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Introduction

This course follows the book �Convex Optimisation� by Boyd and Vandenberghe.
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We are interested in optimisation problems of the following form:

v∗ = inf
∈∈R

f0(x) objective function

∀i = 1, . . . , n : fi(x) ≤ 0 constraints

Further x is the decision variable and v∗ is the optimal value. We write inf instead of min to allow
unbounded problems as well.
In general these problems are hard to solve, but we will focus on a restricted version. We start
with Conic optimisation is a generalisation of linear programming.

v∗ = inf cTx =
n∑
i=1

cixi

Ax = b

xi ≥ 0

x �K 0 x ∈ K, where K is some cone

1 Preliminaries

1.1 Notation. We will use the following notation

[n] = {1, . . . , n}
R+ = {x ∈ R : x ≥ 0}
R++ = {x ∈ R : x > 0}
Sn = {X ∈ Rn×n : XT = X}
Sn+ = {X ∈ Sn : Xis positive semide�nite}

Sn++ = {X ∈ Sn : Xis positive de�nite}
x ≤ y ⇔ ∀i ∈ [n].x≤yi

1 = (1, . . . , 1)T

ImA = {Ax : x ∈ Rn}
KerA = {x ∈ Rn : Ax = 0} also called Nullspace

〈x, y〉 =
n∑
i=1

xiyi = xTy if x, y ∈ Rn

〈X, Y 〉 =
∑
i,j

Xi,jYi,j = tr(XTY ) for X, Y ∈ Rn×n

‖x‖ =
√
〈x, x〉

‖X‖F =
√
〈X,X〉 =

√
trX2 Frobenius norm

1.2 De�nition. A linear/a�ne function is a function f : Rn → R of the form f(x) = aTx+ b. If
b = 0, we say that f is a linear form.

1.3 De�nition. A quadratic function is a function of the form q(x) = xTQx + aTx + b. We can
always assume that Q is symmetric, otherwise put Q′ = 1

2
(Q + QT ), which still yields the same

function.
A quadratic form is a function q(x) = xTQx.
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1.4 De�nition. • If f : Rn → R is di�erentiable, we write ∇f : x 7→
(
∂f
∂xi

(x)
)
i∈[n]

.

• If f is twice di�erentiable, ∇2f : x 7→
(

∂2f
∂xi∂xj

(x)
)
∈ Sn.

We usually will not distinguish between ∇f (function) and ∇f(x) (term).

1.5 Example. Given u, v ∈ Rn. Then the map X 7→ uTXv is a linear function of X ∈ Sn. But
we can also write

uTXv = tr(uTXv)
tr(AB)=tr(BA)

= tr(XvuT ) = 〈X, vuT 〉

1.6 Remark (Random vectors). If X is a random vector with values in Rn, then we have the
expected value of X as E[X] = (EXi)i∈[n]. Recall from probability that EX =

∫
x∈Rn PX(dx).

The variance-covariance matrix of X is

V[X] = E[XXT ]− (EX)(EX)T = E
[
(X − EX)(X − EX)T

]
The latter expression shows that this matrix always is positive semide�nite. On the diagonal, we
have the variance of Xi. All the other entries are the covariances of Xi and Xj.

1.7 Proposition. If X is a random vector of Rn, then E[AX + b] = A ·EX + b and V[AX + b] =
A · V[X] · AT .

Proof. by computation

1.8 Example. let x be a random vector. The function f(Q) = E
[
XTQX

]
is linear in Q ∈ Sn.

We use XTQX = 〈Q,XXT 〉, so f(Q) = 〈Q,E[XXT ]〉 = 〈Q,Σ + µµT 〉.

missing lecture

Now assume we have a set S = {x1, . . . , x4} of 4 points in the plane and one interior point x. We
want to write x =

∑k
i=1 λixi with k > m+ 1. We can �nd some vector µ 6= 0 such that

k∑
i=1

µixi = 0
k∑
i=1

µi = 0

For all α ∈ R we have

x =
k∑
i=1

(λi − αµi)xi

If we choose α = min
{
λi
µi

: i ∈ [k], µi > 0
}
, then by choosing λ′i := λi−αµi one coe�cient vanishes

and we have reduced their number. This we can iterate, until we found a minimum simplex.
IMPORTANT: This can be used for a more controlled way to �nd a cover!!

1.9 Corollary. Let ⊆ Rn. Then

conv(S) =

{
n∑
i=0

λixi : x0, . . . , xn ∈ S,
∑

λi = 1, λi ≥ 0

}

I.e. the points in the convex hull are combinations of at most n+ 1 points.
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1.10 Theorem (Caratheodory's Theorem for Convex Cones). Let S ⊆ Rn with dimS =
m ≤ n. Then any x ∈ coneS can be expressed as a combination of at most m points of S.

1.11 Example. Let a ∈ Rn and b ∈ R.

• The set H = {x : aTx = b} is a hyperplane. It is a�ne, so also convex.

• H+ := {x : aTx ≥ b} is a half-space. It is convex, but not a�ne.

• For any norm B := {x : ‖x− a‖ ≤ b} is a ball, which is convex.

• The set {(x, b) ∈ Rn+1 : ‖x− a‖ ≤ b} is a norm cone.

• As a particular case we have the Lorentz cone {(x, b) ∈ Rn+1 : ‖x‖2 ≤ b}.

• The unit simplex of Rn is ∆n := {X ∈ Rn
+ :
∑
xi ≤ 1} = conv(0, e1, . . . , en).

• The probability simplex is ∆=
n := {X ∈ Rn

+ :
∑
xi = 1} = conv(e1, . . . , en). Note that we

have replaced the inequality by an equality an dropped the zero in the hull. This is a convex
set of dimension n− 1.

• The set Rn
+ is the non-negative orthant, which is a convex cone.

• The set of positive de�nite matrices Sn+ is a convex cone of (a�ne) dimension
(
n+1

2

)
.

2 Operations that preserve convexity

To allow us some kind of inductive treatment of convex sets, we are interested, which operations
preserve convexity.

Intersection: if A,B convex, then A ∩ B convex. More generally, if Ai convex, then
⋂
i∈I Ai is

convex.

As an example we can write

Sn+ =
{
X : ∀x ∈ Rn.xTXx ≥ 0

}
=
⋂
x∈Rn

{
X : 〈X, xxT 〉 ≥ 0

}
as an intersection of in�nitely many half-spaces.

Cartesian product: if A,B convex, then A×B is convex.

A�ne transformation: If S is convex, A ∈ Rn×n, b ∈ Rn, then {Ax+ b : s ∈ S} is convex. But
also the preimage {x : Ax+ b ∈ S} is convex. Particular cases include

• rotations, A is orthogonal

• scaling b = 0

• translations A = In

• Minkowski sum A+B = {x+ y : x ∈ A, y ∈ B}.

Closure/Interior: If S is convex, then also cl(S) and int(S) are convex.

Perspective transformation: De�ne P : Rn × R++ → Rn via (x, t) 7→ x
t
. If S is convex, then

P (S) is convex. If S is convex, then P−1(S) is a convex cone. (Basically, P−1(S) are all
scalings of S.)
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3 Positive Semide�nite Matrices

3.1 Proposition. TFAE

1. X ∈ Sn+ (or X � 0, i.e. X is positive semide�nite)

2. ∀u ∈ Rn.uTXu ≥ 0

3. all eigenvalues of X are non-negative.

4. There is some matrix H such that X = HHT .

5. X ∈ conv({xxT : x ∈ Rn})

Proof. item 1⇔item 2 by de�nition

item 2⇒item 3 Let u be an eigenvector of X with corresponding eigenvalue λ ∈ R. Then
0 ≤ uTXu = λuTu = λ‖u‖2, so λ ≥ 0.

item 3⇒item 4 We can decompose X = QDiag(λ1, . . . , λn)QT with Q orthogonal. Then take
HT := QDiag(

√
λi).

item 4⇒item 5 Let hi be the i-th column of H. Then we can write X =
∑
hih

T
i . Thus X ∈

cone({uT : u ∈ Rn}). But the form

X =
n∑
i=1

1

n
(
√
nhi)(

√
nhi)

T

is a convex combination of the form uuT with u ∈ Rn. So X lies in the convex hull.

item 5⇒item 2 Let X =
∑
λixix

T
i with λi ≥ 0. Then

∀u ∈ Rn.uTXu =
n∑
i=1

λiu
txix

t
iu =

n∑
i=1

λi(u
Txi)

2 ≥ 0

The interior of Sn+ is Sn++, the set of positive de�nite matrices.

3.2 Proposition. TFAE

1. X ∈ Sn++, written X � 0

2. ∀u ∈ Rn \ {0}.uTXu > 0

3. All eigenvalues of X are positive.

4. (Sylvester criterion) All leading principal minors of X are positive.

3.3 Lemma. If X is positive semide�nite, then

a) All principal submatrices are positive semide�nite.

b) ∀i, j ∈ [n].|Xij| ≤
√
Xii ·Xjj

c) Xii = 0 =⇒ ∀j.Xij = 0

d) AXAT is positive semide�nite for every A ∈ Rn×n.
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3.4 Proposition. If X is positive semide�nite, then X has a positive semide�nite square root, i.e.
∃Z ∈ Sn+.X = Z2.

Proof. See proof of Proposition 3.1.

3.5 Proposition (Cholesky). If X � 0, then X = LLT for some lower triangular matrix L.

4 Generalised inequalities and Dual cone

4.1 De�nition. A cone K is proper, if

• K is convex and closed

• K has non-empty interior

• K is pointed, i.e. it contains no line. Equivalently ±x ∈ K ⇔ x = 0.

4.2 De�nition. We write x �K y for y − x ∈ K and x ≺K y for y − x ∈ intK.

4.3 Example. • x �Rn+ y ⇔ ∀i ∈ [n].xi ≤ yi, which we will write as x ≤ y.

• X �Sn+ Y ⇔ Y − X is positive semide�nite. Note that this does not imply an elementwise
inequality. (

1 −1
−1 1

)
� 0

Also we will omit the index at �, when we mean psd-matrices.

• Let K =
{
α ∈ Rd+1 : ∀x ∈ [0, 1].

