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Abstract—Today’s organizations utilize a plethora of hetero-
geneous and autonomous DBMSes, many of those being spread
across different geo-locations. It is therefore crucial to have
effective and efficient cross-database query processing capabili-
ties. We present XDB, an efficient middleware system that runs
cross-database analytics over existing DBMSes. In contrast to
traditional query processing systems, XDB does not rely on any
mediating execution engine to perform cross-database operations
(e.g., joining data from two DBMSes). It delegates an entire
query execution including cross-database operations to under-
lying DBMSes. At its core, it comprises an optimizer and a
delegation engine: the optimizer rewrites cross-database queries
into a delegation plan, which captures the semantics as well as the
mechanics of a fully decentralized query execution; the delegation
engine then deploys the plan to the underlying DBMSes via their
declarative interfaces. Our experimental study based on the TPC-
H benchmark data shows that XDB outperforms state-of-the-art
systems (Garlic and Presto) by up to 6× in terms of runtime and
up to 3 orders of magnitude in terms of data transfer.

I. INTRODUCTION

Leveraging all intra- and inter-organizational data is crucial
for data-driven decision making in many domains [1], [2]. For
example, consider a pandemic scenario where doctors work
with data scientists to explore the effectiveness of different
vaccine types. Data scientists need to query data from different
organizations (data silos), e.g., municipality offices, vaccination
centers, and local health centers, each maintaining their own
database management system (DBMS).

Yet, producing valuable insights in such scenarios requires
effective and efficient ways of combining data across data silos.
A common approach is to first consolidate all available data into
a centralized repository (e.g., a data warehouse) through ETL
pipelines [3], [4]. Nevertheless, implementing ETL pipelines
is tedious and error-prone, and does not allow to perform ad-
hoc queries on fresh data [5]. Furthermore, centralizing intra-
or inter-organizational data is often not feasible in the first
place, e.g., in our pandemic scenario. Thus, we require systems
for efficient cross-database query processing, where ad-hoc
queries seamlessly combine data from different DBMSes.
Why Not Existing Decentralized Approaches. Decentralized
DBMSes offer a rather suitable alternative to ETL’s centralized
approach. However, modern distributed data paradigms, such
as parallel and distributed database systems (DDBMS) [6]–
[10], P2P database systems (PDBMS) [11]–[13], and federated
databases (or multi-database systems) (FDBMS) [14]–[18], are
either ineffective or inefficient for processing cross-database
queries. On the one hand, DDBMS and PDBMS are ineffective:
DDBMSes are tailored towards homogeneous environments
(same vendor, schema, among others), make strong assumptions
about data partitioning across physical nodes, and require com-
plete control over individual DBMSes for query optimization
and execution. PDBMSes—although have relaxed assumptions
∗ Work done while author was at Technische Universität Berlin
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with regard to homogeneity and autonomy—focus mainly on
discoverability and query routing, and lack support for complex
queries.On the other hand, FDBMSes, including recent work
on polystores and cross-platform systems [19]–[23], are
suitable for cross-database query processing but are inefficient
as they employ a Mediator-Wrapper (MW) approach [24]–[26].
Inefficiency in the MW Approach. From a user’s perspective,
MW-based systems are desirable as they offer a single query
interface and hide the complexity of interfacing with multiple
heterogeneous and autonomous DBMSes. However, from a
system perspective the MW approach is rather inefficient: MW-
based systems first decompose a cross-database query into mul-
tiple subqueries that target individual DBMSes, then execute the
resulting subqueries on the corresponding DBMS, and finally
fetch the subquery results to perform all remaining (cross-
database) query operations. It is this “centralized” processing
of cross-database operations that: (i) requires maintaining and
providing resources for an additional execution engine (the
mediator), which also requires additional system administration
expertise; and (ii) leads to expensive and unnecessary data
movement as the mediator centralizes all (intermediate) data.
As a remedy, modern systems [17], [18], [27] employ massively
parallel processing techniques to scale out the mediator. Yet,
they still suffer from high maintainability and data movement
costs imposed by the MW approach.

To illustrate the above limitations, we benchmarked two
popular MW-based systems to execute TPC-H Q3 over a set
of distributed tables (experiment details in Section VI-A). In
particular, we examine the performance of a single-node Garlic-
like system [28], and Presto [17] which is a system that scales
out the mediator. Figure 1 shows the results for two scale
factors (SF). Overall, we observe that the actual execution time
(white bar) accounts for roughly 15% of the total execution
time for Garlic and 3% for Presto. Both systems spent most of
the execution time on moving data to the mediator (red bar).
A New Approach. We introduce a new distributed data pro-
cessing paradigm, which we refer to as in-situ cross-database
query processing (Cross-DBMS, for short).1 We advocate for
keeping the user side simplicity of FDBMS (to interface with

1Our notion of in-situ query processing differs from that studied in litera-
ture [29]–[31]; see Section VII.
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heterogeneous and autonomous DBMSes), while leveraging the
advantages of decentralized query processing techniques, such
as in DDBMS and PDBMS, i.e., processing data in-place within
DBMSes, without a mediating execution engine. Cross-DBMS
shares several characteristics of current decentralized DBMSes
as shown in Figure 2. Cross-DBMS leverages the capabilities
of underlying DBMSes for query processing, including cross-
database operations. At the same time, it achieves performance
close to the “actual” execution times of our baselines (Figure 1).
Thus, Cross-DBMS, renders an effective solution for cross-
database query processing: It can deal with DBMS heterogene-
ity and autonomy; It does not require maintaining an additional
execution engine; It incurs reduced data movement costs by
moving data directly between underlying DBMSes.

Achieving in-situ cross-database query processing chal-
lenging with regard to both optimization and execution. First,
when optimizing cross-database queries we have to holistically
consider (i) operator ordering, (ii) operator placement, and (iii)
how intermediate data should be moved between DBMSes.
Second, our proposed processing model requires coordinating
underlying DBMSes to decentrally execute queries. Although,
existing DBMS interoperability allows querying of external
data, it is not sufficient for inter-operating multiple DBMSes
in tandem to achieve a fully decentralized execution.

We propose XDB, a middleware system that enables efficient
in-situ cross-database query processing over existing DBMSes.
To the best of our knowledge, XDB is the first system to tackle
all the above challenges. Figure 1 shows that XDB’s in-situ
processing can indeed outperform MW-based systems. Overall,
XDB achieves so by employing a cross-database optimizer that
produces query delegation plans. The core idea behind a dele-
gation plan is to offload data processing and inter-DBMS com-
munication instructions to the underlying DBMSes. Following
these instructions, DBMSes collaboratively execute a query in
a fully decentralized fashion by building inter-DBMS pipelines
to transfer relevant data (subquery results) among them.

In summary, after introducing state-of-the-art and its limita-
tions in II, we make the following contributions:
Section III: We propose a novel in-situ cross-database query
processing (Cross-DBMS) approach that decentrally executes
cross-database queries through a lightweight middleware.
Section IV: We introduce our cross-database optimizer and
the concept of a delegation plan, which captures the semantics
of decentralized query execution as well as the mechanics of
inter-DBMS communication.

TABLE I: DBMSes with their corresponding schema
DBMS Table(s) Schema

CDB Citizen (id, name, age, address)
VDB Vaccines (id, name, type, manufacturer)

Vaccination (c id, v id, date)
HDB Measurements (id, c id, date, u ml)

Section V: We introduce our cross-database execution mech-
anism and our delegation approach that is based on query
rewriting and transforms delegation plans into DBMS-specific
instructions to enable executing cross-database queries “in-situ”
across multiple DBMSes in a pipelined fashion.
Section VI: We evaluate XDB against baseline systems (Garlic,
Presto, and ScleraDB) for cross-database query processing. Our
results show that XDB outperforms baseline systems by up to
6× w.r.t. query execution time and up to 3 orders of magnitude
w.r.t. amount of data transferred during query execution.

We then discuss additional related work in Section VII and
conclude in Section VIII.

