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1 Hyperbolic Polynomials

We consider objects in R[x1, . . . , xn]d, of homogeneous polynomials in n variables of degree d.
These can be written as {∑

α

cαx
α : cαR, α ∈ Nd, |α|1 = d

}

They have the property f(λx) = λdf(x).

1.1 De�nition. f ∈ R[x]d is hyperbolic with respect to e ∈ Rn if f(e) 6= 0 and for every v ∈ Rn,
all of the roots of the univariate polynomial f(te+ v) ∈ R[t] are real.

Alternatively all roots of f(e+ sv) ∈ R[s] are real.
The de�nition takes direction e, the alternative takes lines through e.

1.2 Example. Take f = x21 − x22 − x23 and e = (1, 0, 0). Then the roots of f are a double cone . picturepicture
Each vertical line intersects the cones in exactly 2 points (or 2 double root at 0).

1.3 Example (Non-example). f = x41 − x42 − x43 is not hyperbolic wrt. to any point in R3. In
each case we only get 2 real roots.

Exercise (Hyperbolic quartic). The shape would have to be some cone where an inner cone is
missing.

1.4 Example (Important). Let A1, . . . , An ∈ Rd×d symmetric. Put A(x) =
∑
xiAi. If A(e) is

positive de�nite, then f := det(A(x)) is hyperbolic wrt e.

Proof. Assume A(e) = Id. Then f(te− v) = det (tId − A(v)). Its roots are the eigenvalues of A(v)
and these are real, since A(v) is symmetric.
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Going back to our �rst example we get

x21 − x22 − x23 = det

(
x1 + x2 x3
x3 x1 − x2

)
1.5 De�nition. If f is hyperbolic wrt e, for x ∈ Rn we call the roots λ1(x) ≥ . . . ≥ λd(x) for
f(t− ev) the eigenvalues of x. The rank of x is its number of non-zero eigenvalues.

Take f = x21−x22−x23 and e = (1, 0, 0). The eigenavlues of x ∈ R3 are the roots of (t−x1)2−x22−x23,
which are (x1 ±

√
x22 + x23.

1.6 Example. Take f =
∏
x1 and e = (1, . . . , 1). The eigenvalues of x are the roots of f(te−x) =∏

(t− xi). So λ1 = max{x1, . . . , xn}, λ2 = max{x1, . . . , xn} \ {λ1} and so on.

1.7 Example. Let X ∈ Rd×d symmetric. Say f = detX and e = Id, shaped into Rd·d. Then
the eigenvalues of X in terms of hyperbolic polynomial are the roots of f(te−X) = det(tId −X)
which are the eigenvalues of X as a real matrix.

1.8 De�nition. The hyperbolicity cone of f wrt e is

Cef = {x ∈ Rn : roots of f(te− x) ≥ 0}

1.9 Example. For our previous three examples we get

Example 1.2 Cef =
{
x ∈ R3 : x1 ≥

√
x22 + x23

}
Example 1.6 Cef = (R≥0)

n

Example 1.7 Cef are the positive semide�nite matrices.

1.10 Theorem (Gårding, 1959). Let f ∈ R[x]d be hyperbolic wrt e. Then Cef is a convex cone
and f is hyperbolic wrt to any points in its interior.

1.11 Lemma. Let ~a ∈ C~ef,~b ∈ Rn, s ≥ 0. Then the foots of

f
(
is~e+ t~a+~b

)
∈ C[t]

have ≤ 0 imaginary part. Write t = x− iy for x, y ∈ R for some root t. Rewriting, we get

f(is~e+ (x− iy)~a+~b) = 0 =⇒ f
(
s~e− ix~a− y~a− i~b

)
= 0

By assumption hyperbolic, any lines through vece yields real points, to the imaginary part must
cancel.
homework

f(s~e− y~a) = 0
y≥0

==⇒ f

(
s

y
~e− ~a

)
= 0

Proof of Theorem 1.10. Taking s→ 0, all roots of f(t~a+~b) ∈ R[t] have ≤ 0 imaginary part. Hence
all roots are real.
convex cone is homework

3



Figure 1: Alternating roots of f and f ′

Another way to see the hyperbolicity cone Cef is the closure of the connected component of e in
Rn \ {x : f(x) = 0}.

1.12 Lemma. If p(t) ∈ R[t] is real rooted, then so is p′(t).

1.13 Lemma. If f ∈ R[x]d is hyperbolic wrt e, then so is the derivative

D~ef =
n∑
i=1

(~e)i
∂f

∂xi

Proof. Chain rule

d

dt
f(te+ x) = D~ef(t~e+ x)

1.14 Example. Put f =
∏
xi and e = 1. Then

D~ef =
n∑
i=1

∂f

∂xi
= en−1(x1, . . . , xn) =

∑
i

∏
j 6=i

xj

which is the second elementary symmetric polynomial.

2 Convexity

2.1 De�nition. C ⊆ Rn is convex if

∀x, y ∈ C.∀λ ∈ [0, 1].λx+ (1− λ)y ∈ C

2.2 Example. 1. polyhedra: intersections of �nitely many half-spaces

m⋂
i=1

{x ∈ Rn : li(x) ≤ zi} li linear

sub-examples:

• Rn
≥0,

• Birkho� polytope: take non-negative m×m-matrices, where row- and column-sums are
1.

2. positive semi-de�nite matrices

Sd+ =
{
A ∈ Sd : ∀x ∈ Rn.xTAx ≥ 0

}
4



2.3 De�nition. The convex hull of S is the smallest convex set containing S. Equivalently the
set of �nite convex combinations

conv(S) =

{
r∑
i=1

λixi :
∑

λi = 1, λ ≥ 0, xi ∈ S

}

2.4 Theorem (Caratheodory). Every x ∈ conv(S) ⊆ Rd can be written as a convex combina-
tions of at most (d+ 1) points in S.

2.5 Corollary. If S is compact, then conv(S) is closed.

Proof. Regard the map

S × . . .× S︸ ︷︷ ︸
d+1

×∆d → Rd

(x1, . . . , xd+1, λ) 7→
∑

λixi

The left hand side is closed, so the image is closed as well. But due to Theorem 2.4 the image is
the convex hull.

2.6 Theorem. Let A ⊆ Rd convex, int(A) = ∅. Then there exists a proper a�ne subspace L ⊂ Rd

with A ⊆ L.

2.7 De�nition. The dimension of a convex set C ⊆ Rd is the dimension of its a�ne span.

2.1 Isolation Theorem

2.8 Theorem. Suppose C ⊆ Rd convex, closed set, u /∈ C. Then there exists an a�ne hyperplane
H =

{
x ∈ Rd : l(x) = z

}
such that

C ⊆H+ =
{
x ∈ Rd : l(x) > z

}
u ∈H− =

{
x ∈ Rd : l(x) < z

}
Proof. We take the distance function

min {dist(u, x) : x ∈ C} > 0

Since C is closed, the minimum is attained at some x0. Since C is convex, the minimum is unique
(triangle inequality). So take the hyperplane perpendicular to u− x0, acros half the distance.

2.9 Theorem (Farkas Lemma). Let A ∈ Rm×d, z ∈ Rm. Either there exists x ∈ Rd
≥0 such that

Ax = z or there exists c ∈ (Rm) \ {0} such that cA ≥ 0, c · z < 0.

