
An Efficient Specification-Based Regression Test Selection
Technique for E/E-Systems

Ralf Nörenberg, Anastasia Cmyrev, Ralf Reißing*, Klaus D. Müller-Glaser**

Daimler AG
G025-BB

71034 Böblingen
[ralf.noerenberg;
anastasia.cmyrev]

@daimler.com

*Hochschule Coburg
96450 Coburg

reissing@hs-coburg.de

**Karlsruher Institut für
Technologie

76131 Karlsruhe
klaus.mueller-glaser

@kit.edu

Abstract: Regression testing, a methodology originally developed for software
development, is used to revalidate a (software) system in-between release cycles
after having implemented changes. In practice there is always limited time to
perform a full retest of a system; therefore a random/prioritizing-testing approach
is often chosen to perform at least some regression testing. However, the lack of
adequate regression testing can lead to exposed errors in untested parts of the
system during production or field usage, which may have severe consequences. In
order to improve the efficiency of regression testing, so far many approaches were
proposed. They intend to select only test cases which cover parts of the system that
contain the implemented changes as well as parts that are possibly affected by the
change. Unfortunately, most techniques are only available on software level
requiring extensive knowledge of the source code, and typically use some
additional representation of the software such as a software architecture model.
However, in practice, especially within automotive embedded system
development, available system models or source code strongly vary in type or
design or may even be inaccessible. In order to provide an efficient regression test
selection methodology, we propose a novel and light-weight approach primarily
based on system requirements and their association with test cases. In addition,
substantial similarities between challenges and objectives of regression test
selection and product lines testing techniques are identified. Conclusions outline
how a potential benefit in reducing overall testing efforts in product lines testing
can simply be achieved by applying regression test selection techniques.

1 Introduction

Embedded systems are continually subject to changes during development for a variety of
reasons: software bug-fixing, enhanced functionality or added features, changes in system
communication or changes in hardware components. After changes are applied, the
system needs to be tested to ensure it still behaves correctly in regard to its specification
and that the modifications have not had an adverse impact on the quality of the given
system. This testing activity is called regression testing.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

The most common approach to apply regression testing is to reuse parts of the test suite
Ti, used to test a version Si of the system, for testing the next (modified) version Si+1 of the
system. Instead of rerunning all available test cases in Ti, so-called Regression-Test-
Selection techniques (RTS) select a subset Ti´ of Ti to test Si+1. In order to improve the
efficiency of regression testing, a methodology generally aims at minimizing Ti´, so that
|Ti´| <<| Ti|. In the automotive industry, the general state of practice of regression testing
is to rerun all available test cases of the previous system version.

The importance of research on the subject of RTS techniques is given, as they are very
effective in reducing the cost of regression testing, which reports estimate consumes
already as much as 80% of the overall testing budget and up to 50% of the cost of
maintenance at the software level [12]. However, most academic research in the field of
regression testing describing the process of a selective revalidation of a modified system
so far has been exclusively focused on software-unit and white-box testing [10][3][9],
therefore supplying specialized tools for the software level only. Consequently, developed
techniques come with the restriction that they strongly rely on complete knowledge of the
system structure, or even information about source code as well as test case traces.
Furthermore, investigated issues of regression testing are commonly easy to address when
handling a small software system, but suddenly become very complicated and costly
when applied to complex real-world systems [12]. Thus, there are still many remaining
challenges in making the regression test techniques useful in practice and getting the
know-how transferred into industrial environments. Also, in industry, integration testing
and black-box functional testing have been found to be most effective and useful – a
subject which has hardly been investigated in regression testing [7].

This paper gives an overview of the state of research on RTS techniques in order to
discuss existing difficulties and challenges of knowledge transfer into industrial
environments in to the light of given evaluation criteria. After identifying the differing
industrial demands, an adequate, light-weight methodology for regression test selection
on system requirements for industrial functional embedded system testing is presented.
Finally, an evaluation example and outlook is given.