II. CROSS-DATABASE QUERY PROCESSING

We now detail our a motivating scenario to better illustrate
the need for cross-database query processing and discuss why
current approaches fall short.

A. Motivating Scenario

Consider again our motivating scenario from Section I, which
generalizes to several real-world scenarios where data resides in
different DBMSes. These DBMSes (potentially geo-distributed)
are managed by different departments (or organizations), which
are willing to share their information [1], [2]. More concretely,
consider the case of the Municipal Office (MO) of an imaginary
city called Credo. MO has several independent departments:
a citizens’ department that stores and manages citizen’s in-
formation; a health department that manages citizens’ health
records and COVID-19 related information (e.g., antibody
measurements); and a newly established vaccination center to
manage vaccine-related information. Each department uses a
DBMS (potentially from different vendors). Assume that the
citizens’ department uses CDB, the health department uses HDB,
and the vaccination center uses VDB (as shown in Table I).

After the initial rollout of COVID-19 vaccines, the MO’s
chief health officer (CHO) would like to analyze the effec-
tiveness of different vaccine types. For this, she would like to
measure COVID-19 antibodies (U/ml) in different age groups
for people over 20 years. The analytical query shown in
Figure 3 precisely fulfills her information needs.2 Although
the query looks simple, it hides the intricacy that executing it
requires the CHO to combine data from three different DBMSes
(across departments), which is far from trivial. We refer to
such kind of queries as cross-database queries.

Supporting above cross-database query efficiently is particu-
larly challenging in such a highly autonomous scenario:
DBMS Heterogeneity. Departments are free to select their
underlying DBMS from any vendor that fits their needs. For
instance, in our motivating scenario, CDB may be a PostgreSQL
database, while VDB may be a MariaDB database. Hence, we
need to process cross-database queries atop DBMSes that are

2In this paper, we assume that tables across DBMSes can be joined without
transforming join attributes. We consider other cases as important future work.
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SELECT v.type, AVG(m.u_ml),
case when c.age between 20 and 30 then ’20-30’

when c.age between 30 and 40 then ’30-40’
...

end as ’age_group’
FROM CDB.Citizen c, VDB.Vaccines v, VDB.Vaccination

vn, HDB.Measurements m
WHERE c.id = vn.c_id AND c.id = m.c_id

AND v.id = vn.v_id AND c.age > 20
GROUP BY age_group, v.type

Fig. 3: Example cross-database query.

heterogeneous with regard to SQL dialects, local optimizers,
physical operator implementations, and internal cost models.
Storage Autonomy. DBMSes across departments are typically
operated and managed by different independent entities. Thus,
the data schemata within different DBMSes is designed inde-
pendently of each other. In such scenarios, data in one DBMS
is often not replicated or sharded across others.
Execution Autonomy. In many scenarios, underlying DBMS
is either a legacy system hosted on-premise or a modern DBMS
running as a managed service on the cloud. Hence, the only
way to communicate with DBMSes is via their declarative
SQL interface, as it may not be possible to equip physical
(or virtual) nodes with additional software, e.g., a local query
processor. As a result, when receiving user queries, DBMSes
decide themselves about the choice of physical operators and
their order, as well as other aspects of query execution.
B. State-of-the-Art & Drawbacks

There already exist several data management systems capable
of processing data stored in different DBMSes. They can be
categorized into Parallel and Distributed DBMS (DDBMS;
e.g., [6]–[10]), P2P DBMS (PDBMS; e.g., [11]–[13]), and
Federated DBMS (FDBMS; e.g., [14]–[18]). These systems,
however, are either ineffective or inefficient for processing
cross-database queries. Table II shows these limitations.
Overall, we see that DDBMS and PDBMS are ineffective: the
former do not support heterogeneous DBMSes and make strong
assumptions about data partitioning; the latter lack support
for complex queries and need additional software components.

DDBMSes focus on scaling out storage and compute, and
are composed on homogeneous DBMSes (i.e., component
DBMSes are from the same vendor). Furthermore, DDBMSes
withhold storage and execution autonomy – data is replicated
or sharded across DBMSes and individual DBMSes expose
their physical operators, which are used by the DDBMS for
query optimization. PDBMSes, in contrast, mainly focus on
data discoverability and query routing over individual DBMSes
that are completely decentralized and autonomous. To enhance
scalability for serving requests and to ensure fault tolerance,
PDBMSes replicate data among nodes, and hence do not fulfill
the requirement for storage autonomy. Moreover, to join a
PDBMS, individual DBMSes require additional software to be
installed on the participating physical nodes, i.e., DHTs and
query processors. Finally, most PDBMS approaches focus on
simple queries, such as lookups, and do not consider complex
relational queries.

FDBMSes, on the other side, are effective but inefficient
for processing cross-database queries. They are based on a so-
called Mediator-Wrapper (MW) architecture [14], [17], [18],

TABLE II: In-situ Cross-DBMS characteristics.
Characteristics DDBMS PDBMS FDBMS XDB

DBMS Heterogeneity 7 3 3 3
Storage Autonomy 7 –a 3 3
Execution Autonomy 7 3 3 3
No additional QP engine 3 7 7 3

Inter-DBMS interactions 3 –b 7 3
adata at times is replicated (e.g., [11]). bRequires additional software.

[24], [27], [28]. Figure 4a gives a high-level overview of
how queries are executed in an MW fashion, where, typically,
wrappers (also known as connectors or adapters) provide
access to data stored in DBMSes. Overall, a mediator first
decomposes a query into a set of local and cross-database
(global) operations. Local operations correspond to fragments
of the query that require inputs from a single DBMS and
can be natively performed within the DBMS. For instance, in
our example cross-database query, the selection operation
filtering all citizens with age over 20 can be locally executed
within the CDB DBMS. Likewise, cross-database operations are
those that require inputs from multiple DBMSes. The mediator
takes care of these cross-database operations, such as the join
operation, in our query example, which joins data from the
CDB and VDB DBMSes. The mediator sends local operations
to the underlying DBMSes and gathers the intermediate results
to perform the cross-database operations.

Although MW-based systems have been largely successful,
they have some inherent drawbacks due to the mediator’s
“centralized” approach for performing cross-database operations.
First, the MW architecture incurs a high performance overhead
as illustrated in Figure 1. In the context of Credo’s CHO, the
MO will thus have extra costs when running an MW-based
system, such as Presto [17] or SparkSQL [18]. Besides the
performance overhead, the MO will also have to dedicate
additional computing resources for running the mediator so
that it can perform cross-database operations. The reader might
think that a cloud-based MW system [32] can solve MO’s
problem. However, this is not entirely true, as a cloud-based
MW system would also lead to a high monetary cost due to
its expensive data transfers (the red lines in Figure 4a). As a
result, MW-based systems incur high maintenance and data
movement cost next to high processing overhead.

III. XDB: A CROSS-DATABASE SYSTEM

We propose XDB, a middleware for cross-database query
processing that, in contrast to current MW-based systems, is
not equipped with an execution engine.3 Instead, it employs
an efficient in-situ cross-database query processing mechanism
to entirely delegate query execution to underlying DBMSes.

Figure 4b illustrates the in-situ cross-database query process-
ing approach used by XDB4. From an end-user’s perspective,
XDB offers similar functionality as the current MW-based
systems: It takes a declarative (SQL) cross-database query
and returns its results; It offers a unified view of underlying
distributed data via Global-as-a-View mappings [34]—We
assume, without any loss of generality, that the global schema

3In this paper, we focus on analytical processing and leave transaction
processing across heterogeneous DBMSes (e.g., in MITRA [33]) as future work.

4For brevity, we omit other standard components, e.g., parser and catalog.
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is a union of local schemas. From a system’s perspective, in
contrast to MW-based systems, XDB enables the underlying
DBMSes to execute a cross-database query entirely without
the need for a mediating execution engine.

