INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

Software Configuration Management in the Context of

BPM and SOA
Jorg Hohwiller Diethelm Schlegel
Capgemini, Offenbach Capgemini, Offenbach
joerg.hohwiller @capgemini.com diethelm.schlegel @capgemini.com

Abstract: Service oriented architectures (SOA) have established to shape large IT
landscapes. Business process management (BPM) aims to bring more flexibility to the
enterprise and pushes a business driven SOA. In the last years BPM-suites (BPMS)
have grown to large and powerful systems. They both address development (mod-
elling) as well as execution. Hence they have a big impact on the software config-
uration management (SCM). This paper consolidates best practices that help to do
professional software configuration management in the context of BPM and SOA.

1 Problem

Software configuration management [SBG105] is a quite old and established domain in
the context of software engineering. However SCM is a moving target as new IT trends
sometimes have impact on it. As we will see this massively applies for a service-oriented
architecture when cloud-services and BPM come into play. Classical SCM has a strong
focus on the engineering of a single product. Within a SOA these approaches can be
applied to individual domain- or service-applications. However for the IT landscape as
a whole a gap remains especially for deployment and release management. Additionally
a rich BPMS is both development and execution environment leading to a mixture of
aspects that are typically separated. In BPM projects the process models and business
rules become central artefacts of the development with high impact on version control.

An example architecture for BPM on enterprise level is illustrated in figure 1. Specific
products like a BPMS and an enterprise service bus (ESB) have a central and important
role in this architecture.

In this context new problems arise for SCM that can be identified by the following ques-
tions:

What happens to version control if functional changes are performed directly inside
an ESB or the BPMS rather than in code?

How can branches be handled for artefacts like process-models or business-rules?

e How to manage (test-)environments in this context?

What impact does SOA and BPM have on release- and change-management?

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

2
Ly ;DK/E

Enterprise Portal ‘

¥
. . BPMS

| Business Activity | Business Process Business Rule Engine
! Monitoring (BAM) === A Engine (BPE) __ t--—--= A (BRE)

] | 4! Process Model % 4!

[Business Rules !

w
Enterprise Service Bus (ESB) ‘

[
[[[i W]

f |

Custom Standard . | Legacy |

application product ! application |

Figure 1: Example Architecture

Generic SCM literature such as [BAO8] and [BMT99] do not address such questions but
without answers a BPM-driven SOA-project will run into trouble. As an example imagine
the impact on quality if process-models are directly modified within the productive BPMS
or if services are changed but running process-instances still expect the services to be
unchanged.

2 Solution

As a solution this paper provides best practices for SOA-based BPM projects structured by
relevant disciplines of SCM. For further details on SCM and its domains and disciplines
see [Kre09]. We will focus on the aspects addressed in section 1 that are mainly derived
from experience and challenges of projects at Capgemini. The following sections examine
this impact and give suggestions on how to cope with the situation.

2.1 Version control

Products supporting BPM, BRM, EAI and SOA not only address the execution but also
the creation of functionality. This includes the following artefacts:

e service catalogues
e business process-models
e business rules

e UI forms and flows

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

While software engineers are familiar with the development of source-code using com-
mon IDEs and version control products, a new dimension opens here. Enterprise BPMS
products act as IDE for the development of business process-models and rules and also
perform version control of these artefacts. Therefore the software configuration managers
need to check the capability of the version control offered by products such as the BPMS.
While few products have sophisticated features such as branching, merging and graphical
diffs of process-models others are very limited. At the beginning of the project a clear
strategy has to be defined how to deal with the version control and which tools should be
used how. At least when it comes to managing multiple branches it can make sense to
manage exports of the artefacts in regular version control systems and align them with the
regular deployment.

A key success factor for SOA and BPM is that the business is the major driver and the IT
assists this. Therefore different stakeholders including experts of the business departments
may work collaboratively on process-models and business-rules. Then some of these peo-
ple typically have little experience with SCM. Have a look on their technical affinity and
plan some coaching as required to ensure success. Also developers that are used to have a
local development environment where they perform changes in isolation have to learn new
strategies. At least some check-out and check-in mechanism needs to be supported by the
BPMS to reduce the impact of (experimental) changes. If possible developers should also
have a local installation of the software stack including the BPMS on their development
machine (see section 2.2).

Also keep things simple. Instead of switching branches within the same tool, establish
different installations of the products (see figure 2). This may seem awkward as you would
never have multiple installations of a regular version control system (VCS) like subversion
for the same codebase instead of using branches. However, non-IT project members will
easily understand that the maintenance of the current production is done in one installation
and the development of next major release in another. As a trade-off merge efforts will rise
and should not be underestimated, especially when the product has poor support for this.
In this context the number of branches should be kept at a minimum. A key success factor
is to go smaller steps and do faster iterations.

We can summarize our best practices on version control as following:
o define a clear strategy for branching and merging
o for collaborative work use different installations for parallel branches

e keep the number of branches low

2.2 Deployment management & environments

As usual at least the environments development, test, acceptance and production (DTAP)
should be separated for quality assurance. In regular application development, code is
produced and tested in the development environment. After an initial maturity a controlled

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities

41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

set of this work is deployed to a central test environment. When the software is feature
complete and well tested, it is deployed to an environment where acceptance tests can take
place. After the test succeeded the roll-out can start and bring that release into production.

While it is desirable to have many environments and to make them as close as possible to
the production environment this is a matter of costs. Especially for SOA and BPM a perfect
test- and acceptance-environment would be a copy of the entire enterprise IT landscape.
This includes costs for hardware, operation and maintenance as well as licensing costs.
From an economic point of view it gets obvious that some compromises have to be made.

