. Such artificial companions need to be sen-

sitive to emotion and disposition in vision and speech, gesture, touch, and individuality

concerning autonomy and personality. In communication processes nonverbal social sig-

naling conveys determination, interest, relatedness, etc. Due to variations and subtleties

in expression these are not easy to analyze automatically from real data and in different

contexts. In order to detect social signals the features and signal properties must be defined

and then detection and interpretation mechanisms need to be developed [Pen07].

In this paper, we focus our investigation on the modeling of visual processing mech-

anisms to acquire and analyze socially communicative signals since evidence suggests
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that nonverbal interaction plays a key role in steering and controlling social interactions

[BP05, FW04]. This focus, however, does not deny the importance and central role that

verbal communication plays in isolation and in conjunction with nonverbal signals in nat-

ural communication, specifically in task-oriented interaction. Below, we will briefly sum-

marize previous work on the processing and analysis of social signals to augment nonver-

bal social interaction frameworks. Based on this work we sketch our approach and outline

a roadmap to develop key mechanisms for visual analysis of social signals and behavior.

2 Social Signal Analysis in Relational Nonverbal Behavior

Future companion technologies need to be equipped with facilities that allow construct-

ing relationships and to elaborate, maintain and evaluate them on a long-term scale. The

range of functions and applications for companion relationship is multi-faceted and oper-

ates upon different sensory modalities and levels of cognition and relationship modeling

[BP05]. In order to achieve companion functionality the capabilities of an agent must be so

that it has extended verbal and nonverbal communication skills to enable the management

of personal relationship and for the perpetuation of communication. Unlike classical dia-

log understanding based on speech recognition methods the topic of social interaction sig-

naling and analysis provides an alternative and extended framework of discourse [Pen07].

Several authors have begun to investigate the different codes, the related behavioral cues

and the functions of social signals [VPBP08]. Nonverbal communication aggregates be-

havioral cues (e.g., posture, gesture, facial expression) to serve different functions, such as

to signal attention, managing social contact and interaction, form messages of agreement

(or disagreement) for continuation or disconnection, expressing empathy, etc. [AR92].

The display of interpersonal attitudes through the use of immediacy behaviors (expressed

by direct body and facial orientation in close distance), direct gaze, frequent gesturing,

open posture, smile and pleasant facial expression and animation, etc., signal active inter-

est and involvement in an interaction at various levels [Arg88]. An automatic analysis of

communication skills from realistic data must provide a battery of mechanisms and their

coordinated fusion (at various levels) which allows to instantiate a rich repertoire of de-

tecting and interpreting social signals. Social signal processing has been investigated for

different classes of nonverbal behaviors and the functions they support. The automatic

analysis of nonverbal cues can be distinguished into approaches of signal processing and

analysis from a third-person as well as approaches that operate from a first-person perspec-

tive. Examples of the former are pioneering works that have analyzed temporal periods

in negotiation scenarios and their outcome prediction, the analysis of small group inter-

actions, including the detection of roles of different participants and the collective actions

in social groups (see [VPBP08] for an overview). An analysis of cues from a first-person

perspective has to cope with the problem that the artificial agent itself takes a role of a

(possibly human-like) social actor. Numerous contributions have been published that were

mainly developed in restricted settings and scenarios, such as, e.g., for automatic head

pose and gaze detection using different sensors, facial expression analysis, and human

body tracking [WADP97, EP97, MCT09]. The development of mechanisms that seem-
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            extended environment space ( visual background without spatial depth)

                                extended environment space ( visual spatial orientation)

                     depth space of multi-sensory orientation

 

        extended grasp space

 

                      grasp space

Figure 1: Bodily dimensions and their relevance for the processing of nonverbal social signals. In
(a), the extra-personal space of an agent is shown (modified after [Grü78]). From the center to
the periphery, the extra-personal space can be partitioned into four regions: the immediate space
of reaching, an extended grasp space, a depth space of multi-sensory orientation and an extended
environment space. Each of the regions entails different requirements and constraints for the sensory
processing. (b) shows a depiction of an eight-joint human upper torso model for articulated motion.
The configuration is used as an outline of the proposed computational mechanisms for detecting
visual input and analyzing encoded social signals. Head and torso are joined through the neck
which separates the two components. The upper arm segments are joined to the torso allowing
the generation of various gestures (two exemplary configurations shown). Each arm is configured
as a chain of upper arm and lower arm segment, and the hand joint to the lower end of the lower
arm. It should be noted that we do not follow a full 3D modeling approach to solve the kinematics
of this body model. This configuration, however, helps to guide the subsequent visual processing
mechanisms. Depiction of the range within reach of an arm with upper arm, lower arm, and hand
(bottom). Based on the angular degrees of freedom at the joints of the individual limbs the position
of each component can be constrained in a sequentialized detection process (see text for discussion).

