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Abstract: Regression testing, a methodology originally developed for software 
development, is used to revalidate a (software) system in-between release cycles 
after having implemented changes. In practice there is always limited time to 
perform a full retest of a system; therefore a random/prioritizing-testing approach 
is often chosen to perform at least some regression testing. However, the lack of 
adequate regression testing can lead to exposed errors in untested parts of the 
system during production or field usage, which may have severe consequences. In 
order to improve the efficiency of regression testing, so far many approaches were 
proposed. They intend to select only test cases which cover parts of the system that 
contain the implemented changes as well as parts that are possibly affected by the 
change. Unfortunately, most techniques are only available on software level 
requiring extensive knowledge of the source code, and typically use some 
additional representation of the software such as a software architecture model. 
However, in practice, especially within automotive embedded system 
development, available system models or source code strongly vary in type or 
design or may even be inaccessible. In order to provide an efficient regression test 
selection methodology, we propose a novel and light-weight approach primarily 
based on system requirements and their association with test cases. In addition, 
substantial similarities between challenges and objectives of regression test 
selection and product lines testing techniques are identified. Conclusions outline 
how a potential benefit in reducing overall testing efforts in product lines testing 
can simply be achieved by applying regression test selection techniques. 

1 Introduction 

Embedded systems are continually subject to changes during development for a variety of 
reasons: software bug-fixing, enhanced functionality or added features, changes in system 
communication or changes in hardware components. After changes are applied, the 
system needs to be tested to ensure it still behaves correctly in regard to its specification 
and that the modifications have not had an adverse impact on the quality of the given 
system. This testing activity is called regression testing.  
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The most common approach to apply regression testing is to reuse parts of the test suite 
Ti, used to test a version Si of the system, for testing the next (modified) version Si+1 of the 
system. Instead of rerunning all available test cases in Ti, so-called Regression-Test-
Selection techniques (RTS) select a subset Ti´ of Ti to test Si+1. In order to improve the 
efficiency of regression testing, a methodology generally aims at minimizing Ti´, so that 
|Ti´| <<| Ti|.  In the automotive industry, the general state of practice of regression testing 
is to rerun all available test cases of the previous system version. 

The importance of research on the subject of RTS techniques is given, as they are very 
effective in reducing the cost of regression testing, which reports estimate consumes 
already as much as 80% of the overall testing budget and up to 50% of the cost of 
maintenance at the software level [12]. However, most academic research in the field of 
regression testing describing the process of a selective revalidation of a modified system 
so far has been exclusively focused on software-unit and white-box testing [10][3][9], 
therefore supplying specialized tools for the software level only. Consequently, developed 
techniques come with the restriction that they strongly rely on complete knowledge of the 
system structure, or even information about source code as well as test case traces. 
Furthermore, investigated issues of regression testing are commonly easy to address when 
handling a small software system, but suddenly become very complicated and costly 
when applied to complex real-world systems [12]. Thus, there are still many remaining 
challenges in making the regression test techniques useful in practice and getting the 
know-how transferred into industrial environments. Also, in industry, integration testing 
and black-box functional testing have been found to be most effective and useful – a 
subject which has hardly been investigated in regression testing [7]. 

This paper gives an overview of the state of research on RTS techniques in order to 
discuss existing difficulties and challenges of knowledge transfer into industrial 
environments in to the light of given evaluation criteria. After identifying the differing 
industrial demands, an adequate, light-weight methodology for regression test selection 
on system requirements for industrial functional embedded system testing is presented. 
Finally, an evaluation example and outlook is given.  

2 State of Research and Challenges to Industrial Knowledge Transfer 

The most prominent class of RTS techniques developed by academic research creates 
model representations of Si and Si+1 and identifies the set of entities in the models that 
represent the changes from Si and Si+1 [12].The techniques then use the identified entities 
to select the subset Ti´ of Ti that exercises those entities in Si to test Si+1. Some techniques 
use source code representations with entities such as statements [20], branches [18][1], 
control and data dependencies [11] or program paths [2]. Other, more related techniques 
to this contribution use activity diagrams [5] or software specifications as representations 
[6]. 

