Hyperbolic Polynomials and SOS
 Inofficial lecture notes
 for the lecture held by Cynthia Vinzant, Rainer Sinn, Greg Blekherman, Daniel Plaumann, Summer 2018

Henning Seidler

Contents

1 Hyperbolic Polynomials 2
2 Convexity 4
2.1 Isolation Theorem 5
2.2 Faces 6
2.3 Duality/Polarity 6
2.4 Homogenisation of Convex Sets 7
3 Non-negative Polynomials 7
3.1 Positivstellensätze 8
3.2 Computationally Find SOS Certificates 8
4 Conic Programming 9
4.1 Duality 9
4.2 Interior Point Methods 11
5 Geometry of Hyperbolicity Cones 11
5.1 Boundary Basics 12
5.2 Curvature of the Boundary 12
5.3 Derivative Cones 13
5.4 Higher Dimensions and Faces Exposed 13
6 Sums of Squares in Extremal Combinatorics 13
7 Determinantal Representations 15
7.1 Generalised Lax Conjecture 16
7.2 Hermite Method 16
8 Stable Polynomials 17
8.1 Operations preserving stability 19
8.2 Reduce to Multiaffine Polynomials via Polarisation 19
9 Interlacers 20
9.1 The Interlacer Cone 21
10 Greg III 21
11 Stable Polynomials II 22
11.1 Application: Graph Matching 22
11.2 Multiaffine Polynomials \rightarrow SUBMODULAR 23
11.3 Probability Distributions 24
12 Ranks on (the Boundary of) Spectrahedra 25
12.1 Pataki Interval 25
12.2 Lower Bound of the Pataki Interval 25
12.3 Upper Bound of the Pataki Interval 26
13 Symmetry Reductions for Sums of Squares 27
14 Sums of Squares and Determinantal Representations 28
14.1 Dodgson condensation 28

1 Hyperbolic Polynomials

We consider objects in $\mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$, of homogeneous polynomials in n variables of degree d. These can be written as

$$
\left\{\sum_{\alpha} c_{\alpha} x^{\alpha}: c_{\alpha} \mathbb{R}, \alpha \in \mathbb{N}^{d},|\alpha|_{1}=d\right\}
$$

They have the property $f(\lambda x)=\lambda^{d} f(x)$.
1.1 Definition. $f \in \mathbb{R}[x]_{d}$ is hyperbolic with respect to $e \in \mathbb{R}^{n}$ if $f(e) \neq 0$ and for every $v \in \mathbb{R}^{n}$, all of the roots of the univariate polynomial $f(t e+v) \in \mathbb{R}[t]$ are real.

Alternatively all roots of $f(e+s v) \in \mathbb{R}[s]$ are real.
The definition takes direction e, the alternative takes lines through e.
1.2 Example. Take $f=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$ and $e=(1,0,0)$. Then the roots of f are a double cone Each vertical line intersects the cones in exactly 2 points (or 2 double root at $\mathbf{0}$).
1.3 Example (Non-example). $f=x_{1}^{4}-x_{2}^{4}-x_{3}^{4}$ is not hyperbolic wrt. to any point in \mathbb{R}^{3}. In each case we only get 2 real roots.

Exercise (Hyperbolic quartic). The shape would have to be some cone where an inner cone is missing.
1.4 Example (Important). Let $A_{1}, \ldots, A_{n} \in \mathbb{R}^{d \times d}$ symmetric. Put $A(x)=\sum x_{i} A_{i}$. If $A(e)$ is positive definite, then $f:=\operatorname{det}(A(x))$ is hyperbolic wrt e.

Proof. Assume $A(e)=I_{d}$. Then $f(t e-v)=\operatorname{det}\left(t I_{d}-A(v)\right)$. Its roots are the eigenvalues of $A(v)$ and these are real, since $A(v)$ is symmetric.

Going back to our first example we get

$$
x_{1}^{2}-x_{2}^{2}-x_{3}^{2}=\operatorname{det}\left(\begin{array}{cc}
x_{1}+x_{2} & x_{3} \\
x_{3} & x_{1}-x_{2}
\end{array}\right)
$$

1.5 Definition. If f is hyperbolic wrt e, for $x \in \mathbb{R}^{n}$ we call the roots $\lambda_{1}(x) \geq \ldots \geq \lambda_{d}(x)$ for $f(t-e v)$ the eigenvalues of x. The rank of x is its number of non-zero eigenvalues.

Take $f=x_{1}^{2}-x_{2}^{2}-x_{3}^{2}$ and $e=(1,0,0)$. The eigenavlues of $x \in \mathbb{R}^{3}$ are the roots of $\left(t-x_{1}\right)^{2}-x_{2}^{2}-x_{3}^{2}$, which are $\left(x_{1} \pm \sqrt{x_{2}^{2}+x_{3}^{2}}\right.$.
1.6 Example. Take $f=\prod x_{1}$ and $e=(1, \ldots, 1)$. The eigenvalues of x are the roots of $f(t e-x)=$ $\Pi\left(t-x_{i}\right)$. So $\lambda_{1}=\max \left\{x_{1}, \ldots, x_{n}\right\}, \lambda_{2}=\max \left\{x_{1}, \ldots, x_{n}\right\} \backslash\left\{\lambda_{1}\right\}$ and so on.
1.7 Example. Let $X \in \mathbb{R}^{d \times d}$ symmetric. Say $f=\operatorname{det} X$ and $e=I_{d}$, shaped into $\mathbb{R}^{d \cdot d}$. Then the eigenvalues of X in terms of hyperbolic polynomial are the roots of $f(t e-X)=\operatorname{det}\left(t I_{d}-X\right)$ which are the eigenvalues of X as a real matrix.
1.8 Definition. The hyperbolicity cone of f wrt e is

$$
C_{e} f=\left\{x \in \mathbb{R}^{n}: \text { roots of } f(t e-x) \geq 0\right\}
$$

1.9 Example. For our previous three examples we get

Example 1.2 $C_{e} f=\left\{x \in \mathbb{R}^{3}: x_{1} \geq \sqrt{x_{2}^{2}+x_{3}^{2}}\right\}$
Example 1.6 $C_{e} f=\left(\mathbb{R}_{\geq 0}\right)^{n}$
Example 1.7 $C_{e} f$ are the positive semidefinite matrices.
1.10 Theorem (Gårding, 1959). Let $f \in \mathbb{R}[x]_{d}$ be hyperbolic wrt e. Then $C_{e} f$ is a convex cone and f is hyperbolic wrt to any points in its interior.
1.11 Lemma. Let $\vec{a} \in C_{\vec{e}} f, \vec{b} \in \mathbb{R}^{n}, s \geq 0$. Then the foots of

$$
f(i s \vec{e}+t \vec{a}+\vec{b}) \in \mathbb{C}[t]
$$

have ≤ 0 imaginary part. Write $t=x-i y$ for $x, y \in \mathbb{R}$ for some root t. Rewriting, we get

$$
f(i s \vec{e}+(x-i y) \vec{a}+\vec{b})=0 \Longrightarrow f(s \vec{e}-i x \vec{a}-y \vec{a}-i \vec{b})=0
$$

By assumption hyperbolic, any lines through vece yields real points, to the imaginary part must cancel.

homework

$$
f(s \vec{e}-y \vec{a})=0 \stackrel{y \geq 0}{\Longrightarrow} f\left(\frac{s}{y} \vec{e}-\vec{a}\right)=0
$$

Proof of Theorem 1.10. Taking $s \rightarrow 0$, all roots of $f(t \vec{a}+\vec{b}) \in \mathbb{R}[t]$ have ≤ 0 imaginary part. Hence all roots are real.
convex cone is homework

Figure 1: Alternating roots of f and f^{\prime}

Another way to see the hyperbolicity cone $C_{e} f$ is the closure of the connected component of e in $\mathbb{R}^{n} \backslash\{x: f(x)=0\}$.
1.12 Lemma. If $p(t) \in \mathbb{R}[t]$ is real rooted, then so is $p^{\prime}(t)$.
1.13 Lemma. If $f \in \mathbb{R}[x]_{d}$ is hyperbolic wrt e, then so is the derivative

$$
D_{\vec{e}} f=\sum_{i=1}^{n}(\vec{e})_{i} \frac{\partial f}{\partial x_{i}}
$$

Proof. Chain rule

$$
\frac{d}{d t} f(t e+x)=D_{\vec{e}} f(t \vec{e}+x)
$$

1.14 Example. Put $f=\prod x_{i}$ and $e=1$. Then

$$
D_{\vec{e}} f=\sum_{i=1}^{n} \frac{\partial f}{\partial x_{i}}=e_{n-1}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i} \prod_{j \neq i} x_{j}
$$

which is the second elementary symmetric polynomial.

2 Convexity

2.1 Definition. $C \subseteq \mathbb{R}^{n}$ is convex if

$$
\forall x, y \in C . \forall \lambda \in[0,1] \cdot \lambda x+(1-\lambda) y \in C
$$

2.2 Example. 1. polyhedra: intersections of finitely many half-spaces

$$
\bigcap_{i=1}^{m}\left\{x \in \mathbb{R}^{n}: l_{i}(x) \leq z_{i}\right\} \quad \quad l_{i} \text { linear }
$$

sub-examples:

- $\mathbb{R}_{\geq 0}^{n}$,
- Birkhoff polytope: take non-negative $m \times m$-matrices, where row- and column-sums are 1.

2. positive semi-definite matrices

$$
\mathbb{S}_{+}^{d}=\left\{A \in \mathbb{S}^{d}: \forall x \in \mathbb{R}^{n} \cdot x^{T} A x \geq 0\right\}
$$

2.3 Definition. The convex hull of S is the smallest convex set containing S. Equivalently the set of finite convex combinations

$$
\operatorname{conv}(S)=\left\{\sum_{i=1}^{r} \lambda_{i} x_{i}: \sum \lambda_{i}=1, \lambda \geq 0, x_{i} \in S\right\}
$$

2.4 Theorem (Caratheodory). Every $x \in \operatorname{conv}(S) \subseteq \mathbb{R}^{d}$ can be written as a convex combinations of at most $(d+1)$ points in S.
2.5 Corollary. If S is compact, then $\operatorname{conv}(S)$ is closed.

Proof. Regard the map

$$
\begin{aligned}
\underbrace{S \times \ldots \times S}_{d+1} \times \Delta_{d} & \rightarrow \mathbb{R}^{d} \\
\left(x_{1}, \ldots, x_{d+1}, \lambda\right) & \mapsto \sum \lambda_{i} x_{i}
\end{aligned}
$$

The left hand side is closed, so the image is closed as well. But due to Theorem 2.4 the image is the convex hull.
2.6 Theorem. Let $A \subseteq \mathbb{R}^{d}$ convex, $\operatorname{int}(A)=\emptyset$. Then there exists a proper affine subspace $L \subset \mathbb{R}^{d}$ with $A \subseteq L$.
2.7 Definition. The dimension of a convex set $C \subseteq \mathbb{R}^{d}$ is the dimension of its affine span.