∑d
i=0 αix

i ≥ 0
}

Then α �K β i� ∀x ∈ [0, 1].
∑
αix

i ≤∑
βix

i. We also say the polynomial de�ned by β dominates over the one de�ned by α over
[0, 1].

K is a proper cone.

cone:
∑
αix

i ≥ 0 =⇒
∑
tαixx

i ≥ 0.

closed: since it is de�ned by ≤
convex: Let α, β ∈ K, then

∑
(tαi + (1− t)βi)xi ≥ 0.

nonempty interior: Choose α = (1, 0, . . .). Then any perturbation by an ε ≤ 1
d
still remain

non-negative.

pointed: Let α,−α ∈ K. This means
∑
αix

i ≥ 0 and
∑
αix

i ≤ 0. By interpolation we get
that all αi = 0.

Remark. Recall that a matrix X is psd i� X = HHT for some matrix H. In particular there are
two special decompositions for that:

• H = X
1
2

• H is lower triangle (Cholesky)

4.4 Proposition. Let K be a proper cone. Then the order �K is
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• transitive, re�exive and antisymmetric

• preserved under addition: x �K y and u � v implies x+ u � y + v.

• non-negative scaling: x � y and α ≥ 0 implies αx � αy

4.5 Remark. For a cone K, �K in general is it not a total order. For the most simple example
take (1, 0 and (0, 1) in R2

+.

4.6 De�nition. Let K be a cone. The dual cone of K is

K∗ := {y : ∀x ∈ K.〈y, x〉 ≥ 0}

Figure 1 illustrates this concept.

K

K∗

Figure 1: cone K and its dual K∗, between the lines we have right angles

4.7 Proposition. The dual cone has the following properties

• K∗ is a convex cone

• K∗ is closed (even if K is not).

• If K1 ⊆ K2, then K
∗
2 ⊆ K∗1

• If intK 6= ∅, then K∗ is pointed.

• If clK is pointed, then intK∗ 6= ∅.

• Duality: conv clK = K∗∗.

In particular, if K is proper, then K = K∗∗.

4.8 Proposition. Let K be a proper cone.

x �K y ⇔ ∀λ �K∗ 0.λTx ≤ λTy (1)

x ≺K y ⇔ ∀λ �K∗ 0 \ {0}.λTx < λTy (2)

Proof of eq. (1). We have the following chain of reasoning

y − x ∈ K ⇔ y − x ∈ K∗∗ ⇔ ∀λ ∈ K∗.〈λy − x〉 ≥ 0⇔ ∀λ ∈ K∗.〈λ, y〉 ≥ 〈λ, x〉

4.9 Proposition. The cones Rn
+, Sn+ and Ln = {(x, t) ∈ Rn−1 ×R : ‖x‖ ≤ t} are self-dual.
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K ⊆ {z = 0}

K∗

Figure 2: Example of the dual cone, where K does not have full dimension

5 Separating Hyperplane Theorem

5.1 Theorem. Let X, Y be disjoint non-empty convex sets. Then there exist v ∈ Rn \ {0} and
c ∈ R such that the hyperplane given by v and c separates X and Y , i.e.

∀x ∈ X.〈v, x〉 ≤ c ∀y ∈ Y.〈v, x〉 ≥ c

We will divide the proof into several smaller results.

5.2 Lemma. Let S ⊆ Rn be a closed convex set. Then there is a unique vector v ∈ S of minimal
norm.

Proof. Take some v0 ∈ S with r := ‖v0‖. Then S ′ := S ∩ Br is compact, so we minimise a
continuous function over a compact set. From analysis we know that S ′ attain this minimum δ by
a vector v.
Now assume we have two vector x, y ∈ S with ‖x‖ = ‖y‖ = δ. By convexity, this means x+y

2
∈ S,

so
∥∥1

2
(x+ y)

∥∥ ≥ δ. By the parallelogram law we get

‖x− y‖2 = 2‖x‖2︸ ︷︷ ︸
2δ2

+ 2‖y‖2︸ ︷︷ ︸
2δ2

− 4‖x+ y‖2︸ ︷︷ ︸
≥4δ2

≤ 0 =⇒ x = y

Proof of Theorem 5.1. First we introduce S := X − Y , which is another convex set. So clS has a
unique vector v of minimal norm. Let z ∈ S and de�ne f(t) := ‖v + t(z − v)‖2 (which describes a
beam from v to z). We have f(0) = ‖v‖2 and ∀t ∈ [0, 1].f(t) ≥ f(0) since v has minimal norm.

1

t
(f(t)− f(0)) =

1

t

(
‖v‖2 + t2‖z − v‖2 + 2〈v, z − v〉 − ‖v‖2

)
∈ 2vT z − 2‖v‖+O(z)

which is ≥ 0 for all t ∈ (0, 1). Taking the limit as t→ 0, we get vT z ≥ ‖v‖ for all z ∈ S.
Assume v 6= 0. Then for all x ∈ X, y ∈ Y we get vT (y − x) ≥ ‖v‖2 ≥ 0, so vTy ≥ vTx. This yields
the theorem by setting c := inf{〈v, y〉 : y ∈ Y }.
case v = 0

5.3 Theorem (Strict Separating Hyperplane). Let X, Y be disjoint non-empty convex sets.
If X is closed and Y is compact, then there exist c ∈ R and v ∈ Rn \ {0} such that

∀x ∈ X, y ∈ Y.vTx < c < vTy
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Remark. We need that one of the sets is bounded. Otherwise take X =
{

(t, 1
t

: t ∈ R
}
and Y =

{(t, 0) : t ∈ R}.

5.4 Theorem. Let K be a closed convex cone of Rn and x ∈ Rn \ {K}. Then there exists v ∈ Rn

such that ∀z ∈ K.〈z, v〉 ≥ 0 but 〈x, v〉 < 0.

5.5 De�nition. Let S ⊆ Rn be non-empty. Then H = {x : vTx = c} is a supporting hyperplane
of S if

• H ∩ ∂S 6= ∅

• S is included in one of the two half-spaces de�ned by H.

5.6 Theorem (Supporting Hyperplane Theorem). Let S ⊆ Rn be convex. Let x0 ∈ ∂S.
Then there exist v ∈ Rn \ {0} such that ∀x ∈ S.〈v, x〉 ≤ 〈v, x0〉.

6 Convex Functions

6.1 Convex Functions

6.1 De�nition. A function f : S → R with S ⊆ Rn is convex if

• S = dom f is convex

• ∀x, y ∈ S, α ∈ [0, 1].f((1− α)x+ αy) ≤ (1− α)f(x) + αf(y)

Intuitively, the line form x to y lies above the function on the interval [x, y].
A function f : S → R is concave, if −f is convex.

x

y

The convexity inequality can be understood in terms of extended value function

f̃(x) =

{
f(x) : x ∈ dom f

∞ : else

6.2 Proposition. Let S ⊆ Rn. A function f : S → R is convex i� the function g : t 7→ f(x0 + tu)
is convex for any choice of x0, u with x0 ∈ dom f and dom g = {t : x0 + zu ∈ dom f}.

Proof. If dom f is convex, then dom g is an interval. So dom g is convex in R. Furthermore

g((1− α)r + αs) = f(x0 + ((1− α)t+ αs)u) = f((1− α)(x0 + ru) + α(x0 + su)) ≤ (1− α)g(r) + αg(s)
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For the other direction let x, y ∈ dom f . We write x0 = x and u = y−x. So g(0) = x and g(1) = y.
By convexity of g, we have [0, 1] ⊆ dom g. Therefore (1 − α)x + αy ∈ dom f for all α ∈ [0, 1].
Furthermore

f((1− α)x+ αy) = g((1− α) · 0 + α · 1) ≤ (1− α)g(0) + αg(1) = (1− α)f(x) + αf(y)

6.3 De�nition. The α-sublevel set of f is

Cα(f) = {x ∈ dom f : f(x) ≤ α}

The α-superlevel set of f is

Cα(f) = {x ∈ dom f : f(x) ≥ α}

The epigraph of f is �everything above the curve�, i.e.

epi f = {(x, t) ∈ dom f ×R : f(x) ≤ t}

The hypograph of f is �everything below the curve�, i.e.

hypo f = {(x, t) ∈ dom f ×R : f(x) ≥ t}

6.4 Proposition. • If f is convex, then the cα are convex.

• If f is concave, then the Cα(f) are convex.

• f is convex i� epi f is convex

• f is concave i� hypo(f) is concave.

6.5 Example. For example take f(x, y) = xy with dom f = R2
+. Then C

α(f) =
{

(x, y) ≥ 0 : y ≥ α
x

}
.

6.2 Jensen's Inequality

Let f be convex and x1, . . . , xn ∈ dom f . Let λi ≥ 0 with
∑
λi = 1. Then f (

∑
λixi) ≤

∑
λif(xi).

More generally, if X is a random variable, which takes value in S ⊆ Rn and f : S → R is convex,
then f(Ex) ≤ E (f(x)).

6.3 First and Second Order Condition for Convexity

6.6 Theorem. Let f : S → R with S ⊆ Rn be di�erentiable over S. Then f is convex i�
f(y) ≥ f(x) +∇f(x)T (y − x) for all x, y ∈ S, i.e. the tangent line is below the curve.

6.7 Theorem. Let f : S → R with S ⊆ Rn be twice di�erentiable over S. Then f is convex i�
∇2f(x) � 0 for all x ∈ S.
If ∇2f(x) � 0, then f is strictly convex.

6.4 Examples of Convex Functions

Usually we will show convexity by building functions out of known convex functions.