Chittimalli [6] uses instrumented code to obtain traceability to specified requirements, so 
that their automated allocation of test cases can be provided. Both, Si and Si+1, are then 
analyzed by an algorithm to identify varying entities within the code and match them to 
corresponding requirement instrumentations. The previously created traceability of 
requirements to test cases matrix then provides information on which test cases to select 
for regression testing. Chen [5] introduces a control-flow similar to “activity diagram” 
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which also contains data-flow information about behavioural dependencies. Using change 
information on Si and Si+1, the technique selects test cases required for regression testing 
by identifying affected nodes and branches. However, this only applies on assumption 
that information on traceability between requirements and activity diagram and 
knowledge about test cases traces is manually implemented and therefore 
comprehensible. 

Up to date, all techniques still focus on the software level requiring special white-box 
representations of the system, e.g. an instrumented source code or formal models [12]. 
This is one of the main reasons that only few available techniques were evaluated in 
industrial environments. Also, existing studies are strongly restricted to software unit 
testing focusing on controlled experiments such as a small set of programs, where as a 
result, it is not obvious that their findings can be generalized to programs other than the 
ones considered. Few empirical studies have been performed on real-world, large-scale 
systems or shown to be useful in practice. Several independent systematic reviews 
confirming this state of research can be found in [12][8][15]. 

In order to provide general evaluation criteria to compare and rate various RTS 
methodologies, a commonly used framework consisting out of the four categories 
inclusiveness, precision, efficiency and generality was introduced by Rothermel [17]. 

Inclusiveness is measure to describe to which degree test cases testing modifications in 
Si+1 are selected for regression testing. Objective is the achievement of 100% percent 
inclusiveness, the RTS then adequately replaces a retest-all methodology by providing a 
“safe” selection. A safe selection thus contains all modification-revealing test cases [17]. 

Precision is a measure to describe to which degree only the modification-revealing test 
cases are selected for regression testing. Objective to any RTS methodology is to not 
select any unnecessary test cases, as their execution requires additional resources. 
Therefore, a high precision may provide a substantial contribution to the efficiency of the 
RTS methodology. On the down-side, an upmost precision almost always comes with the 
drawback of endangering a safe selection of test cases. 

The efficiency of RTS techniques is measured in terms of their space and time 
requirements. Where time is concerned, a RTS technique in general is more economical 
than the retest-all technique if the cost of selecting Ti´ is less than the cost of running the 
tests in Ti - Ti´. Space efficiency primarily depends on test history and analysis 
information a technique stores. However there’re no fixed criteria on efficiency measures. 

The generality of a RTS technique describes its ability to function in a wide and practical 
range of situations. In an (automotive) embedded system context, generality should be 
provided to the extent, that the technique can be adapted to most projects, covering the 
variety of driver assistant systems up to light control systems. 

In regard to the evaluation framework, the focus of academic research has so far strongly 
been put on developing a most precise technique by still remaining safe with test case 
selection. These aims were properly achieved and also good results were published, but 
certainly these techniques were not rated outstanding in efficiency and generality (see Fig. 
1). Especially due to the lack in generality, most techniques are conceivably difficult to 
adapt and to integrate in given industrial testing structures or tool environments. The 
major issue of most techniques is to be identified as – due to industrial organizations 
mostly using system requirements representations – 1) the usage of detailed execution 
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traces of (or the model representation of) Si with Ti in order to select a subset Ti´ of Ti to 
use for testing Si+1 and/or 2) a required fine-grained instrumentation of the source code 
itself. Both types of approaches are correct and sophisticated solutions, but are not 
suitable for real-life projects. Subsystems or components are not always developed within 
one organization and therefore mostly not accessible for the car manufacturer, or if so, at 
least not necessarily based on the same source code language or model type.  

Evaluation CriteriaTechnique: 
Inclusiveness Precision Efficiency Generality 

Chittimalli very high very high very low low 
Chen very high very high very low average 
Industrial Requirements high average very high very high 

Figure 1: Evaluation of RTS techniques and objective for the regression test technique under 
investigation. 