At its core, XDB comprises two components: a cross-
database query optimizer and a delegation engine. Given a
query (step 1 ), the optimizer translates it into a delegation plan
(step 2 ), which is a directed acyclic graph (DAG): nodes are
tasks containing algebraic expressions assigned to a particular
DBMS, and edges are task dependencies, i.e., data movement
between DBMSes. More concretely, XDB translates a query
into a sequence of operations that underlying DBMSes can
execute, leading to a fully decentralized execution. In essence,
a delegation plan encapsulates query semantics comprising
local and cross-database operations as well as mechanics of
data movement between DBMSes. To do so, the optimizer per-
forms rule-based and cost-based optimization, such as operator
pushdown and placement to minimize the overall execution
cost. We discuss the optimization details in Section IV.

The delegation engine, then, is responsible for deploying the
delegation plan on the individual DBMSes to achieve in-situ
cross-database query execution. For this, we exploit a DBMS’s
existing support for the SQL/MED standard [35], which is
implemented in many modern systems [36]–[41], to enable
interoperability among DBMSes. In more detail, the delegation
engine uses the DBMS connectors to translate and execute
DBMS-specific instructions corresponding to the algebraic
expressions found in a delegation plan. Notice that these
instructions are DDL statements, which do not execute the
query but only “prepare” the underlying DBMSes for in-situ
cross-database query execution via SQL/MED. These DDLs
create short-lived relations and do not assume access to modify
the existing schema. We discuss delegation in Section V.

As final steps, XDB sends an XDB query, which is a DBMS-
specific SELECT statement, back to the client (step 4 ). The
client, then, executes the XDB query on the specified DBMS
(step 5 ) to receive the results (step 6 ). One of the salient
aspects of our work is rewriting a user query to an XDB query

using our optimizer and delegation engine. It is this XDB query
that actually triggers the in-situ cross-database query execution
without having XDB to partake at all in the execution.

We note that the above query processing characteristics in
XDB (also recall Figure 2) are reminiscent of those studied
in context of DDBMS and PDBMS [24]: the difference lies
in the way we realize them for a (mediator-less) decentralized
execution environment comprising heterogeneous and
autonomous DBMSes.

IV. CROSS-DATABASE QUERY OPTIMIZATION

The cross-database query optimizer gets a query as input
and outputs a delegation plan by passing the query through
three components: First, the Logical Optimizer applies tradi-
tional optimization techniques, such as join ordering and selec-
tion/projection pushdown; Then, the Plan Annotator decides
the operator placement and data movement; Finally, the Plan
Finalizer fuses multiple operators into tasks, which represent
the execution units that are performed by the underlying
databases. In what follows, we first introduce a delegation plan
as an intermediate representation that captures semantics of
decentralized cross-database query execution. We, then, detail
our optimization process, which aims at finding an “optimal”
delegation plan.

A. Delegation Plan

A salient aspect of XDB is that it delegates the entire
execution to underlying DBMSes by sending them DBMS-
specific instructions via their declarative interfaces. It is
therefore desirable to have a delegation plan as an intermediate
query plan representation. A delegation plan facilitates efficient
decentralized query execution without having fine grained con-
trol over physical plan operators and their order of execution.

In more detail, a delegation plan is a set of operations that
describes how a query must be executed on the underlying
DBMSes. Formally, we denote a delegation plan by a directed
graph G = (T,E), where T is a set of tasks and E denotes the
set of edges as dataflow operations between tasks. Furthermore,
a task t ∈ T is a tuple (r, a) where r is an algebraic expression
corresponding to a (sub) query and a is an annotation that
prescribes the DBMS that must evaluate the expression. For
expository reasons, we often use the notation a : r to denote
a task. For example, Figure 5 shows three delegation plans
corresponding to the example query of Section II-A. The plan
in Figure 5a comprises three tasks (for now ignore the edge
labels): t1, t2, and t3. Here, task t1, VDB:on (π(V), π(VN)),
specifies a join operation between (projected) relations V and
VN. Task t2, CDB:on (?, π(σ(C))), then joins the output of t1
with the (filtered and projected) relation C. Finally, task t3,
HDB:on (?, π(M)), joins the output of t2 with (projected) relation
M. Note that we use the symbol “?” as placeholder for a relation
that is the result of evaluating a task’s expression executed at
another DBMS. For instance, the placeholder in task t2 (and
in t3) denotes the join output from t1 (t2, respectively).

We now turn our attention to the dataflow operations between
tasks. In particular, we focus on inter-DBMS tasks that are
executed on different DBMSes. Recall from the previous section
that we rely on a DBMS’s implementation of the SQL/MED
standard to move data between DBMSes. We propose two
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Fig. 5: Delegation plans for the query of Section II-A, with
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ways to move data between DBMSes during query execution.
One approach is to implicitly move data between two DBMSes,
i.e., by pipelining the output of the first task to the second.
Another approach is to explicitly move data by materializing the
output of the first task (as a relation) on the DBMS executing
the second task. We will discuss in Section V how to use
SQL/MED for such data movements.

In the context of dataflow operations in a delegation plan,
we denote by t1

i→ t2 the output of task t1 that is implicitly
moved (i.e., pipelined) to task t2, and by t1

e→ t2 the data
movement that is explicit (i.e., materialized). Continuing our
running example, in Figure 5a, data is moved implicitly between
tasks t1 and t2 while it is explicitly moved between tasks t2
and t3. The choice between these two kinds of data movement
can significantly impact the query execution time. While an
implicit dataflow operation allows parallelizing two dependent
tasks, an explicit dataflow operation may lead to DBMS specific
optimizations. For instance, a DBMS could parallelize an
operation or employ an efficient hash join by creating a hash
table on the smaller table. Furthermore, when deploying tasks
to the underlying DBMSes, dataflow operations help to define
the dependencies between tasks. This allows us to parallelize
certain parts of the delegation and execution, i.e., when two
independent tasks are found.

Besides these two data movement options, the different alter-
natives to group operations into a single task and to prescribe
a DBMS per group lead to a complex search space of possible
delegation plans. Figures 5b and 5c illustrate two (of many)
alternative delegation plans for our example query. For instance,
in Figure 5b, task t1 computes a relation π(σ(C)), whose output
is explicitly (e) moved to task t2, which then computes the
two-way join on (on (π(V), π(VN)),C). The output of this join
is then moved implicitly (i) to task t3 to compute the final join
on (?, π(M)), where ? denotes the intermediate relation. As we
will discuss in the following, XDB’s optimizer never considers
a plan like the one in Figure 5c. XDB prunes plans with cross-
database operations that happen on a different DBMS than
this of the inputs. In this particular pruned plan, t3 would be
placed on HDB even though its inputs t1 and t2 reside on VDB
and CDB.
B. Optimization Process

We now discuss our optimization process to find an “optimal”
delegation plan, which, when deployed, leads to a decentralized
query execution with the lowest estimated cost. Achieving this
is challenging because traditional approaches to derive optimal
execution plans cannot be readily used for deriving optimal
delegation plans in XDB: DBMSes and compute nodes are
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black-boxes to XDB, which itself is not equipped with an
execution engine. The optimizer, therefore, cannot reason about
the characteristics of physical plan operators and their cost
across different DBMSes (both at the local and at the cross-
database level). Moreover, as the execution of operations is
delegated to the underlying DBMSes via (already existing)
declarative interfaces, the optimizer has little control over
the order of operations within a task. To make things worse,
combining operations into a task, prescribing a DBMS for
a task, and the choice of dataflow operations between tasks
makes the solution space very large even for simple queries.

We tackle the above challenges by employing a three-step
optimization process that involves 1) logical optimization, 2)
plan annotation, and 3) plan finalization.

1) Logical Optimization: To cope with black-box DBMSes,
we first optimize queries at the logical level. In particular, we
determine the right order of plan operators, which is crucial
for reducing the overall data movement between DBMSes.
Although when deploying a task to an underlying DBMS
via its declarative interface does not necessarily preserve the
order of operations, we can always preserve the order across
tasks. For example, considering again our optimal delegation
plan example (Figure 5a), when deploying the join task t1 on
VDB using the corresponding declarative query, the underlying
DBMS’s optimizer might (or might not) evaluate the projection
before the join. However, we can always guarantee that the
projections π(V) and π(VN) as well as the join on (π(V), π(VN))
happen before the join operation of task t2, on (?, π(σ(C))).

