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1 Coding length and the ellipsiod method

1.1 De�nition. We �rst want to de�ne the size of several input formats.

a) For α = p
q
∈ Q with p, q ∈ Z coprime let

size(α) = 1 + dlog2(|p|+ 1)e+ dlog2(|q|+ 1)e.

The �1+� represents the sign.

b) For c = (γ1, . . . , γn) ∈ Qn, let size(c) = n +
∑

size(γi). The summand n notes the delimiters,
between the entries.

c) For A = (aij)i,j ∈ Qm×n, let size(A) = mn+
∑

size(aij).

d) To encode inequalities, either scalar or matrix, let size(Ax ≤ b) = 1 + size(A) + size(b). The
same for equations.

1.2 Proposition. Let A ∈ Qm×n with size(A) = σ. Then size(detA) < 2σ.
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Proof. Write A =
(
pij
qij

)
with pij, qij ∈ Z coprime and qij > 0. Further let detA = p

q
. We have the

bound

q ≤
∏

1≤i,j≤n

qij = 2
∑

log qij < 2
∑

log qij+log pij ≤ 2σ−1 since mn ≥ 1

For p we get the upper bound

|p| = | detA| · q ≤
∏

1≤i,j≤n

(|pij|+ 1)qij < 2σ−1

Together, this yields

size(detA) = 1 + dlog2(|p|+ 1)e+ dlog2(|q|+ 1)e

1.3 Corollary. For A ∈ GLn(Q), we have size(A−1) ∈ poly(size(A)).

Proof. Use Cramer's rule.

1.4 Corollary. Let A ∈ Qm×n and b ∈ Qm. If Ax = b has a solution, then there is a solution x0
with size(x0) ∈ poly(size(Ax = b)).

Proof. Assume that A has linearly independent rows and A = (A1, A2) where A1 is non-singular.
Then x0 := (A−11 b, 0) ∈ Qm ×Qn−m is a solution of the desired size.

1.5 Corollary. The decision problem

Linear Equation System

Input: A, b rational
Question: Does Ax = b have a solution?

has a good characterisation (i.e. lies in NP ∩ coNP).

Proof. If the answer is positive, then Corollary 1.4 provides a certi�cate of polynomial size.
Suppose Ax = b does not have a solution. This happens if and only if there is some y with y ·A = 0
and y · b = 1. Again by Corollary 1.4 there is such y of polynomial size.

1.6 Corollary. Let A ∈ Qm×n and b ∈ Qm such that each row of the extended matrix (A, b) has
size at most ϕ. If Ax = b has a solution, then

{x : Ax = b} = {x0 + λ1x1 + . . .+ λtxt : λi ∈ Q}

for certain vectors xi ∈ Qn such that size(xi) ≤ 4n2ϕ.

Proof. By Cramer's rule, the coe�cients of xi can be described as quotients of subdeterminants of
the extended matrix of order at most n. By Proposition 1.2, these determinants have size < 2nϕ.
Taking quotients gives another factor 2, so each coe�cient has size < 4nϕ. Having n coe�cients
yields size(xi) < 4n2ϕ.

1.7 Remark. Gauÿ elimination transforms a given matrix A into a standard form(
B C
0 0

)
where B is non-singular, upper triangular; by row operations

ai,· 7→ ai,· + λaj,ifor λ 6= 0

and permutations of rows/columns.
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Remark. Sometimes, we can further reduce it to the case B invertible diagonal matrix.

1.8 Theorem (Edmonds, 1967). For A rational, Gauÿ elimination is a polynomial time algo-
rithm within the bit-model.

Proof. Wlog assume that no permutations are necessary. Polynomially many arithmetic operations
su�ce (O(n3)). But we still have to control the size of the intermediate results.
The procedure generates matrices

A = A0, A1, A2, . . . Ak =

(
Bk Ck
0 Dk

)
where Bk is non-singular, upper triangular of order k. Then Ak+1 is obtained form Ak by row
operations with pivot δ11 6= 0, where Dk = (δij). If we can show size(Ak) ∈ poly(size(A)), this also
holds for the result and we are done.
We have

δij =
det(Ak[1, . . . , k, k + i; 1, . . . , k, k + j])

det(Ak[1, . . . , k; 1, . . . , k]︸ ︷︷ ︸
=Bk

)
pick given rows and columns

By Proposition 1.2, size(δij) < 4 size(A), since each entry of Bk and Ck have been coe�cients of
Dj for some j < k.