This is the main reason why most organizations commonly use the more abstract 
approach of selecting test cases by their traceability to requirements and only few are 
reported to perform automated RTS by applying described techniques [12]. Thus, changes 
mapped to requirements can be properly traced to a selection of adequate test cases. A 
major issue of this approach is that test cases not being associated with changed or new 
requirements but being affected by the change may be missed, which is not safe. This 
problem was addressed by making additional information available for impact analysis 
(information about changes in interfaces or data and historical test case effectiveness), yet 
having to deal with the tradeoff of achieving less generality. On that account, many 
organizations still rerun Ti on Si+1 completely. 

The basic challenge of developing a RTS technique for industry is to find a good balance 
between all evaluation criteria, thus having no greater drawbacks on inclusiveness and 
precision. The technique shall be general enough to be applied to any kind of embedded 
system available and be primarily based on system requirements and test cases. Despite 
generality, the main goal is to achieve an increase of efficiency in comparison to a full 
retest. 

Consequently industrial interests lie especially within techniques that are easily applied to 
various projects, i.e. own a high generality, and next to that, of course, efficiently select 
necessary test cases by achieving a total saving in resources. In respect to given tradeoffs, 
a required more light-weighted analysis of system dependencies will therefore most likely 
result in a lower inclusiveness and precision of test case selection. This may lead to the 
technique not being safe as well. However, regression testing in an embedded system 
environment is only to be used for increasing testing efficiency within inner release 
cycles. For full release versions, it is still required to rerun a complete retest (see ISO 
26262 [13] standard for automotive verification processes). The whole process of testing 
therefore is safe. Thus, achieving a safe selection of test cases is certainly still desirable, 
but should not lead to major drawbacks within efficiency and generality. 
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3 Towards an Efficient Specification-based RTS Technique for E/E-
Systems 

Embedded systems (E/E-systems) typically consist of a number of functions representing 
the entire functionality of a system. This system functionality is mainly provided by 
software which is implemented into a main component. Several cross-linked components 
contributing to the realization of the system functionality are regarded as an E/E-system. 
E/E-systems are designed and tested according to the V-Model [4], thus the verification 
process includes various test levels, namely software-, component- and system-in-the-
loop test platforms. 

The state of practice representation of an E/E-system within the automotive industry is 
given by a system specification and several component specifications. Both typically 
contain requirements written in natural language. The system specification describes the 
system functionality and therefore is to be considered as its central representation. 
Component specifications define functionality provided by each component in order to 
realize the system functionality (please note that hardware aspects are not in focus of this 
discussion). System requirements to be verified via testing are linked to at least one test 
case being an element of a separate documentation named system test specification. A 
system test specification typically contains all test cases derived for the system, thus 
include test cases covering multiple if not all test levels (software is commonly provided 
and (unit-) tested by third parties only and therefore may often not be available to the car 
manufacturer. 

In order to develop a methodology for black-box functional RTS, the system specification 
and the system test specification have to be considered as fundamental, available basis of 
information. The concept for regression test selection on system requirements contains 
three aspects: 

1) The basis for a successful application of the regression test strategy is enabled a 
standardized test strategy. Next to the required ISO 26262 conformance of the test 
specification, the strategy assures the integrity of the test specification as well as provides 
information about which key point each test case verifies within the test object. 
Knowledge about the latter will be mandatory to obtain a comprehensible methodology 
about which test cases may possibly be selected or omitted for regression testing. 

2) A key requirement to enabling regression testing is the development of a structured 
specification framework (system representation). In order to enable ripple effect analysis 
in between system functions and contributing components, the system representation 
needs to contain supplemented dependency information which provides a networked 
grey-box view of the system. 

3) The ripple effect analysis and the subsequent regression test selection are part of the 
third step, the RTS methodology itself. A new aspect provided by the presented technique 
is the identification and selection of test cases covering requirements on system level that 
have not been changed but possibly have been affected by the modifications. 