To determine optimal plans, we use textbook optimization
techniques, such as query rewrites (e.g., selection and projection
pushdowns) as well as join-ordering optimization that overall
reduces the intermediate data [42], [43].5 Figure 6a illustrates
an optimized logical plan that XDB obtained for our example
query of Section II-A.

2) Plan Annotation: Given an optimized logical plan, we
now determine the placement of operators (annotations) along
with the type of dataflow operation between operators. These
annotations allow us to group multiple operations into a task
and determine dataflow operations between tasks.
Notations. Before delving into the specifics of the annotation
process, we first introduce some necessary notations. We

5In this paper, we only consider left-deep trees. Our optimization and
execution paradigm (Section V), however, are agnostic to the plan shape. Our
preliminary experiments (omitted due to space constraints) show that the degree
of parallelism gained by bushy plans increases the performance, and hence
we plan to investigate this further and extend the optimizer in future work.
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denote by O the set of all plan operators in the optimized
logical plan. For two operators o, o′ ∈ O, o′ → o denotes that
the output of operator o′ is directly consumed by operator o.
For example, in Figure 6a, we have o1 → o2 and o5 → o9. For
a unary operator o let ol be its input operator (i.e., we have
ol → o) and for a binary operator o let ol and or be its left and
right input operators respectively (i.e., we have ol → o and
or → o). While we use the same notation for both unary and
binary operators, it is always clear from the context to which
one we refer to. Furthermore, let A be the set of annotations
that denote underlying DBMSes. In our motivating example of
Section II-A, we have, for instance, Aex = { VDB, HDB, CDB }.
We also denote as A(o) the annotation for operator o
and as A(O′ ⊆ O) = {A(o) | o ∈ O′ }. We denote by
A(o → o′) ∈ { i, e } as an annotation for the edge where i
and e correspond to implicit and explicit dataflow operations.
Annotation Process. Our goal is to determine an annotation
A(o) for all operators o ∈ O and an annotation A(o′ → o) for
each edge o′ → o in the optimized logical plan. The overall
idea is to perform a bottom up traversal that propagates the
annotation found in the leaf nodes through unary operators,
until a cross-database operator is found. Then, we decide
the placement and movement types for the inputs of a cross-
database operator by costing the available options. In particular,
we annotate the plan by applying one of the following rules at
each operator node.
Rule 1. For a leaf (tablescan) operator o, A(o) = a, where a is
an annotation corresponding to the DBMS on which the table
resides. Intuitively, we annotate leaf nodes (table scans) with
the DBMS where the table resides.
Rule 2. For a unary operator o, A(o) = A(ol) and A(ol →
o) = i. Essentially, we annotate each unary operator with the
annotation of its input (child operator).
Rule 3. For a binary operator o where A(ol) = A(or), A(o) =
A(ol) and A(ol → o) = A(or → o) = i. In other terms, we
annotate each binary operator having two inputs with the same
annotation with this same annotation.
Rule 4. For a binary operator o where A(ol) 6= A(or), A(o) =
a, A(ol → o) = al, and A(or → o) = ar, where a, al, and ar
are obtained by solving the following optimization problem:

argmin
a∈A;al,ar∈{ i,e }

cost(o, a)+cost(ol
al→ o, a)+cost(or

ar→ o, a) (1)

where cost(o, a) is the cost of executing the operator at the
DBMS a and cost(o′

x→ o, a) =
moveCost(o′,A(o′), a) if x = i (2)
moveCost(o′,A(o′), a) + scanCost(o′, a) if x = e (3)

is the cost of moving the output of operator o′ from DBMS
A(o′) to a via dataflow operation x ∈ { i, e }. Intuitively, this
means that we annotate a binary operator having two inputs
with different annotations, with that annotation that yields the
cheapest cost. Note that for an explicit movement, we also
consider the cost of scanning the relation (corresponding to the
query rooted at operator o′) at DBMS a as explicit movement
requires materializing intermediate data (recall Section IV-A).

During the annotation process, we traverse the optimized
logical plan using a depth-first post-order traversal and apply
one of the rules above at each node. Figure 6b illustrates
the output of the annotation process for our running example.
While rules 1–3 are straightforward in their application, Rule 4

requires to solve the optimization problem given as Equation 1.
For example, consider the optimized logical plan in Figure 6a.
We start with post-order traversal from node 1 and annotate the
subplan rooted at node 5 with VDB using Rules 1–3. Likewise,
using Rules 1 and 2, we annotate all nodes and edges until
node 8 with CDB (see Figure 6b): data movement between
operators with the same annotation is always implicit. For
node 9, we decide the operator placement along with data
flow operations such that it minimizes the execution cost as
defined in Equation 1. For instance, we determine A(o9) = CDB
and A(o8 → o9) = i. Continuing our annotation process, we
annotate nodes 10 and 11 with HDB, using Rule 1–2, and use
Equation 1 to determine A(12) = HDB and A(o9 → o12) = e.
The remaining nodes are then annotated with HDB.

A key challenge during the annotation process is efficiently
solving Equation 1. While it may seem trivial at a first glance,
it incurs a high cost to evaluate alternatives, considering our
distributed and autonomous DBMS setup. Recall that one of
the challenges in cross-database optimization is coping with
black-box DBMSes. To this end, we follow a “consulting”
approach during plan annotation to determine the cost of
executing a operator at a certain DBMS and the cost of
moving data between two DBMSes. More specifically, we
probe the underlying DBMSes during plan annotation through
our DBMS connectors, which provide costing functions by
wrapping EXPLAIN-like statements. This approach is similar
to the one proposed for the Garlic system in [44]. The main
difference is that unlike Garlic, partial plans in XDB comprise
cross-database operations.6 Furthermore, to compute all the
costs using Equation 1 will end up requiring O(|A| · |O|)
communication rounds in the worst case. To reduce this high
cost of evaluating alternatives, we replace A with A({ ol, or })
in Equation 1, i.e., for each cross-database join, we only
consider the two input annotations as potential options. This
simplification is based on the observation that moving two
relations R and S respectively from DBMSes aR and aS into
a third DBMS aT has a higher data transfer cost than moving
either R to aS (or S to aR) as |R|+ |S| > max(|R|, |S|).

Additionally, we note that replacing A with A({ ol, or })
in Equation 1 assumes that all DBMSes are inter-connected.
Other network topologies can be supported by constraining
the possible values of set A depending on the network. We
consider this as important future work.

3) Plan Finalization: As a last step, we proceed to group
multiple operators into a single task. In our approach, we aim to
minimize the number of tasks by grouping successive operators
with the same annotation into one task. A small number of
tasks requires less communication during plan delegation, and
furthermore allows underlying DBMSes to locally optimize the
query. To create the final tasks, we traverse the annotated plan
using a modified depth-first post-order traversal in which for
each node we compare its annotation to its parent’s. Whenever,
the annotation differs or when the node is the root node, we
create a task by grouping all operators below the tree. For

6Note that our approach requires that cost estimates from different DBMSes
have the same cost unit. In this paper we follow a simple calibration ap-
proach [45]–[47] to align cost across PostgreSQL, MariaDB, and Hive. While
this worked well for our experimental setup, research on aligning different
cost-models calls for an important future work.
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example, in Figure 6b, we group nodes 1–5 into task t1, nodes 6–
9 into task t2, and nodes 10–14 into task t3. During the traversal,
when transitioning to a node with a different annotation, we
create a dummy operator as a new child of the currently visited
node. This dummy operator is then treated as a placeholder for
the input relation. For example, finalizing the plan in Figure 6b
leads to the delegation plan shown in Figure 5a, where the “?” in
task t2 indicates the input for the join and projections on task t1.

Discussion. We note that while each optimizer component
is based on existing optimization techniques, it is combining
those into a three-phase process that reduces the complexity
of finding optimal delegation plans.