2.10 Theorem. 1. Let C ⊆ Rd open, convex, u /∈ C. Then there exists a hyperplane H such
that u ∈ H and C ⊆ H+.

2. Let C ⊆ Rd convex, int(X) 6= ∅, u ∈ ∂C. Then there exists a hyperplane H such that u ∈ H
and C ⊆ H+ =

{
x ∈ Rd : l(x) ≥ z

}
.
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2.2 Faces

2.11 De�nition. A face F of a convex set C ⊆ Rd is a convex subset of C such that

∀x, y ∈ C.1
2

(x+ y) ∈ F =⇒ x, y ∈ F

Red lines are no faces.

2.12 De�nition. An exposed face of a convex set C ⊆ Rd is the intersection of C with a supporting
hyperplane H, i.e. C ⊆ H+.

2.13 Lemma. Every exposed face actually is a face.

Proof. Let x, y ∈ C. Then
1

2
(x+ y) ∈ C ∩H =⇒ 1

2
l(x) +

1

2
l(y) = z =⇒ l(x) = l(y) = z =⇒ x, y ∈ C ∩H

The converse is true for polytopes, but not in general.

2.14 Example.
picture

Here the origin is a face, but not exposed.

2.15 Corollary (to is Isolation Theorem). Let C ⊆ Rd convex, closed, int(X) 6= ∅ and u ∈ ∂C.
Then u is contained in a proper exposed face F of C (proper means F 6= ∅, C).

2.16 De�nition. An extreme point of a convex set C ⊆ Rd is a 0-dimensional face. We denote it
with ex(C).

2.17 Theorem. If C ⊆ Rd is convex and compact, then C = conv(ex(C)).

Hence every bounded polyhedron is a polytope (de�ned as convex hull of a �nite set of points).

2.3 Duality/Polarity

2.18 De�nition. Let C ⊆ Rd. The polar of C is

C◦ =
{
l ∈ Rd : l 6= 0,∀x ∈ C.l(x) ≤ 1

}
The dual cone of C is

C∨ =
{
l ∈ Rd : l 6= 0,∀x ∈ C.l(x) ≥ 0

}
6



2.19 Example. •
(
Rd
≥0
)∨

= Rd
≥0

•
(
Sm+
)∨

= Sm+

2.20 Theorem (Biduality, Bipolarity). For any C ⊆ Rd we have

(C◦)◦ = cl (conv (C ∪ {0}))

2.21 Remark. Suppose C is closed, convex and 0 ∈ int(C). Then the extreme points of C◦

correspond almost to irredundant linear inequalities de�ning C.

2.4 Homogenisation of Convex Sets

2.22 De�nition. Let C ⊆ Rd. Put the homogenisation

Ĉ = conv(C × {1}) = cone
({

(x, 1) : Rd+1 : x ∈ C
})

Then a�ne combinations somehow correspond to linear combinations.

2.23 Theorem. Ĉ◦ = −
(
Ĉ
)∨

2.24 Lemma. If C is compact, closed, then Ĉ is closed and pointed (meaning Ĉ ∩ −Ĉ = {0}).
Up to change of coordinates, the converse is also true.

3 Non-negative Polynomials

3.1 De�nition. A real polynomial p ∈ R[x1, . . . , xn] is called non-negative if ∀x ∈ Rn.p(x) ≥ 0.
A polynomial is called sum of squares if it can be written as p =

∑
q2i for qi ∈ R[x].

3.2 Example. • Obviously p = 1 is non-negative.

• p = 1 + x2 = 12 + x2 is SOS.

• p = 2x4 − 2x2 + 1 = x4 + (x2 − 1)2 is SOS.

3.3 Theorem (Hilbert, 1888). Non-negative polynomials = SOS only in the following 3 cases

1. univariate, n = 1

2. quadratic, �2d = 2

3. bivariate of degree 4, (n, 2d) = (2, 4)

3.4 Example (Motzkin Polynomial). The �rst known explicit example for non-equality is

M(x, y) = x4y2 + x2y4 + 1− 3x2y2

It is non-negative by AM-GM-inequality.

So we expand the question, what happens for rational functions. Three equivalent formulations
are

p =
∑(

fi
gi

)2

p · r2 =
∑

f 2
i p ·

∑
h2i =

∑
f 2
i

7



Hilbert showed �yes� for n = 2. In particular M(x, y)(1 + x2 + y2) is SOS. Even more, for 2d = 6,
then quadratic multipliers of degree 2 su�ce.
This became Hilbert's 17th problem: What about n ≥ 3? It was solved in the a�rmative by
Artin-Schreier in 1928.
There still remain the question how to �nd such a decomposition. In particular we need a bound
on the degree of the hi. The known bounds greatly di�er (linear versus exponential tower).
So far we only regarded global non-negativity. But what if we restrict ourselves to some set de�ned
by polynomial, inequalities?
Say A = {x ∈ Rn : f(x) ≥ 0}. Then obviously p = f ·SOS + SOS ≥ 0 on A. For further constraints
A = {x ∈ Rn : g1(x) ≥ 0, g2(x) ≥ 0}, as obvious non-negative polynomials we have

SOS +g1 · SOS +g2 · SOS +g1g2 · SOS

which can be expanded to arbitrary many constraints.

3.1 Positivstellensätze

3.5 Theorem (Krivine, Stengel). Assume f ≥ 0 on a closed semialgebraic set, de�ned by poly-
nomial inequalities gi(x) ≥ 0. Then f · (1 + SOS) is the set of obviously non-negative polynomials.

3.6 Theorem (Schmüdgen). If f > 0 on a compact semialgebraic set, then f is obviously non-
negative.

Exercise. If you look at the cusped cubic A : y2 − x3 = 0, then f = x is non-negative on A, but
f is nor obviously non-negative in any degree. If we take f + ε, then certi�cates exist, but degree
→∞ as ε→ 0.

3.7 Theorem (Putinar). If f > 0 on a compact semialgebraic set, and a small extra condition,
we have

f = SOS +
∑

gi · SOS

which means, we can avoid the combinatorial blow up.

3.2 Computationally Find SOS Certi�cates

Go back to our example f = 2x4 − 2x2 + 1.
Each summand is of type (cx2 + bx+ a)2, so write α = (c, b, a) and ~x = (x2, x, 1).

�nish

Applied to the example this means

2x4 − 2x2 + 1 = (1, x, x2)

α0 α1α2

α1 α3α4

α2 α4α5

 1
x
x2


Comparing the coe�cients, we get

α0 = 1 2α1 = 1 2α3 + α4 = −2 2α4 = 0 α5 = 2

and the above matrix has to be positive semide�nite. Solving this kind of problems can be done,
although we su�er from a serious blow up when constructing problem, where both n and 2d become
larger. (10 already is a large number in this case.)

8



This can be applied for optimisation problem. A general optimisation problem is

min {f(x) : x ∈ K} = max {γ : ∀x ∈ K.f(x)− γ ≥ 0}

This we relax to f(x) − γ is obviously non-negative on K and apply our previous theory. The
method is called Lasserre relaxation.

3.8 Example (Max-Cut). Given a graph G = (V,E) we want to �nd the maximal cut. Our
variables are xi ∈ {−1, 1} given by equations x2i − 1 = 0. So we have the problem

max

{
1

2

(
|E| −

∑
i,j∈V

xixj

)
: ∀i.x2u − 1 = 0

}
The degree 2 SOS relaxation is the Goemans-Williamson algorithm.