1.9 Corollary. The following problems are solvable in polynomial time.

(i) determining the rank of a rational matrix

(ii) computing the determinant of a rational matrix

(iii) computing the inverse of a rational matrix

(iv) testing vectors for linear (in)dependence

(v) solving a system of linear equations

1.10 Theorem. If the system Ax ≤ b of rational linear inequalities has a solution, then it has a
solution of size poly(size(A, b)).

Proof. Let {x : A′x = b′} describe a minimal face of the polyhedron {x : Ax ≤ b}, where [A′, b′] is
a submatrix of [A, b]. That minimal face contains a point of size poly(size(A, b)).

1.11 Lemma (Farkas' Lemma). Let A be a matrix and b some vector. Then there exists a vector
x ≥ 0 with Ax = b i� yb ≥ 0 for each row vector y with yA ≥ 0.

The important part is the negation of the statements, since it yields a certi�cate, that some LP
has no solution. If the system yA ≥ 0, yb < 0 has a solution, then Ax = b, x ≥ 0 has no solution.

1.12 Corollary. The following problems have good characterisations (i.e. ∈ NP ∩ coNP).

• Given A and b rational, does Ax ≤ b have a solution?

• Given A and b, does Ax = b have a nonnegative solution?

• Given A, b, c and δ, does Ax ≤ b, cx > δ have a solution?
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1.13 De�nition. Let us denote a nonempty polyhedron as

P = P (A, b) = {x ∈ Rn : Ax ≤ b}

with minimal faces F1, . . . , Fr. Pick a point xi from each minimal face. Then

P = conv{x1, . . . , xr}+ recP

where

recP := {y ∈ Rn : ∀x ∈ P.∀λ ≥ 0.x+ λy ∈ P}

is the recession cone, i.e. the cone of all unbounded directions. Furthermore set

linP := {y ∈ recP : −y ∈ recP} = {x : Ax = 0}

the lineality space. kernel?kernel?

1.14 De�nition. Let P ⊆ Rn be a rational polyhedron. The facet complexity of P is the smallest
number ϕ ≥ n such that there exist rational A, b with P = P (A, b) and each inequality in Ax ≤ b
has size ≤ ϕ. The vertex complexity is the smallest number ν ≥ n that that there exist x1, . . . , xk
and y1, . . . , yt ∈ Qn with

P = conv{x1, . . . , xk}+ pos{y1, . . . , yt} pos = nonnegative cone

where each xi, yj have size ≤ ν.

1.15 Remark. Both notions are de�ned for any polyhedron, even if there are no vertices.

1.16 Theorem. Let P ⊆ Rn be a rational polyhedron with facet complexity ϕ and vertex complexity
ν. Then ν ≤ 4n2ϕ and ϕ ≤ 4n2ν.

Proof. Let P be such that each inequality in Ax ≤ b has size ≤ ϕ.

• Let F1, . . . , Fk be the minimal faces of P . Then Fi = {x : A′ix ≤ b′i} for some submatrix
[Ai, bi] of [A, b]. Each equation in A′ix = b′i has size at most ϕ. By Corollary 1.6, Fi contains
a solution xi of size 4n2ϕ.

• Similarly, linP = {x : Ax = 0} has a basis where vector has size at most 4n2ϕ.

• Each minimal proper face F of recP contains a vector y /∈ linP of size ≤ 4n2ϕ, since

F = {x : A′x = 0, ax ≤ 0}

for some submatrix A′ of A and some row a of A.

The important part is that we relate the sizes of the points and constraints. We do not relate their
numbers to each other.

1.17 Corollary. Let A ∈ Qm×n, b ∈ Qm and c ∈ Qn such that the optima

max{cx : Ax ≤ b} = min{yb : y ≥ 0, yA = c} (*)

are �nite. Let σ be the maximal size of the coe�cients in the input.
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(i) The maximum in (*) has optimal solution of size poly(n, σ).

(ii) The minimum in (*) has optimal solution of size poly(n, σ).

(iii) The optimal values in (*) are in poly(n, σ), poly(m,σ).