2 State of Research and Challenges to Industrial Knowledge Transfer

The most prominent class of RTS techniques developed by academic research creates
model representations of Si and Si+1 and identifies the set of entities in the models that
represent the changes from Si and Si+1 [12].The techniques then use the identified entities
to select the subset Ti´ of Ti that exercises those entities in Si to test Si+1. Some techniques
use source code representations with entities such as statements [20], branches [18][1],
control and data dependencies [11] or program paths [2]. Other, more related techniques
to this contribution use activity diagrams [5] or software specifications as representations
[6].

Chittimalli [6] uses instrumented code to obtain traceability to specified requirements, so
that their automated allocation of test cases can be provided. Both, Si and Si+1, are then
analyzed by an algorithm to identify varying entities within the code and match them to
corresponding requirement instrumentations. The previously created traceability of
requirements to test cases matrix then provides information on which test cases to select
for regression testing. Chen [5] introduces a control-flow similar to “activity diagram”

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

which also contains data-flow information about behavioural dependencies. Using change
information on Si and Si+1, the technique selects test cases required for regression testing
by identifying affected nodes and branches. However, this only applies on assumption
that information on traceability between requirements and activity diagram and
knowledge about test cases traces is manually implemented and therefore
comprehensible.

Up to date, all techniques still focus on the software level requiring special white-box
representations of the system, e.g. an instrumented source code or formal models [12].
This is one of the main reasons that only few available techniques were evaluated in
industrial environments. Also, existing studies are strongly restricted to software unit
testing focusing on controlled experiments such as a small set of programs, where as a
result, it is not obvious that their findings can be generalized to programs other than the
ones considered. Few empirical studies have been performed on real-world, large-scale
systems or shown to be useful in practice. Several independent systematic reviews
confirming this state of research can be found in [12][8][15].

In order to provide general evaluation criteria to compare and rate various RTS
methodologies, a commonly used framework consisting out of the four categories
inclusiveness, precision, efficiency and generality was introduced by Rothermel [17].

Inclusiveness is measure to describe to which degree test cases testing modifications in
Si+1 are selected for regression testing. Objective is the achievement of 100% percent
inclusiveness, the RTS then adequately replaces a retest-all methodology by providing a
“safe” selection. A safe selection thus contains all modification-revealing test cases [17].

Precision is a measure to describe to which degree only the modification-revealing test
cases are selected for regression testing. Objective to any RTS methodology is to not
select any unnecessary test cases, as their execution requires additional resources.
Therefore, a high precision may provide a substantial contribution to the efficiency of the
RTS methodology. On the down-side, an upmost precision almost always comes with the
drawback of endangering a safe selection of test cases.

The efficiency of RTS techniques is measured in terms of their space and time
requirements. Where time is concerned, a RTS technique in general is more economical
than the retest-all technique if the cost of selecting Ti´ is less than the cost of running the
tests in Ti - Ti´. Space efficiency primarily depends on test history and analysis
information a technique stores. However there’re no fixed criteria on efficiency measures.

The generality of a RTS technique describes its ability to function in a wide and practical
range of situations. In an (automotive) embedded system context, generality should be
provided to the extent, that the technique can be adapted to most projects, covering the
variety of driver assistant systems up to light control systems.

In regard to the evaluation framework, the focus of academic research has so far strongly
been put on developing a most precise technique by still remaining safe with test case
selection. These aims were properly achieved and also good results were published, but
certainly these techniques were not rated outstanding in efficiency and generality (see Fig.
1). Especially due to the lack in generality, most techniques are conceivably difficult to
adapt and to integrate in given industrial testing structures or tool environments. The
major issue of most techniques is to be identified as – due to industrial organizations
mostly using system requirements representations – 1) the usage of detailed execution

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

traces of (or the model representation of) Si with Ti in order to select a subset Ti´ of Ti to
use for testing Si+1 and/or 2) a required fine-grained instrumentation of the source code
itself. Both types of approaches are correct and sophisticated solutions, but are not
suitable for real-life projects. Subsystems or components are not always developed within
one organization and therefore mostly not accessible for the car manufacturer, or if so, at
least not necessarily based on the same source code language or model type.