• x 7→ eax is convex over R

• x 7→ xa is concave if a ∈ (0, 1) and convex otherwise, (demand x > 0 for a < 0)

11



• x 7→ log x is concave over R++

• x 7→ x log x is convex over R+ (put 0 log 0 := 0)

• x 7→ ‖x‖ is convex over Rn for any norm

• x 7→ max(x1, . . . , xn) is convex over Rn

• x 7→ log (ex1 + . . .+ exn) is convex over Rn

• x 7→ xTQx+ aT + b is convex i� Q � 0

• x 7→
∏
xλii with

∑
λi = 1 is concave (in particular the geometric mean is concave)

• X 7→ tr (X−1) is concave over Sn++

• X 7→ log det(X) is concave over Sn++

• X 7→ (detX)
1
n is concave over Sn++

Proof. We will show this for log det using Proposition 6.2. Let Z � 0 and V ∈ Sn. We de�ne
g(t) := log det(Z + tV ). This we write as

g(t) = log det
(√

Z
(
I + tZ−

1
2V Z−

1
2

)√
Z
)

= log detZ + log det
(
I + tZ−

1
2V Z−

1
2

)
= log detZ + log

∏
(1 + tλi) = log detZ +

∑
log(1 + tλi)

using that the eigenvalues of I + tM are 1 + tλi where λi are the eigenvalues of M ∈ Sn.
The last line is just a sum of concave functions (note that Z and λi are �xed), so it is concave as
well. Alternatively, take the second derivative

g′′(t) = −
∑ λ2

i

(1 + tλi)2
≤ 0

6.5 Operations that preserve Convexity

Assume f, fi is convex, then the following are convex as well i

• non-negative scaling: if α ≥ 0 then αf convex

• sum f1 + f2

• composition with a�ne map: x 7→ f(Ax+ b) is convex

• pointwise maximum x 7→ max(f1(x), . . . , fn(x)).

If for all y ∈ Y ⊆ Rm the function x 7→ f(x, y) is convex, then x 7→ supy∈Y f(x, y) is convex.

• Minimisation: If f : Rn×Rm is convex (jointly convex wrt x and y), then x 7→ infy∈Rm f(x, y)
is convex.

6.8 Example. • Let A = (aT1 , . . . , a
T
m)T ∈ Rm×n. Regard the functions

dom f = {x : Ax > b} f(x) = −
m∑
i=1

log(aix− bi)

Since log is concave, − log is convex. Composed with an a�ne mapping, this is still convex,
so f as a sum of convex functions is convex.

12



• Let domF = Sn with

f(X) = λmax(X) = sup

{
vTXv

‖v‖
: v ∈ Rn, v 6= 0

}
= sup

{
uTXu : ‖u‖ = 1

}
= sup

{
〈X, uuT 〉 : ‖u‖ = 1

}
and the latter is a linear function in X. So f is the pointwise maximum of a family of linear
functions. Hence f is convex.

• g(x) = dist(x, S) is a convex function if S is convex.

First note that f(x, y) = ‖x − y‖ is jointly convex in x and y, i.e. convex in R2n. We alter
this function to

f̃ =

{
‖x− y‖ : y ∈ S
∞ : else

If S is convex, then f̃ is convex. By the minimisation rule g is convex. (We need f̃ , because
minimisation is stated only for Rn+m.)

• For f : Rn → R its perspective function is Pf : Rn ×R++ → R by (x, t) 7→ t · f
(
x
t

)
. If f is

convex, then Pf is convex.

In particular (x, t) 7→ ‖x‖
t

is convex over Rn ×R++. Even more special (x, y) 7→ x2

y
is convex

over R×R++.

6.9 Lemma (Composition Rules). For composition we have the following rules.

• Let g : Rn → Rk and h : Rk → R. Assume h is convex, non-decreasing and all gi convex,
then f := h ◦ g (note f(x) = h(g(x))) is convex.

• h cvx, ↘, gi ccv =⇒ f convex

• h ccv, ↗, gi ccv =⇒ f concave

• h ccv, ↘, gi cvx =⇒ f concave

Proof. For simplicity regard the case n = k = 1, and g, h are twice di�erentiable. Then

f ′′(x) = g′′(x) · h′(g(x)) + g′(x)2 · h′′(x)

Then the claim follows by checking the signs of each term.

Remark. Again, we are restricted to some Rn as domain. But take f(x) = ‖x‖3 as composition of
h(x) = x3 and g(x) = ‖x‖, then we cannot conclude convexity, because h is not convex. However,
h is convex over R+, and its argument is positive. So we use h(x) = 0 for x < 0 instead. Still
f = h ◦ g so f is convex.

6.10 Remark. If we don't use extended functions, the statement changes a bit:
Let S ⊆ Rn and T ⊆ Rk. Let g : S → T and h : T → R. Assume h convex, all gi convex.

Approach cancelled in lecture
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7 Conjugate Function

7.1 De�nition. Let f : Rn → R. The (Fenchel) conjugate of f is

f ∗ : {y ∈ Rn : f ∗(y) <∞} y 7→ sup
x∈Rn
〈x, y〉 − f(x, y)

7.2 Proposition. • f ∗ is convex, even if f is not. (by the supremum rule)

• If epi f is closed and f is convex, then f = f ∗∗.

• Fenchel-Young-inequality: ∀x, y.〈x, y〉 ≤ f(x) + f ∗(y)

7.3 Example. • Let Q � 0 and f(x) = 1
2
xTQx. To obtain f ∗ we compute

∇
(
yTx− 1

2
xTQx

)
= y −Qx

Hence the maximiser satis�es x∗ = Q−1y. So we get

f ∗(y) = yTx∗ − 1

2
(x∗)TQx∗ = yTQ−1y − 1

2
yTQ−1QQ−1y =

1

2
yTQ−1y

Then the FY-inequality yields

〈x, y〉 ≤ 1

2
xTQx+

1

2
yTQ−1y

• Let f(x) = aTx+ b. Then

f ∗(y) = sup
x
xTy − aTx− b =

{
−b : y = a

∞ : else

or short f ∗(y) = −b with dom f ∗ = {a}.

• Let f(x) = maxi aix+ bi over R. We assume a1 < . . . < an.

f ∗(y) = sup
x
xy −max

i
(aix+ bi) = sup

x
min
i
x(y − ai)− bi

Assume that y ∈ (aj, aj+1). Then y − aj > 0 and y − aj+1 < 0. The maximiser x∗ is at the
intersection of pieces corresponding to indices j and j + 1.

x∗(y − aj)− bj = x∗(y − aj+1)− bj+1 ⇔ x∗ =
bj − bj+1

aj − aj+1

f ∗(y) =
bj − bj+1

aj − aj+1

(y − aj)− bj

f ∗ is a piecewise linear function with f ∗(aj) = bj.
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8 Convex Optimisation

8.1 De�nition. A non-linear optimisation problem (NLP) has the form

min f0(x)

s.t. ∀i ∈ [m].fi(x) ≤ 0
(P)

• f0 is the objective function

• the inequalities fi(x) ≤ 0 are called constraints

• x ∈ Rn is the decision variable

• F := {x ∈ Rn : ∀i ∈ [m].fi(x) ≤ 0} is called feasible set, we say x is feasible if x ∈ F

• p∗ = inf {f0(x) : x ∈ F} ∈ R ∪ {∞,−∞} is the optimal value

• If f(x∗) = p∗ for some x∗ ∈ F , we say x is optimal or x∗ solves eq. (P)

• If f0 is a constant function, then any x ∈ F is optimal. This is a feasibility problem.

• If x ∈ F with f(x) ≤ p∗ + ε, we say x is ε-suboptimal.

8.2 Remark. From the De�nition 8.1 we get

• We say p∗ =∞ i� F = ∅, meaning eq. (P) is infeasible.

• We say p∗ = −∞ i� eq. (P) is unbounded from below.

• The constraints x ∈ dom fi are the implicit constraints of the problem. So we have F ⊆⋂m
i=1 dom fi and wlog we can assume F ⊆

⋂m
i=0 dom fi.

• The problem max f0(x) is equivalent to min−f0(x), so the theory also solves maximisation.

8.3 Example. The problem min 1
x
such that x ≥ 0 has optimal value p∗ = 0 but no optimal

solution.

8.4 De�nition. A vector x ∈ F is locally optimal if there is some R > 0 such that ∀z ∈ BR(x) ∩
F .f0(x) ≤ f0(z).

8.5 De�nition. eq. (P) is a convex optimisation problem if all fi (including f0) are convex.

8.6 Theorem. If eq. (P) is a convex optimisation problem, then any locally optimal solution is
globally optimal.

Proof. Let x∗ be locally optimal with radius R. Assume we have y ∈ F with f0(y) < f0(x∗). Put
θ = R

‖x∗−y‖ , then 0 < θ < 1 since y /∈ BR(x∗). But also z := (1 − θ)x∗ + θy ∈ BR(x∗). Convexity
now yields

f0(x∗) ≤ f0(z) ≥ (1− θ)f0(x∗) + θf0(y) < f0(x∗) 

8.7 Remark. It is possible to include equality f(x) = 0 by demanding f(x) ≤ 0 and −f(x) ≤ 0.
However, for convex optimisation this is only possible if f is a�ne, i.e. f(x) = aTx+ b.

15



8.1 Problem Reformulations

8.8 De�nition. We say eq. (P) and (Q) are equivalent if there is a �simple procedure� to transform
an optimal solution of eq. (P) to an optimal solution of (Q) and vice-versa. We write eq. (P) ∼̇ (Q).

add/remove a�ne equalities Consider the problem

(P ) : min {f0(x) : fi(x) ≤ 0, Ax = b}

with A ∈ Rm×n. This de�nes an a�ne set L = {x : Ax = b} = {Cz + d : z ∈ Rr} for some
C ∈ Rn×r, d ∈ Rn and r ∈ N. r is the (a�ne) dimension of L. If A has full rank, then
r = n−m. Now regard

(Q) : min {f0(Xz + d) : fi(Cz + d) ≤ 0}

Then (P ) ∼̇ (Q).

• If z∗ is optimal, then x∗ := Cz∗ + d is optimal for (P).

• If x∗ is optimal for (P) and z∗ solves Cz∗ = x∗ − d, then z∗ is optimal for (Q).

slack variables An inequality aTx ≤ b can be transformed to aTx+ s = b, s ≥ 0.

epigraph form Problem (P) can be written as

min {t : fi(x) ≤ 0, f0(x) ≤ t}

The conversion is x↔ (x, f(x)) Hence we can always assume that the objective is linear.

partial minimisation Sometimes we can partition out problem into blocks

min {f(x1, x2) : xk ∈ Rnk , fi(x1) ≤ 0, gj(x2) ≤ 0} ∼̇ min
{
f̃(x1) : fi(x1) ≤ 0

}
where f̃(x1) = inf {f(x1, x2) : gj(x2) ≤ 0}. This is important if we can solve the latter case
analytically.