ingly fit into a cognitive architecture of social signal analysis is still in its infancy. The

challenges include the use of real-world data gathered from everyday actions and the anal-

ysis of multi-cue signals over different time spans in order to reduce inherent ambiguities.

Recent studies using embodied relational agents lack mechanisms for automatic user af-

fect analysis [VPBP08, BP05]. Our own work, as outlined in the next section, belongs to

the second group of work that analyzes social input signals from a first-person perspective.

The aim in the long run is to equip the computer with human-like abilities to seamlessly
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fit into a scenario where the computer acts as a partner in complex human-computer inter-

actions as if they were human-human.

3 Modeling Framework for First-Person Social Signal Analysis

The aim of this section is to outline the generic principles of our approach to the automatic

analysis of visual input data that is acquired in a social perception scenario. We pursue

a biologically inspired approach of developing visual, perceptual and cognitive abilities

adopting known principles of the functional organization in the primate brain. The goal

is to develop an architecture as integral part of an artificial companion which is capa-

ble of analyzing social signals from a first-person perspective. It is intended to describe

few design principles for the analysis of complex spatio-temporal action or activity se-

quences. These results will then be incorporated into computational vision approaches for

the processing of parallel stereoscopic video input data. The approach is motivated by

the suggestion that the detailed study of elaborated mechanisms, flows and protocols in

human-human interaction helps to identify the rules for developing skillful future human-

machine communication [PK02]. In support of the suggested approach there exists a rich

body of experimental findings indicating that primary feature processing in the primate

cortex is organized along segregated pathways of form and motion processing, namely the

ventral and the dorsal streams, respectively. They converge to build representations in the

superior temporal sulcus (STS) with cells showing a variety of selectivities to head, body,

and hand poses and actions as well as of their conjunction. This suggests that these cells

contribute to build up functional networks to instantiate the components of a social brain

[Bro96, PHB+89].

The analysis of human pose and gestures from video streams focuses on articulated move-

ments of single or multiple actors in the scene. Movement patterns in this case arise

from components (torso, limbs, etc.) in possibly different directions and speeds, but with

joint components that constrain the flow interpretation with common joint movements

[DSK11]. While many approaches follow a holistic approach to analyzing object move-

ments, we suggest an actively guided approach to sequential segmentation and analysis

of body parts. The processing stages depend on the prior results and expectations de-

rived thereof, which is advantageous to reduce the search space in analyzing an actor’s

articulations. As a reference we utilize an eight-joint body model that captures essential

components of an upper body together with the degrees of freedom of the limbs and their

configurations to signal subtle social signals during conversation (see Fig. 1 (b)). In a nut-

shell, we argue that the analysis could be driven by selectively detecting body parts, like

the head or face, which then serve as a starting point for the subsequent detection of, e.g.,

upper torso and upper arm limbs. Unlike, e.g., [KDHU10], we anchor certain positional

priors (with parameterized orientation) for individual body parts to initiate the analysis of

other object components. The individual priors are designed to trigger visual routines op-

erating upon incremental representations of task related processing [Ull84]. The suggested

operational principles will be outlined and further detailed below.
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3.1 Visual Processing and the Encoding of Social Signals

