
Compliant Geo-distributed Data Processing in Action
Kaustubh Beedkar

TU Berlin
kaustubh.beedkar@tu-berlin.de

David Brekardin
TU Berlin

david.brekardin@campus.tu-berlin.de

Jorge-Anulfo Quiané-Ruiz
TU Berlin & DFKI

jorge.quiane@tu-berlin.de

Volker Markl
TU Berlin & DFKI

volker.markl@tu-berlin.de

ABSTRACT
In this paper we present our work on compliant geo-distributed data
processing. Our work focuses on the new dimension of dataflow
constraints that regulate the movement of data across geographi-
cal or institutional borders. For example, European directives may
regulate transferring only certain information fields (such as non
personal information) or aggregated data. Thus, it is crucial for
distributed data processing frameworks to consider compliance
with respect to dataflow constraints derived from these regulations.
We have developed a compliance-based data processing framework,
which (i) allows for the declarative specification of dataflow con-
straints, (ii) determines if a query can be translated into a compliant
distributed query execution plan, and (iii) executes the compliant
plan over distributed SQL databases. We demonstrate our frame-
work using a geo-distributed adaptation of the TPC-H benchmark
data. Our framework provides an interactive dashboard, which al-
lows users to specify dataflow constraints, and analyze and execute
compliant distributed query execution plans.

PVLDB Reference Format:
Kaustubh Beedkar, David Brekardin, Jorge-Anulfo Quiané-Ruiz, and Volker
Markl. Compliant Geo-distributed Data Processing in Action. PVLDB,
14(12): 2843 - 2846, 2021.
doi:10.14778/3476311.3476359

1 INTRODUCTION
Today’s data analytics applications spread across several databases
and IT infrastructures at various international sites. Much research
(e.g., [8, 9]) has thus focused on expanding the scope of data pro-
cessing frameworks to support geo-distributed data processing.

In geo-distributed environments, the location of data is usually
predetermined. Therefore, data processing frameworks focus on
distributed execution strategies to execute analytical queries. Such
strategies typically involve distributing query operators (like join
or aggregation) across geo-distributed compute nodes. While re-
search on distributed query processing and optimization has shed
lights on various performance aspects (like latency or bandwidth),
a new dimension of cross-border dataflow constraints [3, 4] has not

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476359

been considered yet; i.e., dataflow constraints that arise from regu-
lations that prohibit the flow of certain data across geographical
borders or from other rules of data protection that may apply to the
data being transferred between certain sites. European directives,
for example, may regulate transferring only certain information
fields (or combinations thereof), such as non-personal information
or information not relatable to a person. Likewise, regulations in
Asia may also impose restrictions on data transfer. Therefore, we
need to consider compliance with respect to legal aspects when
distributing operators while generating distributed execution plans,
i.e., executing a distributed query must not violate any dataflow
constraints. We refer to this kind of distributed query processing
as compliant geo-distributed query processing.

Supporting compliant geo-distributed query processing entails
two major research challenges. First, we need an easy (thus declar-
ative) way to specify dataflow constraints. Doing so is not trivial
as constraints may pertain to different types of data as well as
its processing. For example, restrictions may apply to an entire
dataset, parts of it, or even to information derived from it. Second,
we have to find efficient ways to process queries in a manner that
they are compliant with respect to dataflow constraints. In contrast
to cost-based query optimization techniques, which focus solely
on performance aspects, we need efficient and effective ways to
include compliance aspects in query optimization and processing.

In this paper, we demonstrate a compliance-based query pro-
cessor based on our earlier publication [2]. The system allows
for declarative specification of dataflow constraints. It entails a
compliance-based query optimizer, which considers dataflow con-
straints when generating distributed query execution plans, and
a multi-database query executor to execute compliant plans. Our
demonstration setup consists of a geo-distributed database compris-
ing five PostgreSql databases (at different locations), and data based
on the TPC-H benchmark data. In our demonstration, attendees will
be able to specify dataflow constraints using our policy expression
language for different locations, and visualize, analyze, and execute
distributed execution plans for their queries.