4 Conic Programming

The lecture will follow the book of Barvinok.
picture

To be more precise, we have the following setup: Domain D is a section of a cone. Let K ⊆ Rl a
closed convex cone, and ϕ : Rl → Rm linear, with some point b ∈ Rm. Then D = K ∩ ϕ−1(b) is
called set of feasible points. λ(x) = 〈x, c〉 for some c ∈ Rl is the target function. The task is to �nd

Rl Rm 3 b

R

ϕ

λ

γ = inf {〈x, c〉 : ϕ(x) = b, x ∈ K}

Any x ∈ D with γ = 〈x, c〉 is an optimal point.

4.1 Duality

ϕ∨ : Rm → Rl such that

∀x ∈ Rl, y ∈ Rm.〈ϕ(x), y〉 = 〈x, ϕ∨(y)〉

is the dual linear map and

K∨ =
{
a ∈ Rl : ∀x ∈ K.〈x, a〉 ≥ 0

}
is the dual cone.
Let K2 ⊆ Rm be a cone. The primal problem is

γ = inf {〈x, c〉 : ϕ(x)− b ∈ K2,ϕ(x) = b,x ∈ K}

The corresponding dual problem is

β = sup {〈y, b〉 : c− ϕ∨(y) ∈ K∨, y ∈ K∨2 }

In practice we usually put K2 = {0}, which yields K∨2R
m. In red we have the original condition,

in blue the simpli�ed one.
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4.1 Theorem (Weak Duality). γ ≥ β.

The di�erence γ − β is called duality gap.
As further optimality criteria we have the following.

4.2 Lemma. Assume γ = β. If x, y are feasible, then the following are equivalent

• x, y are optimal

• 〈x, c− ϕ∨(b)〉 = 0 and 〈y, ϕ(x)− b〉 = 0

LP In this setting we have K = Rl
+ the positive orthant (though strictly speaking it is the non-

negative orthant). D = Rl
+ ∩ ϕ−1(b) is a polyhedron. Note that K = K∨ is self-dual.

SDP Our cone is

K = Sn+ ⊆ Sn ∼= R(n+1
2 )

the cone of positive semi-de�nite n×n-matrices and our product is 〈A,B〉 := Tr(AB). Again
we have K = K∨. The linear function ϕ has the shape

ϕ : Sn → Rm

X 7→ (〈X,A1〉, . . . , 〈X,Am〉)
for some Ai ∈ Sn. For short we write X � 0 for X ∈ K and X � Y for X − Y � 0. The
domain D = Sn+ ∩ ϕ−1(b) is called a spectrahedron.

The primal problem is

γ = inf {〈X,C〉 : ∀i.〈X,Ai〉 = bi, X � 0}
and its corresponding dual is

β = sup

{
〈b, y〉 : C −

m∑
i=1

yiAi � 0

}
4.3 Example. 1. Compute the Lovasz-Theta-number for graphs (lies between clique-number

and chromatic number).

2. Correlation matrices  1 x12 x13
x12 1 x23
x13 x23 1


Here we want we �nd

γ = inf {x13 : x11 = x22 = x33 = 1, X � 0}
In practice, we usually have further inequalities on the variables.

3. Let f ∈ R[x1, . . . , xn]≤2d of even degree. Take the vector of all monomials m = (xα)|α|≤d.
Then

G :=
{
A : mTAm = f

}
is an a�ne subspace of SN+ where N =

(
n+d
d

)
. Now f is a sum of squares i� G contains a checkcheck

psd-matrix. G ∩ SN+ is a spectrahedron, over which we are optimising.

HYP Hyperbolic Programming: This is a conic programme for K = Ce(f) the hyperbolicity cone
of some polynomial f hyperbolic wrt e. Here our dual problem will involve K∨ 6= K. In
general, K∨ will not even be a hyperbolicity cone.
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4.2 Interior Point Methods

Take (D) the dual of an SDP. Let D∗ denote the domain of the dual problem.

4.4 Lemma. Assume D,D∗ have interior points and A1, . . . , Am are linearly independent. Then
γ = β, i.e. no duality gap.

First note det (C −
∑
yiAi) = 0 on ∂D∗, and the optimum is attained at the boundary. But since

the determinant is no convex, we use an alternative.

4.5 Lemma. The function X 7→ − log(det(X)) is strictly convex on Sn++.

4.6 De�nition. The function

Bλ(y) := 〈b, y〉+ λ · log
(

det
(
C −

∑
yiAi

))
is called the logarithmic barrier function of (D) with parameter λ.

4.7 Theorem. Let y(λ) be the unique maximiser of Bλ(y) on D∗. Then limλ→0 y(λ) is an optimal
point.

The path {y(λ) : λ > 0} is called the central path.
For HYP we use log(f), reasonably restricted.

5 Geometry of Hyperbolicity Cones

The lecture follows the paper �Hyperbolic Programmes and their Derivative Relaxations� by Hames
Renegar.
Fix some hyperbolic polynomial f ∈ R[x1, . . . , xn]d hyperbolic wrt e ∈ Rn.

1. f(e) > 0

2. ∀x ∈ Rn.f(te− x) ∈ R[t] is real rooted

We always order the eigenvalues λ1(x) ≤ . . . ≤ λd(x). Then the hyperbolicity cone is

Ce(f) = {x ∈ Rn : λ1(x)}

which means all eigenvalues are non-negative.

5.1 Remark. Observe that

λj(sx+ te) =

{
sλj(x) + t : s ≥ 0

sλd−j(x) + t : s ≤ 0

and

f(x) = f(e) ·
d∏
j=1

λj(x)

5.2 Proposition. Ce(f) is the closure of the connected component S of {x ∈ Rn : f(x) 6= 0} con-
taining e.
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x

x+ te

e

e+ te

Proof. Show mutual inclusion

S ⊆ Ce(f): S is connected and λ1(e) = λd(e) = 1 (the latter since f(te− e) = (t− 1)df(e)). Since
λ1(x) is a continuous function of x and f(x) = 0⇔ λ1(x) = 0.

Ce(f) ⊆ S: We will walk along a path

For all su�ciently large t, all <∈ [x, e] satisfy

0 < f
(
y + te

)
= t

d
f

(
1

t
y + e

)
5.1 Boundary Basics

5.3 De�nition. The multiplicity of x ∈ Rn wrt f the multiplicity of 0 as an eigenvalue of x.

5.4 Remark. • Note mult(x) > 0⇔ f(x) = 0.

• mult(x) = d− rank(x)

5.5 Theorem. The set {x ∈ Rn : mult(x) = 1} is (if non-empty) a codimension 1 analytic sub-
manifold.

5.6 Lemma. The gradient at these points does not vanish, i.e. mult(x) = 1⇔ f(x) = 0∧∇f(x) 6=
0.

Proof. Observe d
dx
f(te − x) = (∇f(te− x)) · e. Assume f(x) = 0. If ∇f(x) = (−1)d−1∇f(−x),

then mult(x) = 1. If ∇f(x) 6= 0, then {y ∈ Rn : ∇f(x) · y = 0} is the supporting hyperplane to
Ce(f) at x.

x0

e

picture

5.2 Curvature of the Boundary

5.7 Proposition. Let f(x) = 0, ∇f(x) 6= 0 and x ∈ Ce(f). If ∇f(x) · v = 0, then vtf ′′(x)v ≤ 0.

Under the above assumptions, we also have

vtf ′′(x)v =
d2

dt2
f(x+ tv)|t=0

12



5.8 Theorem. If x ∈ ∂Ce(f), mult(x) = 1 and ∇f(x) · v = 0, then one of the following holds

1. ∀t ∈ R.f(x+ tv) = 0 and ∃ε > 0.∀t ∈ (−ε, ε).x+ tv ∈ Ce(f)

2. vtf(x)v < 0

So if the curvature is not negative, then locally we have a �at face.