1.18 De�nition (LP-optimisation problem). Given A, b, c rational, test if max{cx : Ax ≤ b}
is feasible, �nite or unbounded. If feasible and �nite, �nd an optimal solution. If unbounded, �nd
feasible solution x0 and vector z with Az ≤ 0 and cz > 0.

1.19 Remark. LP-feasibility =⇒ LP-optimisation. Assume, we have an oracle for LP-feasibility
an want to us it for optimisation. Given A, b, c

(i) check Ax ≤ b and �nd solution x0.

(ii) check if y ≥ 0 and yA = c feasible.

(iii) Then Ax ≤ b, y ≥ 0ˇ, yA = c and cx ≥ yb has a solution (x∗, y∗), which is an optimal
solution for the dual pair (*).

1.20 Remark. LP-optimisation =⇒ LP-optimisation: Naive: take c = 0 as objective function.

1.21 Remark. Again, let A ∈ Qm×n and b ∈ Qm. A point x ∈ P is interior, if Ax < b. This
exists i� dimP = m. Consider the LP

max{ε : Ax+ 1m · ε ≤ b, 0 ≤ ε ≤ 1} (***)

(i) The LP (***) is feasible i� Ax ≤ b, i.e. dimP 6= ∅.

(ii) The LP (***) has an optimal solution with ε > 0 i� intP 6= ∅ i� dimP = n.

Ellipsoid Method (Khachyan, 1979)

1.22 De�nition. A symmetric matrix D ∈ Rn×n is positive de�nite if all its eigenvalues are
positive.

1.23 Theorem (Principal axis theorem). The following are equivalent:

(i) D is positive de�nite

(ii) D = BTB for some B ∈ GLn(R)

(iii) xTDx > 0 for all X ∈ Rn \ {0}

1.24 De�nition. Let z ∈ Rn and D positive de�nite. Then the set

ell(z,D) :=
{
x : (x− z)TD−1(x− z) ≤ 1

}
is called the ellipsoid with centre z.

Remark. • For a given ellipsoid, z and D are unique.

• An ellipsoid is the same as an a�ne image of the unit ball.
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1.25 Theorem. Let E = ell(z,D) ⊆ Rn be an ellipsoid, and let a ∈ Rn be a row vector. Let
further E ′ be an ellipsoid, that

• contains E ∩ {x : ax ≤ az} (intersection of E with a half-space) and

• E ′ has smallest volume with this property.

Then E ′ = ell(z′, D′) is unique and is given by

z′ = z − 1

n+ 1
· DaT√

aDaT
D′ =

n2

n2 − 1

(
D − 2

n+ 1

DaTaD

aDaT

)
Moreover, the volume is bounded by

volE ′

volE
< e−

1
2n+2

1.26 Algorithm (Outline for LP-feasibility). Given A ∈ Qm×n and b ∈ Qm, does Ax ≤ b have
a (rational) solution? We make the following assumption:

• P := P (A, b) is bounded and full dimensional.

• We have exact arithmetic, i.e. in�nite precision.

(i) Let ϕ be the maximal size of a row of [A, b] and put ν := 4n2ϕ. (In particular, the facet
complexity is ≤ ϕ.) Then by Theorem 1.16, each vertex of P has size ≤ ν (since ν is an upper
bound for the actual vertex complexity). Let R := 2ν . Then P ⊆ {x : ‖x‖ ≤ R}, because R
is the largest number we can represent with ν bits.

(ii) We construct a sequence z0, z1, z2, . . . and D0, D1, . . . such that Ei := ell(zi, Di) is a sequence
of ellipsoids with vol(Ei+1) < vol(Ei). Set z

0 = 0 andD0 = R2·I, so E0 = {x : ‖x‖ ≤ R} ⊇ P .

(iii) Suppose we have zi and Di. If zi ∈ P , we have a feasible solution, so we stop. Otherwise,
there is some row index k such that akz

i > bk (where ak is the k-th row of A, i.e. we pick
a row violating the inequality). Then de�ne Ei+1 as the ellipsoid obtained by Remark 1.39,
with row vector ak. Then

Ei+1 ⊇ Ei ∩
{
x : akx ≤ akz

i
}
⊇ Ei ∩ {x : akx ≤ bk} ⊇ P

Our volume decreases exponentially, via

volP ≤ volEi ≤ e−
i

2n+2 · (2R)n

(iv) Since P has full dimension, there are x0, . . . , xn ∈ P a�nely independent. So we can estimate
the volume

volP ≥ vol conv{x0, . . . , xn} ≥
1

n!