2.1 Isolation Theorem

2.8 Theorem. Suppose $C \subseteq \mathbb{R}^{d}$ convex, closed set, $u \notin C$. Then there exists an affine hyperplane $H=\left\{x \in \mathbb{R}^{d}: l(x)=z\right\}$ such that

$$
\begin{aligned}
C \subseteq H^{+} & =\left\{x \in \mathbb{R}^{d}: l(x)>z\right\} \\
u \in H^{-} & =\left\{x \in \mathbb{R}^{d}: l(x)<z\right\}
\end{aligned}
$$

Proof. We take the distance function

$$
\min \{\operatorname{dist}(u, x): x \in C\}>0
$$

Since C is closed, the minimum is attained at some x_{0}. Since C is convex, the minimum is unique (triangle inequality). So take the hyperplane perpendicular to $u-x_{0}$, acros half the distance.
2.9 Theorem (Farkas Lemma). Let $A \in \mathbb{R}^{m \times d}, z \in \mathbb{R}^{m}$. Either there exists $x \in \mathbb{R}_{\geq 0}^{d}$ such that $A x=z$ or there exists $c \in\left(\mathbb{R}^{m}\right) \backslash\{\mathbf{0}\}$ such that $c A \geq 0, c \cdot z<0$.
2.10 Theorem. 1. Let $C \subseteq \mathbb{R}^{d}$ open, convex, $u \notin C$. Then there exists a hyperplane H such that $u \in H$ and $C \subseteq H^{+}$.
2. Let $C \subseteq \mathbb{R}^{d}$ convex, $\operatorname{int}(X) \neq \emptyset, u \in \partial C$. Then there exists a hyperplane H such that $u \in H$ and $C \subseteq \overline{H^{+}}=\left\{x \in \mathbb{R}^{d}: l(x) \geq z\right\}$.

2.2 Faces

2.11 Definition. A face F of a convex set $C \subseteq \mathbb{R}^{d}$ is a convex subset of C such that

$$
\forall x, y \in C \cdot \frac{1}{2}(x+y) \in F \Longrightarrow x, y \in F
$$

Red lines are no faces.
2.12 Definition. An exposed face of a convex set $C \subseteq \mathbb{R}^{d}$ is the intersection of C with a supporting hyperplane H, i.e. $C \subseteq \overline{H^{+}}$.
2.13 Lemma. Every exposed face actually is a face.

Proof. Let $x, y \in C$. Then

$$
\frac{1}{2}(x+y) \in C \cap H \Longrightarrow \frac{1}{2} l(x)+\frac{1}{2} l(y)=z \Longrightarrow l(x)=l(y)=z \Longrightarrow x, y \in C \cap H
$$

The converse is true for polytopes, but not in general.
2.14 Example.

Here the origin is a face, but not exposed.
2.15 Corollary (to is Isolation Theorem). Let $C \subseteq \mathbb{R}^{d}$ convex, closed, $\operatorname{int}(X) \neq \emptyset$ and $u \in \partial C$. Then u is contained in a proper exposed face F of C (proper means $F \neq \emptyset, C$).
2.16 Definition. An extreme point of a convex set $C \subseteq \mathbb{R}^{d}$ is a 0 -dimensional face. We denote it with ex (C).
2.17 Theorem. If $C \subseteq \mathbb{R}^{d}$ is convex and compact, then $C=\operatorname{conv}(\operatorname{ex}(C))$.

Hence every bounded polyhedron is a polytope (defined as convex hull of a finite set of points).

2.3 Duality/Polarity

2.18 Definition. Let $C \subseteq \mathbb{R}^{d}$. The polar of C is

$$
C^{\circ}=\left\{l \in \mathbb{R}^{d}: l \neq \mathbf{0}, \forall x \in C . l(x) \leq 1\right\}
$$

The dual cone of C is

$$
C^{\vee}=\left\{l \in \mathbb{R}^{d}: l \neq \mathbf{0}, \forall x \in C . l(x) \geq 0\right\}
$$

2.19 Example. - $\left(\mathbb{R}_{\geq 0}^{d}\right)^{\vee}=\mathbb{R}_{\geq 0}^{d}$

- $\left(\mathbb{S}_{+}^{m}\right)^{\vee}=\mathbb{S}_{+}^{m}$
2.20 Theorem (Biduality, Bipolarity). For any $C \subseteq \mathbb{R}^{d}$ we have

$$
\left(C^{\circ}\right)^{\circ}=\operatorname{cl}(\operatorname{conv}(C \cup\{0\}))
$$

2.21 Remark. Suppose C is closed, convex and $0 \in \operatorname{int}(C)$. Then the extreme points of C° correspond almost to irredundant linear inequalities defining C.

2.4 Homogenisation of Convex Sets

2.22 Definition. Let $C \subseteq \mathbb{R}^{d}$. Put the homogenisation

$$
\widehat{C}=\operatorname{conv}(C \times\{1\})=\operatorname{cone}\left(\left\{(x, 1): \mathbb{R}^{d+1}: x \in C\right\}\right)
$$

Then affine combinations somehow correspond to linear combinations.
2.23 Theorem. $\widehat{C^{\circ}}=-(\widehat{C})^{\vee}$
2.24 Lemma. If C is compact, closed, then \widehat{C} is closed and pointed (meaning $\widehat{C} \cap-\widehat{C}=\{0\}$). Up to change of coordinates, the converse is also true.

3 Non-negative Polynomials

3.1 Definition. A real polynomial $p \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is called non-negative if $\forall x \in \mathbb{R}^{n} . p(x) \geq 0$. A polynomial is called sum of squares if it can be written as $p=\sum q_{i}^{2}$ for $q_{i} \in \mathbb{R}[x]$.
3.2 Example. - Obviously $p=1$ is non-negative.

- $p=1+x^{2}=1^{2}+x^{2}$ is SOS.
- $p=2 x^{4}-2 x^{2}+1=x^{4}+\left(x^{2}-1\right)^{2}$ is SOS.
3.3 Theorem (Hilbert, 1888). Non-negative polynomials $=$ SOS only in the following 3 cases

1. univariate, $n=1$
2. quadratic, " $2 d=2$
3. bivariate of degree $4,(n, 2 d)=(2,4)$
3.4 Example (Motzkin Polynomial). The first known explicit example for non-equality is

$$
M(x, y)=x^{4} y^{2}+x^{2} y^{4}+1-3 x^{2} y^{2}
$$

It is non-negative by AM-GM-inequality.
So we expand the question, what happens for rational functions. Three equivalent formulations are

$$
p=\sum\left(\frac{f_{i}}{g_{i}}\right)^{2} \quad p \cdot r^{2}=\sum f_{i}^{2} \quad p \cdot \sum h_{i}^{2}=\sum f_{i}^{2}
$$

Hilbert showed "yes" for $n=2$. In particular $M(x, y)\left(1+x^{2}+y^{2}\right)$ is SOS. Even more, for $2 d=6$, then quadratic multipliers of degree 2 suffice.
This became Hilbert's 17th problem: What about $n \geq 3$? It was solved in the affirmative by Artin-Schreier in 1928.
There still remain the question how to find such a decomposition. In particular we need a bound on the degree of the h_{i}. The known bounds greatly differ (linear versus exponential tower).
So far we only regarded global non-negativity. But what if we restrict ourselves to some set defined by polynomial, inequalities?
Say $A=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right\}$. Then obviously $p=f \cdot \operatorname{SOS}+\mathrm{SOS} \geq 0$ on A. For further constraints $A=\left\{x \in \mathbb{R}^{n}: g_{1}(x) \geq 0, g_{2}(x) \geq 0\right\}$, as obvious non-negative polynomials we have

$$
\mathrm{SOS}+g_{1} \cdot \mathrm{SOS}+g_{2} \cdot \mathrm{SOS}+g_{1} g_{2} \cdot \mathrm{SOS}
$$

which can be expanded to arbitrary many constraints.

3.1 Positivstellensätze

3.5 Theorem (Krivine, Stengel). Assume $f \geq 0$ on a closed semialgebraic set, defined by polynomial inequalities $g_{i}(x) \geq 0$. Then $f \cdot(1+\mathrm{SOS})$ is the set of obviously non-negative polynomials.
3.6 Theorem (Schmüdgen). If $f>0$ on a compact semialgebraic set, then f is obviously nonnegative.

Exercise. If you look at the cusped cubic $A: y^{2}-x^{3}=0$, then $f=x$ is non-negative on A, but f is nor obviously non-negative in any degree. If we take $f+\varepsilon$, then certificates exist, but degree $\rightarrow \infty$ as $\varepsilon \rightarrow 0$.
3.7 Theorem (Putinar). If $f>0$ on a compact semialgebraic set, and a small extra condition, we have

$$
f=\mathrm{SOS}+\sum g_{i} \cdot \mathrm{SOS}
$$

which means, we can avoid the combinatorial blow up.

3.2 Computationally Find SOS Certificates

Go back to our example $f=2 x^{4}-2 x^{2}+1$.
Each summand is of type $\left(c x^{2}+b x+a\right)^{2}$, so write $\alpha=(c, b, a)$ and $\vec{x}=\left(x^{2}, x, 1\right)$.

finish

Applied to the example this means

$$
2 x^{4}-2 x^{2}+1=\left(1, x, x^{2}\right)\left(\begin{array}{ll}
\alpha_{0} & \alpha_{1} \alpha_{2} \\
\alpha_{1} & \alpha_{3} \alpha_{4} \\
\alpha_{2} & \alpha_{4} \alpha_{5}
\end{array}\right)\left(\begin{array}{c}
1 \\
x \\
x^{2}
\end{array}\right)
$$

Comparing the coefficients, we get

$$
\begin{array}{lllll}
\alpha_{0}=1 & 2 \alpha_{1}=1 & 2 \alpha_{3}+\alpha_{4}=-2 & 2 \alpha_{4}=0 & \alpha_{5}=2
\end{array}
$$

and the above matrix has to be positive semidefinite. Solving this kind of problems can be done, although we suffer from a serious blow up when constructing problem, where both n and $2 d$ become larger. (10 already is a large number in this case.)

This can be applied for optimisation problem. A general optimisation problem is

$$
\min \{f(x): x \in K\}=\max \{\gamma: \forall x \in K \cdot f(x)-\gamma \geq 0\}
$$

This we relax to $f(x)-\gamma$ is obviously non-negative on K and apply our previous theory. The method is called Lasserre relaxation.
3.8 Example (Max-Cut). Given a graph $G=(V, E)$ we want to find the maximal cut. Our variables are $x_{i} \in\{-1,1\}$ given by equations $x_{i}^{2}-1=0$. So we have the problem

$$
\max \left\{\frac{1}{2}\left(|E|-\sum_{i, j \in V} x_{i} x_{j}\right): \forall i . x_{u}^{2}-1=0\right\}
$$

The degree 2 SOS relaxation is the Goemans-Williamson algorithm.