5.3 Derivative Cones

5.9 Claim. Def = ∇f · e =
∑
ei

∂f
∂xi

is hyperbolic wrt e.

picture

Derivative Cone: Ce(Def) ⊆ Ce(f).

5.10 Theorem. For integers m ≥ 2, the multiplicity of x wrt Def is one less than the multiplicity
of x wrt f , i.e. mult′(x) = mult(x)− 1. Also if mult′(x) = 1 and mult(x) > 0, then mult(x) = 2.

5.11 Theorem. Suppose Ce(f) is pointed, d ≥ 3. Let x ∈ Ce(Def) \ Ce(f), mult′(x) = 1, v ∈ T ′x
some tangent vector to the derivative cone. If v /∈ Rx, then vt(Def)′′v < 0.

5.12 Corollary. So x is an exposed extreme direction of Ce(Def).

5.4 Higher Dimensions and Faces Exposed

Ce(f) ⊆ Ce(Def) ⊆ . . . Ce
(
Dd−1
e f

)
Then the above Theorem 5.11 translates to

5.13 Theorem. Suppose Ce(f) is pointed, d ≥ 3. Let x ∈ Ce(D
k
ef) \ Ce(f), mult(k)(x) = 1,

v ∈ T (k)
x some tangent vector to the derivative cone. If v /∈ Rx, then vt(Dk

ef)′′v < 0.

So x is an exposed extreme direction of Ce(D
k
ef).

5.14 Theorem. All faces of Ce(f) are exposed.

The proof consists of showing the following two propositions.

5.15 Proposition. For k = 0, 1, . . . , d− 2 each proper face of Ce
(
Dk
ef
)
either is a face of Ce(f)

or it is an exposed extreme ray not in Ce(f).

Proof. Just a rephrasing of Theorem 5.13.

5.16 Proposition. Let F be a proper face of Ce(f) and let x ∈ relint(F ). Set m = mult(x). Then
F is a proper face of Ce (Dm−1

e f).

6 Sums of Squares in Extremal Combinatorics

I will diverge from the notation on the board.
We want to tackle some problems in graph theory. So we index our variables by the edges, or have
them double-indexed by the vertices.
Let G = (V,E) be a simple graph. We have 0/1-problems, so we include constraints x2ij = xij for
all {i, j} ∈ E, or for all i, j ∈ V .

13



6.1 Example. We want to minimise the density of triangles. To check whether 1, 2, 3 forms a
triangle, we use x12x23x13. The density function can then be written as

Symn (x12x23x13) =
1

n!

∑
σ∈Sn

σ(x12x23x13)

In general, we want to introduce notation.

• {1, 2} ∼= x12

• P3
∼= x12x23

• {1, ∗} ∼= Symn−1({1, 2}) = 1
n−1

∑
i≥2 x1i

What are inequalities for subgraph-densities, e.g. for P2 or C3? We will abuse notation and identify
a graph with its subgraph-density. Trivially we have 0 ≤ H ≤ 1 for any subgraph. But mainly we
are interested in asymptotic behaviour, i.e. inequalities that are valid on accumulation points.
A small miracle

{1, 2} × {1, 3} = {{1, 2}, {1, 3}}
x12 × x13 = x12x13

which means, we take fully labelled graphs and glue them together on the common labels. Thanks
to our constraints we can eliminate squares as in

(1− 2− 3)× (2− 3− 4) = 1− 2− 3− 4

x12x23 × x23x34 = x12x23x34

For unlabelled graphs, this becomes tricky

(1− ∗)× (1− ∗) ∼=

(
1

n− 1

∑
i≥2

x1i

)2

=
1

(n− 1)2

∑
i≥2

x1i︸ ︷︷ ︸
→0

+
2

(n− 1)2

∑
i>j≥2

x1ix1j

≈ 1(
n−1
2

) ∑
i>j≥2

x1ix1j ∼= (∗ − 1− ∗)

which is the graph we expected. Note how we needed the asymptotic behaviour here.

6.2 Remark. Full symmetrisation just removes all labels (just a big average).

We can allow forbid edges by using (1−xij). This allows us to �nd densities of induced subgraphs.
To regard something mildly non-trivial, we take

Symn

(
((1− ∗)− (2− ∗))2

)
= Symn

(
(1− ∗)2 + (2− ∗)2 − 2((1− ∗)× (2− ∗))

)
= Symn ((∗ − 1− ∗) + (∗ − 2− ∗)− 2(1− ∗, 2− ∗))
= 2(∗ − ∗ − ∗)− 2(∗ − ∗)2

In terms of graphs, this means P3 − P 2
2 ≥ 0.

Exercise. Show that this inequality is tight on regular graphs (all vertices same degree). This
means: Take sequence G1, . . . , Gk, . . . of regular graphs. If P2(Gi)→ d, then P3(Gi)−P2(Gi)

2 → 0
as k →∞.

14



Symn

(
(12− 23 + 34− 14)2

)
= 4(∗ − ∗) + 8(∗ − ∗)2 − 8(∗ − ∗ − ∗)

which shows P2 + P 2
2 − 2P3 ≥ 0.

So with this little bit of e�ort, we showed that our densities lie in the small area given by:

7 Determinantal Representations

Suppose f(x) = det(x1A1 + . . . + xnAn) where Ai ∈ Sd(R), so deg(f) = d. The term
∑
xiAi is

called real symmetric matrix pencil of size d× d. If A(e) � 0, then call this de�nite determinantal
representation of f . This implies f is hyperbolic wrt e.

Proof. Wlog we restrict to A(e) = Id. Then f(te − v) is the characteristic polynomial of A(v),
which is real rooted.

Furthermore Ce(F ) = {v ∈ Rn : A(V ) � 0} is a spectrahedron. So this is a certi�cate for hyper-
bolicity (see: SOS as certi�cate for non-negativity).

7.1 Lemma. Not every hyperbolic polynomial has a (de�nite) determinantel representation.

Proof. For n, d large, we simply count the dimension.

For smaller parameters, however, thing look better. Regard n = 2, i.e. f(x1, x2) homogeneous of
degree d. If x2 - f , then

f(x1, 1) = c ·
d∏
j=1

(x1 − αj) = c · det (x1Id − diag(α1, . . . , αd))

Note that all αj are real.
For n = 3, things are more di�cult.

7.2 Theorem (Helton-Vinnikov, 2004/Lax-conjecture). If f ∈ R[x, y, z] is hyperbolic wrt e,
then f has a real symmetric determinantal representation at e.

The same is not true for n > 3. Furthermore the representations are hard to compute, but they
are very useful.

7.3 Example. Consider the cubic

f = x3 − x2z − xz2 − y2z + z3

To show hyperbolicity we take

A = x

−2 0 −1
0 −1 0
−1 0 0

+ y

0 1 0
1 0 0
0 0 0

+ z

2 0 1
0 1 0
1 0 1

 =

−2x+ 2z y −x+ z
y −x+ z 0

−x+ z 0 z


then f = det(A), so f is hyperbolic (found by �trial and error�).

15



Proof of Theorem 7.2, general idea. Suppose det(A) = f . De�ne the adjugate matrix

Aadj :=

(−1)i+j det
(
A′j,i
)︸ ︷︷ ︸

(d−1)-minors


i,j

Then

A · Aadj = Aadj · A = det(A) · Id

Let p ∈ Rn with f(p) = 0. If (∇f)(p) 6= 0, we have

A(p)︸︷︷︸
rk=d−1

·Aadj(p)︸ ︷︷ ︸
rk=1

= 0

so KerA(p) is 1-dimensional. The map p 7→ KerA(p) is called line bundle on {f = 0,∇f 6= 0}.
This is parametrised by any one column of Aadj.