V. CROSS-DATABASE QUERY EXECUTION

We now discuss the mechanics of cross-database delegation.
During the delegation phase (Section V-A) XDB rewrites a del-
egation plan into DBMS-specific instructions. After deploying
these instructions, we enter the execution phase (Section V-B)
that triggers an in-situ cross-database query execution.

A. Delegation Phase

The delegation phase “prepares” the underlying DBMSes
for executing a given delegation plan. Recall that each node
(task) t = (r, a) in a delegation plan encapsulates the algebraic
instruction r that the DBMS a must execute, and each edge
t1

x→ t2, x ∈ { i, e } denotes the movement type as either
implicit (i) or explicit (e). The delegation engine, for each
task and its dependency, sends DBMS-specific instructions to
underlying DBMSes, which transforms a delegation plan into a
cascade of views chained with foreign tables. The evaluation of
these views leads to an in-situ cross-database query execution.
Before unfolding the specifics, let us discuss the key techniques
that forms the basis of our approach.
Naive Execution. Consider the following example that involves
joining two tables residing on two different DBMSes. Assume
that we have tables R(x,y) on DBMS aR and S(x,z) on
aS . Also consider that for the query select * from R,
S where R.x=S.x, we have the delegation plan xdp =
(aR : R)→ (aS :on (?,S)) (for now ignore the specific move-
ment types). Intuitively, executing this plan on the underlying
DBMSes requires first executing the query select * from
R on aR, then moving (exporting and importing) the result,
say R’(x,y), from aR to aS , and finally executing the query
select * from R’, S where R’.x=S.x on aS .

Although the above approach is straightforward, it is worth
noting that it requires a “mediator” to explicitly coordinate
the execution. More specifically, the mediator has to take care
of both executing the two queries and moving data between
DBMSes. Such an approach is not only cumbersome to im-
plement but also inefficient, because exporting and importing
data lead to expensive data movement cost. Moreover, such
an approach defeats the purpose of having an in-situ query
execution. Therefore, the challenge resides in delegating query
execution, including moving of intermediate query results be-
tween DBMSes during execution, without having any mediating
entity to partake in the execution.
Leveraging SQL/MED. To efficiently execute cross-database
queries in a black-box environment, we exploit SQL/MED
for inter-DBMS communication during cross-database query

Algorithm 1 Delegating a query to produce its XDB query
Require: Delegation Plan G Ensure: XDB Query Q

1: t← G.GETROOT()
2: Q ← PROCESSTASK(t)
3:
4: PROCESSTASK(t)
5: for all t′ ∈ t.GETCHILDREN() do
6: Rv ← PROCESSTASK(t′)
7: R′v ← CREATEFOREIGNTABLE(Rv, t.a)
8: if t′ e→ t then
9: Rm ← CREATELOCALTABLE(R′v, t.a)

10: replace ?t in t.r with Rm

11: else replace ?t in t.r with R′v
12: Rv ← CREATEVIRTUALTABLE(t.r, t.a)
13: return Rv

execution. SQL/MED (Management of External Data) is a
part of the SQL standard that deals with how one DBMS
can integrate its data with data stored “outside” of it [35]. A
core component of SQL/MED is the wrapper interface that
enables viewing external data locally as foreign tables. A
DBMS supporting the wrapper interface allows executing a
SQL query that references both local and foreign tables. On a
high level, the DBMS first decomposes such a query into local
and remote fragments. Then, the DBMS initiates the execution
of each remote fragment on the remote DBMSes, fetches the
results, and finalizes the execution.

We now illustrate how we can effectively use the concept
of foreign tables to efficiently move (intermediate) data be-
tween systems during query execution, all without having to
coordinate executing queries on different systems. Reconsider
our above example xdp = (aR : R)→ (aS :on (?,S)) (again,
ignore the specific movement types). Exploiting the concept
of foreign tables, we first create a foreign table R’ on aS
that points to table R on aR. Executing the query select *
from R’, S on aS will automatically trigger an execution
(via aS’s foreign wrapper) of the query select * from R
on aR. Then, aS fetches the output of this latter query over from
aR and completes the execution. This approach captures the
gist of our delegation approach. It neither requires coordinating
the execution of the query across DBMSes aR and aS , nor it
requires a mediator to move intermediate data between aR and
aS . In essence, creating a foreign table R’ and executing a
local join S on R’ on aS is all we need to de-centrally execute
query xdp. Note that SQL/MED only provides a building block
that facilitates communication between two DBMSes. In what
follows, we introduce techniques to leverage SQL/MED to
decentrally execute queries over multiple DBMSes.
Preventing Undesirable Executions. Using foreign tables to
execute delegation plans, where each task’s algebraic instruc-
tions involves additional operations (such as projections or
filters), requires particular attention. This is because DBMS
vendor-specific implementation of the SQL/MED standard may
have undesirable effects. To illustrate such an undesirable case,
consider again our above example but now with a slightly
different delegation plan xdp′ = (aR : πx(σp(R)))→ (aS :on
(?,S)), where p is some predicate. Following the above ap-
proach of using foreign table R’ and executing a local query
S on πx(σp(R’)) on aS may lead to an undesirable execution:
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DDL 1
@VDB

CREATE VIEW VVN AS SELECT v.type, vn.c_id
FROM Vaccines v, Vaccination vn
WHERE v.id = vn.v_id

DDL 2-1
@CDB

CREATE FOREIGN TABLE VVN(type, c_id) SERVER
VDB;

DDL 2-2
@CDB

CREATE VIEW CVVN AS SELECT c.id, v.type,
case when c.age between 20 and30 then’20-30’

... end as ’age_group’
FROM VVN v, Citizen c
WHERE c.id = vn.c_id AND c.age > 20

Fig. 7: DDL statements for delegation plan of Figure 5a.

the projection and filter could be executed on aS . This can
happen as wrappers across DBMS have different capabilities
in terms of “pushing down” operations to a remote DBMS. As
a consequence, we might end up executing xdp′ as follows:
(aR : R)→ (aS : πx(σp(on (?,S)))).

To avoid the above situation and not rely on vendor specific
implementation of the wrappers, we additionally make use
of virtual relations when using foreign tables. Continuing the
above example, rather than first creating the foreign table R’
on aS , we first create a virtual relation Rv ≡ πx(σp(R)) on
aR, then a foreign table R′v on aS , and execute the query
S on R′v locally on aS . Such an approach allows us to preserve
the semantics of xdp. As a result, we can execute queries as
specified by their delegation plans.
Enforcing Explicit Data Movements. Using the concept of
foreign tables as explained so far leads to pipelining the
output of a task to its parent and therefore corresponds to our
notion of implicit data movement between tasks. To explicitly
move data, we materialize intermediate data by creating an
additional relation on the local DBMS. For example, for
xdp′ = (aR : πx(σp(R)))

e→ (aS :on (?,S)), we additionally
create a (physical) relation Rm ≡ R′v on aS and execute the
local query S on Rm, where as before R′v is a foreign table
pointing to the virtual relation Rv ≡ πx(σp(R)) on aR. It is
worth noting here that moving data between DBMSes is still
carried out natively by foreign wrappers.
Deploying a Delegation Plan. Algorithm 1 generalizes all
the above techniques to delegation plans with three or more
DBMSes. Here, for a task t, we denote by t.r and t.a the
algebraic instruction and the annotation, respectively. We pro-
cess each task in a given delegation plan G using a depth-
first traversal, in which for each task t we create a virtual
relation Rv on DBMS t.a (line 12). For example, recall the
delegation plan from Figure 5a. For this delegation plan,
we first create a virtual table on VDB for the task t1. For
instance, the CREATEVIRTUALTABLE(. . . ) function on line 12
translates to executing the DDL 1 shown in Figure 7 to create
the view Rv =VNN. During the delegation process, while
recursing to the parent task, we first create a foreign table
R′v on DBMS t.a (line 7). In our running example, we create
a foreign table on CDB that points to Rv. For example, the
CREATEFOREIGNTABLE(. . . ) function translates to executing
the DDL 2-1 in Figure 7 to create foreign table VNN. Moreover,
as the movement from VDB to CDB is implicit, we replace
the placeholder in the task’s instruction by the foreign table
(i.e., we have the instruction on (VNN, π(σ(C))); line 11), and
create a virtual table CVNN on CDB by executing the DDL 2-

XDB
Client HDB

3
CDB
3

VDB
3

SELECT * FROM CVVNM

tuples

SELECT * FROM CVVN

tuples

SELECT * FROM VVN

tuples

Fig. 8: In-Situ Cross-Database Query Execution.