(
1 1 . . . 1
x0 x1 . . . xn

)
≥ n−nn−nν ≥ 2−2nν

by Hadamard's bound for the determinant.

(v) Put N := 16n2ν ∈ poly(size(A, b)). Then assuming, we arrive at EN , we reach a contradiction

2−2nν ≤ volP ≤ volEN < e−
N

2n+2 (2R)n ≤ 2−2nν  

So we must have found an interior point in less than N steps.
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missing lecture

1.27 Theorem (Koebe 1936, Adreev, Thurston). Every planar graph is a disk graph.

Proof. Let Γ = ([n], E) be our graph.

i) Wlog all regions are triangles: We can add new edges. For the outer region, we put a large
triangle that includes everything in its interior and then triangulate again, what is missing.
Also assume the outer region is given by {1, 2, 3}. By linear transformations, this outer triangle
can be made regular.

ii) By Euler's formula, we have 2n− 4 regions.

iii) Let r = (r1, . . . , rn) ∈ Rn
>0 with

∑
ri = 1, which will be our radii. For i, j, k vertices of some

region. Then we have a unique triangle ∆r(i, j, k) given by the sides ri+rj, ri+rk and rj +rk.
Let αr(i; j, k) be the angle at i in this triangle ∆r(i, j, k). For the outer region, we still take
the small angle in the interior. (Let αr(i; j, k) = 0 if they do not form a region.)

iv) Put σr(i) :=
∑

j,k αr(i; j, k). We need to show that for r with

σr(i) =

{
2π
3

: i ∈ {1, 2, 3}
2π : otherwise

there exists a realisation of Γ as a disk graph with radius vector r.

Proof. omitted

v) Now our set of candidates ∆ := {r ∈ Rn : ri > 0,
∑
ri = 1} is the open (n− 1)-simplex. Let

H :=
{
x ∈ Rn :

∑
xi = (2n− 4)π

}
be an a�ne hyperplane. Consider the continuous map f : ∆→ H with f(r) = (σr(i))i=1,...,n.

We need to show x∗ =
(
2π
3
, . . . , 2π

3
, 2π, . . .

)
∈ f(∆). Then the claim follows from item iv.

vi) This function has the following properties

• f is injective

• f has a continuous extension to the boundary ∂∆ (meaning some ri = 0), call it f .

• Domain and image are both homeomorphic to unit balls B
n−1

with boundary Sn−2. So
we get an extended version

h1 ◦ f ◦ h2 :
(
B
n−1

, Sn−2
)
→
(
B
n−1

, Sn−2
)

By a Theorem of , this function in surjective on its interior. Therefore, by transforming namesnames

back, f is surjective.
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Non-uniqueness

1.28 Notation. Let Cr,n be the cyclic polytope of dimension n with r vertices.

1.29 Proposition. Each l-subset of the vertices of Cr,n forms a face if l ≤ bn
2
c.

1.30 Theorem (McMullen, 1970). Let P be an n-dimensional polytope with r vertices. Then
fk(P ) ≤ fk(Cr,n) for all 0 ≤ k ≤ n.

1.31 Theorem (Van-Kampen, Flores, Grünbaum). Let P,Q be polytopes of dimensions n =
dimP < dimQ = n′. If P≤k ∼= Q≤k then k ≤ bn

2
c − 1.

Here P≤k is the k-skeleton, i.e. the poset of faces of dimension at most k.

1.32 Example. Let ∆n be the n-dimensional simplex. Then Γ(∆n) ∼= Kn+1. If n ≥ 4, then
Γ(Cr,n) ∼= Kr.

1.33 Example (Joswig, Ziegler). Let S := [−1, 1]2, the 2-dimensional square and

Q := conv(S × 2S × {−1} ∪ 2S × S × {1})

In terms of inequalities it is given by

−1 ≤ x5 ≤ 1

±2x1 ≤ 3− x5
±2x2 ≤ 3− x5
±2x3 ≤ 3− x5
±2x4 ≤ 3− x5

The graph is the same as the cube's.
Let π : R5 → R4 be the linear projection onto the �rst 4 coordinates. Then P := π(Q) =
conv(S × 2S ∪ 2S × S) again is a polytope. If terms of face description, we do the Fourier-Motzkin
elimination.