Evaluation CriteriaTechnique:
Inclusiveness Precision Efficiency Generality

Chittimalli very high very high very low low
Chen very high very high very low average
Industrial Requirements high average very high very high

Figure 1: Evaluation of RTS techniques and objective for the regression test technique under
investigation.

This is the main reason why most organizations commonly use the more abstract
approach of selecting test cases by their traceability to requirements and only few are
reported to perform automated RTS by applying described techniques [12]. Thus, changes
mapped to requirements can be properly traced to a selection of adequate test cases. A
major issue of this approach is that test cases not being associated with changed or new
requirements but being affected by the change may be missed, which is not safe. This
problem was addressed by making additional information available for impact analysis
(information about changes in interfaces or data and historical test case effectiveness), yet
having to deal with the tradeoff of achieving less generality. On that account, many
organizations still rerun Ti on Si+1 completely.

The basic challenge of developing a RTS technique for industry is to find a good balance
between all evaluation criteria, thus having no greater drawbacks on inclusiveness and
precision. The technique shall be general enough to be applied to any kind of embedded
system available and be primarily based on system requirements and test cases. Despite
generality, the main goal is to achieve an increase of efficiency in comparison to a full
retest.

Consequently industrial interests lie especially within techniques that are easily applied to
various projects, i.e. own a high generality, and next to that, of course, efficiently select
necessary test cases by achieving a total saving in resources. In respect to given tradeoffs,
a required more light-weighted analysis of system dependencies will therefore most likely
result in a lower inclusiveness and precision of test case selection. This may lead to the
technique not being safe as well. However, regression testing in an embedded system
environment is only to be used for increasing testing efficiency within inner release
cycles. For full release versions, it is still required to rerun a complete retest (see ISO
26262 [13] standard for automotive verification processes). The whole process of testing
therefore is safe. Thus, achieving a safe selection of test cases is certainly still desirable,
but should not lead to major drawbacks within efficiency and generality.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

3 Towards an Efficient Specification-based RTS Technique for E/E-
Systems

Embedded systems (E/E-systems) typically consist of a number of functions representing
the entire functionality of a system. This system functionality is mainly provided by
software which is implemented into a main component. Several cross-linked components
contributing to the realization of the system functionality are regarded as an E/E-system.
E/E-systems are designed and tested according to the V-Model [4], thus the verification
process includes various test levels, namely software-, component- and system-in-the-
loop test platforms.

The state of practice representation of an E/E-system within the automotive industry is
given by a system specification and several component specifications. Both typically
contain requirements written in natural language. The system specification describes the
system functionality and therefore is to be considered as its central representation.
Component specifications define functionality provided by each component in order to
realize the system functionality (please note that hardware aspects are not in focus of this
discussion). System requirements to be verified via testing are linked to at least one test
case being an element of a separate documentation named system test specification. A
system test specification typically contains all test cases derived for the system, thus
include test cases covering multiple if not all test levels (software is commonly provided
and (unit-) tested by third parties only and therefore may often not be available to the car
manufacturer.

In order to develop a methodology for black-box functional RTS, the system specification
and the system test specification have to be considered as fundamental, available basis of
information. The concept for regression test selection on system requirements contains
three aspects:

1) The basis for a successful application of the regression test strategy is enabled a
standardized test strategy. Next to the required ISO 26262 conformance of the test
specification, the strategy assures the integrity of the test specification as well as provides
information about which key point each test case verifies within the test object.
Knowledge about the latter will be mandatory to obtain a comprehensible methodology
about which test cases may possibly be selected or omitted for regression testing.

2) A key requirement to enabling regression testing is the development of a structured
specification framework (system representation). In order to enable ripple effect analysis
in between system functions and contributing components, the system representation
needs to contain supplemented dependency information which provides a networked
grey-box view of the system.