This building of the determinantal representation is called �Dixon process�.

7.1 Generalised Lax Conjecture

7.4 Claim. Every hyperbolicity cone is a spectrahedron.

Given f irreducible, hyperbolic wrt e, there exists A such that G = det(A), A(e) � 0 and Ce(f) =
Ce(g). If deg g ≥ deg f , this means f | g.
It was shown, that taking g as a power of f does not su�ce, as shown by Brändén.
Equivalently: Given such f , there exists h hyperbolic wrt e such that Ce(f) ⊆ Ce(h) and f · h has
a determinantal representation at e.

7.5 Theorem (Mario Kummer). This is true, up to the inclusion.

This approach is similar to Hilbert's 17th problem. We cannot have SOS, but some multiples has
an SOS-representation.

7.2 Hermite Method

Suppose H ∈ R[t] is monic, deg h = d. Then we can write

h =
d∑
j=0

ajt
d−j =

d∏
j=1

(t− αj)

To count the nuber of real roots, there is a method by Sturm, but here we want to focus on another
one by Hermite.

7.6 De�nition. The power sum is ωk :=
∑d

j=1 α
k
j .

For these we have the Newton identities, which express ωk in the coe�cients ai, e.g.

ω0 = d

ω1 = −a1
ω2 = a21 − 2a2

ω3 = −a3 + 3a1a2 − 3a3
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These we put in a matrix

H(k) := (ωj+k−2)1≤j,k≤d

7.7 Theorem. h is real rooted i� H(k) � 0.

Now suppose f ∈ R[x1, . . . , xn] homogeneous of degree d, e = (0, . . . , 0, 1) and f(e) = 1. Then

f =
d∑
j=0

fj(x1, . . . , xn−1) · xd−jn

7.8 Corollary. The following are equivalent

• f is hyperbolic wrt e

• for all a ∈ Rn−1 the univariate f(a, xn) ∈ R[xn] is real rooted

• Hxn(f)(a) � 0 for all a ∈ Rn−1, where Hxn is a symmetric matrix with entries in x1, . . . , xn−1

So we rephrased the question �hyperbolic� to �psd� (aka �non-negative�). This can be further
translated to non-negativity of polynomials.

∀a ∈ Rn−1.M(a) � 0⇔ 0 ≤ (y1, . . . , yd) ·M · (y1, . . . , yd)T ∈ R[x, y]

7.9 Theorem. If f r = det(A), A(e) = Id for some r ≥ 1, then H(f) is SOS.

7.10 Remark. A polynomial matrix M is SOS as above i� M is a sum of matrix squares M =∑
QT
i Qi.

8 Stable Polynomials

We follow Wagner: Multivariate stable polynomials and their applications.

8.1 De�nition. A polynomial f ∈ C[x1, . . . , xn] is stable if f(z) 6= 0 for all points z ∈ Cn with
Im(z) ∈ Rn

>0 and real stable if f is stable and f ∈ R[x1, . . . , xn].

8.2 Example. Take n = 1 and f = (x+ i)(x− (2− i))(x− 1).

Re

Im

Another example, this time real stable, is f = (x− 1)(x+ 1)(x− 2).

8.3 Proposition. Polynomial f ∈ R[x1, . . . , xn] is real stable i� for all a ∈ Rn
>0 and b ∈ Rn, the

polynomial f(at+ b) ∈ R[t] is real rooted.

17



Proof. ⇒: Assume f is not real rooted. Consider

f((α + iβ)a+ b︸ ︷︷ ︸
z

) = 0

where a ∈ Rn
>0 and take β > 0. Then

Im(z) = b · a ∈ Rn
>0

so f is not stable.

⇐: Assume f is not stable. Take a ∈ Rn
>0 and b ∈ Rn such that f(ia + b) = 0. Then f(ta + b)

has root t = i, so it is not real rooted.

8.4 Corollary. For f ∈ R[x1, . . . , xn]d we have: f is stable i� f is hyperbolic wrt every a ∈ Rn
>0.

8.5 Remark. The following are stable

•
∏n

i=1 xi

• Daf for stable f and a ∈ Rn
≥0

• elementary-symmetric polynomials ek(x1, . . . , xn)

• det (
∑
xiAi +B) for Ai ∈ Sd+ and B ∈ Sd

8.6 Example. Consider

A1 =

(
1 0
0 0

)
A2 =

(
0 0
0 1

)
A3 =

(
1 1
1 1

)
Then we get the stable polynomial

det
(∑

xiAi

)
= det

x1 + x3 x3
x3

x2 + x3

 = x1x2 + x1x3 + x2x3

More generally, gien v1, . . . , vn ∈ Rd, take Ai = viv
T
i . Then

det
(∑

xiviv
T
i

) ∑
I⊆[n],|I|=d

det (vi : i ∈ I)2 ·
∏
i∈I

xi

8.7 Theorem (COSW,2004). If we have a stable polynomial of the form

f =
∑

I⊆[n],|I|=d

cI
∏
i∈I

xi ∈ R[x]

then {I : cI 6= 0} are the bases of a matroid. The matroid is called hyperbolic matroid.

In Example 8.6 we have v1 = (1, 0), v2 = (0, 1) and v3 = (1, 1). The set of bases is {{1, 2}, {1, 3}, {2, 3}}
and we clearly see that any pair of the vectors in linearly independent.
On the other hand, there are no a, b ∈ R∗ such that ax1x2 + bx3x4 is stable.
More generally ek(x1, . . . , xn) corresponds to the uniform matroid of rank k on n elements.
Now consider graphs G(V,E) where |V | = d+ 1 and |E| = n. For each edge e = ij ∈ E de�ne

vij :=

{
ei − ej : i < j ≤ d

ei : j = d+ 1

18



Operations preserving stabil-
ity

Matroid operations Operations on {v1, . . . , vn} ⊆
Rd

f 7→ f|xi=0 Deletion M 7→ M − i, new
bases B(M − i) = {b ∈ B :
i /∈ b}

drop vi

F 7→ ∂f
∂xi

Contraction M 7→ M/i,
B(M/i) = {B \ {i} : i ∈ B}

Project vj for j 6= i onto v⊥i

f 7→
∏
xi · f

(
1
x1
, . . . , 1

xn

)
Dual M 7→ M∗, where
B(M∗) = {[n] \ B : B ∈
B(M)}

Columns of matrix,
whose rows span the or-
thogonal complement of
rowspan(v1, . . . ., vn)

8.8 Example. Take G = K4, which means d = 3, n = 6. This yields a matrix

v =


12 13 23 14 24 34

1 1 1 0 1 0 0
2 −1 0 1 0 1 0
3 0 −1 −1 0 0 1


8.9 Theorem. We have

FG(x) = det

(∑
ij∈E

xijvijv
T
ij

)
=

∑
T spanning tree of G

∏
ij∈T

xij

8.10 Example. Take G = K3.

det

(
x12 + x13 −x12
−x12 x12 + x23

)
= x12x13 + x12x23 + x13x23

For F = K4 we get

fK4 = det

(∑
ij∈E

xijvijv
T
ij

)
= 12P4 + 4S3

using our previous notation for polynomials.

Remark (continuing Remark 8.5). • graphical matroids

• matroid represented by v1, . . . , vn: f = det
(∑

xiviv
T
i

)
.