8.2 First order optimality conditions

8.9 Theorem. Consider the convex optimisation problem min{f0(x) : x ∈ F}. Assume f0 is
di�erentiable over F . Then x∗ ∈ F is optimal i�

∀y ∈ F .∇f0(x∗)T (y − x∗) ≥ 0

If the global minimum of f0 lies in F , then we have equality. Otherwise putting a := ∇f0(x∗), the
condition describes a supporting hyperplane ∀y ∈ F .aT ≥ yTx∗.

Proof. The �rst-order condition for convexity of f0 is

∀y ∈ F .f0(y) ≥ f0(x∗) +∇f0(x∗)T (y − x∗)︸ ︷︷ ︸
≥0

≥ f0(x∗)

So x∗ is optimal.
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Conversely assume x∗ is optimal and there exists y ∈ F such that ∇f0(x∗)T (y − x∗) < 0. Then

∇f0(x∗)T (y − x∗) = Df0(x∗)[y − x∗] :=
d

dt
[t 7→ f0(x∗ + t(y − x∗))]

Going to t = 0 we get

∇f0(x∗)T (y − x∗) = lim
t→0

f0(x∗ + t(y − x∗))− f0(x∗)

t

So for t > 0 small enough we have

f0(x∗ + t(y − x∗)︸ ︷︷ ︸
∈F

) < f0(x∗)

which contradicts minimality of x∗.

We continue with the problem

min{f(x) : x ∈ F}

where f is di�erentiable, convex and F is convex. We know

x∗ ∈ F optimal⇔ ∀y ∈ F .∇f(x∗)T (y − x∗) ≥ 0

A special case of this problem is

min{f(x) : Ax = b}

Here we have the equivalence of the following

• x∗ is optimal

• ∇f(x∗) orthogonal to {x : Ax = b}

• ∇f(x∗) ∈ ImAT

8.10 Theorem. Regard min{f(x) : x ≥ 0}. Then x∗ is optimal i� all of the following

• x ≥ 0

• ∇f(x∗) ≥ 0

• ∀i.x∗i = 0 ∨ ∂f
∂xi

(x∗) = 0

Proof. ⇒: Let x∗ be optimal. Then for all y ≥ 0 we have∇f(x∗)T (y−x∗) ≥ 0. Assume ∂f
∂xi

(x∗) < 0
for some i ∈ [n]. Let y = αei with α→∞. Then we get a contradiction. So we already have
x∗ ≥ 0 and ∇f(x∗) ≥ 0. For y = 0 we have∑

i

∂f(x∗)

∂xi
· xi ≤ 0 =⇒ ∀i.∂f(x∗)

∂xi
· xi = 0

since it is a sum of non-negative terms.

⇐: Let y ≥ 0. For all i we have ∂f
∂xi

(x∗) ≥ 0, because either ∂f
∂xi

= 0 or ∂f
∂xi
≥ 0 and (xi − xi) =

yi ≥ 0. Summing over i we get ∇f(x∗)T (y − x∗) ≥ 0.
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9 Conic Programming

9.1 De�nition. Let K be a proper cone. A conic programme in standard form is an optimisation
problem of the form

min{cTx : Ax = b, x ∈ K}

We have some special cases which have their own names

• K = Rn
+ is a linear programme (LP).

• K = K1 × . . .×Km where

Ki = Lni+ =
{
x :
√
x2

1 + . . .+ x2
ni−1
≤ xni

}
called Lorentz-cone. This is second-order-cone-programming (SOCP).

• K = Sn+ is semide�nite programming (SDP).

9.2 De�nition. Let Vi be a vector space of dimension ni and fi : Rn → Vi an a�ne function for
i ≤ q. The following problem is equivalent to a conic programme in standard form

min{cTx : Ax = b,∀i ≤ q.fi(x) ∈ Ki}

We call this a conic programme in general form.

For our special classes we get the generalised forms

LP f(x) ∈ K ⇔ Ax ≥ 0 for some A, b

SOCP f(x) ∈ K ⇔ ‖Ax+ b‖ ≤ cTx+ d

SDP we have the form f(x) = x1m1 + . . .+ xnMn −M0 for some Mi ∈ Sn. If the variable x is a
matrix, note that functions are of the form x 7→ PxP T or x 7→ Ax + xTAT . The inequality
f(x) �Sn+ 0 is called a linear matrix inequality.

9.3 Example. If we have the general LP

min{cTx : Fx = f,Hx ≥ h}

then we can rewrite it into standard form via

• Hx ≥ h⇔ ∃s ≥ 0.Hx− s = h

• x ∈ Rn ⇔ ∃x1, x2 ∈ Rn
+.x = x1 − x2

This example can be generalised to prove the remark during De�nition 9.2 of the equivalence.

Proof. Start with the general problem

min{cTx : Ax = b,∀i.Hix �Ki gi}

We introduce slack variables si, demanding si ∈ Ki and decompose x = x1− x2 as above. Putting

K = K1 × . . .×Km ×R2n

with variable x = (s1, . . . , sm, x1, x2) we have the standard form

min{cTx : Ax = b, ∀i.Hix− si = gi, x ∈ K}
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9.4 Lemma. For semide�nite we can use the equivalence
X1 0 . . .
0 X2 0 . . .

. . . 0
. . .

. . . 0 Xn

 �S+ 0 ∼


X1 �S+ 0
...

Xn �S+ 0

9.1 What can be expressed with LP?

We review convex functions f : Rn → R such that the inequalities f(x) ≤ t can be written as a
system of linear inequalities in x, t.

(a) Let f(x) = max{aTi x+ bi.i = 1, . . . ,m}. Then

f(x) ≤ t⇔ ∀i ∈ [n].aTi x+ bi ≤ t

(b) For the 1-norm we have

f(x) = ‖x‖1 ≤ t⇔ ∃u ∈ Rn
+.− u ≤ x ≤ u ∧

∑
ui ≤ t

(c) The maximum-norm can be written as

f(x) = ‖x‖∞ ≤ t⇔ ∀i ∈ [n].− t ≤ xi ≤ t

(d) f(x) = Sk(x) is the sum of the k largest elements of x.

Sk(x) ≤ t⇔ ∃u ∈ R, v ∈ Rn.ku+ 1Tu ≤ t, v ≥ 0, v ≥ x− u1 (3)

By pushing up the dimension we greatly reduce the number of facets of the polytope. Using
the approach from item a would yield a practically infeasible number of constraints.

To show that our new solution is correct, we show

Sk(x) = min

u ∈ R : ku+
n∑
i=1

max(0, xi − u)︸ ︷︷ ︸
:=h(x,u)


Denote by x(1) ≥ . . . ≥ x(n) the sorted entries of x. Let u ∈ [x(k), x(k+1)]. Then

ku+
n∑
i=1

max(0, xi − u) = ku+
k∑
i=1

(x(i) − u) = Sk(x)

So ∃u.Sk(x) = h(x, u). Hence we have Sk(x) ≤ p∗.

Conversely let u ∈ R. Then

Sk(x) =
k∑
j=1

x(j) = ku+
k∑
j=1

(x(j) − u) ≤ ku+
k∑
j=1

max(0, x(j) − u)

≤ ku+
n∑
j=1

max(0, x(j) − u) = ku+
n∑
j=1

max(0, xj − u) = h(u, x)
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Therefore ∀u.Sk(x) ≤ h(x, u). This shows Sk(x) ≤ p∗(x), so we have equality.

Together this yields

Sk(x) ≤ t⇔ ∃u ∈ R.ku+
n∑
i=1

max(0, xi − u) ≤ t

and the latter we may rewrite via

max(0, xi − u) ≤ vi ⇔

{
vi ≥ xi − u
vi ≥ 0

Combining everything we obtain the above formulation from eq. (3).

9.5 Remark. With the reformulation eq. (3) from above we have reduced the number of constraints
from

(
n
k

)
to 2n+ 1.

The idea is that by going some dimensions up, we may greatly reduce the number of facets of a
polytope.

9.6 De�nition (K-representability). Let K ⊆ Rm be a proper cone and let f : Rn → R. We
say f is K-representable if there exists an a�ne function F : Rn+k+1 → Rm such that

f(x) ≤ t⇔ ∃u ∈ Rk.F (x, t, u) �K 0

9.7 Example. Consider the NLP

min{3‖x‖1 + 7S4(x) : x ∈ Rn, Ax ≤ b}

This is equivalent to the LP

min
{

3λ1 + 7λ2 : ‖x‖1 ≤ λ1, Ax ≤ b,−u ≤ x ≤ u,1Tu ≤ λ1, v ≥ 0, v ≥ x− t1, 4t+ 1Tv ≤ λ2

}
We may even further reduce the problem to

min
{

31Tu+ 7(4z + 1tv) : Ax ≤ b,−u ≤ x ≤ u, v ≥ 0, v ≥ x− t1
}

9.2 What can be expressed by SOCP?

(a) The function f : (x, t) 7→ ‖x‖2
t

is SOCP-representable over Rn ×R++. More precisely

‖(2x, t− u)‖ ≤ 2 + u⇔ ‖x‖ ≤ tu ∧ t ≥ 0 ∧ u ≥ 0

Proof. We have

‖(2x, t− u)‖ ≤ t+ u⇔ 4‖x‖2 + (t− u)2 ≤ (2 + u)2, t+ u ≥ 0

⇔ 4‖x‖2 ≤ 4ut, t+ u ≥ 0

⇔ ‖x‖2 ≤ ut, t,≥ 0, u ≥ 0

because both t+ u and t · u must be non-negative.

(b) Let Q ∈ Sn+. The convex quadratic x 7→ xTQx+ atx+ b is SOC-representable.
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Proof. We decompose Q = HHT . Then we have

xTQx+ aTx+ b ≤ t⇔ xTHHTx ≤ t− (aTx+ b)⇔ ‖(2HTx, t− (aT b+ b)− 1)‖ ≤ t− (aTx+ b) + 1

where the last step uses item a, multiplied with 1.