3) The ripple effect analysis and the subsequent regression test selection are part of the
third step, the RTS methodology itself. A new aspect provided by the presented technique
is the identification and selection of test cases covering requirements on system level that
have not been changed but possibly have been affected by the modifications.

The first two steps of providing a transparent and systematic documentation of a system
are not only crucial for RTS, but for all selective testing strategies which aim for a
redundant free reuse of test cases, the SPL testing techniques in particular.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

4 Deriving A Standardized Testing Strategy

Up to date, testing strategies and their specific interpretation to derive test cases for
verification of E/E-systems in development strongly depend on expertise of the testing
personnel being in charge. Therefore test strategies do strongly vary within one
organization, its various departments and even its numerous projects. This approach
consequently leads to varying quality and integrity of obtained test specifications and its
level of contained, hence available information. This state of practice is insufficient in
order to develop a regression test selection methodology which naturally relies strongly
on structured information frameworks.

In order to obtain an equal level of available information within the test specification a
standardized methodology to derive project specific test strategies needs to be developed.
The approach taken at Daimler is published in [16] and [14]. The resulting test strategy,
achieved by a harmonized and universal verification plan, primarily consists of 8
standardized test goals, 7 test coverage criteria to evaluate the achievement of given test
goals and 12 pre-set test methods, and provides two essential foundations for a
development of a regression test selection methodology:

I. The integrity and comprehensibility of the derived test specification. Logically,
selecting test cases out of a fragmentary test specification is not adequate. The
test strategy therefore represents the approach to ensure that all aspects of
testing were considered for test case derivation for a specific object under test.

II. Information about the type of given test cases. Every test case is annotated with
the test goals it contributes to (e.g. proof of correctness of: functionality, safety
mechanisms, diagnosis, interfaces, …). This, in most cases, allows a regression
test selection based on the type of change. For example, a change in parts of the
system describing diagnostic elements does not require to rerun a full test on all
interfaces.

Next to a sufficient test specification, the RTS requires a standardized system
representation to allow a ripple effect analysis within the system boundaries. This second
step of the concept is described in the following chapter.

5 Requirements on the System Specification Framework

Analysis of numerous system specifications reveals, similar to the discussed situation of
derived test specifications, that many deviations from the provided template and
structures are spread within the organisation. Also, in order to apply a potential
(automated) RTS methodology, the analysis shows the necessity to improve existing
framework conditions towards being more stringent.

For the purpose to enable a grey-box view of the system, its functions and contributing
components it is advisable to provide a traceable affiliation between defined test objects
and associated test cases. As a result of the previously discussed testing strategy and the
state of practice, for automotive systems where the “component-view” is more and more
superseded by the “system-view”, the documentation of requirements based on the test
object “function”, describing end-to-end user-experienced functionality (which is named
function orientation), has proven to be best.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

Three hierarchy levels are introduced: 1) The first level separates all functions fn of a
system (e.g. function “brake light” of system “outside light control”). 2) To obtain an
even more detailed view, each function fn is subdivided into its execution sequence
aspects fnm. This second hierarchy level contains the categories precondition, trigger,
function execution and end condition (fnm, 1 ≤ m ≤ 4). 3) The third hierarchy level is the
requirement level, therefore containing the requirements. With assorting requirements
into this hierarchy, an association with the test object “function” and its corresponding
test cases is obtained.

In order to provide a grey box view of the system being adequate for an RTS technique, it
is mandatory to not only take the system functionality but also networking components,
their contributing functions and the communication into consideration. For example, a
targeted goal of the RTS technique on system level is to reveal potential impacts of
changes in contributing components (which not necessarily have to be considered to be
object under test) on given system functions. In order to provide an efficient and general
system representation, which includes elements of component specifications, a
sophisticated documentation framework is required. To address this problem, we propose
the following documentation framework to associate requirements with:

System functions (fnm)

A system function specifies a function fnm of the system functionality realized by the
software implemented on the main hardware component C0. Subordinated requirements
specify the function, whereas n represents the identification of the function (e.g. brake
lights, turning lights) and m the element of its execution sequence (see above). All
functions fnm are test objects and documented in the system specification (supreme level:
“System Functions”).