8.1 Operations preserving stability

It turns out that representable matroids are a proper subset of hyperbolic matroids, which are a
proper subset of all matroids. The �rst one is shown by �Vamos matroid�, (d = 4, n = 8); the other
by �Fano matroid� (d = 3, n = 7).

8.2 Reduce to Multia�ne Polynomials via Polarisation

Assume we have f ∈ R[x1, . . . , xn], degree di in variable xi (write degi f = di).
The polarisation of f , written P (f) ∈ R[x1,1, . . . , x1,d1 , . . . , xn,1, . . . , xn,dn ] is the unique multia�ne
polynomial such that
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• P (f) is symmetric in xj,1, . . . , xj,dj for all j

• we have

P (f)

x1, . . . , x1︸ ︷︷ ︸
d1

, . . . , xn, . . . , xn︸ ︷︷ ︸
dn

 = f

8.11 Theorem. F is stable i� P (f) is stable.

This means, we can restrict to multia�ne polynomials.

8.12 Example. The polynomial f =
∑n

k=0 akx
k is real rooted i�

P (f) =
∑ ak(

n
k

)ek(x1, . . . , xn)

is stable.

9 Interlacers

9.1 De�nition. Let f, g ∈ R[t] be real rooted, d = deg f = deg g + 1. Suppose α1, . . . , αd are the
roots of f , β1, . . . , βd−1 are the roots of g, both including multiplicities. Then we say g interlaces
f , written g � f , if the roots of g sit between the roots of f , i.e. αi ≤ βi ≤ αi+1 for 1 ≤ i < d.
See �gure 1. We say g strictly interlaces f if all inequalities are strict.

9.2 Example. If f is real rooted, then f ′ � f .

9.3 De�nition. Let f, g ∈ R[x1, . . . , xn] hyperbolic wrt e, and deg f = deg g+1. Then g interlaces
f if

∀v ∈ Rn.g(te+ v)� f(te+ v)

9.4 Example. Let F, g ∈ R[x, y, z], e = (1, 0, 0) and �x z = 1 (dehomogenise).

e

e

9.5 Example. 1. Since d
dt
d(te+ v)� f(te+ v) for all v, we have

Def =
n∑
j=1

ej
∂f

∂xj
� f

More generally, we have Daf � f for all a ∈ Ce(f).

2. Let f detX for X ∈ Sn, and E � 0. Then DE(detX) := tr
(
E ·Xadj

)
� detX. More

generally, if f = det (
∑
xiAi) and A(e) � 0, then tr

(
E · Aadj

)
� f (wrt e). In particular, we

can pick E = e1 ·eT1 (just single 1 in corner), then for the d−1-minor we have det(A′1,1)� f ,
which means the eigenvalues of A′1,1 interlace the eigenvalues of A.
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9.1 The Interlacer Cone

For simplicity assume f is irreducible and f(e) > 0. Denote Z(f) = {a ∈ Rn : f(a) = 0}. Now we
are interested in

Inte(f) = {g ∈ R[x1, . . . , xn]d−1 : g � f, g(e) > 0}

If we take the intervals, given by the roots of f and look at the possible sign of g, we gat

∀g1, g2 ∈ Inte(F ).∀a ∈ Z(f).g1(a) · g2(a) ≥ 0

which means, both gi have the same sign. Furthermore

g1 � f ∧ g1(e) > 0 ∧ ∀a ∈ Z(f).g1(a)g2(a) ≥ 0 =⇒ g2 ∈ Inte(f)

9.6 Theorem. For g ∈ R[x1, . . . , xn]d−1 with g(e) > 0 the following are equivalent

1. g ∈ Inte(f)

2. Def · g ≥ 0 on Z(f)

3. Def · g − f ·Deg ≥ 0 on Rn.

Proof. (1)⇔ (2) and (3)⇒ (2) we have basically done.
For (2) =⇒ (3) regard the univariate case: f, g ∈ R[t] monic and real rooted. Then, if g � f , for
the Wronskian we have

W (f, g) = f ′g − g′f = g2
(
f

g

)′
≥ 0

9.7 Corollary. Inte(f) is a convex cone.

9.8 Theorem. For any a ∈ Rn, we have a ∈ Ce(f)⇔ Daf � f .

9.9 Theorem. De�ne the generalised Wronskian ∆e,a = Def ·Daf − f ·DeDaf . Then

Ce(f) = {a ∈ Rn : Daf ∈ Inte(f)} = {a ∈ Rn : ∀x ∈ Rn.∆e,a(x) ≥ 0}

So this is a slice of the cone of non.negative polynomials.

This allows for an SOS-relaxation of Ce(f), as {a ∈ Rn : ∆e,a ∈ SOS}.

9.10 Theorem. If f is determinantal, then ∆e,a is SOS for all a ∈ Rn.

10 Greg III

My notes are not useful. The board was mainly a collection of pictures.

10.1 Remark. The density of any tree in a regular graph is asymptotically P k
2 where k is the

number of edges in the tree.

Proof. By induction on k, the base is T = P2.
Now let S = T + e some new tree, where we added a single edge (with its end as new leaf). Then
S(G) ≈ P2(G)× T (G) if G is a regular graph.

S(G) = Sym ((1− ∗)× T1) (G) = Avg ((1− ∗)(G)× T1(G)) = P2(G)× Sym (T1) (G)

where T1 is T with the label 1 at the appropriate place.
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To extend the picture form the last time, we add another result.

�x red line

The red line is due to Ahlswede-Katone. The extremal cases for the second half are Complete
graphs + empty vertices (quasi-clique). For the �rst half it is the complement of a quasi-clique.
For tree versus edge, we have the curve y = xE(T ) as lower bound (due to Sidorenko). Reiher-
wagner: Sk is similar to P3 and P5 is similar to P3. If T has a perfect matching, then clique always
wins.

10.2 De�nition. A moment curve is the curve t 7→ (1, t, t2, . . . , tk) =: Ck, where t ∈ [0, 1].

11 Stable Polynomials II

See e.g. �Hyperbolic and stable polynomials in combinatorics and probability� by Pemantle, around
2000.

11.1 Example (Newton's Inequalities). Take f =
∑d

k=0 akx
k ∈ R[x] real rooted. Then(

ak(
d
k

))2

≥ ak+1(
d

k+1

) · ak−1(
d

k−1

)
If ak ≥ 0, then a2k ≥ ak+1ak−1. Hence

log(ak) ≥
log(ak+1) + log(ak−1)

2

Therefore the roots are unimodal (on some concave curve).

11.1 Application: Graph Matching

A matching on a graph G = (V,E) is a subset of disjoint edges. Letmk be the number of matchings
with k edges.

11.2 Theorem. p(x) :=
∑

kmkx
k is real rooted.

Proof. Let n := |V |. Then

MG(x1, . . . , xn) :=
∏
ij∈E

(1− xixj)

is stable. Consider

TMA : R[x1, . . . , xn]→ R[x1, . . . , xn]

TMA(xα) =

{
xα : ∀i.αi ≤ 1

0 : else
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By some theorem of Borcea and Brändén and some exercise, TMA preserves stability.

TMA(MG) = TMA

(∑
S⊆E

(−1)|S|
∏
ij∈S

xixj

)
=

∑
M⊆E

matching

(−1)|M |
∏
ij∈M

xixj

again is stable. Consider

TMA(MG)(x, . . . , x) =
∑
k

(−1)kmkx
2k = p(−x2)

is stable, thus also real rooted. By another exercise, p(x) thus is real rooted.