4 Conic Programming

The lecture will follow the book of Barvinok.

picture

To be more precise, we have the following setup: Domain D is a section of a cone. Let $K \subseteq \mathbb{R}^{l}$ a closed convex cone, and $\varphi: \mathbb{R}^{l} \rightarrow \mathbb{R}^{m}$ linear, with some point $b \in \mathbb{R}^{m}$. Then $D=K \cap \varphi^{-1}(b)$ is called set of feasible points. $\lambda(x)=\langle x, c\rangle$ for some $c \in \mathbb{R}^{l}$ is the target function. The task is to find

Any $x \in D$ with $\gamma=\langle x, c\rangle$ is an optimal point.

4.1 Duality

$\varphi^{\vee}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{l}$ such that

$$
\forall x \in \mathbb{R}^{l}, y \in \mathbb{R}^{m} \cdot\langle\varphi(x), y\rangle=\left\langle x, \varphi^{\vee}(y)\right\rangle
$$

is the dual linear map and

$$
K^{\vee}=\left\{a \in \mathbb{R}^{l}: \forall x \in K .\langle x, a\rangle \geq 0\right\}
$$

is the dual cone.
Let $K_{2} \subseteq \mathbb{R}^{m}$ be a cone. The primal problem is

$$
\gamma=\inf \left\{\langle x, c\rangle: \varphi(x)-b \in K_{2}, \varphi(x)=b, x \in K\right\}
$$

The corresponding dual problem is

$$
\beta=\sup \left\{\langle y, b\rangle: c-\varphi^{\vee}(y) \in K^{\vee}, y \in K_{2}^{\vee}\right\}
$$

In practice we usually put $K_{2}=\{0\}$, which yields $K_{2}^{\vee} \mathbb{R}^{m}$. In red we have the original condition, in blue the simplified one.

4.1 Theorem (Weak Duality). $\gamma \geq \beta$.

The difference $\gamma-\beta$ is called duality gap.
As further optimality criteria we have the following.
4.2 Lemma. Assume $\gamma=\beta$. If x, y are feasible, then the following are equivalent

- x, y are optimal
- $\left\langle x, c-\varphi^{\vee}(b)\right\rangle=0$ and $\langle y, \varphi(x)-b\rangle=0$

LP In this setting we have $K=\mathbb{R}_{+}^{l}$ the positive orthant (though strictly speaking it is the nonnegative orthant). $D=\mathbb{R}_{+}^{l} \cap \varphi^{-1}(b)$ is a polyhedron. Note that $K=K^{\vee}$ is self-dual.

SDP Our cone is

$$
K=\mathbb{S}_{+}^{n} \subseteq \mathbb{S}^{n} \cong \mathbb{R}^{\binom{n+1}{2}}
$$

the cone of positive semi-definite $n \times n$-matrices and our product is $\langle A, B\rangle:=\operatorname{Tr}(A B)$. Again we have $K=K^{\vee}$. The linear function φ has the shape

$$
\begin{aligned}
\varphi: \mathbb{S}^{n} & \rightarrow \mathbb{R}^{m} \\
X & \mapsto\left(\left\langle X, A_{1}\right\rangle, \ldots,\left\langle X, A_{m}\right\rangle\right)
\end{aligned}
$$

for some $A_{i} \in \mathbb{S}^{n}$. For short we write $X \succeq 0$ for $X \in K$ and $X \succeq Y$ for $X-Y \succeq 0$. The domain $D=\mathbb{S}_{+}^{n} \cap \varphi^{-1}(b)$ is called a spectrahedron.
The primal problem is

$$
\gamma=\inf \left\{\langle X, C\rangle: \forall i .\left\langle X, A_{i}\right\rangle=b_{i}, X \succeq 0\right\}
$$

and its corresponding dual is

$$
\beta=\sup \left\{\langle b, y\rangle: C-\sum_{i=1}^{m} y_{i} A_{i} \succeq 0\right\}
$$

4.3 Example. 1. Compute the Lovasz-Theta-number for graphs (lies between clique-number and chromatic number).
2. Correlation matrices

$$
\left(\begin{array}{ccc}
1 & x_{12} & x_{13} \\
x_{12} & 1 & x_{23} \\
x_{13} & x_{23} & 1
\end{array}\right)
$$

Here we want we find

$$
\gamma=\inf \left\{x_{13}: x_{11}=x_{22}=x_{33}=1, X \succeq 0\right\}
$$

In practice, we usually have further inequalities on the variables.
3. Let $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{\leq 2 d}$ of even degree. Take the vector of all monomials $m=\left(x^{\alpha}\right)_{|\alpha| \leq d}$. Then

$$
\mathscr{G}:=\left\{A: m^{T} A m=f\right\}
$$

is an affine subspace of \mathbb{S}_{+}^{N} where $N=\binom{n+d}{d}$. Now f is a sum of squares iff \mathscr{G} contains a check psd-matrix. $\mathscr{G} \cap \mathbb{S}_{+}^{N}$ is a spectrahedron, over which we are optimising.
HYP Hyperbolic Programming: This is a conic programme for $K=C_{e}(f)$ the hyperbolicity cone of some polynomial f hyperbolic wrt e. Here our dual problem will involve $K^{\vee} \neq K$. In general, K^{\vee} will not even be a hyperbolicity cone.

4.2 Interior Point Methods

Take (D) the dual of an SDP. Let D^{*} denote the domain of the dual problem.
4.4 Lemma. Assume D, D^{*} have interior points and A_{1}, \ldots, A_{m} are linearly independent. Then $\gamma=\beta$, i.e. no duality gap.

First note $\operatorname{det}\left(C-\sum y_{i} A_{i}\right)=0$ on ∂D^{*}, and the optimum is attained at the boundary. But since the determinant is no convex, we use an alternative.
4.5 Lemma. The function $X \mapsto-\log (\operatorname{det}(X))$ is strictly convex on \mathbb{S}_{++}^{n}.
4.6 Definition. The function

$$
B_{\lambda}(y):=\langle b, y\rangle+\lambda \cdot \log \left(\operatorname{det}\left(C-\sum y_{i} A_{i}\right)\right)
$$

is called the logarithmic barrier function of (D) with parameter λ.
4.7 Theorem. Let $y(\lambda)$ be the unique maximiser of $B_{\lambda}(y)$ on D^{*}. Then $\lim _{\lambda \rightarrow 0} y(\lambda)$ is an optimal point.

The path $\{y(\lambda): \lambda>0\}$ is called the central path.
For HYP we use $\log (f)$, reasonably restricted.

5 Geometry of Hyperbolicity Cones

The lecture follows the paper "Hyperbolic Programmes and their Derivative Relaxations" by Hames Renegar.
Fix some hyperbolic polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$ hyperbolic wrt $e \in \mathbb{R}^{n}$.

1. $f(e)>0$
2. $\forall x \in \mathbb{R}^{n} . f(t e-x) \in \mathbb{R}[t]$ is real rooted

We always order the eigenvalues $\lambda_{1}(x) \leq \ldots \leq \lambda_{d}(x)$. Then the hyperbolicity cone is

$$
C_{e}(f)=\left\{x \in \mathbb{R}^{n}: \lambda_{1}(x)\right\}
$$

which means all eigenvalues are non-negative.
5.1 Remark. Observe that

$$
\lambda_{j}(s x+t e)= \begin{cases}s \lambda_{j}(x)+t & : s \geq 0 \\ s \lambda_{d-j}(x)+t & : s \leq 0\end{cases}
$$

and

$$
f(x)=f(e) \cdot \prod_{j=1}^{d} \lambda_{j}(x)
$$

5.2 Proposition. $C_{e}(f)$ is the closure of the connected component S of $\left\{x \in \mathbb{R}^{n}: f(x) \neq 0\right\}$ containing e.

Proof. Show mutual inclusion
$S \subseteq C_{e}(f): S$ is connected and $\lambda_{1}(e)=\lambda_{d}(e)=1$ (the latter since $\left.f(t e-e)=(t-1)^{d} f(e)\right)$. Since $\lambda_{1}(x)$ is a continuous function of x and $f(x)=0 \Leftrightarrow \lambda_{1}(x)=0$.
$C_{e}(f) \subseteq S$: We will walk along a path
For all sufficiently large \bar{t}, all $<\in[x, e]$ satisfy

$$
0<f(y+\bar{t} e)=\bar{t}^{d} f\left(\frac{1}{\bar{t}} y+e\right)
$$

5.1 Boundary Basics

5.3 Definition. The multiplicity of $x \in \mathbb{R}^{n}$ wrt f the multiplicity of 0 as an eigenvalue of x.
5.4 Remark. - Note mult $(x)>0 \Leftrightarrow f(x)=0$.

- $\operatorname{mult}(x)=d-\operatorname{rank}(x)$
5.5 Theorem. The set $\left\{x \in \mathbb{R}^{n}: \operatorname{mult}(x)=1\right\}$ is (if non-empty) a codimension 1 analytic submanifold.
5.6 Lemma. The gradient at these points does not vanish, i.e. $\operatorname{mult}(x)=1 \Leftrightarrow f(x)=0 \wedge \nabla f(x) \neq$ 0 .

Proof. Observe $\frac{d}{d x} f(t e-x)=(\nabla f(t e-x)) \cdot e$. Assume $f(x)=0$. If $\nabla f(x)=(-1)^{d-1} \nabla f(-x)$, then $\operatorname{mult}(x)=1$. If $\nabla f(x) \neq 0$, then $\left\{y \in \mathbb{R}^{n}: \nabla f(x) \cdot y=0\right\}$ is the supporting hyperplane to $C_{e}(f)$ at x.
picture

5.2 Curvature of the Boundary

5.7 Proposition. Let $f(x)=0, \nabla f(x) \neq 0$ and $x \in C_{e}(f)$. If $\nabla f(x) \cdot v=0$, then $v^{t} f^{\prime \prime}(x) v \leq 0$.

Under the above assumptions, we also have

$$
v^{t} f^{\prime \prime}(x) v=\frac{d^{2}}{d t^{2}} f(x+t v)_{\mid t=0}
$$

5.8 Theorem. If $x \in \partial C_{e}(f)$, mult $(x)=1$ and $\nabla f(x) \cdot v=0$, then one of the following holds

1. $\forall t \in \mathbb{R} \cdot f(x+t v)=0$ and $\exists \varepsilon>0 . \forall t \in(-\varepsilon, \varepsilon) \cdot x+t v \in C_{e}(f)$
2. $v^{t} f(x) v<0$

So if the curvature is not negative, then locally we have a flat face.