2 (line 12). Finally, we follow the same procedure for the root
task, where we first create the foreign table at HDB and then
create a local table (via the CREATELOCALTABLE(. . . ); line 9)
as data is moved by an explicit movement (recall Figure 5a).

Having executed the DBMS-specific DDL statements on the
respective DBMSes, the Delegator has successfully deployed
the delegation plan. This means that the DBMSes are now
primed for in-situ cross-database query execution. The final
step (Algorithm 1; line 2) of the delegation phase is returning
the XDB query to the client, which triggers the actual execution.
The XDB query is a simple SELECT * FROM <table>
query, where table is the view corresponding to the root
task of the delegation plan. In our running example, the XDB
query is SELECT * FROM CVVNM on HDB. Executing this
query triggers the in-situ cross-database execution pipeline.

B. Execution Phase

After submitting a user’s query to XDB, the XDB Client
receives a XDB query in return. The XDB Client, then executes
(transparently from the user) the XDB query on the DBMS
prescribed by the root task in G. As mentioned above, the XDB
query is of the form select * from <table>, where
the table is defined as a view over local and/or foreign tables.
Evaluating such views triggers a recursive evaluation of remote
views (defined as foreign tables) via the SQL/MED interface.

We illustrate the execution through our running example
in Figure 8. First, the XDB Client executes the XDB query
SELECT * FROM CVVNM on HDB. To evaluate CVVNM,
HDB fetches CVVN from CDB. As this particular task
dependency is explicit, HDB will in this case materialize CVVN
from CDB. However, as CVVN is defined on CDB as a foreign
table (cf. Figure 7 DDL 2-2) over C and VVN from VDB, CDB
will first fetch VVN from VDB. For that, CDB sends SELECT
* FROM CVVN to VDB, resulting in VDB starting to produce
tuples, which are consumed by CDB to produce tuples that are
finally consumed by HDB. HDB then processes the remaining
operations and returns the results to the client.

As depicted in Figure 8, evaluating the XDB query has
a trickle down effect leading to a cascaded execution. The
execution of our defined views enables pipeline-parallel execu-
tion of a cross-database query over multiple DBMSes. More
specifically, as soon as the first DBMS (i.e., the one executing
query fragment reference base tables) starts producing tuples
(intermediate data), the dependent DBMS starts consuming
tuples (via its foreign wrapper), and so on. Note that DBMS-to-
DBMS communication happens only through simple SELECT
* FROM <table> queries. We achieve this simple commu-
nication pattern because of our previously described delegation
phase that removes the complexity of sending complex inter-
DBMS queries to fetch intermediate data. Overall, our delega-
tion approach enables seamless communication between DBM-
Ses and allows to execute decentralized inter-DBMS pipelines
without altering system components of underlying DBMSes.
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TABLE III: Table Distributions with table abbrv., e.g., part:p.
db1 db2 db3 db4 db5 db6 db7

TD1 l c, o s,n,r p,ps - - -
TD2 l,s o,n,r c p,ps - - -
TD3 l o s ps c p n,r

VI. EVALUATION

We now present our experimental study using data based on
the TPC-H benchmark in the context of cross-database query
processing. In particular, we compared XDB’s performance
with respect to overall runtime performance, data transfer
cost, and data scalability by comparing it to (i) state-of-the-
art federated query processing system Presto [17]; (ii) our
implementation of the well known Garlic approach [28]; and
(iii) ScleraDB, which supports cross-database querying. We
also studied the performance breakdown of XDB’s overall
runtime with respect to different query processing steps —
i.e., logical optimization, plan annotation, plan-finalization,
delegation, and execution. Overall, we found that:
• In terms of query execution time, XDB outperformed Presto

by up to 6×, Garlic by up to 4×, and ScleraDB by up to 30×.
• XDB leads to less data transfer cost by up to 3 orders of

magnitude when compared to baselines.
• XDB’s execution time scales well for different data sizes.
• XDB’s optimization and delegation phases lead to negligible

(up to 10s) overhead compared to the execution time.

A. Experimental Setup

Cross-database Environment. We consider a distributed
testbed with seven DBMSes. Our testbed consists of a multin-
ode setup, where each physical node hosts one DBMS. We
utilize PostgreSQL v12, Hive v3.1.2 (with Hadoop v3.1.4),
and MariaDB v10.5, which we launch in containers (using
Docker v20.10.8) on different physical nodes. Each node in
our cluster is equipped with 2x Intel Xeon Silver 2.1GHz
CPUs, 512GB main memory and a 4TB SSD running Ubuntu
20.04.2 LTS (kernel 5.4.0-26-generic x86 64). Nodes are
interconnected through 1Gbit network interfaces.
Data & Cross-database Queries. We use data based on the
TPC-H benchmark data [48], which we distribute among the
seven DBMSes considering different table distribution (TD) as
shown in Table III. For different experiments, we considered
TPC-H data with scale factors (sf) 1, 10, 50, and 100. For cross-
database queries, we consider the TPC-H queries Q3 (3 joins),
Q5 (6 joins), Q7 (5 joins), Q8 (8 joins), Q9 (6 joins), and Q10
(4 joins). Our choice of queries is based number evaluating
performance with respect to the number of joins (ranging from
three to eight) in the cross-database queries.
Implementation & Baselines. We implemented XDB’s core
components (the optimizer and the delegation engine) in Java
(JDK 8). We implement our DBMS connectors (DCs) for inter-
acting with systems through DBMS-specific DDL statements
(recall Section III) using the latest JDBC drivers. We compare
XDB with Trino v0.354 (a fork of PrestoSQL) [17], which is
the state-of-the-art system for distributed query processing. We
considered Presto with 2, 4, and 10 worker nodes. As Trino is
a full-fledged distributed query engine and hence may impose
performance overheads, we also consider a simple Garlic-like

approach [15], where we used a PostgreSQL instance as a medi-
ator, which connects to underlying systems using its SQL/MED
capabilities. Additionally we considered ScleraDB [49] v4.0.
Methodology. In the following experiments, we report the
performance measure as total time elapsed between between
submitting a query and receiving the final result. For XDB,
we break down this time into time taken by the optimization
and delegation phases. We also report the transfer size (in
MegaBytes) as the total data transferred between systems
during query execution as obtained from Docker’s network
statistics. For Garlic and Presto, we also report the estimated
fraction of total time for fetching intermediate data to the
mediator’s execution engine. To do so, we measure the total
time for “localized” tables, i.e. we preload intermediate results
of individual subqueries into local tables and report the estimate
as the difference in total time when considered remote and
local tables. For all experiments, we report the average of 5
independent runs with exclusive access to the machines.