11.2 Multia�ne Polynomials → SUBMODULAR

11.3 Theorem (Brändén). If f ∈ R[x1, . . . , xn] is stable and i, j ∈ [n], then

∆ij =
∂f

∂xi
· ∂f
∂xj
− f · ∂2f

∂xi∂xj
≥ 0

for all x ∈ Rn.

11.4 De�nition. A function F : 2[n] → R ∪ {−∞} is submodular if for all S, T ⊆ [n] we have

F (S) + F (T ) ≥ F (S ∩ T ) + F (S ∪ T )

Equivalently for all S ⊆ [n] and i, j /∈ S we have

F (S ∪ {i}) + F (S ∪ {j}) ≥ F (S) + F (S ∪ {i, j})

11.5 Proposition. If we have a stable function

f =
∑
S⊆[n]

cS
∏
i∈S

xi

with cS ≥ 0, then F (S) := log(cS) is submodular.

Proof. We have

0 ≤ ∆ijf(0) = c{i}c{j} − c∅c{i,j}

Therefore F ({i}) + F ({j}) ≥ F (∅) + F ({i, j}).
Note that the polynomial ∏

k∈S

∂

∂xk
f =

∑
S⊆T⊆[n]

cT
∏
i∈T\S

xi

is stable. (∏
k∈S

∂

∂xk
f

)
x=0

= cS

and taking the Wronskian yields

∆ij

(∏
k∈S

∂

∂xk
f

)
x=0

= cS∪{i}cS∪{j} − CScS∪{i,j} ≥ 0

Applying log yields the result.
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11.6 Remark (Application). Suppose A ∈ Sn+. Then we get a stable polynomial with non-
negative coe�cients by

f(x) := det (diag(x1, . . . , xn) + A) =
∑
S⊆[n]

det (A[Sc])
∏
i∈S

xi

where A[Sc] denotes the principal minor of A, whose rows/columns are not in S. Then F (S) :=
log det(A[Sc]) is submodular.

11.3 Probability Distributions

Let µ : 2[n] → R≥0 be a probability distribution. This means

µ(S) ≥ 0
∑
S⊆[n]

µ(S) = 1

De�ne

fµ(x1, . . . , xn) :=
∑
S⊆[n]

µ(S)
∏
i∈S

xi

11.7 De�nition. If fµ is stable, then call µ strongly Rayleigh.

∂fµ
∂xi

=
∑

i∈S⊆[n]

µ(S)
∏
j∈S−i

xj

∂fµ
∂xi

(1) = Probµ(i ∈ S)

Recall ∆ij(fµ) ≥ 0, so in particular

0 ≤ ∆ij(fµ)(1) =
∂fµ
∂xi

(1) · ∂fµ
∂xj

(1)− f(1) · ∂2fµ
∂xi∂xj

(1)

Translating back to probability, we get

Prob(i ∈ S) · Prob(j ∈ S) ≥ Prob(i, j ∈ S)

which means the events i ∈ S and j ∈ S are negatively correlated.

11.8 Remark (Application: Spanning Trees). Given graph G with t spanning trees. De�ne
measure µ : 2E → R≥0 via

µ(S) =

{
1
t

: S is a spanning tree

0 : else

de�ne the (stable) polynomial

gµ :=
1

t

∑
T⊆E

spanning tree

∏
e∈T

xe

Then for all e, e′ ∈ E we have

Prob(e ∈ T ) · Prob(e′ ∈ T ) ≥ Prob(e, e′ ∈ T )
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12 Ranks on (the Boundary of) Spectrahedra

12.1 De�nition. A spectrahedron S = A ∩ SN+ is the solution space of an SDP, i.e. A ⊆ RN is
an a�ne subspace.

12.2 Theorem (Face Lattice of SN+). Suppose L ⊆ RN is a linear subspace. De�ne FL :={
X ∈ SN+ : L ⊆ kerX

}
.

1. For every X ∈ SN+ , there is a particular subspace FkerX , which is the unique face of SN+ that
contains X in its relative interior.

2. Assume codim(L) = r. Then dim(FL) =
(
r+1
2

)
and there exists O ∈ O(N) such that

OTFLO =

{(
B 0
0 0

)
: B ∈ Sr+

}
3. L 7→ FL is an anti-isomorphism of lattices, i.e.

L ⊆ L′ ⇔ FL ⊇ FL′ FL+L′ = FL u FL′ FL∩L′ = FL t FL′

Proof ingredients. (a) S+N is invariant under X 7→ OTXO for all O ∈ O(N).

(b) L =
{
x ∈ RN : x1, . . . , xr = 0

}
for nice choice of coordinates.

12.1 Pataki Interval

12.3 De�nition (Rank Varieties). Let Vr ⊆ SN be the set of all X ∈ SN with rk(X) ≤ r.

12.4 Remark. If X, Y ∈ Vr and ker(X ⊆ ker(Y ), then ∀s, t ∈ R.sX + tY ∈ Vr.

The variety Vr is ruled by linear spaces, i.e.

UL :=
{
X ∈ SN : L ⊆ ker(X)

}
Vr =

⋃
L⊆RN

codim(L)=r

UL

In fact UL = span(FL).

12.2 Lower Bound of the Pataki Interval

Next we want to �nd dim(Vr). We can do anything in the r × r-part, and then in the remaining
r×(N−r)-part. The rest of the matrix is then determined. This gives us dim(Vr) =

(
r+1
2

)
+r(N−r).

12.5 Remark. Let X ⊆ PN−1 be an irreducible algebraic variety of dimension k. For a generic
linear space L ⊆ PN−1, we have X ∩ L 6= ∅ ⇔ codim(L) ≤ dim(X).

12.6 Proposition. Let A ⊆ SN be a generic a�ne subspace of dimension m. Then rank r of an
extreme point of A ∩ SN+ satis�es

rN −
(
r

2

)
≥
(
N + 1

2

)
−M ⇐⇒ m ≥

(
N − r + 1

2

)
This gives a lower bound on r.
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12.3 Upper Bound of the Pataki Interval

Let S = A ∩ SN+ 6= ∅, with dim(A ) = m suppose X ∈ A ∩ SN+ is of rank r. Then

X ∈ Fker(X) ∩ SN+ =
{
Y ∈ SN+ : ker(X) ⊆ ker(Y )

}
= OT

{(
B 0
0 0

)
: B ∈ Sr+

}
O

12.7 Remark. If X ∈ ex(S), then A ∩ Fker(X) = {X}, so A ∩ Uker(X) = {X}. Therefore

dim (span A )︸ ︷︷ ︸
=m+1

+ dim
(
Uker(X)

)
= dim

(
span A + Uker(X)

)
+ dim

(
span A ∩ Uker(A)

)︸ ︷︷ ︸
=1

≤ dim
(
SN
)

+ 1 =

(
N + 1

2

)
+ 1

This gives us an upper bound on r by(
r + 1

2

)
≤
(
N + 1

2

)
−m

12.8 Proposition (Pataki Interval). Let A ⊆ SN be an a�ne space of dimension m. The rank
r of an extreme point of A ∩ SN+ satis�es(

r + 1

2

)
≤
(
N + 1

2

)
−m

If A is generic, it also satis�es

m ≥
(
N − r + 1

2

)
12.9 Theorem. Let A ⊆ SN be an a�ne subspace, and assume ∅ 6= A ∩ SN+ is bounded. Suppose
codim(A ) =

(
r+1
2

)
for some r ∈ N and N ≥ r + 2. Then there exists a matrix X ∈ A ∩ SN+ with

rk(X) ≤ r.