In order to build a base representation for analyzing various possible scenic events and the

possible configurations of objects and object parts a rich set of necessary features needs

to be detected from input data streams. Such features may be used for different computa-

tions in order to generate the required internal sensory representations. Different regions

of extra-personal space of an agent can be identified which, in turn, impose different con-

straints upon the sensory processing. In an earlier work [Grü78] distinguished four such

regions, namely (i) the immediate space of reaching, grasping and manipulation, (ii) an

extended grasp space (that can be explored by manipulatory tool augmentation), (iii) a

depth space of multi-sensory orientation, and (iv) an extended environment space com-

posed of figural objects and visual background (see Fig. 1 (a)). It is evident that some

generic visual features maybe useful to visually analyze all these spatial regions, whereas

more focused and task-related processing may be seen for processes that selectively op-

erate upon different spatial regions. For example, we can covertly monitor activities in

the far space to judge potential threat or communicative attempts. Here, only (relative)

motion information is necessary to selectively compute relevant information. When an-

other actor approaches distinct brain areas show increased activation to monitor his/her

potential intentions [MPM05]. In the transition range between far and near space head

and body appearance in visual scenes needs to be reliably detected. An unsolved problem

in general vision-guided mechanisms is the proper handling of mutual occlusions, either

of distinct objects or of multiple body parts, as they occur for unconstrained body and

arm postures. We utilize a cortex-like hierarchical processing model for initial static fea-

ture detection and subsequent aggregation for mid-level feature detection for static form

features. In parallel, we extract motion features and integrate them to disambiguate and re-

solve initial uncertainties in the spatio-temporal configuration patterns. Intermediate level

complex motion patterns and temporally filtered response configurations help to extract

motion information at an intermediate-level scale. In the near space, in which grasping

and instrumented manipulation takes place, nonverbal visual interaction is dominated by

face-to-face communication and selective cueing to target objects of potential joint inter-

est. New codes and behavioral cues thus need to be analyzed. For example, face-to-face

communication relies on the detection of postural congruence (almost frontal body and

head-to-head poses) as well as mutual gaze. The initial stages of model cortex filtering

provide input for further grouping and competition to feed into a scheme of unsupervised

learning of, e.g., head poses, which then could be used for estimating pose categories

[WN08]. Also representations of eye gaze direction could be generated by using filter-

ing and relative phase responsiveness derived from the pupil and sclera pattern in human

eyes [LWB00]. Taken together, the initial stages of form and motion processing together

with stereoscopic correspondences derived from image pair matching provide a rich set of

features to serve the analysis of social signals.
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3.2 Low-Level Visual Mechanisms for Basic Form and Motion Feature Detection
and Grouping

Initial processing for static form feature extraction is based on a modified variant of

the biologically inspired object-recognition model proposed by [ML08] (see also [RP99,

SWP05]). In a nutshell, the model architecture consists of a processing hierarchy of stages

consisting of alternating levels of filtering and selection (pooling) steps, which start at

the level of the primary visual cortex, or V1. These operate at different scales of spatial

neighborhood. The non-linear pooling over a lateral neighborhood aims at achieving input

pattern invariance against variations in size, rotation and position. Our model consists of

five different processing stages. An input image is transformed into a pyramidal repre-

sentation of different spatial scales. Each scale is convolved with 2D Gabor filters in four

orientations, resulting in four orientation fields for each of the three different scales (spatial

frequency selectivity). In each scale, the pooling of neighboring filter responses achieves

tolerances against variations in location, shape position and size. In the next successive

processing stage, intermediate level features are learned by selecting the most descriptive

and discriminative prototypes among an exhaustive number of response patches by ran-

dom sampling in the response distribution of the previous processing stage. The resulting

prototype patterns denote filters with complex feature selectivities topographically orga-

nized around the spatial locations of their most likely occurrence. Again, their responses

are pooled afterwards to gain an increased property of invariance. At the final stage, re-

sponses from all prototypical complex filters are integrated over positions and scales by

using a winner-take-all strategy selectively operating on the different spatial scales. The

responses are combined into a single feature vector, which serves as input to a linear SVM.

The SVM finally allows to classify the individual feature object representations (for de-

tails, see [ML08]).

Processing along the motion pathway is achieved by mainly two stages. At the early stage

of primary visual cortex, input stimuli are analyzed in parallel for movements along differ-

ent directions. These initial direction responses are calculated using an extended scheme

of frame-to-frame correlation matching. This matching process is accelerated significantly

by utilizing a variant of the Census transform [Ste04]. Model MT is the next stage in the

processing hierarchy where cells with increased receptive field sizes integrate initial re-

sponses from correlation detectors in model V1. Model MT cells, in turn, send top-down

feedback signals to modulate initial responses and thus stabilize the motion detection and

integration process (for details, see [BN07, BTKN11].