B. Overall Performance

In our first set of experiments, we compare XDB’s overall
performance with Presto (4 nodes) and Garlic. We considered
TPC-H data (sf 10) based on all three table distributions (cf.
Table III), and show the results results in Figures 9a–9c.
In-situ vs Mediator-based execution. We observe that cross-
database query processing with XDB results in an improved
query execution time (up to 4×) compared to Garlic, and (up
to 6×) to Presto, (up to 30×) to ScleraDB. This performance
improvement stems from our in-situ approach, which delegates
entire query execution to underlying DBMSes. In Figures 9a–9c,
the shaded region shows the (estimated) fraction of time (µ) that
systems spend for data transfer. To derive this estimate for MW
systems, we materialize intermediate results within the mediator,
measure the “local” query execution time, and substract it
from the total cross-database query execution time. For XDB
we enforce its derived plan on a single DBMS and substract its
runtime from the total time. For example, in these experiments,
we observed that on average µGarlic was 80s and µPresto was
150s. Presto’s overhead is more than Garlic’s because Presto
uses JDBC-connectors while our Garlic implementation
leverages PostgreSQL’s binary transfer protocols. XDB also
employs the binary transfer protocols but does not suffer from
this overhead as it decentralizes query execution by pipelinening
operations across multiple DBMSes (recall Figure 8). ScleraDB
also uses an “in-situ” cross-database querying approach,
however, it pays a large performance penalty (up to 30×) as
it moves all intermediate tables explicitly through its mediator
(recall Naive execution in Section V) and employs heuristics
to define the join operator placement. As ScleraDB performs
almost an order of magnitude worse than other approaches,
we do not consider it further in our performance evaluation.

We also evaluate XDB’s performance by changing the
underlying DBMSes in our table distribution (Table III) as
follows: MariaDB for db2, Hive for db3, and PostgreSQL for all
other dbs. We employed the available ODBC/JDBC SQL/MED
implementations for the communication between the DBMSes.
We compared XDB to a 4-worker-node Presto using sf 10 data.
Our results in Figure 10 show a similar performance trend
with the previous experiments (Figure 9a–9c). In this case,
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TABLE IV: Analysis of delegation plans for Queries Q3, Q5, and Q8 for TD 1 and TD 2 (with rounded row numbers).
TD Q3 Q5 Q8

ti
x→ tj #rows ti

x→ tj #rows ti
x→ tj #rows

TD1 db2:on (c, o)
i→db1:on (?, l) 1,5M db3:on (on (n, r), s)

i→db1:on (?,on (?, l)) 20K db3: on (n, r)
i→ db2: on (on (?, c), o) 5

db2:o e→db1:on (?,on (?, l)) 2,3M db2: on (on (?, c), o)
i→ db1: on (on (l, ?), ?) 900K

db1:on (?,on (?, l))
e→db2:on (?, c) 1,8M db4:p e→ db1: on (on (l, ?), ?) 15K

db1: on (on (l, ?), ?)
i→ db3: on (on (?, s), ?) 24K

db3:n2
i→ db3: on (on (?, s), ?) 25K

Σ 1,5M 4M 960K

TD2 db3:c e→db2:on (?, o) 300K db2: on (n, r)
i→ db1: on (on (on (?, s), l), ?) 5 db2: on (n, r)

i→ db3: on (c, ?) 5
db2on (?, o)

i→db1:on (?, l) 1,5M db2:o i→ db1: on (on (on (?, s), l), ?) 2,3M db3: on (c, ?)
i→ db2: on (o, ?) 300K

db1: on (on (on (?, s), l), ?)
e→ db3: on (?, c) 1,8M db2: on (o, ?)

i→ db1: on (on (on (on (?, l), ?), s), ?) 900K
db4:p e→ db1: on (on (on (on (?, l), ?), s), ?) 15K
db2:n2

i→ db1: on (on (on (on (?, l), ?), s), ?) 25

Σ 1,8M 4,1M 1,2M

XDB outperforms Presto by a factor ∼2x on average. This is
because XDB’s performance also depends on the performance
of the underlying systems with respect to cross-database
joins. For example, MariaDB is not designed to be a high-
performance OLAP DBMS while Hive is designed to handle
data on a distributed file system but in this case it operates
on one node only. Yet, this experiment shows that our cross-
DBMS approach, employed with out-of-the-box RDBMSes,
outperforms a specialized distributed MW-based system.
Effect of table distribution. In these experiments, we also
study how different table distributions (TD) affect cross-
database query processing. As expected for Garlic and Presto,
the execution plan remains unaffected. This is because query
processing (after projection and selection pushdowns) is cen-
tralized within the mediator. For XDB, however, execution
time is affected by different table distributions (recall from
Section IV-B that while logical optimization is TD agnostic,
plan annotation and finalization is TD dependent). For example,
here Q3 took 21s for TD 1 and ∼28s for TDs 2 and 3, Q5
took ∼50s for TDs 1 and 3 and 35s for TD2, and Q8 took
40s for TD 1 whereas it took ∼105s for TDs 2 and 3. To gain
further insights into these results, we analyzed for each TD,
the delegation plan for each query with respect to number of
tasks and number and type of inter-DBMS data movements.
In particular, we computed for each ti

x→ tj x ∈ { i, e } the
cardinality of relation ti.r. Table IV shows these statistics for
queries Q3, Q5, and Q8 for TD 1 and TD 2 (we omit other
queries and TD 3 due to space constraints).

We observed that the change in execution time depends on
number, type, and amount of data movement. For instance, the

delegation plan for Q3 involved 2 tasks and moving ∼1.4M
rows via implicit movement for TD 1 (cf. Table III; table c and
o are colocated). Whereas, it involved 3 tasks for TD 2 and
TD 3 (not shown here) as a result of tables c, o, and l being on
different DBMSes, which lead to additionaly moving ∼300K
rows via explicit movement (highlighted under Q3 column in
Table IV). This explains the slight increase in runtime for Q3 in
TDs 2 and 3 compared to TD 1. In the case of Q5, although the
delegation plans slightly differ in terms of number of tasks and
type of movements, the amount of intermediate rows moved
remained same for TD 1, and 3, while in TD 2 these are ∼20K
less. These differences are also reflected in Q5’s execution times.
Lastly, for Q8 the increase in number of tasks and intermediate
data had a more pronounced effect on its runtime for TD 1
in comparison to TD 2 and 3 (cf. column Q8; Table IV).

Decentralized vs. Scaled-out mediator. Fur-
thermore, we also evaluate how XDB’s decen-
tralized execution (with inter-DBMS pipeline
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Fig. 11: Scaling Presto (TD 1)

parallelism) compares to
Presto’s scale out capabil-
ities. We used TD 1 and
compared XDB’s execution
time to Presto (w/ 2, 4, and
10 worker nodes). The re-
sults are shown in Figure 11.
We observed that scaling
the number of workers did
not improve the runtime per-
formance of Presto. While
the “actual” processing time of Presto improves by adding
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workers, its centralized (mediator-based) execution offsets its
scale-out capabilities for cross-database query processing.

Overall, we conclude that in-situ query execution approach
is more amenable for cross-database query processing.

C. Data Transfer Cost

The amount of data transferred during query execution is
an important factor with regard to the overall query perfor-
mance and monetary cost, as current cloud vendors charge by
the amount of incoming data for managed querying services
(e.g., AWS Athena [32]). In these experiments, we evaluate
XDB in terms of overall data transfer. We simulate two real-
world scenarios where (1) DBMSes of an organization are
located on-premise and (2) DBMSes are geo-distributed (e.g.,
in different data centers). We assume in both scenarios that
XDB, Presto, and Garlic are located in a managed cloud
environment. We considered TD 1 and TD 2 with sf 10, and
all test queries. The results are shown in Figures 14. Here,
XDB (ONP) and XDB (GEO) denote the on-premise and geo-
distributed scenarios, respectively. Note that in both scenarios
Presto and Garlic transfer the same amount of data over the
network as data only moves from DBMSes to the mediator.
On-premise DBMSes. We observe that XDB (ONP) transfers
only a minimal amount (up to ∼2MB) of data to the cloud
compared to Presto and Garlic. This is because XDB enables
underlying DBMSes to communicate directly, and hence avoids
sending intermediate data to the cloud. The only data that
is sent to the cloud is the final query result and lightweight
control messages during query optimization and delegation. In
contrast, Presto and Garlic fetch all intermediate data to the
cloud to compute the final result (cf. Figures 4a and 4b). While
Presto and Garlic push down selections, projections, and in
some cases joins, to reduce the data transfer, we observe that
a substantial amount of data is transferred to the cloud (up to
∼4.5GB for Q9 over all TDs).
Geo-distributed DBMSes. In the geo-distributed scenario,
XDB (GEO) transferred less data than Presto and Garlic (up to
115× for Q8 and TD 1). We note that table distribution affects
the amount of data transfer in XDB (GEO) as different TDs
lead to different delegation plans. Yet, for our test queries, this
amount was always less for the in-situ approach.