5.3 Derivative Cones

5.9 Claim. $D_{e} f=\nabla f \cdot e=\sum e_{i} \frac{\partial f}{\partial x_{i}}$ is hyperbolic wrt e.

picture

Derivative Cone: $C_{e}\left(D_{e} f\right) \subseteq C_{e}(f)$.
5.10 Theorem. For integers $m \geq 2$, the multiplicity of x wrt $D_{e} f$ is one less than the multiplicity of x wrt f, i.e. $\operatorname{mult}^{\prime}(x)=\operatorname{mult}(x)-1$. Also if $\operatorname{mult}^{\prime}(x)=1$ and $\operatorname{mult}(x)>0$, then $\operatorname{mult}(x)=2$.
5.11 Theorem. Suppose $C_{e}(f)$ is pointed, $d \geq 3$. Let $x \in C_{e}\left(D_{e} f\right) \backslash C_{e}(f)$, $\operatorname{mult}^{\prime}(x)=1, v \in T_{x}^{\prime}$ some tangent vector to the derivative cone. If $v \notin \mathbb{R} x$, then $v^{t}\left(D_{e} f\right)^{\prime \prime} v<0$.
5.12 Corollary. So x is an exposed extreme direction of $C_{e}\left(D_{e} f\right)$.

5.4 Higher Dimensions and Faces Exposed

$$
C_{e}(f) \subseteq C_{e}\left(D_{e} f\right) \subseteq \ldots C_{e}\left(D_{e}^{d-1} f\right)
$$

Then the above Theorem 5.11 translates to
5.13 Theorem. Suppose $C_{e}(f)$ is pointed, $d \geq 3$. Let $x \in C_{e}\left(D_{e}^{k} f\right) \backslash C_{e}(f)$, mult ${ }^{(k)}(x)=1$, $v \in T_{x}^{(k)}$ some tangent vector to the derivative cone. If $v \notin \mathbb{R} x$, then $v^{t}\left(D_{e}^{k} f\right)^{\prime \prime} v<0$.

So x is an exposed extreme direction of $C_{e}\left(D_{e}^{k} f\right)$.
5.14 Theorem. All faces of $C_{e}(f)$ are exposed.

The proof consists of showing the following two propositions.
5.15 Proposition. For $k=0,1, \ldots, d-2$ each proper face of $C_{e}\left(D_{e}^{k} f\right)$ either is a face of $C_{e}(f)$ or it is an exposed extreme ray not in $C_{e}(f)$.

Proof. Just a rephrasing of Theorem 5.13.
5.16 Proposition. Let F be a proper face of $C_{e}(f)$ and let $x \in \operatorname{relint}(F)$. Set $m=\operatorname{mult}(x)$. Then F is a proper face of $C_{e}\left(D_{e}^{m-1} f\right)$.

6 Sums of Squares in Extremal Combinatorics

I will diverge from the notation on the board.
We want to tackle some problems in graph theory. So we index our variables by the edges, or have them double-indexed by the vertices.
Let $G=(V, E)$ be a simple graph. We have 0/1-problems, so we include constraints $x_{i j}^{2}=x_{i j}$ for all $\{i, j\} \in E$, or for all $i, j \in V$.
6.1 Example. We want to minimise the density of triangles. To check whether $1,2,3$ forms a triangle, we use $x_{12} x_{23} x_{13}$. The density function can then be written as

$$
\operatorname{Sym}_{n}\left(x_{12} x_{23} x_{13}\right)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \sigma\left(x_{12} x_{23} x_{13}\right)
$$

In general, we want to introduce notation.

- $\{1,2\} \cong x_{12}$
- $P_{3} \cong x_{12} x_{23}$
- $\{1, *\} \cong \operatorname{Sym}_{n-1}(\{1,2\})=\frac{1}{n-1} \sum_{i \geq 2} x_{1 i}$

What are inequalities for subgraph-densities, e.g. for P_{2} or C_{3} ? We will abuse notation and identify a graph with its subgraph-density. Trivially we have $0 \leq H \leq 1$ for any subgraph. But mainly we are interested in asymptotic behaviour, i.e. inequalities that are valid on accumulation points. A small miracle

$$
\begin{aligned}
\{1,2\} \times\{1,3\} & =\{\{1,2\},\{1,3\}\} \\
x_{12} \times x_{13} & =x_{12} x_{13}
\end{aligned}
$$

which means, we take fully labelled graphs and glue them together on the common labels. Thanks to our constraints we can eliminate squares as in

$$
\begin{aligned}
(1-2-3) \times(2-3-4) & =1-2-3-4 \\
x_{12} x_{23} \times x_{23} x_{34} & =x_{12} x_{23} x_{34}
\end{aligned}
$$

For unlabelled graphs, this becomes tricky

$$
\begin{aligned}
(1-*) \times(1-*) & \cong\left(\frac{1}{n-1} \sum_{i \geq 2} x_{1 i}\right)^{2}=\underbrace{\frac{1}{(n-1)^{2}} \sum_{i \geq 2} x_{1 i}}_{\rightarrow 0}+\frac{2}{(n-1)^{2}} \sum_{i>j \geq 2} x_{1 i} x_{1 j} \\
& \approx \frac{1}{\binom{n-1}{2}} \sum_{i>j \geq 2} x_{1 i} x_{1 j} \cong(*-1-*)
\end{aligned}
$$

which is the graph we expected. Note how we needed the asymptotic behaviour here.
6.2 Remark. Full symmetrisation just removes all labels (just a big average).

We can allow forbid edges by using $\left(1-x_{i j}\right)$. This allows us to find densities of induced subgraphs. To regard something mildly non-trivial, we take

$$
\begin{aligned}
\operatorname{Sym}_{n}\left(((1-*)-(2-*))^{2}\right) & =\operatorname{Sym}_{n}\left((1-*)^{2}+(2-*)^{2}-2((1-*) \times(2-*))\right) \\
& =\operatorname{Sym}_{n}((*-1-*)+(*-2-*)-2(1-*, 2-*)) \\
& =2(*-*-*)-2(*-*)^{2}
\end{aligned}
$$

In terms of graphs, this means $P_{3}-P_{2}^{2} \geq 0$.
Exercise. Show that this inequality is tight on regular graphs (all vertices same degree). This means: Take sequence $G_{1}, \ldots, G_{k}, \ldots$ of regular graphs. If $P_{2}\left(G_{i}\right) \rightarrow d$, then $P_{3}\left(G_{i}\right)-P_{2}\left(G_{i}\right)^{2} \rightarrow 0$ as $k \rightarrow \infty$.

$$
\operatorname{Sym}_{n}\left((12-23+34-14)^{2}\right)=4(*-*)+8(*-*)^{2}-8(*-*-*)
$$

which shows $P_{2}+P_{2}^{2}-2 P_{3} \geq 0$.
So with this little bit of effort, we showed that our densities lie in the small area given by:

7 Determinantal Representations

Suppose $f(x)=\operatorname{det}\left(x_{1} A_{1}+\ldots+x_{n} A_{n}\right)$ where $A_{i} \in \mathbb{S}^{d}(\mathbb{R})$, so $\operatorname{deg}(f)=d$. The term $\sum x_{i} A_{i}$ is called real symmetric matrix pencil of size $d \times d$. If $A(e) \succ 0$, then call this definite determinantal representation of f. This implies f is hyperbolic wrt e.

Proof. Wlog we restrict to $A(e)=I_{d}$. Then $f(t e-v)$ is the characteristic polynomial of $A(v)$, which is real rooted.

Furthermore $C_{e}(F)=\left\{v \in \mathbb{R}^{n}: A(V) \succeq 0\right\}$ is a spectrahedron. So this is a certificate for hyperbolicity (see: SOS as certificate for non-negativity).
7.1 Lemma. Not every hyperbolic polynomial has a (definite) determinantel representation.

Proof. For n, d large, we simply count the dimension.
For smaller parameters, however, thing look better. Regard $n=2$, i.e. $f\left(x_{1}, x_{2}\right)$ homogeneous of degree d. If $x_{2} \nmid f$, then

$$
f\left(x_{1}, 1\right)=c \cdot \prod_{j=1}^{d}\left(x_{1}-\alpha_{j}\right)=c \cdot \operatorname{det}\left(x_{1} I_{d}-\operatorname{diag}\left(\alpha_{1}, \ldots, \alpha_{d}\right)\right)
$$

Note that all α_{j} are real.
For $n=3$, things are more difficult.
7.2 Theorem (Helton-Vinnikov, 2004/Lax-conjecture). If $f \in \mathbb{R}[x, y, z]$ is hyperbolic wrt e, then f has a real symmetric determinantal representation at e.

The same is not true for $n>3$. Furthermore the representations are hard to compute, but they are very useful.
7.3 Example. Consider the cubic

$$
f=x^{3}-x^{2} z-x z^{2}-y^{2} z+z^{3}
$$

To show hyperbolicity we take

$$
A=x\left(\begin{array}{ccc}
-2 & 0 & -1 \\
0 & -1 & 0 \\
-1 & 0 & 0
\end{array}\right)+y\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)+z\left(\begin{array}{lll}
2 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
-2 x+2 z & y & -x+z \\
y & -x+z & 0 \\
-x+z & 0 & z
\end{array}\right)
$$

then $f=\operatorname{det}(A)$, so f is hyperbolic (found by "trial and error").

Proof of Theorem 7.2, general idea. Suppose $\operatorname{det}(A)=f$. Define the adjugate matrix

$$
A^{\text {adj }}:=((-1)^{i+j} \underbrace{\operatorname{det}\left(A_{j, i}^{\prime}\right)}_{(d-1) \text {-minors }})_{i, j}
$$

Then

$$
A \cdot A^{\mathrm{adj}}=A^{\mathrm{adj}} \cdot A=\operatorname{det}(A) \cdot I_{d}
$$

Let $p \in \mathbb{R}^{n}$ with $f(p)=0$. If $(\nabla f)(p) \neq 0$, we have

$$
\underbrace{A(p)}_{\mathrm{rk}=d-1} \cdot \underbrace{A^{\mathrm{adj}}(p)}_{\mathrm{rk}=1}=0
$$

so $\operatorname{Ker} A(p)$ is 1 -dimensional. The map $p \mapsto \operatorname{Ker} A(p)$ is called line bundle on $\{f=0, \nabla f \neq 0\}$. This is parametrised by any one column of $A^{\text {adj }}$.

This building of the determinantal representation is called "Dixon process".

7.1 Generalised Lax Conjecture

7.4 Claim. Every hyperbolicity cone is a spectrahedron.

Given f irreducible, hyperbolic wrt e, there exists A such that $G=\operatorname{det}(A), A(e) \succ 0$ and $C_{e}(f)=$ $C_{e}(g)$. If $\operatorname{deg} g \geq \operatorname{deg} f$, this means $f \mid g$.
It was shown, that taking g as a power of f does not suffice, as shown by Brändén.
Equivalently: Given such f, there exists h hyperbolic wrt e such that $C_{e}(f) \subseteq C_{e}(h)$ and $f \cdot h$ has a determinantal representation at e.
7.5 Theorem (Mario Kummer). This is true, up to the inclusion.