(c) The geometric mean G(X) := n
√∏

xi and the harmonic mean H(x) :=
(∑

x−1
i

)−1
are concave

SOC-representable.

(d) Rational powers: Let p ∈ Q+, then f : x 7→ xp is SOC-representable.

Proof. Write p = α
β
with α, β ∈ N. Then

xp ≤ t⇔ x ≤ t
β
α ⇔ x ≤ G(t, . . . , t︸ ︷︷ ︸

β

, 1, . . . , 1︸ ︷︷ ︸
α−β

)

9.3 What be be expressed by SDP?

9.8 Lemma (Schur-complement-Lemma). Let

M =

(
A C
CT b

)
∈ Sn+m

Then

M � 0⇔ B � 0, A− CB−1CT � 0⇔ A � 0, B − CTA−1C � 0

If A � 0 then M � 0⇔ B − CTA−1C � 0. Conversely if B � 0, then M �⇔ A− CB−1CT � 0.

Proof. We just prove the third part. We assume B � 0. Then

M � 0⇔ ∀(x, y) ∈ Rn+m.(xT , yT )

(
A C
CT B

)(
x
y

)
≥ 0⇔ inf

x,y

{
xTAx+ yTBy + 2yTCTx ≥ 0

}
By the partial minimisation rule this is equivalent to

inf
x

{
xTAx+ f̃(x) ≥ 0

}
where

f̃(x) = inf
y

{
yTBy + 2yTCTx

}
This latter function we can solve analytically. Argument y∗ minimises f̃(x) i� 2(By∗ +CTx) = 0.
Therefore

f̃(x) = xTCB−1BB−1CTx− 2xTCB−1CTx = −xTCB−1CTx

So our original problem simpli�es to

M � 0⇔ ∀x.xT (A+ CB−1CT )x ≥ 0⇔ A− CB−1CT � 0

(a) Largest eigenvalue of a symmetric matrix: λmax : Sn → R is convex and SDR (semide�nite-
representable).
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Proof. We can reformulate the problem as

λmax(X) = sup

{
uTXu

uTu
: u 6= 0

}
Using this characterisation we get

λmax(X) ≤ t⇔ ∀u 6= 0.
uTXu

uTu
≤ t⇔ ∀u.uTXu ≤ tuTu⇔ ∀u.uT (X − tIn)u ≤ 0

⇔ tIn −X � 0⇔ X � tIn

(b) Analogously we have λmin(X) ≥ t⇔ X � tIn, so it is SDR.

(c) Let M0, . . . ,Mn ∈ Sn++. So F : x 7→ M0 +
∑
xiMi is an a�ne mapping Rn

+ → Sn++. Then let
x ∈ Rn and de�ne g(x) := cTF (x)−1c. Then g : R+ → R+ is SDR.

Proof. By Schur-complement-Lemma Lemma 9.8 we have

g(x) ≤ t⇔ xTF (x)−1c ≤ t⇔
(
F (x) c
cT t

)
� 0

(d) SOCP is a subclass of SDP via

‖x‖ ≤ t⇔
(
t xT

x tIn

)
� 0

Proof. Rewrite the �rst condition as ‖x‖2 ≤ t2, t ≥ 0. This we rewrite as xT (tIn)−1x ≤ t and
t > 0 or x = t = 0. By Schur-complement-Lemma Lemma 9.8 this is equivalent to the right
hand side.

(e) For the determinant we have

n
√

det(X) ≥ t⇔ ∃L ∈ Rn×n, u ∈ Rn.

(
X L
LT diag(u)

)
� 0, diag(L) = u,G(u) ≥ t, L lower triangular

where G(u) denotes the geometric mean.

9.9 Example (Löwner-John-ellipsoid). Given points xi ∈ Rn, what is the ellipsoid of minimal
volume, which contains all xi? An ellipsoid is

E = {x : (x− x0)TQ(x− x0) ≤ 1}

for some Q � 0 and x0 ∈ Rn. Since Q � 0, we can write Q = ATA for some A � 0, so the ellipsoid
can be written as

E = {x : (x− x0)TXTX(x− x0) ≤ 1} = {x : ‖Ax− b‖ ≤ 1}

where b := Ax0.
The semi-axis are proportional to λ−

1
2 ·ui, where (λi, ui) are eigenvalue and eigenvector of Q. So we

want to minimise
∏

1√
λi
. This means we maximise

∏
λi = detQ = det(A)2. To make it concave,

we instead maximise n
√

det(A). So we reformulated the problem

max{ n
√

detA : ∀i.‖Axi − b‖ ≤ 1, A ∈ Sn+, b ∈ Rn}

which can be transformed into an SDP with the above methods.
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10 Application to statistics, Data analysis and Machine Learn-

ing

Assume that we have a collection y1, . . . , ym ∈ R of observations. Each observation is associated
with a vector of features xi ∈ Rn. For an index i, the pair (xi, yi) ∈ Rn+1 is a sample. We write
the data as

X =

x
T
1
...
xTm

 ∈ Rm×n y =

y
T
1
...
yTm

 ∈ Rm

We now search for a functions F , such that yi ≈ F (xi). Usually this is useful for

• understanding how each feature xik in�uences the outcome yi.

• predicting y∗ for some new input x∗.

10.1 Linear Regression

One of the simplest models is to assume a linear relationship yi ≈ xTi Θ. In fact, we can also
transform the vector to study non-linear models. First we can change it to a�ne relationship, by
adding xi0 = 1. Furthermore we can add higher dimensions via

yi ≈ (1, xi, xi ⊗ xi)T ·Θ

for the cost of greatly expanding the problem size.
This justi�es the linear approach, so we focus on the problem

y = XΘ + ε

10.1.1 Least Squares

In this approach, we want to minimise the squared error, so

min
{
‖XΘ− y‖2 : Θ ∈ Rn

}
This is an unconstrained convex optimisation problem. To solve it, we put its gradient to 0.

0 = ∇Θ‖XΘ− y‖2 = 2XTXΘ− 2XTy =⇒ Θ∗ =
(
XTX

)−1
XTy

Note, if X has full (column) rank, then XTX is invertible. Otherwise some extra care has to be
taken.

10.1.2 Best linear estimation

We will see that Θ∗ satis�es a very strong property: It is the best linear unbiased estimator (BLUE)
of Θ.
We assume that the model errors εi are random variables, identically and independently distributed.
Moreover we assume E[εi] = 0 and V[εi] = σ2 for all i. This implies that the observations yi are
realisations of a random variable Yi with E[Yi] = xTi Θ, so E[Y ] = XΘ. We search a linear estimator

Θ̂ = LTY . We say that Θ̂ is unbiased if

Θ = E[Θ̂] = LT (E[Y ]) = LTXΘ

Hence Θ̂ is unbiased o� LTX = In.
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10.1 Theorem (Gauss-Markov). Let Θ̂ = lTY be an unbiased estimate for Θ. Then V
[
Θ̂
]
�(

XTX
)−1

and the lower bound is attained for L∗ = X
(
XTX

)−1
, which corresponds to the least-

squares-estimate of Θ.

Proof. We simplify the variance to

V[Θ̂] = V
[
LTY

]
= LTV[Y ]L = σ2LTL

We only need to show

LTXX = I =⇒ LTL � (XTX)−1

which is a consequence of the Schur-complement Lemma 9.8 on

0 �
(
XT

LT

)(
X L

)
=

(
XTX I
I LTL

)
Continue with the problem

argmin ‖XΘ− y‖2

There exists Θ ∈ Rn, yi is the realisation of a random variable Yi such that EYi = xTi Θ, VYi = γ2,

Yi ⊥ Yj for i 6= j. Putting Θ̂ =
(
XTX

)−1
XTY we have EΘ̂ = Θ and Θ̂ is in an ellipsoid around

Θ with high probability.

10.2 Beyond Least Squares

10.2.1 Ridge Regression

Instead of least squares, the ridge estimator of Θ solves

min
{
‖XΘ− y‖2 + λ‖Θ‖ : Θ ∈ Rn

}
for some �xes parameter λ. This has the optimal solution

Θ̂ridge =
(
XTX + λI

)−1
XTy

This is an unconstrained convex optimisation problem. The gradient of the objective is

∇Θ

(
ΘTXTXΘ− 2yTXΘ + yTy + λΘTΘ

)
= 2XTXΘ− 2XTy + 2λΘ = 2

(
(XTX + λI)Θ−XTy

)
Putting this to zero yields the above formula for the optimum.
The ridge regression shifts all the eigenvalues by λ. Often least-squares has a bad condition number,
due to small eigenvalues. The shift can solve this issue.
when λ is larger, it produces �smaller� estimates Θ̂ridge. And then, the variance of the estimates is
smaller, too. More precisely we have

V[Θ̂ridge] = σ2
(
XTX + λI

)−1
XTX

(
XTX + λI

)−1 ≤ σ2(XTX)−1

which is the variance of LS (for λ = 0). The price is that we now have a bias, so the expected
value is not the real one.
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10.2.2 Lasso estimator

We have samples of the form

yi = ΘTxi + ε

In sparse regression we are looking for an estimate Θ with many zeros. The Lasso estimator
minimises

‖XΘ− y‖2 + λ‖Θ‖1

over Θ ∈ Rn with �xed λ. The idea is that ‖Θ‖1 serves as an approximation for

‖Θ‖0 = |{i ∈ [n] : Θi 6= 0}|

Even on its own, the 1-norm has its vertices on the axes, so optimal solutions are more likely to
lie on an axis, so they have more zero-entries.

10.2.3 Elastic net estimator

Combining the previous approaches, we get

min ‖XΘ− y‖2 + λ1‖Θ‖1 + λ2‖Θ‖2

10.2.4 Huber Regression

One remaining problem is that we might have single faulty values, which lie far away from the rest
of the sample. However, these may greatly in�uence the results for the worse. Hence we want to
put less weight on the deviation, if it di�ers too far.
To solve this we de�ne the Huber-loss-function

H(x) =

{
x2 : |x| ≤ δ

δ(2|x| −∆)

Then the problem we have is

min
n∑
i=1

H(yi − xTi Θ)

10.3 Classi�cation

We have a set of sample x ∈ Rm×n. Let yi ∈ {−1, 1}, as known classi�cation of some samples.