2 DATAFLOW POLICIES & COMPLIANCE
We start with a discussion on dataflow policies and the notion of
compliance with respect to distributed data processing that we
consider in this paper. As an example, consider a distributed DBMS
(DDBMS) comprising three databases 𝐷𝑁 , 𝐷𝐸 , and 𝐷𝐴 located in
North America (N), Europe (E), and Asia (A) respectively.𝐷𝑁 stores
information about customers, 𝐷𝐸 stores information about orders,
and 𝐷𝐴 stores the supply information. Our example distributed

https://doi.org/10.14778/3476311.3476359
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476359


Result

ΓA

⋈︁A

SASHIP
E→A

⋈︁
E

O
E

SHIP
N→E

C
N

(a) Non-compliant

Result

ΓE

⋈︁
E

SHIP
A→E

Γ (o,sum(q))

SA

⋈︁
E

O
E

SHIP
N→E

Π𝑐,𝑛
N

C
N

(b) Compliant

Figure 1: Example execution plans for 𝑄𝑒𝑥 .

database has the following schema and data distribution

Customer (custkey, name, acctbal,mktseg, region) N
Orders (custkey, ordkey, totprice) E
Supply (ordkey, quantity, extprice) A

Dataflow Policies. A cross-border dataflow policy describes the
restrictions on the transfer of data across organizational and/or ge-
ographical borders. Generally speaking, a dataflow policy specifies
which information as well as how and to where this information
can be legally transferred. For example, based on recent studies on
data movement regulations [1, 3, 4], consider dataflow policies P𝑁 ,
P𝐸 , and P𝐴 that applies to data from North America, Europe, and
Asia respectively:
P𝑁 Customer data can be shipped outside only after suppressing

account balance information.
P𝐸 Only aggregated Orders data can be shipped to Asia and an

order’s price cannot be shipped to North America.
P𝐴 Only aggregated Supply data for orders’ quantity and extended

price from Asia can be shipped to Europe.
CompliantGeo-distributedData Processing. In geo-distributed
environments, typical strategies to process a query [5, 7–9] — that
involves transferring intermediate results between sites— may not
comply with data movement regulations. To illustrate, consider a
query 𝑄𝑒𝑥

SELECT C.name , SUM(O.totprice), SUM(S.quantity)

FROM Customer AS C, Orders AS O, Supply AS S

WHERE C.custkey=O.custkey AND O.ordkey=S.ordkey

GROUP BY C.name

Figure 4 shows two query execution plans (QEP) for 𝑄𝑒𝑥 . Here,
the SHIP operator describes the point where intermediate results
are communicated between two sites and Γ denotes the aggregation
operator. Assume now the QEP in Figure 1(a) is more efficient than
the QEP in Figure 1(b). In this case, a traditional DDBMS, which uses
cost-based query optimization strategies, most likely will output the
QEP in Figure 1(a). However, this plan is non-compliant: its SHIP
operators violate dataflow policies P𝑁 (SHIP𝑁→𝐸 ships Customer
table without suppressing the account balance) and P𝐸 (SHIP𝐸→𝐴

ships non-aggregated Order information to Asia). In contrast, the
QEP in Figure1(b) is compliant: it performs both join operations in
Europe, Π𝑐,𝑛 suppresses the account balance information of Cus-
tomers and Γ(o,sum(q)) suppresses (via aggregation) the orders’
quantity.

Figure 2: Compliant geo-distributed data processing

3 COMPLIANCE-BASED QUERY PROCESSOR
We now describe our compliance-based query processing frame-
work, which (i) allows declarative specification of dataflow con-
straints, (ii) determines if a query is legal w.r.t. the imposed con-
straints, and (iii) translates a legal query into a compliant QEP.
Figure 2 illustrates our overall approach. In what follows, we first
give an overview of our system and then discuss its core compo-
nents: policy specification, query optimizer, and a multi-database
query executor.

3.1 System Overview
We consider a distributed SQL database composed of autonomous
geo-distributed databases. Each database is tied to a location1. For
each database, the framework allows a data officer to reflect her
dataflow policies using policy expressions (Section 3.2), which are
stored in a policy catalog. Note that this policy specification pro-
cess is an offline process. At querying time, the compliance-based
query optimizer (Section 3.3) uses this policy catalog (via the policy
evaluator), when enumerating plans, to validate if they are com-
pliant with their input dataflow policies. The optimizer uses this
validation mechanism to know when a QEP is violating an exist-
ing dataflow policy. Only when the resulting QEP is compliant,
it proceeds with the query execution. The query executor then
executes the query over the distributed databases. Our current im-
plementation supports such a multi-database query execution over
PostgreSql databases.

3.2 Policy Specification
A crucial aspect in adhering to dataflow policies is to mask data in a
way that renders it suitable to be transferred across borders. In this
work, we focus on policies that can be adhered to by masking via
relational operations (e.g., project, aggregate, or filter) such that the
resulting compliant QEP retains the query semantics, i.e., the output
of the query should be the same if there were no dataflow policies.
For instance, a projection operator can mask certain columns by
projecting them out before the (intermediate data) is shipped to
another location, and when the masked columns are not required
by the query later. In this context, we propose policy expressions as

1Here location can be geographical, institutional, or the database instance itself.