The first two steps of providing a transparent and systematic documentation of a system  
are not only crucial for RTS, but for all selective testing strategies which aim for a 
redundant free reuse of test cases, the SPL testing techniques in particular. 
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4 Deriving A Standardized Testing Strategy 

Up to date, testing strategies and their specific interpretation to derive test cases for 
verification of E/E-systems in development strongly depend on expertise of the testing 
personnel being in charge. Therefore test strategies do strongly vary within one 
organization, its various departments and even its numerous projects. This approach 
consequently leads to varying quality and integrity of obtained test specifications and its 
level of contained, hence available information. This state of practice is insufficient in 
order to develop a regression test selection methodology which naturally relies strongly 
on structured information frameworks.  

In order to obtain an equal level of available information within the test specification a 
standardized methodology to derive project specific test strategies needs to be developed. 
The approach taken at Daimler is published in [16] and [14]. The resulting test strategy, 
achieved by a harmonized and universal verification plan, primarily consists of 8 
standardized test goals, 7 test coverage criteria to evaluate the achievement of given test 
goals and 12 pre-set test methods, and provides two essential foundations for a 
development of a regression test selection methodology: 

I. The integrity and comprehensibility of the derived test specification. Logically, 
selecting test cases out of a fragmentary test specification is not adequate. The 
test strategy therefore represents the approach to ensure that all aspects of 
testing were considered for test case derivation for a specific object under test. 

II. Information about the type of given test cases. Every test case is annotated with 
the test goals it contributes to (e.g. proof of correctness of: functionality, safety 
mechanisms, diagnosis, interfaces, …). This, in most cases, allows a regression 
test selection based on the type of change. For example, a change in parts of the 
system describing diagnostic elements does not require to rerun a full test on all 
interfaces.  

Next to a sufficient test specification, the RTS requires a standardized system 
representation to allow a ripple effect analysis within the system boundaries. This second 
step of the concept is described in the following chapter. 

5 Requirements on the System Specification Framework 

Analysis of numerous system specifications reveals, similar to the discussed situation of 
derived test specifications, that many deviations from the provided template and 
structures are spread within the organisation. Also, in order to apply a potential 
(automated) RTS methodology, the analysis shows the necessity to improve existing 
framework conditions towards being more stringent. 

For the purpose to enable a grey-box view of the system, its functions and contributing 
components it is advisable to provide a traceable affiliation between defined test objects 
and associated test cases. As a result of the previously discussed testing strategy and the 
state of practice, for automotive systems where the “component-view” is more and more 
superseded by the “system-view”, the documentation of requirements based on the test 
object “function”, describing end-to-end user-experienced functionality (which is named 
function orientation), has proven to be best.  
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Three hierarchy levels are introduced: 1) The first level separates all functions fn of a 
system (e.g. function “brake light” of system “outside light control”). 2) To obtain an 
even more detailed view, each function fn is subdivided into its execution sequence 
aspects fnm. This second hierarchy level contains the categories precondition, trigger, 
function execution and end condition (fnm, 1 ≤ m ≤ 4).  3) The third hierarchy level is the 
requirement level, therefore containing the requirements. With assorting requirements 
into this hierarchy, an association with the test object “function” and its corresponding 
test cases is obtained. 

In order to provide a grey box view of the system being adequate for an RTS technique, it 
is mandatory to not only take the system functionality but also networking components, 
their contributing functions and the communication into consideration. For example, a 
targeted goal of the RTS technique on system level is to reveal potential impacts of 
changes in contributing components (which not necessarily have to be considered to be 
object under test) on given system functions. In order to provide an efficient and general 
system representation, which includes elements of component specifications, a 
sophisticated documentation framework is required. To address this problem, we propose 
the following documentation framework to associate requirements with: 

System functions (fnm) 

A system function specifies a function fnm of the system functionality realized by the 
software implemented on the main hardware component C0. Subordinated requirements 
specify the function, whereas n represents the identification of the function (e.g. brake 
lights, turning lights) and m the element of its execution sequence (see above). All 
functions fnm are test objects and documented in the system specification (supreme level: 
“System Functions”). 

Function contributions kl 

A function contribution kl specifies the interface between functions fnm and one 
component function from the viewpoint of the system under test. Subordinated 
requirements specify the contribution kl demanded by one or multiple system functions 
fnm. Function contributions kl are named identical to the corresponding component 
function cj

nm and are documented in the system specification (supreme level: “Networking 
Component Functions”). Function contributions are subject to the system test of 
connected fnm. 