This approach is similar to Hilbert's 17th problem. We cannot have SOS, but some multiples has an SOS-representation.

7.2 Hermite Method

Suppose $H \in \mathbb{R}[t]$ is monic, $\operatorname{deg} h=d$. Then we can write

$$
h=\sum_{j=0}^{d} a_{j} t^{d-j}=\prod_{j=1}^{d}\left(t-\alpha_{j}\right)
$$

To count the nuber of real roots, there is a method by Sturm, but here we want to focus on another one by Hermite.
7.6 Definition. The power sum is $\omega_{k}:=\sum_{j=1}^{d} \alpha_{j}^{k}$.

For these we have the Newton identities, which express ω_{k} in the coefficients a_{i}, e.g.

$$
\begin{aligned}
& \omega_{0}=d \\
& \omega_{1}=-a_{1} \\
& \omega_{2}=a_{1}^{2}-2 a_{2} \\
& \omega_{3}=-a^{3}+3 a_{1} a_{2}-3 a_{3}
\end{aligned}
$$

These we put in a matrix

$$
H(k):=\left(\omega_{j+k-2}\right)_{1 \leq j, k \leq d}
$$

7.7 Theorem. h is real rooted iff $H(k) \succeq 0$.

Now suppose $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ homogeneous of degree $d, e=(0, \ldots, 0,1)$ and $f(e)=1$. Then

$$
f=\sum_{j=0}^{d} f_{j}\left(x_{1}, \ldots, x_{n-1}\right) \cdot x_{n}^{d-j}
$$

7.8 Corollary. The following are equivalent

- f is hyperbolic wrt e
- for all $a \in \mathbb{R}^{n-1}$ the univariate $f\left(a, x_{n}\right) \in \mathbb{R}\left[x_{n}\right]$ is real rooted
- $H_{x_{n}}(f)(a) \succeq 0$ for all $a \in \mathbb{R}^{n-1}$, where $H_{x_{n}}$ is a symmetric matrix with entries in x_{1}, \ldots, x_{n-1}

So we rephrased the question "hyperbolic" to "psd" (aka "non-negative"). This can be further translated to non-negativity of polynomials.

$$
\forall a \in \mathbb{R}^{n-1} \cdot M(a) \succeq 0 \Leftrightarrow 0 \leq\left(y_{1}, \ldots, y_{d}\right) \cdot M \cdot\left(y_{1}, \ldots, y_{d}\right)^{T} \in \mathbb{R}[x, y]
$$

7.9 Theorem. If $f^{r}=\operatorname{det}(A), A(e)=I_{d}$ for some $r \geq 1$, then $H(f)$ is SOS.
7.10 Remark. A polynomial matrix M is SOS as above iff M is a sum of matrix squares $M=$ $\sum Q_{i}^{T} Q_{i}$.

8 Stable Polynomials

We follow Wagner: Multivariate stable polynomials and their applications.
8.1 Definition. A polynomial $f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is stable if $f(z) \neq 0$ for all points $z \in \mathbb{C}^{n}$ with $\operatorname{Im}(z) \in \mathbb{R}_{>0}^{n}$ and real stable if f is stable and $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$.
8.2 Example. Take $n=1$ and $f=(x+i)(x-(2-i))(x-1)$.

Another example, this time real stable, is $f=(x-1)(x+1)(x-2)$.
8.3 Proposition. Polynomial $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is real stable iff for all $a \in \mathbb{R}_{>0}^{n}$ and $b \in \mathbb{R}^{n}$, the polynomial $f(a t+b) \in \mathbb{R}[t]$ is real rooted.

Proof. \Rightarrow : Assume f is not real rooted. Consider

$$
f(\underbrace{(\alpha+i \beta) a+b}_{z})=0
$$

where $a \in \mathbb{R}_{>0}^{n}$ and take $\beta>0$. Then

$$
\operatorname{Im}(z)=b \cdot a \in \mathbb{R}_{>0}^{n}
$$

so f is not stable.
\Leftarrow : Assume f is not stable. Take $a \in \mathbb{R}_{>0}^{n}$ and $b \in \mathbb{R}^{n}$ such that $f(i a+b)=0$. Then $f(t a+b)$ has root $t=i$, so it is not real rooted.
8.4 Corollary. For $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d}$ we have: f is stable iff f is hyperbolic wrt every $a \in \mathbb{R}_{>0}^{n}$.
8.5 Remark. The following are stable

- $\prod_{i=1}^{n} x_{i}$
- $D_{a} f$ for stable f and $a \in \mathbb{R}_{\geq 0}^{n}$
- elementary-symmetric polynomials $e_{k}\left(x_{1}, \ldots, x_{n}\right)$
- $\operatorname{det}\left(\sum x_{i} A_{i}+B\right)$ for $A_{i} \in \mathbb{S}_{+}^{d}$ and $B \in \mathbb{S}^{d}$
8.6 Example. Consider

$$
A_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) \quad A_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) \quad A_{3}=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
$$

Then we get the stable polynomial

$$
\operatorname{det}\left(\sum x_{i} A_{i}\right)=\operatorname{det}\left(\begin{array}{cc}
x_{1}+x_{3} & x_{3} \\
x_{3} & \\
x_{2}+x_{3}
\end{array}\right)=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}
$$

More generally, gien $v_{1}, \ldots, v_{n} \in \mathbb{R}^{d}$, take $A_{i}=v_{i} v_{i}^{T}$. Then

$$
\operatorname{det}\left(\sum x_{i} v_{i} v_{i}^{T}\right) \sum_{I \subseteq[n],|I|=d} \operatorname{det}\left(v_{i}: i \in I\right)^{2} \cdot \prod_{i \in I} x_{i}
$$

8.7 Theorem (COSW,2004). If we have a stable polynomial of the form

$$
f=\sum_{I \subseteq[n],|I|=d} c_{I} \prod_{i \in I} x_{i} \in \mathbb{R}[x]
$$

then $\left\{I: c_{I} \neq 0\right\}$ are the bases of a matroid. The matroid is called hyperbolic matroid.
In Example 8.6 we have $v_{1}=(1,0), v_{2}=(0,1)$ and $v_{3}=(1,1)$. The set of bases is $\{\{1,2\},\{1,3\},\{2,3\}\}$ and we clearly see that any pair of the vectors in linearly independent.
On the other hand, there are no $a, b \in \mathbb{R}^{*}$ such that $a x_{1} x_{2}+b x_{3} x_{4}$ is stable.
More generally $e_{k}\left(x_{1}, \ldots, x_{n}\right)$ corresponds to the uniform matroid of rank k on n elements.
Now consider graphs $G(V, E)$ where $|V|=d+1$ and $|E|=n$. For each edge $e=i j \in E$ define

$$
v_{i j}:= \begin{cases}e_{i}-e_{j} & : i<j \leq d \\ e_{i} & : j=d+1\end{cases}
$$

Operations preserving stability	Matroid operations	$\begin{aligned} & \text { Operations on }\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \\ & \mathbb{R}^{d} \end{aligned}$
$f \mapsto f_{\mid x_{i}=0}$	Deletion $M \mapsto M-i$, new bases $B(M-i)=\{b \in B$: $i \notin b\}$	drop v_{i}
$F \mapsto \frac{\partial f}{\partial x_{i}}$	Contraction $M \quad \mapsto / i$, $B(M / i)=\{B \backslash\{i\}: i \in B\}$	Project v_{j} for $j \neq i$ onto v_{i}^{\perp}
$f \mapsto \prod x_{i} \cdot f\left(\frac{1}{x_{1}}, \ldots, \frac{1}{x_{n}}\right)$	Dual $M \quad \mapsto \quad M^{*}$, where $\begin{aligned} & B\left(M^{*}\right)=\{[n] \backslash B: B \in \\ & B(M)\} \end{aligned}$	Columns of matrix, whose rows span the orthogonal complement of $\operatorname{rowspan}\left(v_{1}, \ldots, v_{n}\right)$

8.8 Example. Take $G=K_{4}$, which means $d=3, n=6$. This yields a matrix

$$
v=\left(\begin{array}{ccccccc}
& 12 & 13 & 23 & 14 & 24 & 34 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 \\
2 & -1 & 0 & 1 & 0 & 1 & 0 \\
3 & 0 & -1 & -1 & 0 & 0 & 1
\end{array}\right)
$$

8.9 Theorem. We have

$$
F_{G}(x)=\operatorname{det}\left(\sum_{i j \in E} x_{i j} v_{i j} v_{i j}^{T}\right)=\sum_{T \text { spanning tree of } G} \prod_{i j \in T} x_{i j}
$$

8.10 Example. Take $G=K_{3}$.

$$
\operatorname{det}\left(\begin{array}{cc}
x_{12}+x_{13} & -x_{12} \\
-x_{12} & x_{12}+x_{23}
\end{array}\right)=x_{12} x_{13}+x_{12} x_{23}+x_{13} x_{23}
$$

For $F=K_{4}$ we get

$$
f_{K_{4}}=\operatorname{det}\left(\sum_{i j \in E} x_{i j} v_{i j} v_{i j}^{T}\right)=12 P_{4}+4 S_{3}
$$

using our previous notation for polynomials.
Remark (continuing Remark 8.5). - graphical matroids

- matroid represented by $v_{1}, \ldots, v_{n}: f=\operatorname{det}\left(\sum x_{i} v_{i} v_{i}^{T}\right)$.

8.1 Operations preserving stability

It turns out that representable matroids are a proper subset of hyperbolic matroids, which are a proper subset of all matroids. The first one is shown by "Vamos matroid", $(d=4, n=8)$; the other by "Fano matroid" $(d=3, n=7)$.

8.2 Reduce to Multiaffine Polynomials via Polarisation

Assume we have $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$, degree d_{i} in variable x_{i} (write $\operatorname{deg}_{i} f=d_{i}$).
The polarisation of f, written $P(f) \in \mathbb{R}\left[x_{1,1}, \ldots, x_{1, d_{1}}, \ldots, x_{n, 1}, \ldots, x_{n, d_{n}}\right]$ is the unique multiaffine polynomial such that

- $P(f)$ is symmetric in $x_{j, 1}, \ldots, x_{j, d_{j}}$ for all j
- we have

$$
P(f)(\underbrace{x_{1}, \ldots, x_{1}}_{d_{1}}, \ldots, \underbrace{x_{n}, \ldots, x_{n}}_{d_{n}})=f
$$

8.11 Theorem. F is stable iff $P(f)$ is stable.

This means, we can restrict to multiaffine polynomials.
8.12 Example. The polynomial $f=\sum_{k=0}^{n} a_{k} x^{k}$ is real rooted iff

$$
P(f)=\sum \frac{a_{k}}{\binom{n}{k}} e_{k}\left(x_{1}, \ldots, x_{n}\right)
$$

is stable.