Function contributions kl

A function contribution kl specifies the interface between functions fnm and one
component function from the viewpoint of the system under test. Subordinated
requirements specify the contribution kl demanded by one or multiple system functions
fnm. Function contributions kl are named identical to the corresponding component
function cj

nm and are documented in the system specification (supreme level: “Networking
Component Functions”). Function contributions are subject to the system test of
connected fnm.

Component functions cj
nm

A component function cj
nm specifies the functionality provided by one of the

participating electronic control units (ECU). Subordinated requirements specify the
function, whereas j represents the identification of the ECU, n the function (e.g. realize
lights) and m the element of its execution sequence (see above). All functions cj

nm are
documented in component specifications (supreme level: “Component Functions”) and
are generally not subject to verification of the system.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

The separation of requirements in functions fnm and cj
nm create – mapped into a two

dimensional graph – a matrix, with the y-axis representing a detailed view of the system
function structure, and with the x-axis representing the component functions cj

nm, an
architectural layout of the system integrating all components cj (Fig. 2). The function
contributions are to be seen as the interfaces of a crossing point between fnm and cj

nm.

Although this framework provides hierarchy elements to assort requirements specifying
different types of functions, it does not yet outline any communications dependencies
between functions and the networking devices of a system. This, however, is an essential
requirement to run a ripple effect analysis. We propose three kinds of dependencies to
connect functions fnm, kl and cj

nm: linkage, signals and parameters.

Figure 2: Schematic plot of a 2-dimensional matrix mapping the dependencies between system
functions fn and component functions cj

n, with the dots representing the function contributions kl.
The arrows represent a path of the ripple effect analysis identifying possible impacts of a change

(square) throughout a system.

Linkage

The implementation of links (a functionality provided by most requirements management
tools) is typically used to create directed dependencies between two entities of any
specification. Within this concept, this type of manual links (next to providing traceability
between requirements and test cases) is used to illustrate dependency information in
between system functions fnm. These dependencies are to be set manually as they are
typically not accessible on system level because they are integrated in the software based
on its defined architecture. However, as requirements are grouped in an end-to-end user’s
manner, knowledge about the architecture and the execution sequence aspects of the
functions easily allow creating dependencies between functions, their execution sequence
elements (e.g. function execution of function f1 is linked to trigger of function f3) and
even their requirements (although this is not recommended). Also, functions fnm are linked
to function contributions kn which they require at given points of the execution sequence.

Signals

Signals are a entity of communication between components. They are defined as a signal
name with a corresponding value. Signals are documented within the function
contribution kl and are attributed either as a “send”-signal or as a “receive”-signal (from

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

the viewpoint of the system). Signals are derived from the car communication matrix and
therefore represent fixed dependencies.

Parameters

Parameters are a set of values to control system function behavior. They are defined as a
parameter name with a corresponding value and store data within the main component on
which the system functionality is implemented. Parameters are documented within fn and
provide information about the function “reading” or “writing” its value during execution
(in an automotive embedded system context these parameters usually remain static once
set).

Implementing these types of communication information into the specifications offers a
comprehensive representation of the systems functionality and its networking
dependencies. Certainly, the implementation has to be performed precisely (not subject of
discussion), which keeps documentation efforts low and allows the quite considerable
amount of information to be managed. However, implementing this properly, the
combination and merge of the previously discussed information data allows the
construction of a sufficient system representation model to be used for ripple effect
analysis, thus RTS.