±xi ≤ 2 1 ≤ i ≤ 4

±xi ± xk ≤ 3 j = 1, 2 k = 3, 4

Check Γ(P ) ∼= Γ(Q) ∼= Γ([0, 1]5).

Simplex Polytopes

1.34 Proposition. Let P be an n-dimensional polytope. TFAE

i) Each vertex is contained in precisely n facets.

ii) The graph Γ(P ) is n-regular.

iii) The dual polytope P v is simplicial, i.e. each face is a simplex.

1.35 De�nition. Let P be an n-dimensional polytope. We say P is simple i�

• Γ(P ) is n-regular

• exactly n facets through each vertex
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• P v is simplicial, i.e. every proper face is a simplex.

In the literature, this sometimes is called �primally non-degenerate�.

1.36 Example. • Every polygon is simple and simplicial

• Every simplex is simple and simplicial. These two are the only types, that have both prop-
erties.

• Cubes [−1, 1]n are simple. Their cross polytopes conv{±ei : i = 1, . . . , n} are simplicial.

• Cyclic polytopes are simplicial.

1.37 Theorem (Bluid, Mani, 1987; Kalai 1988). Let P be a simple polytope. Then the graph
Γ(P ) determines the combinatorial type of P .

Proof. Let Γ(P ) = (V,E) and dimP = n. Consider all acyclic orientations of Γ (always exist). If
F is a nonempty face of P , then each acyclic orientation has at least one sink in Γ(F ) (e.g. the
last node of a topological ordering). An acyclic permutation is called good if it has a unique sink
on each nonempty face. Each generic linear objective function on the polytope induces a good
orientation on Γ(P ). (In the literature, this is referred to as �dually non-degenerate.) Hence good
orientations exist.
Let O be some (not necessarily good) acyclic permutation. De�ne

hOk := #{v ∈ V : indeg(v) = k} for k = 0, . . . , n

Then h := (h0, . . . , hn) is called the h-vector of P w.r.t. O.
Let v ∈ V with indeg(v) = k. So v is contained in k edges as target. Every subset of them spans
a face and all of its edges containing v, point to v. Thus, v is a sink in 2k nonempty faces of P .

fO :=
n∑
i=0

hOi = #{(v, F ) : v ∈ V, v is sink in face F 6= ∅}

f :=
n∑
i=0

fi = #{F : ∅ 6= F face}

Then we observe

i) fO ≥ f , since fO counts each nonempty face at least once

ii) O is good i� fO = f : only in this case, we count each nonempty face only once

Now the claim follows from the subsequent Lemma 1.38.

1.38 Lemma. The facets of P bijectively correspond to the connected (n − 1)-regular induced
subgraphs of Γ, which are initial w.r.t. some good orientation.

Proof. ⇒ �clear�TM, once you understand the de�nition, and what �initial� means.

⇐ Let Φ be a connected (n − 1)-regular induced subgraph, which is initial w.r.t. some good
orientation O. Let s ∈ V be a sink in Φ. Then there exists a unique facet F of P through s
spanned by n− 1 edges through s in Φ. Since O is good, s is the unique sink in Γ(F ), i.e. all
vertices in F come before s in O. Since Φ is initial, Φ contains all vertices before s. Hence
Φ ⊇ Γ(F ). Both are connected and (n− 1)-regular. So Φ = Γ(F ).
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1.39 Remark. • J. Karbel-Köiur 2002: primal-dual

• Friedman 2009: polynomial time algorithm

• Stanley/Billera-Lee 1980: g-theorem (and the g-conjecture), characterises the f -vectors of
all simplicial/simple polytopes

• dual good acyclic orientations = shelling; connection to classical/discrete Morse theory

Perturbation

1.40 Proposition. For each n-polytope P there exists a simplicial n-polytope Q with the same
number of vertices, such that fk(Q) ≥ fk(P ) for all k and the (Hausdor�) distance between P and
Q is arbitrarily small.

Proof. See book by Joswig and Theobald; Lemma 3.48 (replace �simplex� by �pyramid�).

1.41 Corollary. For each n-polytope P there exists a simple n-polytope Q with the same number
of facets such that fk(Q) ≥ fk(P ) and P and Q are arbitrarily close.