10.3.1 Support Vector machines

We say that the data is linearly separable if there exist a ∈ Rn, b ∈ R such that yTi (axi − b) > 0.

Remark. A set is linearly separable if the convex hulls of 0 and 1 do not intersect.

The hard-margin-classi�er is

∀i ∈ [n].y(xTxi − bi = 0).
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There also is a soft-version: The data is not always linearly separable. So we introduce a penalty
function

φ(x, y; a, b) =

{
0 : yi(a

Txi − b) ≥ 1

1− yi((aTxi − b) : else

So we want to solve

min

{
‖a‖2 +

∑
i

max(0, 1− yi(aTxi − b)) : a ∈ Rn, b ∈ R

}

This is equivalent to the SOCP

min
{
t+
∑

ui : ‖a‖2 ≤ t, ui ≥ 0, ui ≥ 1− y(aTxi − b)
}

10.4 Kernel Trick

Sometimes our data is separated by a circle rather than a hyperplane. by lifting the dimension

0
0

0

0 0

0

XXX

XX

with a third variable x3 = x2
1 + x2

2 get now have the chance to �nd a separating hyperplane.
More general doing a non-linear transformation x′ = ϕ(x) can help. Unfortunately the dimension
of n′ := ϕ(x) can become very large, so algorithms might become ine�cient. This is one motivation
for the �Kernel Trick�.

10.2 De�nition. A positive semide�nite kernel over Rn is a function K : Rn×Rn → R such that
for all N ∈ N, x1, . . . , xN ∈ RN the matrix (k(xi, xj))i,j is positive semide�nite.

Example. • K(x, y) = (1 + xTy)d

• K(x, y) = exp
(
− 1
σ2‖x− y‖2

)
10.3 Theorem (Mercer). If K is a positive semide�nite kernel, then there exists a function ϕ
such that K(x, y) = 〈ϕ(x), ϕ(y)〉 for all x, y ∈ Rn.

So the idea of the kernel trick is as follows

1. Assume a learning algorithm that depends only on scalar products 〈xi, xj〉

2. We want to apply the algorithm to the transformed features x′ = ϕ(x).

3. We choose a kernel K. Denote by ϕ its associated Mercer-function.

4. In the algorithm replace all occurrences of 〈xi, yj〉 by K(xi, xj).
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10.4 Example. Kernelise Ridge regression

Θ̂ =
(
XTX + ambdaI

)−1
XTy

The prediction for a new sample x∗ is

y∗ = xT∗ Θ̂ = xT∗
(
XTX + λI

)−1
XTY

We can show that this is equal to

y∗ = xT∗X
T
(
XTX + λI

)−1
Y

Equivalently we have

ŷ∗ = k(x∗)
T (K + λI)−1Y

where ki := xTi x∗.

10.5 Design of Experiments

Given some features xi ∈ Rn we ask whether there exists some Θ ∈ Rn such that yi is a realisation
of random variable Yi with

EYi = xTi Θ VYi = σ2 Yi ⊥ Yj

Often we are free to choose the features. So we want to �nd out, what the best choice is to gain
as much information as possible.
In optimal Design of Experiment we want to select the features xi that lead to the best possible
estimator of Θ. (We have to pay to obtain new samples, so which samples should we select?)
We assume that experimental trials must be selected from {x1, . . . , xm}. We have a budget for N
trials. Let ni be the number of times we choose the i-th experimental trial. Then

y = (x1, . . . , x1, . . . , xn, . . . , xn)TΘ + ε

From the Gauss Markov Theorem (Theorem 10.1) we know that the variance of the BLUE of Θ is

V = σ2
(
X(~n)TX(~n)

)−1
= σ2

(
m∑
i=1

nixix
T
i

)−1

=
σ2

N

 m∑
i=1

ni
N︸︷︷︸

=:wi

xix
T
i


−1

The weights wi satisfy
∑
si = 1 and represent the fraction of�experimental e�ort� at xi. Formally,

this was an integer optimisation problem. But for large N we are close to the continuous case.
Thus we treat the wi as real numbers and hence we have a convex optimisation problem.

The optimal DoE-problem is to �minimise�
(∑

wix
T
i xi
)−1

, or to �maximise� the information matrix

M(w) =
m∑
i=1

wix
T
i xi

but we have to choose according to which scalar function.
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the D-optimal design problem is to �nd the weights that minimise the volume of the con�dence

ellipsoids. The axes of the ellipsoid are the eigenvectors with factors λ
1
2
i (eigenvalues). This means

we want to maximise

ψD(w) =
(∏

λi

) 1
n

= n
√

detM(w)

i.e. we solve the convex problem

max

{
n

√∑
wixTi xi : w ∈ Rn

≥0,
∑

wi = 1

}
The A-optimal design is to minimise the diagonal of the bounding box of the con�dence ellipsoid.
Here we have target function

φA(w) =
m∑
i=1

1

λi
= tr(M(w))−1

To write this as an SDP �rst note

tr(M(w))−1 ≤ t⇔ ∃Y ∈ Sn.
(
M(w) In
In Y

)
� 0, tr(Y ) ≤ t

Proof. ⇒: We admit that the LMI impliesM(w) � 0. Then from Lemma 9.8 Y � In(M(w))−1In =
M(w)−1. So t ≥ tr(Y ) ≥ tr (M(w)−1).

⇐: tr (M(w)−1) ≤ t, so M(w)−1 exists, hence M(w) � 0. Let Y = M(w)−1. From Lemma 9.8(
M(w) In
In M(w)−1

)
� 0

and of course tr(Y ) = tr (M(w)−1) ≤ t.

To �nally get the SDP formulation write

min

{
tr(Y ) :

(
M(w) In
In Y

)
� 0, w ≥ 0,

∑
wi = 1, w ∈ Rm, Y ∈ Sn

}

11 Duality

Regard a convex optimisation problem. The primal view is to �nd the point farthest away in some
given direction. The dual view is to �nd the closest supporting hyperplane in the opposite of the
given direction.
We want to �nd a connection between

minf(x) + λg(x) min{f(x) : g(x) ≤ α}

In this part, we will switch between to formulations

• Non-linear programme (NLP)

p∗ := inf{f0(x) : ∀i ∈ [m].fi(x) ≤ 0,∀j ∈ [p].hj(x) = 0}

• conic programme (CP)

min{cTx : A0x = b0, Aix �Ki bi}
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11.1 Lagrangian Dual of NLP

The Lagrangian of (NLP) is the function L : Rn+m+p → R via

L(x, λ, µ) = f0(x) +
m∑
i=1

λifi(x) +

p∑
j=1

µjhj(x)

The Lagrange dual function of (NLP) is g : Rm+p → R via

g(λ, µ) = inf{L(x, λ, µ) : x ∈ Rn}

11.1 Theorem. Let λ ∈ Rm
+ , µ ∈ Rp. Then g(λ, µ) ≤ p∗.

Proof. If (NLP) is infeasible, we have p∗ =∞, so the theorem holds.

Let X̃ be feasible for (NLP). Then

g(λ, µ) = inf
x
L(x, λ, µ) ≤ L(x̃, λ, µ) = f0(x̃) +

m∑
i=1

λifi(x̃) +

p∑
j=1

µjhj(x̃) ≤ f0(x̃)

Taking the in�mum over feasible x̃ yields g(λ, µ) ≤ p∗.

Note that this proof does not use convexity (nor does the theorem).

11.2 Theorem. For the Lagrangian we have

sup
λ≥0,µ

inf
x∈Rn

L(x, λ, µ) ≤ inf
x∈Rn

sup
{
L(x, λ, µ) : λ ∈ Rm

+ , µ ∈ Rp
}

The left hand side is the Lagrangian dual problem.

Proof. We need to show that the right hand side is p∗. Let x ∈ Rn. We claim that

sup {L(x, λ, µ) : λ ≥ 0, µ ∈ Rp} =

{
f0(x) : x feasible

∞ : else

Let x be feasible. Then

L(x, λ, µ) = f0(x) +
∑

λifi(x) +
∑

µjhj(x) ≤ f0(x)

So sup{L(x, λ, µ) : λ ≥ 0} ≤ f0(x) and we have equality for λ = µ = 0.
Let x be infeasible. Then we have some violated constraint, which means fi(x) > 0 or hj(x) 6= 0.
Sending this λi →∞ or µj → ±∞ yields a supremum of ∞.
The claim implies the value of the inf-sup problem is p∗ so we are done.

missing lecture

inf{cTx : Aix �ki bi} = inf
x
cTx+

{
0 : Aix �Ki bi
∞ : otherwise

= inf cTx+ sup
yi�Ki0

〈yi, bi − Aix〉

For the last equality we have to be aware that

sup {a · y : y ≥ 0} =

{
∞ : a > 0

0 : a ≤ 0

Let K be a proper cone. Then

x ∈ K ⇔ x ∈ K∗∗ ⇔ ∀y ∈ K∗.〈x, y〉 ≥ 0
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11.3 Theorem. We have

p∗ := inf {〈x, y〉 : y ∈ K∗} =

{
0 : x ∈ K
−∞ : else

(4)

sup {〈x, y〉 : y ∈ K∗} =

{
0 : x �K 0

0 : else
(5)

Proof. We just show the �rst. If x ∈ K, then ∀y ∈ K∗.〈x, y〉 ≥ 0, so p∗ ≥ 0. Moreover 〈x, 0〉 = 0,
so p∗ = 0. If x /∈ K, there exists some y0 such that 〈x, y0〉 < 0. Then ty0 /∈ K for all t > 0, so

p∗ ≤ lim
t→∞
〈x, ty0〉 = −∞

11.3 Strong Duality

11.4 De�nition. In a convex optimisation problem we say that the constraints are quali�ed, if
they satisfy some property ensuring that strong duality holds.