6 The RTS Methodology

The existing system representation framework provides various entry points to map
modifications to the specification: system function fnm, function contributions kl,
component functions cj

nm, each function execution sequence elements, single
requirements, signals, parameters or even whole components. In order to be able to match
bug-fixing changes to the software changes to the system specification, the following
approach is chosen: Each change is to be mapped to at least one software module
represented as a documented entity within a software specification (which is linked to the
system specification) or documented element within a function fn. However, some
software modules might be subordinated to more than one system function; certain
general software modules may even be associated to all of them. Once a change is
located, automated ripple effect analysis can be applied using system dependencies in the
system specification.

For ripple effect analysis within the defined documentation framework, we propose a
four-step approach, which in regard to the discussed matrix, describes a “full circle”
investigation on possible impacts of a change. The analysis thus consists of two vertical
and two horizontal paths through Figure 2, each containing the three sub-steps impact
identification, function analysis and impact analysis on further entities. The four steps of
analysis (Fig. 2) will now be explained on basis of the entry point of the validation
example, where a change to one of the components cj is implemented and is traced
throughout the system (fnm) and back to further components cj.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

Step 1: Analysis of cj
nm (vertical)

In this step 1) changes implemented to a component function cj
nm are located, 2) further

impacts on neighbor functions cj
xm are analyzed and 3) possible impacts on function

contributions kl of the system in focus determined. Obviously, information data type
“signal” has to be “sent” by cj and “received” by kl (thus fa).

Step 2: Analysis of fnm (horizontal)

In this step 1) impacts on system functions fam are determined, 2) impacts on the
execution sequence of the functions fam analyzed and, according to the testing strategy,
required test cases selected and 3) further possible impacts of the change on component
contributions kt (information data type “signal” equals “send”) examined.

Step 3: Analysis fnm and cj
nm (vertical)

In this step 1) further impacts on other system functions fbm as well as component
functions ck

nm targeted by previously (2.3) determined function contributions kt are
identified. Then 2) potential impacts on ck

nm and neighbor component functions are
analyzed (please remember that ck

nm are not subject to verification and are just used for
further ripple effect analysis, thus no test cases are selected) in order to 3) identify
rebounding information transfer having an impact on further ko.

Step 4: Analysis of fm (horizontal)

In this step 1) any potential impacts on functions fbm and functions fcm targeted by ko in
step 3 will be analyzed and 2) adequate test cases selected. Consequently, the third step
would be the connecting step in order to restart a new iteration with step 1. This however,
has proven to be unnecessary, as during validation for the systems chosen, ripple effect
analysis never exceeded step 4.

7 Validation and Outlook

The presented concept of an RTS technique based on system requirements is currently
validated within a scope two separate but related systems, namely Outside Light Control
(OLC) and Intelligent Light System (ILS), containing several fnm each. Both systems
individually depend on function contributions kn provided by the same component named
Light Control Device (LCD). The OLC contains various basic light functions such as
“brake lights”, “turning lights” or “high beam”, whereas system 2, the Intelligent Light
System (ILS), contains more advanced light functions such as “automatic high beam
function”. The component LCD contributes two basic functions cj

nm, namely “control
lights” and “dim lights”, to both systems in order to realize their light functions. Within
the scope of validation, one system at the time is the object under test. An overview of the
extent of the systems and the component is given in Fig. 3.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

Project/System Functions Total Test Cases
OLC 20 >1000
ILS 10 >600
LCD 2 in focus N/A

Figure 3: Systems/components used for evaluation of the RTS technique

Each of the following validation examples analyzes the possible impacts of a change
within the scope of all 3 systems/components by using the discussed concept described in
this contribution. The validation results are presented in Fig. 4. Column “Possibly
Affected Functions” gives the number of possibly affected functions identified for each
system/component (a partly affected function counts as 1 as well). The column “Selected
Test Cases” shows the number of test cases identified to verify a potential impact of the
change and therefore are selected for regression testing.