Component functions cj
nm 

A component function cj
nm specifies the functionality provided by one of the 

participating electronic control units (ECU). Subordinated requirements specify the 
function, whereas j represents the identification of the ECU, n the function (e.g. realize 
lights) and m the element of its execution sequence (see above). All functions cj

nm are 
documented in component specifications (supreme level: “Component Functions”) and 
are generally not subject to verification of the system. 
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The separation of requirements in functions fnm and cj
nm create – mapped into a two 

dimensional graph – a matrix, with the y-axis representing a detailed view of the system 
function structure, and with the x-axis representing the component functions cj

nm, an 
architectural layout of the system integrating all components cj (Fig. 2). The function 
contributions are to be seen as the interfaces of a crossing point between fnm and cj

nm. 

Although this framework provides hierarchy elements to assort requirements specifying 
different types of functions, it does not yet outline any communications dependencies 
between functions and the networking devices of a system. This, however, is an essential 
requirement to run a ripple effect analysis. We propose three kinds of dependencies to 
connect functions fnm, kl and cj

nm: linkage, signals and parameters. 

Figure 2: Schematic plot of a 2-dimensional matrix mapping the dependencies between system 
functions fn and component functions cj

n, with the dots representing the function contributions kl. 
The arrows represent a path of the ripple effect analysis identifying possible impacts of a change 

(square) throughout a system. 

Linkage 

The implementation of links (a functionality provided by most requirements management 
tools) is typically used to create directed dependencies between two entities of any 
specification. Within this concept, this type of manual links (next to providing traceability 
between requirements and test cases) is used to illustrate dependency information in 
between system functions fnm. These dependencies are to be set manually as they are 
typically not accessible on system level because they are integrated in the software based 
on its defined architecture. However, as requirements are grouped in an end-to-end user’s 
manner, knowledge about the architecture and the execution sequence aspects of the 
functions easily allow creating dependencies between functions, their execution sequence 
elements (e.g. function execution of function f1 is linked to trigger of function f3) and 
even their requirements (although this is not recommended). Also, functions fnm are linked 
to function contributions kn which they require at given points of the execution sequence. 

Signals 

Signals are a entity of communication between components. They are defined as a signal 
name with a corresponding value. Signals are documented within the function 
contribution kl and are attributed either as a “send”-signal or as a “receive”-signal (from 
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the viewpoint of the system). Signals are derived from the car communication matrix and 
therefore represent fixed dependencies. 

Parameters 

Parameters are a set of values to control system function behavior. They are defined as a 
parameter name with a corresponding value and store data within the main component on 
which the system functionality is implemented. Parameters are documented within fn and 
provide information about the function “reading” or “writing” its value during execution 
(in an automotive embedded system context these parameters usually remain static once 
set). 

Implementing these types of communication information into the specifications offers a 
comprehensive representation of the systems functionality and its networking 
dependencies. Certainly, the implementation has to be performed precisely (not subject of 
discussion), which keeps documentation efforts low and allows the quite considerable 
amount of information to be managed. However, implementing this properly, the 
combination and merge of the previously discussed information data allows the 
construction of a sufficient system representation model to be used for ripple effect 
analysis, thus RTS.  

6 The RTS Methodology 

The existing system representation framework provides various entry points to map 
modifications to the specification: system function fnm, function contributions kl, 
component functions cj

nm, each function execution sequence elements, single 
requirements, signals, parameters or even whole components. In order to be able to match 
bug-fixing changes to the software changes to the system specification, the following 
approach is chosen: Each change is to be mapped to at least one software module 
represented as a documented entity within a software specification (which is linked to the 
system specification) or documented element within a function fn. However, some 
software modules might be subordinated to more than one system function; certain 
general software modules may even be associated to all of them. Once a change is 
located, automated ripple effect analysis can be applied using system dependencies in the 
system specification. 