11.3.1 Slater's condition for conic programming

Consider a pair of conic programmes.

p∗ = inf
{
cTx : A0x = b0,∀i ∈ [m].Aix �Ki bi

}
(6)

d∗ = sup

{
m∑
i=0

bTi yi :
m∑
i=0

ATi yi = c,∀i ∈ [m].yi �K∗i 0

}
(7)

11.5 De�nition. We say eq. (6) is strictly feasible if there exists some x ∈ Rn with A0x = b0 and
Ai �Ki bi. Then we say x is a Slater's point.
Equation (7) is strictly feasible if there exists some feasible y with yi �K∗i 0.
More generally a conic problem is essentially strictly feasible, if there exists some feasible point
that satis�es all non-linear conic inequalities strictly.

Remark. For our cones we will usually have K = Rn (polytope) or K =
∐n

+, K = Sn+ (non-linear
conic inequalities).

11.6 Theorem. 1. d∗ ≤ p∗ (Weak duality)

2. The dual of eq. (7) is eq. (6) (symmetry).

3. If one of eq. (6),eq. (7) is essentially strictly feasible and bounded, then strong duality holds,
i.e. p∗ = d∗ and the other problem is solvable (dual attainment). In particular, if both
problems are strictly feasible, then there exists a pair (x∗, y∗) of primal and dual optimal
solutions.

4. Assume (x∗, y∗) is a feasible pair. If strong duality holds, then TFAE

(a) (x∗, y∗) is a pair of optimal solutions.

(b) cTx∗?bTy∗ (no duality gap)

(c) ∀i ∈ [m].〈y∗i , Aix∗ − bi〉 = 0 (complementary slackness)

Proof. 1. already done
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2. later

3. Recall that all conic problems scan be put into the following form:

p∗ = inf
{
cT : AX :K self(b)

}
d∗ = sup

{
bTy : ATy = c,�K∗ 0

}
By symmetry we can assume that the primal problem is strictly feasible and bounded. Hence
we have

p∗ > −∞ ∃x ∈ Rn : Ax �K b

We need to show that

∃y �K∗ 0.ATy = c, by ≥ p∗

Let M := {Ax − b : cTx ≤ p∗}. We want to apply separating hyperplanes on M and intK.
Since p∗ is some �nite vector, we have M 6= ∅. intK 6= ∅, because K is proper. To show
that they do not intersect, assume there exists some x with cTx ≤ p∗ and y = Ax − b for
y ∈ intK. Then Ax �K b. But then Ax′ � b for all x′ in the vicinity of x. Hence there exists
some x′ with Ax′ � b and cTx′ < cTx ≤ p∗. This contradicts optimality of p∗.

Therefore by Theorem 8.9 there exist some hyperplane given by 0 6= z ∈ Rn and µ ∈ R where
zTy ≤ µ for all y ∈M and zT , y〉 ≥ µ for all y ∈ int(K). In fact we have ∀y ∈ intK.zTy ≥ 0.
Otherwise zT (ty) → −∞ as t → ∞. So wlog we can assume µ ≥ 0. Furthermore zTy → 0
as y → 0, so µ ≤ 0. This is equivalent to

∀y ∈ intK.zTy ≥ 0 (8)

∀x : cTx ≤ p∗.zT (Ax− b) ≤ 0 (9)

Condition eq. (8) we rephrase as

∀y �K 0.〈z, y〉 ≥ 0⇔ ∀y �K 0.〈z, y〉 ≥ 0⇔ z ∈ K∗

For eq. (9) we have cTx ≤ p∗ implies 〈x,AT z〉 ≤ bT z. This is a linear function of x bounded
on a halfspace. Hence AT z = µc for some µ ≥ 0. We want to show that µ 6= 0. Assume
µ = 0, then AT z = 0, so bT z ≥ 0. By assumption there exists some x̂ with Ax̂− b �K 0. We
have z �K∗ 0 and z 6= 0. So 〈z, Ax̂− b〉 > 0, which means x̂TAT z > bT z = 0.  

This means x �K 0, x 6= 0 and y �K∗ 0, so 〈x, y〉 > 0.

We can conclude the proof by setting y = z
µ
. Then y �K∗ 0 and ATy = c.

And from eq. (9) cTx ≤ p∗, so xTATy ≤ bTy. So bTy ≥ p∗. And for c = 0, we get p∗ = 0 and
d∗ ≥ 0 (for y = 0).

4. Assume strong duality holds. So (x∗, y∗) is optimal i� p∗ = cTx∗ = bTy∗ = d∗. And since y∗

is feasible, the duality gap is

cT︸︷︷︸
AT y

x∗ − bTy∗ = (y∗)T (Ax∗ − b) = 0 when slackness holds

missing lecture
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12 Sensitivity analysis

Regard the problem Pu,v given by

p∗(u, v) := min {f0(x) : x ∈ Rn,∀i ≤ m.fi(x) ≤ ui,∀j ≤ p.hj(x) = vj}

We write p∗ := p∗(0, 0) for the unperturbed problem and put (P ) := (P0,0).

12.1 Theorem (Global Sensitivity). Assume that (P) is a convex optimisation problem and
strong duality holds. If (λ∗, µ∗) is a pair of optimal Lagrange multipliers, then

∀(u, v) ∈ Rm ×Rp.a∗(u, v) ≥ p∗ − uTλ∗ − vTµ∗

Proof. By strong duality p∗ = d∗ = g(λ∗, µ∗). Let X be feasible for the perturbed problem.

g(λ∗, µ∗) ≤ L(x, λ∗, µ∗) = f0(x) +
∑
i

λ∗i fi(x) +
∑
j

µ∗jhj(x) ≤ f0(x) + (λ∗)Tu+ (µ∗)Tv

Taking the in�mum over all feasible x yields

p∗ ≤ p∗(u, v) + (λ∗)Tu+ (µ∗)Tv

12.2 Theorem (Local Sensitivity). Taking the assumptions from Theorem 12.1, and addition-
ally assume p∗(·, ·) is di�erentiable at 0. Then ∂p∗

∂ui
(0, 0) = −λ∗i and

∂p∗

∂vj
(0, 0) = −µ∗j .

Proof. By de�nition

∂p∗

∂ui
(0, 0) = lim

t→∞

p∗(tei, 0)− p∗

t

By the global sensitivity ∀t ∈ R.p∗(tei, 0) ≥ p∗ − tλ∗i . So

p∗(tei, 0)− p∗

t
≥ −λ∗i if t > 0

p∗(tei, 0)− p∗

t
≤ −λ∗i if t < 0

Since p∗ is di�erentiable, the limit must be the same.

Note that di�erentiability is a rather hard assumption, since often an optimum is attained at the
intersection of constraints. So at these points, it is not clear, that p∗ is di�erentiable, even if all
functions involved are smooth.

Dual of Rn
+, Ln

+, Sn+
Recall that for cone K ⊆ Rn its dual is

K∗ = {y ∈ Rn : ∀x ∈ K.〈x, y〉 ≥ 0}

K = Rn
+: For y ∈ K, we have y ∈ K∗, because we take the scalar product of only positive values.

If y /∈ K, then yi < 0 for some i, so take x = ei. Then 〈x, y >= yi < 0, so y /∈ K. This
shows K∗ = K.
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K = Sn+: Assume Y ∈ K. Take some arbitrary X ∈ K. Write X = HHT and Y = KKT . Then
〈X, Y 〉 = tr(KTHHTK) = ‖HTK‖2

F ≥ 0.

Let Y /∈ L, then it has a negative eigenvalue λ < 0 with eigenvector Y u = λu. Set X = uuT .
Then

〈X, Y 〉 = tr(uuTY ) = uTY u = λuTu = λ‖u‖2 < 0

K = Ln+1
+ : More explicitly

K = {(x, t) ∈ Rn ×R : ‖x‖ ≤ t}
K∗ =

{
(y, s) ∈ Rn+1 : ∀‖x‖ ≤ t.xTy + st ≥ 0

}
Let (y, s) ∈ K and let ‖x‖ ≤ t. Then

xTy ≥ −‖x‖ · ‖y‖ ≥ −st =⇒ xTy + st ≥ 0

For the converse, suppose (y, s) /∈ K, i.e. ‖y‖ > s. Set x = y and t = ‖y‖. Then
xTy + st < −‖y‖2 + ‖y‖2 = 0, so (y, s) /∈ K∗.

Geometric Programming

We de�ne the exponential cone

Kexp =
{

(x, y, z) ∈ R3 : y > 0, ye
x
y ≤ z

}
Since this cone is not closed (due to y > 0) we take its closure

Ke = cl (Kexp) = Kexp ∪ {(x, y, z) : x ≤ 0, y = 0, z ≥ 0}

The last term is the epigraph of the exponential function.
We can show that it is proper (although technical) with

K∗e =
{

(u, v, w) ∈ R3 : u ≤ 0, w ≥ 0, u log
(
−w
u

)
≤ v − u

}
The last term is called relative entropy.

12.3 Example (Ke-representable functions). • ex ≤ t⇔ (x, 1, t) ∈ Ke.

• log(x) ≥ t⇔ x ≥ et ⇔ (t, 1, x) ∈ Ke

•
∑
xi log xi

yi
≤ t ⇔ ∃zi.xi log xi

yi
≤ zi ∧

∑
zi ≤ t. And with the above xi log xi

yi
≤ zi ⇔

(−zi, xi, yi) ∈ Ke. The linear condition is
∑
zi ≤ t⇔ (0, 0, t−

∑
zi) ∈ Ke.

• LSE(x) := log
∑

exp(xi) ≤ t also is Ke-representable.

12.4 De�nition. A posynomial is an expression of the form

p =
∑

αjx
p1
1 · . . . · xpnn

where αj ∈ R+ and pi ∈ R (in particular may be negative, or non-integer).
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12.5 De�nition. A geometric programme in posynomial form is an optimisation problem of the
form

min {f0(x) : ∀i ≤ m.fi(x) ≤ 1,∀j ≤ p.hj(x) = 1}

where the fi are posynomials, and the hj are positive monomials.