Proof. Dualise, then perturb it slightly according to Proposition 1.40, and then dualise back.

1.42 Remark. It su�ces to study simple polytopes for the (polynomial) Hirsch conjecture.

2 lectures missing

1.43 De�nition. A prismatoid is a polytope with two distinguished disjoint facets U, V , that
contain all the vertices. The width of a prismatoid is the dual graph distance between the two
facets .

1.44 Theorem (Strong n-step theorem for prismatoids). If Q is a prismatoid of dimension
n with m vertices and width l, then there is another prismatoid Q′ of dimension m−n with 2m−2n
vertices and width l ≥ l +m− 2n. In particular for l > n this exceeds the Hirsch-conjecture.

Proof. Let s := m− 2n be the asympliciality of Q. Note a ≥ 0, since U and V are disjoint. We do
induction on s.

Base s = 0: Since l ≤ m, our condition says Q′ must have width ≥ 0, so we just pick Q′ := Q.

Step: We want to construct a prismatoid Q̃ of dimension n + 1, m + 1 vertices and width > l.
Since s > 0, at least one facet U or V is not a simplex, wlog say U . Pick v ∈ V . Let Sv(Q)
be the 1-point-suspension of Q at v. This has Sv(V ) as a facet. Side U represents several

v V

v′

U

Sv(V )
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points (just hard to draw in the plane). We embed the original Q ⊆ Rn into Rn+1, by setting
height 0.

Now Sv(Q) is almost a prismatoid, with facets Sv(V ) and U , but U is not a facet of Sv(Q).
Pick some vertex u ∈ U and perturb it slightly (yields a facet, since U was not a simplex).
This yields our facet, and by the perturbation the width increases by 1.

Each step introduces 1 new points, increases the dimension and width by 1. So after m−2n steps,
we have the claim.

Projective Geometry

Let K be an arbitrary �eld (although for later use in LP, we need K to be ordered). Then we
de�ne PGdK to be the projective geometry of dimension d over K.

u ∼ v :⇔ ∃λ ∈ K.u = λv

PGdK := Kd+1 − {0}/ ∼

The projective geometry consists of all the linear subspaces of Kd+1. We have the embedding
Kd ↪→ PGdK via x 7→ (1 : x). This just means we use the representative whose �rst entry is 1.
But we additionally have points (0 : x), which form our points at in�nity.

0
x

x

Figure 1: Any line with upwards slope hits {1}×K2 exactly one, so x (black) just gets additional
entry 1 (blue). But the red line does not meet the blue plane, so it is considered as in�nity.

As a special case, we have PG1K = K ∪ {∞}. The generalisation is

PGdK = Kd ∪ PGd−1K =
d⋃

k=1

Kk ∪ {∞}

A projective transformation is a bijection on PGdK, which maps subspaces to subspaces and
preserves the cross ratio.

Example. Each element in GLd+1(K) induces a projective transformation. Any non-zero multiple
of 1 induces the identity.

This gives rise to the projective general linear group PGLd+1(K) = GLd+1(K)/(K∗ · 1).
Now consider the case K = R. A set of linear inequalities may describe one of the following

1. polytope
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2. unbounded polyhedron

3. something else

We say, transformation π is admissible for P , if we have one of the �rst two cases.

• All a�ne transformations are admissible for all polytopes.

• Consider polytopes in Rd
≥0 ⊆ PGdR.. Take any projective transformation π ∈ GLd+1R such

that all coe�cients are nonnegative. Then π is admissible for hyperplanes.

2 Pivoting, Klee-Minty-Cubes, etc.

Simplex Method

Input : A, b, c, vertex v

Output optimal vertex, or �unbounded�

• I ←index set of a basis of v

• (*) determine y ∈ (Rm)∗ with yA = c and yi = 0 for all i /∈ I

• if y ≥ 0, return v

• (**) i = an index with yi < 0.