In any case it is required to have a realistic environment that allows to test changes be-
fore they go live. With this in mind you should never buy a cloud-service that does not
include separate test-instances. For commercial products it is often possible to get licenses
for test-environments for free or at least as cheap add-on. Using virtualization and private
cloud technology it is possible to realize more environments with less hardware as test- and
acceptance environments are not permanently used. However this implies some organiza-
tional coordination e.g. planning and announcements of performance-tests if additional
resources are required.

‘ SCM-Environment

Production-Environment

Custom BPMS.

Application

o3
&
e

Acceptance-Environment

Cloud Service Custom BPMS.

Application

Test-Environment

Cloud Service !

Custom BPMS.
Application

Development-Environment

Custom
| Application

—~

Build-System
B
|
|

g
&
|

.

Cloud Service

BPMS.

Version-Control-

System

0

Figure 2: DTAP Environments

The impact on deployment and environments discussed so far is mainly a matter of sizing
common approaches on a larger scale. Now if artefacts like process models are directly
developed and versioned inside a BPMS new aspects come into play. For collaborative
modelling the development environment or at least parts of it may move from the develop-
ers machine to a central installation typically accessed trough a web-browser. Additionally
if the BPMS is also part of the SCM-Environment (see figure 2) but has installations per
environment, changes may or will also happen outside of the development environment.

www.informatik2011.de

erschienen im Tagungsband der INFORMATIK 2011
Lecture Notes in Informatics, Band P192

ISBN 978-3-88579-286-4

weitere Artikel online:
http://informatik2011.de/519.html

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

In classical SCM you will have a central build-management that generates deliverables out
of VCS tags and these deliverables get installed in according environments. Here a stag-
ing process is required for the BPMS allowing to transfer a proper version of the artefacts
from one environment to the next (see figure 2). In this case governance aspects especially
for the deployment to the production environment have to be considered and require new
solutions. If the product does not directly support staging, export and import mechanisms
need to be used instead. The exported artefact(s) can also be managed via the regular VCS
to gain more control over the deployment.

A very important issue is that environment specific configurations remain unchanged by
this staging process. While there are classical solutions for custom software, in case of
standard products like a BPMS you have to deal with the offered possibilities of the prod-
uct. Ideally parameters like service-URLs of your SOA only differ by a prefix from one
environment to another and the BPMS product allows to define and use central variables
for such purpose. The goal is to make the staged artefacts including process models en-
vironment independent. However the environment specific variables have to be excluded
from the staging process. For instance IBM WebSphere Lombardi Edition addresses this
by a central table of these variables with values for all environments. Therefore the only
environment specific configuration is an administrative property telling if an installation is
a production, acceptance, test or development environment.

In any case each environment should be separated on network level to prevent accidental
access between different environments (e.g. test-environment invoking productive ser-
vices)

For deployment management our best practices are as following:

e create separate environments and be aware of changes outside development envi-
ronment

establish a staging process between the environments

consider governance aspects for the deployment

e separate environment specific configurations in products like BPMS

deny network access between environments

2.3 Release management

Release management in context of SOA and BPM is a challenge of its own. It has to be
aligned properly with the entire change-management of the enterprise.

In a complex enterprise application landscape release cycles of the individual applications
can not be aligned and fixed exactly. Otherwise the delay of a single project would defer
the go live of all other changed applications. Hence for each application releases need
to be planned in a way that upcoming changes of other applications can be rolled out as
independent as possible.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

INFORMATIK 2011 - Informatik schafft Communities www.informatik2011.de
41. Jahrestagung der Gesellschaft fiir Informatik , 4.-7.10.2011, Berlin

This gets even more important in the context of BPM and SOA when it comes to long
lasting processes. If a bigger change requires the modification of service-interfaces, it is
not enough to change these service-invocations in the process-models. Process-instances
that have already been started before the roll-out of the new release continue to run with
the previous version of the process-model. Therefore such process expects the services to
behave as they used to do in the previous release.

In general a service-interface should be designed in a very stable way. However it is
impossible to prevent changes at all. One solution is to add versions to services and their
end-point-address and always include a service adapting at least the previous version. An
alternative is offered by the approach of normalized systems that allow to add and remove
attributes in such a way that the API does not break [MV(09].

We sum up the best practices for release management as following:

e plan applications for independent roll out
e consider running process-instances when processes are updated

e do versioning of services or design them as normalized systems

3 Conclusion

We have seen that SOA, BPM, and cloud computing bring new challenges to SCM. For
relevant SCM disciplines the impact has been discussed and best practices have been sum-
marized. Combining existing SCM experience with the solution presented in this paper
offers a strategy that addresses the challenges.

References

[BAOS] S. Berczuk and B. Appleton. Software Configuration Management Patterns: Effective
Teamwork, Practical Integration. Addison-Wesley, Boston, Mass., 10. print. edition,
2008.

[BMT99] W. Brown, H. McCormick, and S. Thomas. AntiPatterns and Patterns in Software Con-
figuration Management. John Wiley & Sons, 1999.

[Kre09] M. Kreidenweis. Software Conguration Management in Centralized and Distributed
Custom Software Development. Master’s thesis, University of Augsburg, 2009.

[MVO09] H. Mannaert and J. Verelst. Normalized Systems - Re-creating Information Technology
Based on Laws for Software Evolvability. 2009.

[SBG'05] I. Scott, J. Brannan, G. Giesler, M. Ingle, S. Jois, et al. 828-2005 - IEEE Standard for
Software Configuration Management Plans, 2005.

erschienen im Tagungsband der INFORMATIK 2011 weitere Artikel online:
Lecture Notes in Informatics, Band P192 http://informatik2011.de/519.html
ISBN 978-3-88579-286-4