Proof. 1. Reduce to N = r + 2, ∅ 6= A ∩ Sr+2
++ .

2. Proof by contradiction: Suppose all matrices in ∂
(
A ∩ Sr+2

+

)
have rank ≥ r + 1.

X

Sr+1

∂
(
A ∩ SN

)

y

X(y)

The map

φ : Sr+1 → RPr+1 y 7→ ker(X(y))

is continuous, injective.
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12.10 Example. Take the map

GrS6 → R[x1, x2, . . .]≤4 X 7→ ~mTX~m

where ~m is the vector of all monomials. we have dim(S6) = 6 and dim (R[x1, x2]≤4) = 15, hence
m = 6. We have

∀f ∈ R[x1, x2]≤4.f ≥ 0⇔ Gr−1(f) ∩ S6
+ 6= ∅

Our upper bound by Pataki gives us r ≤ 5, with the additional Theorem 12.9 r ≤ 4, but Hilbert's
Theorem tells us r = 3, so there is a gap.

13 Symmetry Reductions for Sums of Squares

We are given a quadratic form Q in n variables. To check for SOS, we can solve an n × n-SDP.
But we might be able to do better, if Q is symmetric.
In the end, we want to have Q =

∑
l2i where the li are linear forms. Sn acts on linear forms, by per-

muting the variables. First note that
∑
xi is �xed and so is its complement {

∑
αixi :

∑
αi = 0}.

Assume we have

l ∈ R[x1, . . . , xn] = S1 ⊕ S2

Then we have a unique decomposition l = h1 + h2 such that hi ∈ Si.

Q =
∑

l2i =⇒ Q = SymQ = Sym(
∑

l2i ) =
∑

Sym(l2i )

When focusing on a single linear form, we have

Sym(l2) = Sym((h1 + h2)
2) = Sym(h1)

2 + Sym(h22) + 2 Sym(h1h2)︸ ︷︷ ︸
=0

Sym(x1 − x2)2 = Sym(x21 + x22)− 2 Sym(x1x2) =
2

n

(
x21 + . . .+ x2n

)
− 2(

n
2

)∑
i<j

xixj

As another example, we have

Sym(x2 − 2x3 + x4)
2 = Sym

(
x22 + x24 + 4x23

)
+ Sym (−4x2x3 − 4x3x4 + 2x2x4)

=
6

n

(
x21 + . . .+ x2n

)
− 6(

n
2

)∑
i<j

xixj

Something more general (symmetric quartics). Symmetric polynomials on {0, 1}n, which means,
we are module 〈x2i − xi : i = 1, . . . , n〉.
Consider the space of polynomials, we want to squares and decompose into isotopic components

V = W1 + . . .+Wk

where each Wi is a direct sum of isomorphic irreducibles. Then

Sym p2 = Sym
(
(h1 + . . .+ hk)

2
)

=
∑

Symh2i + 2
∑

Sym(hihj) =
∑

Symh2i

where hi ∈ Wi. Note that cross-products form non-isomorphic irreducibles always vanish.
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No we restrict to a single isotypic component W = V1 + . . . + Vm and from each Vi we choose a
representative fi. Then we can de�ne a matrix

F = (Sym(fifj) : 1 ≤ i, j ≤ m)

Then Q is a sum of squares from W i� there exists A ∈ Sm+ such that Q = 〈A,F 〉.
Symmetric sum of squares on polynomials of degree ≤ d ≤ n

2
on {0, 1}n.

(0, . . . , 0) : 1

(1, 0, . . . , 0) :
∑

xi, x1 − x2

(1, 1, 0, . . . , 0) :
(∑

xi

)2
, (x1 − x2)(x3 − x4)

Again, I could not make sense of the board, so the notes stop.

14 Sums of Squares and Determinantal Representations

This lecture is based on �Hyperbolic polynomials, interlacers and SOS� by Kummer/Plaumann/Vinzant
and �Non-representable hyperbolic matroid� by Brändén.
Recall for any f ∈ R[x1, . . . , xn] and ~e,~a ∈ Rn we have

∆~e,~a(f) = D~ef ·D~af − f ·D~eD~a(f)

If f is hyperbolic and ~a ∈ C(f,~e), then ∆~e,~af ≥ 0 on Rn.
Now we focus on functions of the form f = det(X), with X = (xij : 1 ≤ i, j ≤ n).

14.1 Dodgson condensation

Let A ∈ Rn×n. We de�ne AS,T as the matrix obtained by removing rows S and columns T . Note
that we have

|A1,1| · |An,n| − |A1,n| · |An,1| = |A1n,1n| · |A|

14.1 Example. Assume we have a symmetric matrix, then we have

A =

1 b c
b d e
c e f

 =⇒ det(A) =
(ad− b2)(df − e2)− (be− cd)2

d

14.2 Corollary. Let f = det(X) for XT = X. Then

∆e1eT1 ,ene
T
n
f =

∂f

∂x11
· ∂f
∂xnn

− f · ∂f

∂x11∂xnn
= |X1,n|2

14.3 Corollary. Instead of the unit vectors, we can take any vector.

∆vvT ,wwT (f) =
(
vTXadjw

)2
14.4 Theorem. Suppose, we have a multia�ne polynomial

f =
∑
S⊆[n]

cS
∏
i∈S

xi ∈ R[x1, . . . , xn]

Then f has a de�nite determinantal representation i� for all i, j ∈ [n] the polynomial ∆ij(f) is a
square in R[~x].
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Proof. Assume f = det(A(x)) where A(x) =
∑
xiAi + b with Ai � 0. Then Ai = viv

T
i . Thus

∆ij(f) =
(
viA(x)adjvj

)2
. The converse direction is harder.

More generally

14.5 Theorem. If f r = det(A(x)), then ∆ij(f) is SOS for any i, j ∈ [n].

Proof sketch. 1. Assume f = det(X) and A,B � 0, so we can write them as A =
∑
viv

T
i and

B =
∑
wjw

T
j . Check that ∆·,· is bilinear. Then

∆A,Bf =
∑
i,j

∆vivTi ,wjwT
j
f =

∑
i,j

(
vTi X

adjwj
)2

2. ∆ij (f r) = r · f 2(r−1)∆ij(f), so it su�ces to �nd an SOS decomposition for the latter.

14.6 Theorem (Wagner, Wei). Put

B =

(
[8]

4

)
\ {1234, 1256, 3456, 3478, 5678}

Then de�ne the polynomial

f =
∑
I∈B

∏
i∈I

xi ∈ R[x1, . . . , x8]

Then f is stable.

14.7 Theorem (Brändén). Let f as in Theorem 14.6, and r ∈ N. Then f r does not have a
de�nite determinantal representation.

Proof. ∆78(f) is not SOS.

14.8 Lemma (Kummer). C(f,1) is spectradral.

14.9 Theorem (Brändén). For any graph G = ([n], E), the polynomial

fG := e4(x1, . . . , xn, y1, . . . , yn)−
∑
ij∈E

xixjyiyj

is stable.

In particular, this yields the result for the Vámos-matroid, for the graph

G0 :

Figure 2: The graph for the Vámos matroid

Furthermore, if G has this G0 as a subgraph, then (fG)r does not have a de�nite determinantel
representation.

14.10 Remark. An open question is: Is the hyperbolicity cone of fG spectrahedral?
Rephrased, we ask whether there is some q(x) such that

q(x)fG = det
(∑

xiAi

)
Ai � 0

C1 (Q · fG) = C(fG)⇐⇒ C1(fG) ⊆ C1(q)
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