• s = column of −(aI)
−1 with index i such that AI−is = 0 and ais = −1

• if As ≤ 0: return �unbounded�

• λs = min
{
bja−jv

ajs
: j.ajs > 0

}
, j = row where minimum is attained

• I = (I − i) ∪ {j}, v = v + λss

• goto (*)

Bland's pivot rule, to avoid cycling

(**) choose i minimal

(***) choose j minimal

Klee-Minty

KM(n, ε) = min{xn : 0 ≤ x1 ≤ 1,∀i ≥ 2.εxi−1 ≤ xi ≤ 1− εxi−1}

2.1 Lemma. For 0 ≤ ε < 1
2
the polytope is combinatorially equivalent to [0, 1]n.

Proof. Consider disjoint pairs of facets. This yields our binary enumeration of the vertices of the
cube.
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Let x be a vertex of KM(n, ε), which corresponds to a bitstring with exactly k ones at s1 < . . . < sk.
Then the last coordinate is

εn−s1 − εn−s2 + . . .+ (−1)k−1εn−s1 =
k∑
i=1

(−1)k−iεn−si

Proof by induction on n. We impose direction on the edges of our feasible polytope, by v → v′, if
v′ has a better objective value.
This we can characterise as follows: Now let x, x′ be two bit-encodings of vertices which di�er in
exactly their i-th bit. Then the edge is directed as x→ x′ i�

∑n
j=i xj is odd. This gives a recursive

model of the vertex-edge graph Γ(KM(n, ε)).
The n− 1 dimenisonal KM-cube appears as faces of the n-dimensional KM-cube.

2.2 Theorem. Bland's simplex algorithm applied to KM(n, ε) starting at 0 . . . 01 visits all 2n

vertices.

2.3 Corollary. Bland's Simplex algorithm has exponential worst-case running time.

Proof. Fix constant ε, e.g. ε = 1
4
. Then we have Θ(n) inequalities of constant size, so input size

Θ(n), but running time Ω(2n).

2.1 Random Pivoting

Fix the LP (A, b, c) given by

max{cx : Ax ≤ b}

and set P := P (A, b). Assume P is bounded and c generic (distinct vertices have di�erent values).
The analysis can be generalised to DAGs (directed, acyclic graphs).
Our measure is the expected path length (the expected number of steps) from any given vertex of
P to the (unique) optimum top(P ).

Random-Edge At any non-optimal vertex x of P , follow one of the improving edges leaving x
with equal probability.

0

1

2
1

5
2

2.4 Theorem (Gärtner, Henk & Ziegler, 1998). The expected number En of steps that
Random-Edge will take, starting at a random vertex of of KM(n, ε) is bounded by

n2

4(Hn+1 − 1)
≤ En ≤

(
n+ 1

2

)

13



Proof of ≤, following Kelley. We have the recursion

En(x) = 1 +
1

#{x′ : x→ x′}
∑

x′:x→x′
En(x′)

Denote by i(x) the highest index i such that the corresponding bit is xi = 1. Then

i(x) ≤ En(x) ≤
(
i(x) + 1

2

)
≤
(
n+ 1

2

)
which gives the upper bound. The lower bound is more involved, so we skip it here.

Random-Facet (Kalai, 1992) If x has only one improving edge, take it. Otherwise randomly
choose some facet F containing x, recursively call Random-Facet(F, x), arriving at top(F )
and continue recursively.

Earlier, we selected oone edge, that we took. Now, for simplex polytopes, choosing a facet
is the same as discarding an edge. So this strategy is �opposite� to Random-Edge.

2.5 Theorem (Gärtner, Henk & Ziegler, 1998). Random-Facet on KM(n, ε) started at 1 to
top = 0 takes expected number of steps

Fn(1) = n+ 2
n∑
k=1

(−1)k+1

k + 2

(
n− k

2

)
≈
(
π

4
− 1

2

)
n2

For random starting vertex we have

Fn =
1

2n

∑
x

Fn(x) =
n2 + 3n

8

Proof. Observation: For unit vectors, we have Fn(ei) = Fn(e1 + ei−1) = i, so Fn(en) = n.
Let x ∈ {0, 1}n. Restricting to facet with xi = 0 yields top = 0. Restricting to facet with xi = 1
yields e1 + ei−1, where e0 = 0. Denoting

x(i) = (x1, . . . , xi−2, xi−1 − xi, xi+1, . . . , xn) ∈ {0, 1}n−1

we get

Fn(x) =
1

n

(
n∑
i=1

ixi +
n∑
i=1

Fn−1
(
x(i)
))

What happens with x = 1?

several lectures missing

3 Interior Point Methods

We can solve linear equation systems by Gauss and if we generalise this to LP, we arrive at the
Simplex Method. If we generalise Newton's Method, we end up with interior point methods.
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