9 Interlacers

9.1 Definition. Let $f, g \in \mathbb{R}[t]$ be real rooted, $d=\operatorname{deg} f=\operatorname{deg} g+1$. Suppose $\alpha_{1}, \ldots, \alpha_{d}$ are the roots of $f, \beta_{1}, \ldots, \beta_{d-1}$ are the roots of g, both including multiplicities. Then we say g interlaces f, written $g \ll f$, if the roots of g sit between the roots of f, i.e. $\alpha_{i} \leq \beta_{i} \leq \alpha_{i+1}$ for $1 \leq i<d$. See figure 1 . We say g strictly interlaces f if all inequalities are strict.
9.2 Example. If f is real rooted, then $f^{\prime} \ll f$.
9.3 Definition. Let $f, g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ hyperbolic wrt e, and $\operatorname{deg} f=\operatorname{deg} g+1$. Then g interlaces f if

$$
\forall v \in \mathbb{R}^{n} . g(t e+v) \ll f(t e+v)
$$

9.4 Example. Let $F, g \in \mathbb{R}[x, y, z], e=(1,0,0)$ and fix $z=1$ (dehomogenise).

9.5 Example. 1. Since $\frac{d}{d t} d(t e+v) \ll f(t e+v)$ for all v, we have

$$
D_{e} f=\sum_{j=1}^{n} e_{j} \frac{\partial f}{\partial x_{j}} \ll f
$$

More generally, we have $D_{a} f \ll f$ for all $a \in C_{e}(f)$.
2. Let $f \operatorname{det} X$ for $X \in \mathbb{S}^{n}$, and $E \succeq 0$. Then $D_{E}(\operatorname{det} X):=\operatorname{tr}\left(E \cdot X^{\text {adj }}\right) \ll \operatorname{det} X$. More generally, if $f=\operatorname{det}\left(\sum x_{i} A_{i}\right)$ and $A(e) \succ 0$, then $\operatorname{tr}\left(E \cdot A^{\text {adj }}\right) \ll f$ (wrt $\left.e\right)$. In particular, we can pick $E=e_{1} \cdot e_{1}^{T}$ (just single 1 in corner), then for the $d-1$-minor we have $\operatorname{det}\left(A_{1,1}^{\prime}\right) \ll f$, which means the eigenvalues of $A_{1,1}^{\prime}$ interlace the eigenvalues of A.

9.1 The Interlacer Cone

For simplicity assume f is irreducible and $f(e)>0$. Denote $Z(f)=\left\{a \in \mathbb{R}^{n}: f(a)=0\right\}$. Now we are interested in

$$
\operatorname{Int}_{e}(f)=\left\{g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d-1}: g \ll f, g(e)>0\right\}
$$

If we take the intervals, given by the roots of f and look at the possible sign of g, we gat

$$
\forall g_{1}, g_{2} \in \operatorname{Int}_{e}(F) \cdot \forall a \in \mathbb{Z}(f) \cdot g_{1}(a) \cdot g_{2}(a) \geq 0
$$

which means, both g_{i} have the same sign. Furthermore

$$
g_{1} \ll f \wedge g_{1}(e)>0 \wedge \forall a \in \mathbb{Z}(f) \cdot g_{1}(a) g_{2}(a) \geq 0 \Longrightarrow g_{2} \in \operatorname{Int}_{e}(f)
$$

9.6 Theorem. For $g \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]_{d-1}$ with $g(e)>0$ the following are equivalent

1. $g \in \operatorname{Int}_{e}(f)$
2. $D_{e} f \cdot g \geq 0$ on $Z(f)$
3. $D_{e} f \cdot g-f \cdot D_{e} g \geq 0$ on \mathbb{R}^{n}.

Proof. (1) $\Leftrightarrow(2)$ and $(3) \Rightarrow(2)$ we have basically done.
For $(2) \Longrightarrow(3)$ regard the univariate case: $f, g \in \mathbb{R}[t]$ monic and real rooted. Then, if $g \ll f$, for the Wronskian we have

$$
W(f, g)=f^{\prime} g-g^{\prime} f=g^{2}\left(\frac{f}{g}\right)^{\prime} \geq 0
$$

9.7 Corollary. $\operatorname{Int}_{e}(f)$ is a convex cone.
9.8 Theorem. For any $a \in \mathbb{R}^{n}$, we have $a \in C_{e}(f) \Leftrightarrow D_{a} f \ll f$.
9.9 Theorem. Define the generalised Wronskian $\Delta_{e, a}=D_{e} f \cdot D_{a} f-f \cdot D_{e} D_{a} f$. Then

$$
C_{e}(f)=\left\{a \in \mathbb{R}^{n}: D_{a} f \in \operatorname{Int}_{e}(f)\right\}=\left\{a \in \mathbb{R}^{n}: \forall x \in \mathbb{R}^{n} . \Delta_{e, a}(x) \geq 0\right\}
$$

So this is a slice of the cone of non.negative polynomials.
This allows for an SOS-relaxation of $C_{e}(f)$, as $\left\{a \in \mathbb{R}^{n}: \Delta_{e, a} \in \operatorname{SOS}\right\}$.
9.10 Theorem. If f is determinantal, then $\Delta_{e, a}$ is $S O S$ for all $a \in \mathbb{R}^{n}$.

10 Greg III

My notes are not useful. The board was mainly a collection of pictures.
10.1 Remark. The density of any tree in a regular graph is asymptotically P_{2}^{k} where k is the number of edges in the tree.

Proof. By induction on k, the base is $T=P_{2}$.
Now let $S=T+e$ some new tree, where we added a single edge (with its end as new leaf). Then $S(G) \approx P_{2}(G) \times T(G)$ if G is a regular graph.

$$
S(G)=\operatorname{Sym}\left((1-*) \times T_{1}\right)(G)=\operatorname{Avg}\left((1-*)(G) \times T_{1}(G)\right)=P_{2}(G) \times \operatorname{Sym}\left(T_{1}\right)(G)
$$

where T_{1} is T with the label 1 at the appropriate place.

To extend the picture form the last time, we add another result.

fix red line

The red line is due to Ahlswede-Katone. The extremal cases for the second half are Complete graphs + empty vertices (quasi-clique). For the first half it is the complement of a quasi-clique.
For tree versus edge, we have the curve $y=x^{E(T)}$ as lower bound (due to Sidorenko). Reiherwagner: S_{k} is similar to P_{3} and P_{5} is similar to P_{3}. If T has a perfect matching, then clique always wins.
10.2 Definition. A moment curve is the curve $t \mapsto\left(1, t, t^{2}, \ldots, t^{k}\right)=: C_{k}$, where $t \in[0,1]$.

11 Stable Polynomials II

See e.g. "Hyperbolic and stable polynomials in combinatorics and probability" by Pemantle, around 2000.
11.1 Example (Newton's Inequalities). Take $f=\sum_{k=0}^{d} a_{k} x^{k} \in \mathbb{R}[x]$ real rooted. Then

$$
\left(\frac{a_{k}}{\binom{d}{k}}\right)^{2} \geq \frac{a_{k+1}}{\binom{d}{k+1}} \cdot \frac{a_{k-1}}{\binom{d}{k-1}}
$$

If $a_{k} \geq 0$, then $a_{k}^{2} \geq a_{k+1} a_{k-1}$. Hence

$$
\log \left(a_{k}\right) \geq \frac{\log \left(a_{k+1}\right)+\log \left(a_{k-1}\right)}{2}
$$

Therefore the roots are unimodal (on some concave curve).

11.1 Application: Graph Matching

A matching on a graph $G=(V, E)$ is a subset of disjoint edges. Let m_{k} be the number of matchings with k edges.
11.2 Theorem. $p(x):=\sum_{k} m_{k} x^{k}$ is real rooted.

Proof. Let $n:=|V|$. Then

$$
M_{G}\left(x_{1}, \ldots, x_{n}\right):=\prod_{i j \in E}\left(1-x_{i} x_{j}\right)
$$

is stable. Consider

$$
\begin{aligned}
T_{M A}: \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] & \rightarrow \mathbb{R}\left[x_{1}, \ldots, x_{n}\right] \\
T_{M A}\left(x^{\alpha}\right) & = \begin{cases}x^{\alpha} & : \forall i . \alpha_{i} \leq 1 \\
0 & : \text { else }\end{cases}
\end{aligned}
$$

By some theorem of Borcea and Brändén and some exercise, $T_{M A}$ preserves stability.

$$
T_{M A}\left(M_{G}\right)=T_{M A}\left(\sum_{S \subseteq E}(-1)^{|S|} \prod_{i j \in S} x_{i} x_{j}\right)=\sum_{\substack{M \subseteq E \\ \text { matching }}}(-1)^{|M|} \prod_{i j \in M} x_{i} x_{j}
$$

again is stable. Consider

$$
T_{M A}\left(M_{G}\right)(x, \ldots, x)=\sum_{k}(-1)^{k} m_{k} x^{2 k}=p\left(-x^{2}\right)
$$

is stable, thus also real rooted. By another exercise, $p(x)$ thus is real rooted.

11.2 Multiaffine Polynomials \rightarrow SUBMODULAR

11.3 Theorem (Brändén). If $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is stable and $i, j \in[n]$, then

$$
\Delta_{i j}=\frac{\partial f}{\partial x_{i}} \cdot \frac{\partial f}{\partial x_{j}}-f \cdot \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \geq 0
$$

for all $x \in \mathbb{R}^{n}$.
11.4 Definition. A function $F: 2^{[n]} \rightarrow \mathbb{R} \cup\{-\infty\}$ is submodular if for all $S, T \subseteq[n]$ we have

$$
F(S)+F(T) \geq F(S \cap T)+F(S \cup T)
$$

Equivalently for all $S \subseteq[n]$ and $i, j \notin S$ we have

$$
F(S \cup\{i\})+F(S \cup\{j\}) \geq F(S)+F(S \cup\{i, j\})
$$

11.5 Proposition. If we have a stable function

$$
f=\sum_{S \subseteq[n]} c_{S} \prod_{i \in S} x_{i}
$$

with $c_{S} \geq 0$, then $F(S):=\log \left(c_{S}\right)$ is submodular.
Proof. We have

$$
0 \leq \Delta_{i j} f(0)=c_{\{i\}} c_{\{j\}}-c_{\emptyset} c_{\{i, j\}}
$$

Therefore $F(\{i\})+F(\{j\}) \geq F(\emptyset)+F(\{i, j\})$.
Note that the polynomial

$$
\prod_{k \in S} \frac{\partial}{\partial x_{k}} f=\sum_{S \subseteq T \subseteq[n]} c_{T} \prod_{i \in T \backslash S} x_{i}
$$

is stable.

$$
\left(\prod_{k \in S} \frac{\partial}{\partial x_{k}} f\right)_{x=\mathbf{0}}=c_{S}
$$

and taking the Wronskian yields

$$
\Delta_{i j}\left(\prod_{k \in S} \frac{\partial}{\partial x_{k}} f\right)_{x=\mathbf{0}}=c_{S \cup\{i\}} c_{S \cup\{j\}}-C_{S} c_{S \cup\{i, j\}} \geq 0
$$

Applying \log yields the result.
11.6 Remark (Application). Suppose $A \in \mathbb{S}_{+}^{n}$. Then we get a stable polynomial with nonnegative coefficients by

$$
f(x):=\operatorname{det}\left(\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)+A\right)=\sum_{S \subseteq[n]} \operatorname{det}\left(A\left[S^{c}\right]\right) \prod_{i \in S} x_{i}
$$

where $A\left[S^{c}\right]$ denotes the principal minor of A, whose rows/columns are not in S. Then $F(S):=$ $\log \operatorname{det}\left(A\left[S^{c}\right]\right)$ is submodular.