The resulting representations in the form and the motion pathway serve as base codes for

subsequent processing stages that are task-driven in the context of analyzing social signals

and their prerequisites. Several mechanisms are outlined in the following.
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3.3 Mid-Level Processing Mechanisms

We have motivated to employ a task-driven processing mechanism using visual routines

in order to selectively constrain the search space to analyze possible shape configurations.

For that reason, we suggest several intermediate-level mechanisms which operate upon

the base level representations to generate incremental encodings to support task-related

purposes. We reliably estimate the head pose in two processing steps. In the first step,

four different facial features are detected and localized in the images of a stereo pair.

This is accomplished by employing the hierarchical shape processing architecture outlined

above and the selection of intermediate-level facial features along the hierarchy. These

enable the detection of the eyes and the mouth corners within the images of a stereo pair.

Intermediate-level features are more selective but still have a topographic localization.

Such features have been analyzed and shown to be superior in terms of their specificity and

their relative frequency in comparison to low-level features [UVNS02]. For stereoscopic

matching and pose estimation this property has the advantage of reducing the false target

candidates in stereo matching but at the same time allow to estimate disparities such that

a proper depth resolution is preserved ([LLN+11]). In the second step, after successful

localization of intermediate level facial features, the associated disparities are determined

by maximizing the correlation of a feature in the left image and its counterpart in the right

image within a local neighborhood. Due to the task-related processing strategy we do not

need to estimate a dense disparity map which reduces computational costs considerably.

Given the disparity values as well as the focal length and the baseline of the stereo camera

system, the 3D world coordinates and depth values of the facial features can be calculated.

The orientation of the head is then estimated by fitting a plane (facial plane) through the

four facial feature positions located in space (see Fig. 2 (a) and (b)). Once the head and

IleftIright

(a) (b) (c) yaw

pitch

roll

p

oll

Figure 2: Estimation of the head and body pose. Building upon the position of the face, four facial
features, as well as the two shoulders are localized in a stereo image pair using features of intermedi-
ate level complexity (a). The disparities of the features are determined by maximizing the correlation
between a feature in the left image and its counterpart in the right image within a local neighbor-
hood. In case of the head, pose is estimated by fitting a facial plane onto the inferred 3D surface
information of the facial features. The orientation of the resulting plane is then used as an direct
estimate of the head orientation (b). The procedure for the estimation of the upper torso orientation
is almost identical, yet using the orientation of the connecting line between the two shoulders as a
representative of the orientation of the torso (c).
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its orientation have been detected the search for the expected regions of the upper torso as

well as the upper arm joints and shoulder regions can be confined to regions defined by

anthropometrically driven expectations. Stereo matching of regions with shoulder appear-

ances utilizing intermediate level features allow computing a rough estimate of the spatial

orientation of the body torso like the head pose estimation outlined above (see Fig. 2 (c)).

One of the most challenging problems is the detection and segmentation of articulated arms

and their movement [WH99, Tur04]. Here we investigate the segmentation of the upper

arm and its image orientation. Initial contrast detection is accomplished by using the pro-

cessing cascade as outlined above. Oriented contrasts can be subsequently grouped to form

extended boundary signals [WN09] followed by the estimation of a symmetry axes. These

static features are combined with evidences derived from motion and spatio-temporal oc-

clusion signals. The detection of spatio-temporal occlusion from motion is motivated by

Gibson’s and colleagues’ observations [GKRW69] showing that the pattern of deletion

and accretion of optical texture provides evidence for the presence of mutual surface oc-

clusions. We employ here a computational mechanism that is based on the detection of

discontinuities in the initially detected and integrated motion patterns. Motion disconti-

nuities are combined with responses from the detection of temporal changes in motion

energy which encode occlusion and dis-occlusion regions in the motion field [BON08].

An extension of these basic processing mechanisms has been proposed in [TN11] to al-

low the segregation of figural surfaces from structured background. The architecture is

reminiscent of the one proposed by [CSNvdH07] to model figure-ground segregation in

stationary scenes. We employ this motion-based mechanism for segregating the arm limbs

and hands from background and also to segregate bodies at full scale when they move in

the scene or approach the monitoring observer.

Many biological forms share the property of highly symmetrical structure and appearance.