Example System /
Component

Possibly
Affected

Selected System
Test Cases

OLC 3 6%
ILS 2 18% 1

Analysis of the impact of a change in
“sending brake light status” of the

electronic stability program (ESP) on ILS LCD - -
OLC 3 23%
ILS 3 22% 2

Analysis the impact of a change in the
component function “dim lights” of LCD

on ILS and OLC LCD 1 20%
OLC 2 6%
ILS 6 44% 3

Analysis of a parameter change within
LCD and its consequences on LCD itself,

ILS and OLC LCD 2 100%
OLC - -
ILS 2 <25% 4

Analysis of a bug fixing change of light
function “corner lights” of ILS and its

impact on ILS itself and LCD LCD 1 N/A
OLC - -
ILS 5 18% 5

Analysis of a change in function “tourist
mode” of ILS (inverting light functions

left/right lane drive) on ILS itself LCD 1 N/A

Figure 4: Validation results of the RTS technique applied to a real-life project. Data marked with
N/A is either out of focus or not completely available.

As a result, the presented RTS technique shows that regression testing is possible on an
abstract system level and also contains great potential to reduce overall testing effort.
Since informality of requirements does not affect the approach, the presented RTS
technique is applicable to a wide range of projects in an embedded system environment.
However, the approach requires domain specific information as it uses ISO 26262
refinements and is therefore specialized for an automotive environment.

Considering the amount of information required and used by this light-weight RTS
technique, a very good efficiency is achieved. As increasing system complexity does not
directly lead to an increasing system specification complexity and thus an information
overflow, no major constraints are expected regarding this matter. Also, validation is
performed using two large-scale systems.

Also, another great benefit of this technique is given as it does not only support
verification of systems under development, but also applies to product line testing. The
technique is capable of managing the exchange of whole components (equal to an impact
on all cj

nm) when, for example, integrating the system under test into a new car series
while also the system functionality itself may remain unchanged.

Due to overall selection of requirements, first reviews of the inclusiveness of the
technique lead to the conclusion that – assuming completeness and correctness of the
system and test specification – the technique appears to be safe within the four iteration

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

steps. However, due to the abstract level of analysis, no proof can be provided. Therefore
the great benefit of the methodology primarily has to be seen reducing inner-release
verification efforts it is advisable to run a full retest on at least the final release of the
system.

The precision of the presented RTS technique is under current investigation. Current
research is focused especially on how the knowledge about the test goals of each test case
can further improve and optimize the selection of test cases. At this level a further
potential increase in precision, thus efficiency is still to be expected.

In terms of the amount of selected test cases, the results already show a great benefit with
respect to a complete retest. In terms of the initial goals of this light-weight RTS
technique and the abstraction level of the system and test specification, results are to be
rated as excellent. Furthermore, it is if putting too much energy into achieving high
precision is worth the effort, as due to the abstraction level certain limits (given by the
function hierarchy and test goal attribute for test cases) will ease continuous
improvements of this criterion. Additionally, the results are expected to fluctuate more
strongly within the projects compared to white-box technique performances. This is also
due to the abstraction level.

Similarities to (Software) Product Line Testing

Testing of (software) product lines (PL) is one further approach which aims for a
reduction of testing effort. Amongst others, it describes methodologies on how to
efficiently verify further developed versions or newly introduced configurations of a
product. Incremental testing [19], for example, is a technique which attempts to test a PL
by selecting one individual product and testing it thoroughly, then deriving further
versions with the required testing effort. Subsequently, it identifies commonalities and
differences between the individual product and the PL and selects only those parts for
testing which vary from the fully tested product configuration. The objective of RTS and
SPL testing techniques thus are quite similar as both aim at minimizing the number of test
cases in Ti

’ for re-verification of the product.

In context of PLs, evolutionary steps within a product line leading to alternative versions
and configurations of the product primarily represent nothing but a change (e.g.
replacement, enhancement, addition or deletion of system parts) in the architectural
design of the system functionality (fnm or knm) or the system itself (fnm or kl or cj

nm). Thus,
impacts of such steps on unchanged parts of the system or its components may be
detected by the RTS technique as well, leading to an optimized verification of the new
product configuration.