11.3 Probability Distributions

Let $\mu: 2^{[n]} \rightarrow \mathbb{R}_{\geq 0}$ be a probability distribution. This means

$$
\mu(S) \geq 0 \quad \sum_{S \subseteq[n]} \mu(S)=1
$$

Define

$$
f_{\mu}\left(x_{1}, \ldots, x_{n}\right):=\sum_{S \subseteq[n]} \mu(S) \prod_{i \in S} x_{i}
$$

11.7 Definition. If f_{μ} is stable, then call μ strongly Rayleigh.

$$
\begin{aligned}
\frac{\partial f_{\mu}}{\partial x_{i}} & =\sum_{i \in S \subseteq[n]} \mu(S) \prod_{j \in S-i} x_{j} \\
\frac{\partial f_{\mu}}{\partial x_{i}}(\mathbf{1}) & =\operatorname{Prob}_{\mu}(i \in S)
\end{aligned}
$$

Recall $\Delta_{i j}\left(f_{\mu}\right) \geq 0$, so in particular

$$
0 \leq \Delta_{i j}\left(f_{\mu}\right)(\mathbf{1})=\frac{\partial f_{\mu}}{\partial x_{i}}(\mathbf{1}) \cdot \frac{\partial f_{\mu}}{\partial x_{j}}(\mathbf{1})-f(\mathbf{1}) \cdot \frac{\partial^{2} f_{\mu}}{\partial x_{i} \partial x_{j}}(\mathbf{1})
$$

Translating back to probability, we get

$$
\operatorname{Prob}(i \in S) \cdot \operatorname{Prob}(j \in S) \geq \operatorname{Prob}(i, j \in S)
$$

which means the events $i \in S$ and $j \in S$ are negatively correlated.
11.8 Remark (Application: Spanning Trees). Given graph G with t spanning trees. Define measure $\mu: 2^{E} \rightarrow \mathbb{R}_{\geq 0}$ via

$$
\mu(S)= \begin{cases}\frac{1}{t} & : S \text { is a spanning tree } \\ 0 & : \text { else }\end{cases}
$$

define the (stable) polynomial

$$
g_{\mu}:=\frac{1}{t} \sum_{\substack{T \subseteq E \\ \text { spanning tree }}} \prod_{e \in T} x_{e}
$$

Then for all $e, e^{\prime} \in E$ we have

$$
\operatorname{Prob}(e \in T) \cdot \operatorname{Prob}\left(e^{\prime} \in T\right) \geq \operatorname{Prob}\left(e, e^{\prime} \in T\right)
$$

12 Ranks on (the Boundary of) Spectrahedra

12.1 Definition. A spectrahedron $S=\mathscr{A} \cap \mathbb{S}_{+}^{N}$ is the solution space of an SDP, i.e. $\mathscr{A} \subseteq \mathbb{R}^{N}$ is an affine subspace.
12.2 Theorem (Face Lattice of \mathbb{S}_{+}^{N}). Suppose $L \subseteq \mathbb{R}^{N}$ is a linear subspace. Define $F_{L}:=$ $\left\{X \in \mathbb{S}_{+}^{N}: L \subseteq \operatorname{ker} X\right\}$.

1. For every $X \in \mathbb{S}_{+}^{N}$, there is a particular subspace $F_{\operatorname{ker} X}$, which is the unique face of \mathbb{S}_{+}^{N} that contains X in its relative interior.
2. Assume $\operatorname{codim}(L)=r$. Then $\operatorname{dim}\left(F_{L}\right)=\binom{r+1}{2}$ and there exists $O \in O(N)$ such that

$$
O^{T} F_{L} O=\left\{\left(\begin{array}{ll}
B & 0 \\
0 & 0
\end{array}\right): B \in \mathbb{S}_{+}^{r}\right\}
$$

3. $L \mapsto F_{L}$ is an anti-isomorphism of lattices, i.e.

$$
L \subseteq L^{\prime} \Leftrightarrow F_{L} \supseteq F_{L^{\prime}} \quad F_{L+L^{\prime}}=F_{L} \sqcap F_{L^{\prime}} \quad F_{L \cap L^{\prime}}=F_{L} \sqcup F_{L^{\prime}}
$$

Proof ingredients. (a) $\mathbb{S}+{ }^{N}$ is invariant under $X \mapsto O^{T} X O$ for all $O \in O(N)$.
(b) $L=\left\{x \in \mathbb{R}^{N}: x_{1}, \ldots, x_{r}=0\right\}$ for nice choice of coordinates.

12.1 Pataki Interval

12.3 Definition (Rank Varieties). Let $V_{r} \subseteq \mathbb{S}^{N}$ be the set of all $X \in \mathbb{S}^{N}$ with $\operatorname{rk}(X) \leq r$.
12.4 Remark. If $X, Y \in V_{r}$ and $\operatorname{ker}\left(X \subseteq \operatorname{ker}(Y)\right.$, then $\forall s, t \in \mathbb{R} . s X+t Y \in V_{r}$.

The variety V_{r} is ruled by linear spaces, i.e.

$$
\begin{aligned}
U_{L} & :=\left\{X \in \mathbb{S}^{N}: L \subseteq \operatorname{ker}(X)\right\} \\
V_{r} & =\bigcup_{\substack{L \subseteq \mathbb{R}^{N} \\
\operatorname{codim}(L)=r}} U_{L}
\end{aligned}
$$

In fact $U_{L}=\operatorname{span}\left(F_{L}\right)$.

12.2 Lower Bound of the Pataki Interval

Next we want to find $\operatorname{dim}\left(V_{r}\right)$. We can do anything in the $r \times r$-part, and then in the remaining $r \times(N-r)$-part. The rest of the matrix is then determined. This gives us $\operatorname{dim}\left(V_{r}\right)=\binom{r+1}{2}+r(N-r)$.
12.5 Remark. Let $X \subseteq \mathbb{P}^{N-1}$ be an irreducible algebraic variety of dimension k. For a generic linear space $L \subseteq \mathbb{P}^{N-1}$, we have $X \cap L \neq \emptyset \Leftrightarrow \operatorname{codim}(L) \leq \operatorname{dim}(X)$.
12.6 Proposition. Let $\mathscr{A} \subseteq \mathbb{S}^{N}$ be a generic affine subspace of dimension m. Then rank r of an extreme point of $\mathscr{A} \cap \mathbb{S}_{+}^{N}$ satisfies

$$
r N-\binom{r}{2} \geq\binom{ N+1}{2}-M \Longleftrightarrow m \geq\binom{ N-r+1}{2}
$$

This gives a lower bound on r.

12.3 Upper Bound of the Pataki Interval

Let $S=\mathscr{A} \cap \mathbb{S}_{+}^{N} \neq \emptyset$, with $\operatorname{dim}(\mathscr{A})=m$ suppose $X \in \mathscr{A} \cap \mathbb{S}_{+}^{N}$ is of rank r. Then

$$
X \in F_{\operatorname{ker}(X)} \cap \mathbb{S}_{+}^{N}=\left\{Y \in \mathbb{S}_{+}^{N}: \operatorname{ker}(X) \subseteq \operatorname{ker}(Y)\right\}=O^{T}\left\{\left(\begin{array}{cc}
B & 0 \\
0 & 0
\end{array}\right): B \in \mathbb{S}_{+}^{r}\right\} O
$$

12.7 Remark. If $X \in \operatorname{ex}(\mathbb{S})$, then $\mathscr{A} \cap F_{\mathrm{ker}(X)}=\{X\}$, so $\mathscr{A} \cap U_{\mathrm{ker}(X)}=\{X\}$. Therefore

$$
\begin{aligned}
& \underbrace{\operatorname{dim}(\operatorname{span} \mathscr{A})}_{=m+1}+\operatorname{dim}\left(U_{\operatorname{ker}(X)}\right) \\
&= \operatorname{dim}\left(\operatorname{span} \mathscr{A}+U_{\operatorname{ker}(X)}\right)+\underbrace{\operatorname{dim}\left(\operatorname{span} \mathscr{A} \cap U_{\operatorname{ker}(A)}\right)}_{=1} \\
& \leq \operatorname{dim}\left(\mathbb{S}^{N}\right)+1=\binom{N+1}{2}+1
\end{aligned}
$$

This gives us an upper bound on r by

$$
\binom{r+1}{2} \leq\binom{ N+1}{2}-m
$$

12.8 Proposition (Pataki Interval). Let $\mathscr{A} \subseteq \mathbb{S}^{N}$ be an affine space of dimension m. The rank r of an extreme point of $\mathscr{A} \cap \mathbb{S}_{+}^{N}$ satisfies

$$
\binom{r+1}{2} \leq\binom{ N+1}{2}-m
$$

If \mathscr{A} is generic, it also satisfies

$$
m \geq\binom{ N-r+1}{2}
$$

12.9 Theorem. Let $\mathscr{A} \subseteq \mathbb{S}^{N}$ be an affine subspace, and assume $\emptyset \neq \mathscr{A} \cap \mathbb{S}_{+}^{N}$ is bounded. Suppose $\operatorname{codim}(\mathscr{A})=\binom{r+1}{2}$ for some $r \in \mathbb{N}$ and $N \geq r+2$. Then there exists a matrix $X \in \mathscr{A} \cap \mathbb{S}_{+}^{N}$ with $\operatorname{rk}(X) \leq r$.

Proof. 1. Reduce to $N=r+2, \emptyset \neq \mathscr{A} \cap \mathbb{S}_{++}^{r+2}$.
2. Proof by contradiction: Suppose all matrices in $\partial\left(\mathscr{A} \cap \mathbb{S}_{+}^{r+2}\right)$ have rank $\geq r+1$.