This also holds for the upper and lower arm segments. The appearance of such surface

patches can be compactly described by a symmetry axis which, in turn, can be determined

by a medial axis transform [Blu67]. Here we incorporate the approach developed by Curio

and coworkers [EST+09] to compute medial features from grey level input images. The

algorithm consists of a two-stage process. First, a vector field of diffusion flow, emanating

from local contrast boundaries, is computed through energy minimization that regularizes

the simultaneous approximation and smoothing of a gradual activation surface given the

image gradients [XP98]. Second, local sinks in the resulting vector fields are detected that

depict local nodes on the medial axis. It is worth mentioning that unlike stick model ap-

proaches (e.g., [OTA08]), we make use of a richer repertoire of input features, namely the

outer rim as well as the symmetry axis. This has the advantage to fuse the form information

with motion and occlusion/dis-occlusion information. The goal of fusing several available

visual input channels is to increase reliability by building up a rich set of powerful visual

features through the convergence of ventral (shape) and dorsal (motion) stream represen-

tations. The estimation of the orientation of the upper arm limb (at the shoulder joint) is

indicative for the potential locations of the lower arm and the hand, based on the degrees

of freedom at elbows and wrists (see Fig. 1 (b)). Consider the configurational space of

the upper and lower arm and the hand which is approximated by the appearance of a half-

circular region (large gray circular arc region). Its estimated orientation for the upper arm
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using the approach sketched above reduces the possible occurrences of the lower arm and

hand. Based on anthropometric constraints as well as the degrees of freedom of the limbs

the lower arm and hand is bound to the circular sector defined by the body and the upper

arm axes (small blue circular arc region). We emphasize here that this discussion focuses

on the great circle of the spatial hemisphere of arm reaches in the coronal plane. Even for

manual operations in front of an actor, the detection of image appearances of the lower

arm and hand is still constrained to the regions outlined in Fig. 1 (b) (bottom). These outer

limb components can be detected by a further stage of symmetry-based detection (using

combined medial features and motion information) as well as an active segmentation com-

ponent, such as proposed by Aloimonos and colleagues [AGFO10]. The latter component

is briefly outlined below.

3.4 Active Segmentation of Specific Body Parts

The robust segmentation of the body limbs, e.g. upper and lower arms, hand and even indi-

vidual fingers convey further information about, e.g., exposure, gestures, self-presentation,

and conversational distance [Arg88]. For real scenes, as outlined above, we suggest that

the visual extraction of arm and hand poses is organized sequentially by an attention-

guided search process which proceeds in a coarse-to-fine manner. Segmentation of the

hand is triggered by higher-order visual routines which operate to build an incremental

representation providing a link to sensory-motor tasks [Ull84]. In the context of lower

limbs and hands detection we seek evidence for the presence of the upper arm segment

as outlined above. A target region in the occurrence sector of lower arm limb and hand

can be identified after the upper arm has been detected (compare Fig. 1 (b)). We utilize

the approach of [MA09]. In a nutshell, the algorithm actively centers the local reference

coordinate system at a selected target region (simulating an artificial saccadic eye move-

ment). Using a space-variant image representation that centers the high-resolution at the

gaze center leads to a simplified segregation of the focused target region from the current

background (that surrounds the current target). The space-variant imaging is reminiscent

of the foveation of the human eye and the non-linear transform of the input into a cortical

representation. A binary graph cut algorithm (e.g., [BK04]) segregates the figural segment

against the peripheral background using the figure boundary to steer the min-cut segmen-

tation. The segmented target region can be tracked over time to estimate characteristic

temporal signatures in nonverbal communication.

4 Results

In the following, we briefly show some results of the components in the proposed architec-

ture, that have been implemented and tested in real world scenarios. First, the capability

of the head and body pose estimation approach described in Section 3.3 is shown. Sec-

ond, the essential processing stages of the mechanisms responsible for the extraction of a

skeletal representation of the upper body are shown using the example of the forearm.
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Figure 3: Stereoscopic head pose ((a)-(c) and (e)) and body pose estimation ((d) and (e)). (a) Arti-
ficial stereo images with known ground truth were used to evaluate the precision of the head pose
estimation. The error for horizontal head poses remained below 3◦ (with larger yaw angles produc-
ing larger errors). (b) A stereo camera system was used to test the proposed head pose estimation
approach under real world conditions. The actor was instructed to rotate his head systematically
from the left to the right. Even though no ground truth data is available, it can be seen that the
estimated head pose reflects the course of the actor’s head orientation. (c) The capability of the
proposed approach under varying camera-actor distances was tested using two real world sequences
with different but constant yaw angles (above and below the plot). As it can be seen, there is only
a little variation in the estimation quality for the head poses at different distances. (d) Estimated
orientation of the upper torso using a sequence of real world images. (e) Estimated orientation of
the head and the upper torso in combination with the inferred configuration of the affected joints.
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4.1 Head and body pose estimation