For ripple effect analysis within the defined documentation framework, we propose a 
four-step approach, which in regard to the discussed matrix, describes a “full circle” 
investigation on possible impacts of a change. The analysis thus consists of two vertical 
and two horizontal paths through Figure 2, each containing the three sub-steps impact 
identification, function analysis and impact analysis on further entities. The four steps of 
analysis (Fig. 2) will now be explained on basis of the entry point of the validation 
example, where a change to one of the components cj is implemented and is traced 
throughout the system (fnm) and back to further components cj. 
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Step 1: Analysis of cj
nm (vertical) 

In this step 1) changes implemented to a component function cj
nm are located, 2) further 

impacts on neighbor functions cj
xm are analyzed and 3) possible impacts on function 

contributions kl of the system in focus determined. Obviously, information data type 
“signal” has to be “sent” by cj and “received” by kl (thus fa). 

Step 2: Analysis of fnm (horizontal) 

In this step 1) impacts on system functions fam are determined, 2) impacts on the 
execution sequence of the functions fam analyzed and, according to the testing strategy, 
required test cases selected and 3) further possible impacts of the change on component 
contributions kt (information data type “signal” equals “send”) examined. 

Step 3: Analysis fnm and cj
nm (vertical) 

In this step 1) further impacts on other system functions fbm as well as component 
functions ck

nm targeted by previously (2.3) determined function contributions kt are 
identified. Then 2) potential impacts on ck

nm and neighbor component functions are 
analyzed (please remember that ck

nm are not subject to verification and are just used for 
further ripple effect analysis, thus no test cases are selected) in order to 3) identify 
rebounding information transfer having an impact on further ko.  

Step 4: Analysis of fm (horizontal) 

In this step 1) any potential impacts on functions fbm and functions fcm targeted by ko in 
step 3 will be analyzed and 2) adequate test cases selected. Consequently, the third step 
would be the connecting step in order to restart a new iteration with step 1. This however, 
has proven to be unnecessary, as during validation for the systems chosen, ripple effect 
analysis never exceeded step 4. 

7 Validation and Outlook  

The presented concept of an RTS technique based on system requirements is currently 
validated within a scope two separate but related systems, namely Outside Light Control 
(OLC) and Intelligent Light System (ILS), containing several fnm each. Both systems 
individually depend on function contributions kn provided by the same component named 
Light Control Device (LCD). The OLC contains various basic light functions such as 
“brake lights”, “turning lights” or “high beam”, whereas system 2, the Intelligent Light 
System (ILS), contains more advanced light functions such as “automatic high beam 
function”. The component LCD contributes two basic functions cj

nm, namely “control 
lights” and “dim lights”, to both systems in order to realize their light functions. Within 
the scope of validation, one system at the time is the object under test. An overview of the 
extent of the systems and the component is given in Fig. 3. 
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Project/System Functions Total Test Cases
OLC 20 >1000
ILS 10 >600
LCD 2 in focus N/A

Figure 3: Systems/components used for evaluation of the RTS technique 

Each of the following validation examples analyzes the possible impacts of a change 
within the scope of all 3 systems/components by using the discussed concept described in 
this contribution. The validation results are presented in Fig. 4. Column “Possibly 
Affected Functions” gives the number of possibly affected functions identified for each 
system/component (a partly affected function counts as 1 as well). The column “Selected 
Test Cases” shows the number of test cases identified to verify a potential impact of the 
change and therefore are selected for regression testing.  

Example System / 
Component

Possibly 
Affected 

Selected System 
Test Cases 

OLC 3 6% 
ILS 2 18% 1 

Analysis of the impact of a change in  
“sending brake light status” of the 

electronic stability program (ESP) on ILS LCD - - 
OLC 3 23% 
ILS 3 22% 2 

Analysis the impact of a change in the 
component function “dim lights” of LCD 

on ILS and OLC LCD 1 20% 
OLC 2 6% 
ILS 6 44% 3 

Analysis of a parameter change within 
LCD and its consequences on LCD itself, 

ILS and OLC LCD 2 100% 
OLC - - 
ILS 2 <25% 4 

Analysis of a bug fixing change of light 
function “corner lights” of ILS and its 

impact on ILS itself and LCD LCD 1 N/A 
OLC - - 
ILS 5 18% 5 

Analysis of a change in function “tourist 
mode” of ILS (inverting light functions 

left/right lane drive) on ILS itself LCD 1 N/A 

Figure 4: Validation results of the RTS technique applied to a real-life project. Data marked with 
N/A is either out of focus or not completely available. 