C
1

N
O

E
L

A

N
2

E
6

N

⋈︁

⋈︁

Γ Γ

⋈︁

E

E
7

Γ
E

E

⋈︁
E

Π
3

N

N,E
4

⋈︁
5

E

Γ
A

A,E

Figure 3: Simplified search space for 𝑄𝑒𝑥 .

a simple and intuitive way to specify dataflow policies. We define
two kinds of policy expressions: basic and aggregate expressions.
Basic Expressions. Basic expressions allow specifying shipping
of certain rows and columns of a table to another location and have
the following syntax:
ship attribute list from table to location list
where condition list

This expression specifies cells, i.e., rows and columns, of a table
to be shipped without affecting the query semantics.2 The specified
cells from the table in the from clause (i) belong to both columns
in the ship clause and tuples that satisfy the predicates in the
where clause, and (ii) can be shipped to locations in the to clause.
Intuitively, if a subquery accesses only the specified cells, then its
output can be shipped to locations specified in the expression.

Consider policy P𝑁 from Section 2, which does not allow for
shipping the account balance information of customers outside
North America. Suppose the policy also allowed for shipping cus-
tomer’s mktsegment and region information to Europe for com-
mercial customers. We can use the following policy expressions:
ship custkey, name from Customer C to Asia, Europe

ship mktseg, region from Customer C to Europe
where mktseg=‘commercial’

Aggregate Expressions.Although basic expressions are sufficient
to express a large variety of dataflow policies, there are policies that
allow for shipping of aggregate information only. For these cases,
we have aggregate expressions that allow us to specify aggregations
over columns. Similar to basic expressions, aggregate expressions
do not affect the query semantics. The syntax of an aggregate
expression is:
ship attribute list as aggregates aggregate types
from table to location list where condition list
group by attribute list

In the above syntax, the list of attributes in the ship clause
specifies cells of columns that should be aggregated before being
shipped to locations in the location list. The as aggregate clause
specifies aggregation functions that should be used to aggregate
specified cells. As before, the specified cells must belong to columns
2For exposition, we restrict to expressions over a single table. This is not a limitation:
one can specify a policy expression over more than one base table. In this case, the
condition list in the where clause of the expression must contain the join predicate.

in the attribute list for the tuples that satisfy the predicate in its
where clause. Lastly, the group by clause specifies lists of grouping
attributes for which the specified cells can be grouped by zero, one,
or more attributes from its attribute list.

Consider again the Customer table from Section 2 and assume
that account balance information can be shipped only after aggre-
gating. A possible expression is:
ship acctbal as aggregates sum, avg from Customer C
to * group by mktseg, region

3.3 Compliance-based Optimizer
We now describe our compliance-based optimizer. The goal of our
optimizer is to determine if a query is legal and to automatically
generate and a compliant plan.

We follow a two-phase optimization process that comprises plan
annotation and site selection. The plan annotator receives a logical
plan as input and outputs an annotated QEP. An annotated QEP is
an optimized logical plan in which each plan operator is annotated
with a set of compliant sites (i.e., sites where the execution of the
operator will not violate any dataflow constraint). The site selector
then uses dynamic programming to find the optimal placement of
query plan operators taking data shipping cost into account.

More specifically, we adapt the Volcano optimizer generator [6]
to generate the plan annotator. Our adaptations allow us to produce
an annotated plan by enumerating the plan space by applying alge-
braic equivalence rules in a top-down fashion and filter compliant
ones by applying our annotation rules in a bottom-up fashion. To
do so, we treat geo-locations associated with base tables as “inter-
esting properties” and propagate these properties bottom-up via
annotation rules. Our annotation rules are based on the structure
of the subplans and make use of a lightweight mechanism (the
policy evaluator; Figure 2) to evaluate dataflow policies. Our policy
evaluator allows for easy integration of policy expressions into
the annotation process. In particular, during plan enumeration, it
determines to which cross-borders sites the output of operators can
be shipped.

The annotation process for our running example is illustrated in
Figure 3. Here the plan with the dotted lines shows the initial logical
plan. The plan with thick solid lines shows the annotated plan that
the annotator outputs. The letters in the square boxes denote sites
to which the output of an operator can be shipped to and letters
below each operator denote sites where each plan operator can
be executed. For example, the project operator (node 3) must be
executed in North America but its output can be shipped to North
America and Europe. It is easy to see that the plan with thick solid
lines translates to the compliant plan shown in Figure 1(b). For a
more detailed description of our optimizer, we refer readers to [2],
which also gives a more formal treatment and proof of correctness.

3.4 Query Executor
Lastly, the query executor receives a compliant (logical) plan in
which a global property describes where the processing of each
plan operator must happen. The executor then orchestrates the
multi-site query execution by translating the compliant plan into a
sequence of DDL statements corresponding to underlying database
systems.