We evaluated the proposed stereoscopic head pose estimation approach under two differ-

ent conditions. First, we used an in-house head pose database to generate test data with

known ground truth. In Fig. 3 (a), the estimated head pose is shown. As one can see, the

estimation error increases for larger yaw angles, but never exceeds 3◦ over head poses in

the range of [−20◦,20◦]. Second, a sequence of real world images was used. The actual

head pose within the sequence was unknown, but the subject was told to systematically

rotate his head from the left to the right. As shown in Fig. 3 (b), the estimated head pose

reflects that fact. One of the key features of the proposed approach, namely its invariance

against varying camera-actor distances, is shown in Fig. 3 (c). As described in Section 3.3,

we used an almost identical approach to estimate the orientation of the upper torso. Fig.

3 (d) shows the estimated yaw angle for a real world image sequence. A combined esti-

mation result for the head and the upper torso orientation is shown Fig. 3 (e). The joints

for the head and the shoulders were localized automatically, whereas the remaining three

joints were inferred via anthropometric proportions. It is worth noting, that the underlying

classifiers used for the localization of the head and the facial features were all trained using

the FERET Database [PMRR00] and thus are independent of the test data used here.

4.2 Extraction of skeletal representations of upper body parts

Fig. 4 shows results for combination of medial axis transform and motion-dependent

figure-ground segregation (as described in Section 3.3). In the illustrated sequence, a

person is waving its arm up and down. The medial axis transform is computed by using

the luminance channel only. This produces, apart from the desired structural cues inside

the moving limb many undesired structural cues, like those between arm and head, which

might impair further interpretation tasks. The medial axis representation alone does not

allow a distinction between relevant and irrelevant axes.

However, the scenic motion incorporates cues about scene segmentation, figure-ground or-

ganization and border ownership. In Fig. 4 the bottom row illustrates how a segmentation

into foreground and background is achieved. First, optic flow is computed, showing speed

and direction of moving parts in the image. Spatio-temporal filtering yields signals for

occlusions and dis-occlusions. The border ownership signals at regions of (dis-) occlusion

indicate which surface currently “owns” the attached image region and thus the associated

surface boundary. Together, this information allows to separate the figure foreground from

the background. In the illustration, ownership is indicated with a directional color code.

The juxtaposed organization of occlusion and dis-occlusion regions allows a highlighting

of moving surfaces that are in the foreground.

A linear combination of the resulting signal responses of the medial axis transform with

the foreground signal achieved from motion processing yields a significant reduction of

axis features. Now, axes can be classified to belong to objects in the foreground, whereas

others can be ignored in further processing steps.
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Optical Flow (Dis-)Occlusions Border Ownership Foreground

Input 

Sparse Medial Axis

Figure 4: Medial axis transform and figure-ground segregation. Top: The medial axis transform
finds symmetry features that coincide with significant object structures, but also produces many
undesired responses. Bottom: Processing of motion signals allows segregation of moving objects
in foreground. Linear combination of both results yields a sparse representation of axes that have a
high importance for structural scene interpretation.

5 Brief Summary and Outlook

We have presented core computational mechanisms of extracting and analyzing nonverbal

social signals to enable an agent creating socially competent response behaviors. The ap-

proach is motivated by the suggestion that the detailed study of elaborated mechanisms,

flows and protocols in human-human interaction helps to identify the rules for developing

skillful future human-machine communication [PK02]. Along the generic architecture we

have demonstrated the capabilities to process head and body postures in parallel to skeletal

representations of upper body parts, using advanced biologically motivated mechanisms of

form and motion processing. Considered in isolation, these mechanisms are already capa-

ble of giving cues on particular aspects of nonverbal signals (such as the attentiveness) but

need to be further integrated and combined to allow a richer and more meaningful interpre-

tation of social signals. For instance, they provide input for dynamic scene segmentation

e.g. to localize the hands and compute their temporal signature (not shown here).
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