Next to analogues objectives, also remaining challenges, especially the one of transferring
the concept of SPL testing techniques into industrial system levels, are quite similar to the
ones discussed. The developed approach on RTS might therefore support obtaining a
solution to SPL testing as well. Especially on system level, where the system specification
has to be regarded as a substantial basis for analysis, SPL testing can greatly benefit from
an efficient and general RTS methodology by using the same evaluation criteria,
documentation framework as well as a related approach for selecting required test cases.

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

References

[1] H. Agrawal, J. R. Horgan, E. Krauser, S. London, Incremental regression testing, In
Proc. Conf. on Softw. Maint., 1993

[2] T. Ball, On the limit of control flow analysis for regression test selection, In Proc. Int’l
Symp. on Softw. Testing and Analysis, 1998.

[3] S. Biswas, A Model-Based Regression Test Selection Approach for Embedded
Applications IIT Kharagpur, India GM India Science Lab, 2009

[4] B. Boehm, Guidelines for Verifying and Validating Software Requirements and Design
Specification, EURO IFIP 79, P.A. Samet (eds.) North Holland, 1979

[5] Y. Chen, R. L. Probert, D. P. Sims, Specification-based Regression Test Selection with
Risk Analysis, IBM Centre for Advanced Studies Conference, 2002

[6] P. K. Chittimalli, M. J. Harrold, Regression Test Selection on System Requirements, 1st
India Software Engineering Conference, 2008

[7] E. Engström, A Systematic review on regression test selection techniques, Department of
Computer Science, Lund University, 2010

[8] E. Engström, Exploring Regression Testing and Software Product Line Testing -
Research and State of Practice, Department of Computer Science, Licentiate Thesis,
Lund University, 2010

[9] K. Gallagher, Reducing Regression Test Size by Exclusion, Durham University, 2007
[10] R.P. Gorthi, A. Pasala, K.K.P. Chanduka, and B. Leong, Specification-Based Approach

to Select Regression Test Suite to Validate Changed Software, in Proc. APSEC, 2008
[11] R. Gupta, M. J. Harrold, M. L. Soffa. Program slicing based regression testing

techniques. Journal of Softw. Testing, Verif., and Rel., 1996.
[12] M. J. Harrold, A. Orso, Retesting During Development and Maintenance, IEEE

Conference on Software Maintenance, 2008
[13] International Organization for Standardization, ISO FDIS 26262 BL19, Road vehicles –

Functional safety
[14] R. Nörenberg, A. Cmyrev, R. Reißing, K. D. Müller-Glaser, Efficient verification

planning for ISO-conformant functional testing of automotive applications, Technische
Akademie Esslingen, 2011

[15] R. Nörenberg, Effizienter Regressionstest von E/E-Systemen, Dissertationsproposal,
Karlsruher Institut für Technologie , 2011

[16] R. Nörenberg, R. Reißing, J. Weber, ISO 26262 Conformant Verification Plan, 8th
Workshop Automotive Software Engineering, 2010

 [17] G. Rothermel, M. J. Harrold, Analyzing Regression Test Selection Techniques IEEE
Transactions on Software Engineering, 1996

[18] G. Rothermel, M. J. Harrold, A safe, efficient regression test selection technique. ACM
Trans. Softw. Eng. Meth., 1997

[19] S. Oster, A. Wübbeke, G. Engels, A. Schürr, Model-Based Software Product Lines
Testing Survey in, J. Zander, I. Schieferdecker, P. Mosterman (eds.): Model-based
Testing for Embedded Systems, CRC Press/Taylor & Francis, 2010

[20] F. Vokolos, P. Frankl, Pythia: A regression test selection tool based on text differencing,
In Proc. Int’l Conf. on Rel., Qual., and Safety of Softw. Intensive Sys., 1997

INFORMATIK 2011 - Informatik schafft Communities
41. Jahrestagung der Gesellschaft für Informatik , 4.-7.10.2011, Berlin

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192
ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