As a result, the presented RTS technique shows that regression testing is possible on an 
abstract system level and also contains great potential to reduce overall testing effort.  
Since informality of requirements does not affect the approach, the presented RTS 
technique is applicable to a wide range of projects in an embedded system environment. 
However, the approach requires domain specific information as it uses ISO 26262 
refinements and is therefore specialized for an automotive environment.  

Considering the amount of information required and used by this light-weight RTS 
technique, a very good efficiency is achieved. As increasing system complexity does not 
directly lead to an increasing system specification complexity and thus an information 
overflow, no major constraints are expected regarding this matter. Also, validation is 
performed using two large-scale systems. 

Also, another great benefit of this technique is given as it does not only support 
verification of systems under development, but also applies to product line testing. The 
technique is capable of managing the exchange of whole components (equal to an impact 
on all cj

nm) when, for example, integrating the system under test into a new car series 
while also the system functionality itself may remain unchanged. 

Due to overall selection of requirements, first reviews of the inclusiveness of the 
technique lead to the conclusion that – assuming completeness and correctness of the 
system and test specification – the technique appears to be safe within the four iteration 
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steps. However, due to the abstract level of analysis, no proof can be provided. Therefore 
the great benefit of the methodology primarily has to be seen reducing inner-release 
verification efforts it is advisable to run a full retest on at least the final release of the 
system. 

The precision of the presented RTS technique is under current investigation. Current 
research is focused especially on how the knowledge about the test goals of each test case 
can further improve and optimize the selection of test cases. At this level a further 
potential increase in precision, thus efficiency is still to be expected. 

In terms of the amount of selected test cases, the results already show a great benefit with 
respect to a complete retest. In terms of the initial goals of this light-weight RTS 
technique and the abstraction level of the system and test specification, results are to be 
rated as excellent. Furthermore, it is if putting too much energy into achieving high 
precision is worth the effort, as due to the abstraction level certain limits (given by the 
function hierarchy and test goal attribute for test cases) will ease continuous 
improvements of this criterion. Additionally, the results are expected to fluctuate more 
strongly within the projects compared to white-box technique performances. This is also 
due to the abstraction level.  

Similarities to (Software) Product Line Testing 

Testing of (software) product lines (PL) is one further approach which aims for a 
reduction of testing effort. Amongst others, it describes methodologies on how to 
efficiently verify further developed versions or newly introduced configurations of a 
product. Incremental testing [19], for example, is a technique which attempts to test a PL 
by selecting one individual product and testing it thoroughly, then deriving further 
versions with the required testing effort. Subsequently, it identifies commonalities and 
differences between the individual product and the PL and selects only those parts for 
testing which vary from the fully tested product configuration. The objective of RTS and 
SPL testing techniques thus are quite similar as both aim at minimizing the number of test 
cases in Ti

’ for re-verification of the product. 

In context of PLs, evolutionary steps within a product line leading to alternative versions 
and configurations of the product primarily represent nothing but a change (e.g. 
replacement, enhancement, addition or deletion of system parts) in the architectural 
design of the system functionality (fnm or knm) or the system itself (fnm or kl or cj

nm). Thus, 
impacts of such steps on unchanged parts of the system or its components may be 
detected by the RTS technique as well, leading to an optimized verification of the new 
product configuration. 

Next to analogues objectives, also remaining challenges, especially the one of transferring 
the concept of SPL testing techniques into industrial system levels, are quite similar to the 
ones discussed. The developed approach on RTS might therefore support obtaining a 
solution to SPL testing as well. Especially on system level, where the system specification 
has to be regarded as a substantial basis for analysis, SPL testing can greatly benefit from 
an efficient and general RTS methodology by using the same evaluation criteria, 
documentation framework as well as a related approach for selecting required test cases. 
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