1

2

3 4

5

Figure 4: User interface for demonstration

4 DEMONSTRATION
We demonstrate our framework using a geo-distributed adaptation
of the TPC-H benchmark data. Our framework supports compliant
geo-distributed data processing over data stored in disparate Post-
greSql databases, which are located at five locations. We provide an
interactive dashboard, as shown in Figure 4 to demonstrate various
aspects of our system. The following scenarios will be available to
the attendees.
Plug-and-PlayDatabase Connection. The attendees will be able
to setup our framework atop existing PostgreSql databases, via
the Database Configuration pane 1 . Attendees can select one of
the available configurations of our distributed TPC-H database.
Each differing in how TPC-H tables are distributed among different
locations. Attendees can also specify details of their own PostgreSql
database and plug-in to our framework with no extra effort.
Geo-distributedData Exploration.After the framework success-
fully connects to the databases, the Database Navigator pane 2
will allow attendees to explore the schema of the geo-distributed
data in a unified way. Attendees can navigate through individual
databases, view the table distribution, and schema of the databases.
Policy Specification. During the demonstration, an attendee will
take the role of a data officer and reflect her dataflow policies. The
Policy Specification pane 3 provides an interface to specify data
movement policies using our policy expressions. The attendee can
add new constraints and also update, delete, or disable already
added constraints with respect to one or more locations.
Geo-distributed Data Processing. Once the constraints have
been added, attendees can submit ad-hoc SQL queries. The Query
Optimization and Execution pane 4 provides a query interface,
using which the attendee will first generate a distributed execution
plan either by invoking our compliance-based optimizer, or by in-
voking a traditional cost-based optimizer, or she may generate an

unoptimized plan. The Query Plan pane 5 will show the gener-
ated plan and also allow the attendee to interact with query plan
operators to view details such as their parameters. If the resulting
plan is not compliant, then the ship operators will be marked with
red color, otherwise, they are marked using green color (not shown
here). For non-compliant plans, the Query Plan pane will show
an inactive red execute button. Attendees can click on the ship
operators to see which policies were violated by the query. Lastly,
attendees will be able to execute compliant plans, generated by our
compliance-based optimizer, in a multi-site setting.

ACKNOWLEDGMENTS
This work was funded by the German Ministry for Education and
Research as BIFOLD – “Berlin Institute for the Foundations of
Learning and Data” (01IS18025A and 01IS18037A).

REFERENCES
[1] 2019. Regional Privacy Frameworks and Cross-Border Data Flows.

https://www.gsma.com/publicpolicy/resources/regional-privacy-frameworks-
and-cross-border-data-flows.

[2] Kaustubh Beedkar, Jorge-Arnulfo Quiané-Ruiz, and Volker Markl. 2021. Compliant
Geo-Distributed Query Processing. In SIGMOD. 181–193.

[3] Francesca Casalini and Javier López González. 2019. Trade and Cross-Border Data
Flows. 220 (2019). https://doi.org/https://doi.org/10.1787/b2023a47-en

[4] Nigel Cory. 2017. Cross-Border Data Flows: Where Are the Barriers, and What Do
They Cost? http://www2.itif.org/2017-cross-border-data-flows.pdf

[5] A. Deshpande and J. M. Hellerstein. 2002. Decoupled query optimization for
federated database systems. In ICDE. 716–727.

[6] Goetz Graefe and William J. McKenna. 1993. The Volcano Optimizer Generator:
Extensibility and Efficient Search. In ICDE. 209–218.

[7] Donald Kossmann. 2000. The State of the Art in Distributed Query Processing.
ACM Comput. Surv. 32, 4 (2000), 422–469.

[8] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya
Akella, Paramvir Bahl, and Ion Stoica. 2015. Low Latency Geo-distributed Data
Analytics. In SIGCOMM. 421–434.

[9] Ashish Vulimiri, Carlo Curino, Brighten Godfrey, Konstantinos Karanasos, and
George Varghese. 2015. WANalytics: Analytics for a Geo-Distributed Data-
Intensive World. In CIDR.

https://www.gsma.com/publicpolicy/resources/regional-privacy-frameworks-and-cross-border-data-flows
https://www.gsma.com/publicpolicy/resources/regional-privacy-frameworks-and-cross-border-data-flows
https://doi.org/https://doi.org/10.1787/b2023a47-en
http://www2.itif.org/2017-cross-border-data-flows.pdf

	Abstract
	1 Introduction
	2 Dataflow Policies & Compliance
	3 Compliance-Based Query Processor
	3.1 System Overview
	3.2 Policy Specification
	3.3 Compliance-based Optimizer
	3.4 Query Executor

	4 Demonstration
	Acknowledgments
	References