The map

$$
\phi: \mathbb{S}^{r+1} \rightarrow \mathbb{R P}^{r+1} \quad y \mapsto \operatorname{ker}(X(y))
$$

is continuous, injective.
12.10 Example. Take the map

$$
\operatorname{Gr} \mathbb{S}^{6} \rightarrow \mathbb{R}\left[x_{1}, x_{2}, \ldots\right]_{\leq 4} \quad X \mapsto \vec{m}^{T} X \vec{m}
$$

where \vec{m} is the vector of all monomials. we have $\operatorname{dim}\left(\mathbb{S}^{6}\right)=6$ and $\operatorname{dim}\left(\mathbb{R}\left[x_{1}, x_{2}\right]_{\leq 4}\right)=15$, hence $m=6$. We have

$$
\forall f \in \mathbb{R}\left[x_{1}, x_{2}\right]_{\leq 4} \cdot f \geq 0 \Leftrightarrow \mathrm{Gr}^{-1}(f) \cap \mathbb{S}_{+}^{6} \neq \emptyset
$$

Our upper bound by Pataki gives us $r \leq 5$, with the additional Theorem $12.9 r \leq 4$, but Hilbert's Theorem tells us $r=3$, so there is a gap.

13 Symmetry Reductions for Sums of Squares

We are given a quadratic form Q in n variables. To check for SOS, we can solve an $n \times n$-SDP. But we might be able to do better, if Q is symmetric.
In the end, we want to have $Q=\sum l_{i}^{2}$ where the l_{i} are linear forms. S_{n} acts on linear forms, by permuting the variables. First note that $\sum x_{i}$ is fixed and so is its complement $\left\{\sum \alpha_{i} x_{i}: \sum \alpha_{i}=0\right\}$. Assume we have

$$
l \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]=S_{1} \oplus S_{2}
$$

Then we have a unique decomposition $l=h_{1}+h_{2}$ such that $h_{i} \in S_{i}$.

$$
Q=\sum l_{i}^{2} \Longrightarrow Q=\operatorname{Sym} Q=\operatorname{Sym}\left(\sum l_{i}^{2}\right)=\sum \operatorname{Sym}\left(l_{i}^{2}\right)
$$

When focusing on a single linear form, we have

$$
\begin{array}{r}
\operatorname{Sym}\left(l^{2}\right)=\operatorname{Sym}\left(\left(h_{1}+h_{2}\right)^{2}\right)=\operatorname{Sym}\left(h_{1}\right)^{2}+\operatorname{Sym}\left(h_{2}^{2}\right)+2 \underbrace{\operatorname{Sym}\left(h_{1} h_{2}\right)}_{=0} \\
\operatorname{Sym}\left(x_{1}-x_{2}\right)^{2}=\operatorname{Sym}\left(x_{1}^{2}+x_{2}^{2}\right)-2 \operatorname{Sym}\left(x_{1} x_{2}\right)=\frac{2}{n}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)-\frac{2}{\binom{n}{2}} \sum_{i<j} x_{i} x_{j}
\end{array}
$$

As another example, we have

$$
\begin{aligned}
\operatorname{Sym}\left(x_{2}-2 x_{3}+x_{4}\right)^{2} & =\operatorname{Sym}\left(x_{2}^{2}+x_{4}^{2}+4 x_{3}^{2}\right)+\operatorname{Sym}\left(-4 x_{2} x_{3}-4 x_{3} x_{4}+2 x_{2} x_{4}\right) \\
& =\frac{6}{n}\left(x_{1}^{2}+\ldots+x_{n}^{2}\right)-\frac{6}{\binom{n}{2}} \sum_{i<j} x_{i} x_{j}
\end{aligned}
$$

Something more general (symmetric quartics). Symmetric polynomials on $\{0,1\}^{n}$, which means, we are module $\left\langle x_{i}^{2}-x_{i}: i=1, \ldots, n\right\rangle$.
Consider the space of polynomials, we want to squares and decompose into isotopic components

$$
V=W_{1}+\ldots+W_{k}
$$

where each W_{i} is a direct sum of isomorphic irreducibles. Then

$$
\operatorname{Sym} p^{2}=\operatorname{Sym}\left(\left(h_{1}+\ldots+h_{k}\right)^{2}\right)=\sum \operatorname{Sym} h_{i}^{2}+2 \sum \operatorname{Sym}\left(h_{i} h_{j}\right)=\sum \operatorname{Sym} h_{i}^{2}
$$

where $h_{i} \in W_{i}$. Note that cross-products form non-isomorphic irreducibles always vanish.

No we restrict to a single isotypic component $W=V_{1}+\ldots+V_{m}$ and from each V_{i} we choose a representative f_{i}. Then we can define a matrix

$$
F=\left(\operatorname{Sym}\left(f_{i} f_{j}\right): 1 \leq i, j \leq m\right)
$$

Then Q is a sum of squares from W iff there exists $A \in \mathbb{S}_{+}^{m}$ such that $Q=\langle A, F\rangle$.
Symmetric sum of squares on polynomials of degree $\leq d \leq \frac{n}{2}$ on $\{0,1\}^{n}$.

$$
\begin{aligned}
(0, \ldots, 0) & : 1 \\
(1,0, \ldots, 0) & : \sum x_{i}, x_{1}-x_{2} \\
(1,1,0, \ldots, 0) & :\left(\sum x_{i}\right)^{2},\left(x_{1}-x_{2}\right)\left(x_{3}-x_{4}\right)
\end{aligned}
$$

Again, I could not make sense of the board, so the notes stop.

14 Sums of Squares and Determinantal Representations

This lecture is based on "Hyperbolic polynomials, interlacers and SOS" by Kummer/Plaumann/Vinzant and "Non-representable hyperbolic matroid" by Brändén.
Recall for any $f \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ and $\vec{e}, \vec{a} \in \mathbb{R}^{n}$ we have

$$
\Delta_{\vec{e}, \vec{a}}(f)=D_{\vec{e}} f \cdot D_{\vec{a}} f-f \cdot D_{\vec{e}} D_{\vec{a}}(f)
$$

If f is hyperbolic and $\vec{a} \in C(f, \vec{e})$, then $\Delta_{\vec{e}, \vec{a}} f \geq 0$ on \mathbb{R}^{n}.
Now we focus on functions of the form $f=\operatorname{det}(X)$, with $X=\left(x_{i j}: 1 \leq i, j \leq n\right)$.

14.1 Dodgson condensation

Let $A \in \mathbb{R}^{n \times n}$. We define $A_{S, T}$ as the matrix obtained by removing rows S and columns T. Note that we have

$$
\left|A_{1,1}\right| \cdot\left|A_{n, n}\right|-\left|A_{1, n}\right| \cdot\left|A_{n, 1}\right|=\left|A_{1 n, 1 n}\right| \cdot|A|
$$

14.1 Example. Assume we have a symmetric matrix, then we have

$$
A=\left(\begin{array}{lll}
1 & b & c \\
b & d & e \\
c & e & f
\end{array}\right) \Longrightarrow \operatorname{det}(A)=\frac{\left(a d-b^{2}\right)\left(d f-e^{2}\right)-(b e-c d)^{2}}{d}
$$

14.2 Corollary. Let $f=\operatorname{det}(X)$ for $X^{T}=X$. Then

$$
\Delta_{e_{1} e_{1}^{T}, e_{n} e_{n}^{T}} f=\frac{\partial f}{\partial x_{11}} \cdot \frac{\partial f}{\partial x_{n n}}-f \cdot \frac{\partial f}{\partial x_{11} \partial x_{n n}}=\left|X_{1, n}\right|^{2}
$$

14.3 Corollary. Instead of the unit vectors, we can take any vector.

$$
\Delta_{v v^{T}, w w^{T}}(f)=\left(v^{T} X^{\mathrm{adj}} w\right)^{2}
$$

14.4 Theorem. Suppose, we have a multiaffine polynomial

$$
f=\sum_{S \subseteq[n]} c_{S} \prod_{i \in S} x_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]
$$

Then f has a definite determinantal representation iff for all $i, j \in[n]$ the polynomial $\Delta_{i j}(f)$ is a square in $\mathbb{R}[\vec{x}]$.

Proof. Assume $f=\operatorname{det}(A(x))$ where $A(x)=\sum x_{i} A_{i}+b$ with $A_{i} \succeq 0$. Then $A_{i}=v_{i} v_{i}^{T}$. Thus $\Delta_{i j}(f)=\left(v_{i} A(x)^{\text {adj }} v_{j}\right)^{2}$. The converse direction is harder.
More generally
14.5 Theorem. If $f^{r}=\operatorname{det}(A(x))$, then $\Delta_{i j}(f)$ is SOS for any $i, j \in[n]$.

Proof sketch. 1. Assume $f=\operatorname{det}(X)$ and $A, B \succeq 0$, so we can write them as $A=\sum v_{i} v_{i}^{T}$ and $B=\sum w_{j} w_{j}^{T}$. Check that Δ_{\cdot}, is bilinear. Then

$$
\Delta_{A, B} f=\sum_{i, j} \Delta_{v_{i} v_{i}^{T}, w_{j} w_{j}^{T}} f=\sum_{i, j}\left(v_{i}^{T} X^{\mathrm{adj}} w_{j}\right)^{2}
$$

2. $\Delta_{i j}\left(f^{r}\right)=r \cdot f^{2(r-1)} \Delta_{i j}(f)$, so it suffices to find an SOS decomposition for the latter.
14.6 Theorem (Wagner, Wei). Put

$$
B=\binom{[8]}{4} \backslash\{1234,1256,3456,3478,5678\}
$$

Then define the polynomial

$$
f=\sum_{I \in B} \prod_{i \in I} x_{i} \in \mathbb{R}\left[x_{1}, \ldots, x_{8}\right]
$$

Then f is stable.
14.7 Theorem (Brändén). Let f as in Theorem 14.6, and $r \in \mathbb{N}$. Then f^{r} does not have a definite determinantal representation.

Proof. $\Delta_{78}(f)$ is not SOS.
14.8 Lemma (Kummer). $C(f, 1)$ is spectradral.
14.9 Theorem (Brändén). For any graph $G=([n], E)$, the polynomial

$$
f_{G}:=e_{4}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)-\sum_{i j \in E} x_{i} x_{j} y_{i} y_{j}
$$

is stable.
In particular, this yields the result for the Vámos-matroid, for the graph
G_{0} :

Figure 2: The graph for the Vámos matroid
Furthermore, if G has this G_{0} as a subgraph, then $\left(f_{G}\right)^{r}$ does not have a definite determinantel representation.
14.10 Remark. An open question is: Is the hyperbolicity cone of f_{G} spectrahedral?

Rephrased, we ask whether there is some $q(x)$ such that

$$
\begin{aligned}
q(x) f_{G} & =\operatorname{det}\left(\sum x_{i} A_{i}\right) \quad A_{i} \succeq 0 \\
C_{\mathbf{1}}\left(Q \cdot f_{G}\right) & =C\left(f_{G}\right) \Longleftrightarrow C_{\mathbf{1}}\left(f_{G}\right) \subseteq C_{\mathbf{1}}(q)
\end{aligned}
$$