In sum, XDB transfers less data than MW approaches.

D. Data Scalability

In our next set of experiments, we evaluate XDB’s scalability
with respect to different data sizes. We evaluate the overall
runtime performance considering TD 1 and data corresponding
to TPC-H scale factors 1, 10, 50 and 100.
Individual queries. We consider three queries with different
numbers of tables, namely Q3 (3 tables), Q9 (6 tables), and
Q8 (8 tables) for which results are shown in Figures 12a–12c.
For all scale factors, XDB outperformed Presto and Garlic
(by up to 5× for Q8 sf 10). Further we observe that XDB’s
runtime increased for Q3 from 10s to 26s when scaling data
from sf 1 to sf 10, and further increased to 179s for sf 50 and
374s for sf 100. This is expected as increasing the scale factor
proportionally increases the intermediate data for a query. For
example, for Q3 intermediate data increased to 53MB for sf 10
and to further 548MB for sf 100.

All queries. Additionally, we measured the average increase
in runtime for all queries. Figure 13 shows the results. In
comparison to Presto and Garlic, XDB led to average speed-
up of 4× and 3×, respectively for all scale factors. Also,
the increase in runtime for XDB was proportional to the
increase in the intermediate data transferred during execution,
e.g. intermediate data increased from 120MB (sf 1) to ∼1.2GB
(sf 10), and to ∼13GB (sf 100).

Overall, increases in runtime with respect to increase in
data is linearly proportional to intermediate query data.
E. Performance Breakdown

Next, we evaluate the performance breakdown for XDB’s
execution time. We breakdown XDB’s query execution coarsely
into four states: Preparation phase (prep) that includes parsing
and analyzing the query to extract the join graph and to gather
relevant metadata from underlying DBMSes through the DCs;
Logical optimization phase (lopt) that derives an optimized
logical plan; Plan annotation and finalization (ann) where
XDB communicates with underlying DBMSes to derive the
delegation plan; and finally the delegation and execution phase
(exec) where XDB delegates the plan and DBMSes execute
the query. We show breakdown among these phases in in
Figure 15 (note the log-scale y-axis).

We observe that the time spent in different phases depends
on the query and the scale factor. For Q3; TD 1 (Figure 15a),
XDB spent 50% of the total execution time on preparing,
annotating, and optimizing the query for sf 1, 12% for sf 10,
and 2% for sf 100. This more or less generalizes to other
queries as well. Overall, for all queries and scale factors, the
total time of the prep, lopt, and ann phases was always
less than 10s. Moreover, for a large scale factor, the exec
time offsets these phases. In general, the increase in prep
depends on the metadata operations of the underlying DBMSes,
as query parsing and analysis remains the same for different
sizes. The lopt time does not increase with the scale factor.
This is because, logical optimization only depends on the
query and is independent of the scale factor. The ann phase
is also independent of the scale factor but depends on the
delegation plan. Furthermore, we observe that the ann time
stays constant across queries and scale factors. This is because
during optimization XDB’s optimizer prunes the search space
by only considering four options for a given cross-database
operation (recall Section IV).

We observed similar behavior for TD 3 (Figure 15b), the
distribution that affects XDB the most, as all tables except
n and r are located on different DBMSes. For Q8 (which
has the most joins) the annotation required 24 “consultation”
roundtrips as all tables are on different DBMSes and hence
the delegation plan involved six data movements (cf. Table III
and recall Section IV-B2). In this case, XDB spends 45% of
the total query processing time on preparing, annotating, and
optimizing the query for sf 1,9% for sf 10, and 3% for sf 50.

Based on our experiments, we conclude that our proposed
techniques for in-situ cross-database processing lead to accept-
able (≤ 10s) overhead w.r.t. the total query execution time.

VII. ADDITIONAL RELATED WORK

We now discuss related work on distributed query processing
in addition to that discussed in Section II.
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Fig. 12: Runtime performance when scaling the data.
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Fig. 15: XDB query processing phase breakdown.

In-situ Query Processing. The term in-situ query processing
has been mentioned in literature and often refers to processing
of data without changing its format or location. QUIS [29] is
a MW-based system for heterogeneous data processing. While
it pushes down local operations to sources, it uses a mediating
execution engine to process cross-database operations, and
therefore, inherently suffers from the drawbacks discussed in
Section II and Section VI-B. NoDB [30] proposes to process
raw data in-situ, i.e., without first loading them into a DBMS,
by applying incremental and adaptive techniques with on-the-
fly indexing. DaskDB [31] has a similar goal, i.e., to process
SQL together with data analytics operations without loading
them into a DBMS, and therefore proposes a common runtime
that handles both SQL and Python UDFs in-situ on raw files.
While the latter works refer to the term in-situ for processing
raw files, XDB refers to the term for processing of cross-db
queries without requiring a mediating execution engine.
Polystore and Multistore Systems. While XDB embraces
DBMS heterogeineity in the realm of relational systems, Poly-
stores (or Multistores) [19]–[22] were proposed to tackle data
model heterogeneity. However, when it comes to query pro-
cessing they rely on rule-based methods for query optimization
and employ the centralized MW paradigm to execute queries
over disparate tables.
Bridging MR-based systems and DBMSes. Systems such as
Polybase [50] and MISO [51] propose to consider factors, such
as data freshness and frequently accessed data, to replicate
data subsets or to move data on the fly between systems.

Instead, to respect DBMSes’ storage autonomy, XDB only
moves data between systems on a per-query basis. Furthermore,
the mentioned approaches target only moving data between
distributed filesystems and DBMSes, while XDB proposes
query execution over multiple DBMSes.
Cross-Platform Systems. Approaches such as Rheem [23]
and Musketeer [52] propose to combine multiple platforms for
a single workload, They, thus, employ optimization techniques
for operator placement across different systems, but they do
not focus on optimizations achieved through query rewrites.
Furthermore, in contrast to XDB, these approaches use inter-
mediate channels to communicate data between systems.
Geo-Distributed Analytics. [53]–[55] considers a similar exe-
cution environment like ours, but focus on integrating compli-
ance aspects in query optimization. Wan-aware systems, such
as Geode [56] and Clarinet [57], mainly aim at decreasing
query latency in environments with bandwidth restrictions. In
particular, they assume complete control over the optimization
and execution engine to decide the physical operator plan in
dataflow engines. Iridium [58] has the same goal, but proposes
data replication and optimizes task placement through linear
programming. Pixida [59] aims at decreasing the network traffic
by introducing a scheduler based on a graph partitioning algo-
rithm. While these approaches aim at optimizing data transfer
for map-reduce like queries in cross-data center environments,
they assume fixed query DAGs. In contrast, XDB’s optimiza-
tion goal and execution environment is different: it considers
finding an optimal operator ordering, alongside an optimal
movement operation and operator placement, and decentralized
heterogeneous and autonomous DBMSes.

VIII. CONCLUSION

We proposed XDB, an efficient middleware system that uses
a novel in-situ execution model for supporting cross-database
query processing over existing DBMSes. XDB offloads all
cross-database operations to DBMSes themselves, which allows
to completely remove any central entity in query execution,
thereby reducing data movements. In particular, we have pro-
posed delegation plans – an abstraction that allows XDB to
assign individual execution of tasks to the underlying DBMSes.
For this, XDB employs a three-step optimization process to
generate optimal delegation plans, which contain information
about operator placement and data movement strategies. XDB
is non-intrusive, as it rewrites delegation plans to a series
of DDL operations leveraging the SQL/MED standard and
views. Our evaluation showed that XDB is of up to 6× faster
than baseline mediator-wrapper systems and reduces the data
movement across the network by up to 3 orders of magnitude.
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