12.6 Example. Regard the following GP

min 3
z

y
+ 2
√
zx3y−7 +

y

x2

x

yz
+ 3
√
z ≤ 1

2x3y−1 = 1

With change of variables x′ = log x etc. and taking the logarithm we obtain

min LSE

(
z′ − y′ + log 3,

1

2
z′ + 3x′ − 7y′ + log 2, y′ − 2x′

)
LSE

(
x′ − y′ − z′, 1

2
z′ + log 3

)
≤ 0

3x′ − y′ + log 2 = 0

Example. Maximise volume of a box, i.e. minw−1d−1h−1 with constraints

• Area of walls 2wh+ 2dh ≤ W

• are of �oor wd ≤ F

• bound on aspects ratios w
h
∈ [α, β]

This is the reason, why it is called Geometric Programme.

Example (Truss Design). When constructing a bridge, we have some vector expressing the
external forces. Each force creates a small displacement of the structure. But some of the nodes
are �xed. When deciding the width of each bar, this can be expressed as a GP.

13 SDP in Combinatorial Optimisation

13.1 Independent sets and graph colouring

The problem of �nding a stable set of maximal size is a well-known NP-hard problem. It can be
formulated as integer programme as follows:

max

{∑
v∈V

xv : ∀{u, v} ∈ E.xu + xv ≤ 1,∀v ∈ V.xv ∈ {0, 1}

}

Just dropping the integrality constraint would yield the feasible solution xv = 1
2
for all v. This

usually does not lift to to original problem. In case of the complete graph, the relaxation yields
1
2
|V |, but the solution is 1.
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13.1 De�nition (Clique-Cover). A k-clique cover is a partition of V in k sets such that each
set forms a clique. The smallest k ∈ N such that a k-clique cover exists, is called the clique cover
number.

13.2 De�nition. Let G = (V,E) be some graph. We denote

• α(G) maximal size of an independent set

• ω(G) maximal clique size

• χ(G) colouring number

• χ(G) clique cover number.

13.3 Proposition. Let G denote the complementary graph. Then α(G) = ω(G) and χ(G) = χ(G).

Proof. S is stable set of G i� S is a clique in G, same with the other.

Remark. In a clique each vertex must have a di�erent colour. Thus ω(G) ≤ χ(G). With Propo-
sition 13.3 we get α(G) ≤ χ(G).

13.4 De�nition. A graph is perfect if ω(G) = χ(G).

13.5 Theorem. A graph G is perfect (i� G is perfect) i� neither G nor G contains an odd cycle
of length ≥ 5 as in induced subgraph. Thus the property is decidable in polynomial time.

13.6 De�nition (Lovasz' Θ-function). We put

Θ(G) := max {〈1, X〉 : 〈I,X〉 = 1,∀{i, j} ∈ E.Xij = 0, X � 0}

where I is the identity and 1 is the all 1 matrix, so 〈1, X〉 =
∑

i,j Xij. Note that the above is an
SDP.

13.7 Proposition. Θ(G) can also be de�ned by using the dual SDP

Θ(G) = min
{
t : Z � tI,∀i, j.{i, j ∈ E ∨ i = j → Zij = 1

}
or by writing

Z :=
{
Z ∈ Sn : ∀i ∈ V.Zii = 1,∀{i, j} ∈ E.Zij = 1

}
Θ(G) = min {λmax(Z) : Z ∈ Z}

Proof. First we have

Θ(G) = sup

〈1, X〉+ + inf {t(1− 〈I,X〉 : t ∈ R}+
∑
{i,j}∈E

inf
{
µij(1−Xij) : µ ∈ Rn×n} : X � 0


The dual problem is obtained by switching the order of supremum and in�mum.

Θ(G) ≤ Θ′(G) = inf
t∈R,µ∈Rn×n

t+
∑

µij + sup

〈X,1− tI − ∑
{i,j}∈E

µijEij〉 : X � 0

︸ ︷︷ ︸0 : 1− tI −
∑
µijEij � 0

∞ : else
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Θ′(G) = inf

t : t ∈ R, µ ∈ Rn×n,1− tI −
∑
{i,j}∈E

µijEij � 0


Now we obtain the desired dual SDP with the change of variable Z = 1 −

∑
µijEij. The change

back is given by

Z ∈ Z ⇔ ∃µ.Z = 1−
∑

µihEij

We are going to show that both SDPs are strictly feasible, so they are bounded. Thus strong
duality holds and the optimum is attained in both problems.
X := 1

n
I is strictly feasible for the primal SDP. For the dual we have Z ≺ tI ⇔ t > λmax(Z). So

we take an arbitrary matrix Z ∈ Z, e.g. Z = 1 and then some t > λmax(Z). So (t, Z) is strictly
feasible for the dual SDP.

13.8 Theorem (Lovasz' sandwich theorem). α(G) ≤ Θ(G) ≤ χ(G).

Proof. For the �rst inequality let S be a maximum independent set. Let eS be the incidence vector
(characteristic function) of S. We claim that X = 1

|S|eS · e
T
S is feasible for the primal.

tr(X) = 〈I,X〉 =
eTSeS
|S|

=
|S|
|S|

= 1

Furthermore we have

Xij =

{
1
|S| : i, j ∈ S
0 : else

So for all edges we have Xij = 0 because S is stable. Hence we obtain a bound

Θ(G) ≥ 〈1, X〉 = 〈1, eSe
T
S

|S|
〉 =

(eTS1)2

|S|
= |S| = α(G)

To see Θ(G) ≤ χ(G), take a minimal k-clique-cover C1, . . . , Ck with incidence vectors eCi . We
claim that t = k and

Z = kI − 1

k

k∑
j=1

(keCj − 1)(keCj − 1)T

is dual feasible. We have

tI − Z =
1

k

k∑
j=1

(keCj − 1)(keCj − 1)T � 0

Now observe
∑
eCj = 1. So we can write

Z = kI − 1

k

(
k2
∑

eCjeCTj − 2k1 + k1
)

= k
(
I −

∑
eCje

T
Cj

)
+ 1

After permutation of the vertices we have a block matrix

∑
eCje

T
Cj

=

1 . . .
. . .

. . . 1


part missing
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13.9 Lemma. We have

inf
X�K0

〈X,A〉 =

{
0 : A �K∗ 0

−∞ : else
sup
X�K0

〈X,A〉 =

{
0 : A �K∗ 0

∞ : else

Proof. For the �rst part:

A ∈ K∗ ⇔ ∀x ∈ (K∗)∗ = K.〈A,X〉 ≥ 0

Since we can obtain 〈A,0〉 = 0, and

A ∈ K∗ =⇒ inf
x�K0
〈A,X〉 ≥ 0

we get the claim for the �rst case. For A /∈ K∗ take X0 with 〈A,X0〉 < 0. Scaling X0 goes to
−∞.

Example. Fix some i, j. Regard the problem

??min {Xij : trX = 1, X � 0} (P)

We write ?? as a saddle point of the Lagrangian

min
X�0

Xij + max
λ

λ(1− trX)

The dual problem is obtained by switching the order of min and max:

max
λ

λ+ min
X�0

Xij − λ trX

Putting Eij = 1
2
(eie

T
j + eje

T
i ) we get Xij = 〈X,Eij〉 we can rewrite this to

max
λ

λ+ min
X�0
〈X,Eij − λI〉

Hence the dual problem is

max {λ : Eij − λI = Z,Z � 0}

Therefore taking the dual does not help, but makes the problem more complicated.

13.2 Max-Cut SDP

13.10 De�nition. Let G = (V,E) be a graph with edge weights wij (put wij = 0 for {i, j} /∈ E).
A cut is a partition V = S ∪ S. The value of a cut is

cut
(
S, S

)
=

∑
i∈S,j /∈S

wij

The Max-cut problem is to �nd some cut with the largest value.

Let x ∈ {−1, 1}n denote the incidence vector of a cut (xi = 1⇔ i ∈ S). An edge {i, j} contributes
to the cut i� xixj = −1. So the problem can be written as

max

{∑
i,j∈V

wij ·
1

4
(1− xixj) : ∀i ∈ V.x2

i − 1 = 0

}
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13.11 Lemma. Some matrix X ∈ Sn satis�es Xij = xixj for some vector x ∈ {−1, 1}n i�

X � 0 diagX = 1 rank(X) = 1

Proof. We know that psd-matrices of rank 1 have the form X = uuT for some u ∈ Rn. Therefore
Xij = xixj ⇔ X = xxT . Then xi ∈ {−1, 1} ⇔ x2

i = 1⇔ Xii = 1.

Now let W ∈ Sn be the matrix of weights. This means cut(X) = 1
4
〈W,1− xxT 〉. By Lemma 13.11

we can reformulate the Max-Cut problem:

maxcut(G) := max

{
1

4
〈W,1−X〉 : X � 0, diagX = 1, rankX = 1

}
Not the rank condition causes trouble, since it is non-convex. So we just drop it and thus get an
SDP-relaxation

rel(G) :=
1

4
·max {〈W,1−X〉 : X � 0,∀i.Xii = 1}

Since we only dropped a constraint, we immediately have maxcut(G) ≤ rel(G).
The algorithm of Godmans and Williamson uses this SDP to construct an approximation for
Max-Cut.

1. Compute a solution X∗ of this SDP.

2. Take a decomposition X∗ = HHT . Denote by hTi the i-th row of H, so X∗ij = 〈hi, hj〉.

3. Choose a vector uniformly at random over the unit sphere. To do this, draw z ∼ N (0, 1)
and take r := z

‖z‖ .

4. De�ne S = {i : rThi > 0}.

13.12 Theorem (Godmans, Williamson). Let S be the random cut returned by the above
algorithm. Then

E
[
cut
(
S, S

)]
≥ α rel(G) ≥ αmaxcut(G)

where α ≈ 0.87856.

13.13 Lemma. Let u, v be on the unit sphere of Rn. Let r ∈ Rn be drawn uniformly at random on

the sphere. Put H :=
{
x : xT r ≥ 0

}
. Then u and v are separated by H with probability arccos(uT v)

π
.

Proof. Note that θ := arccos(uTv) is the angle between those two vectors. We have again angle θ
in the opposite direction, so the probability of separating them is 2θ

2π
.

of Theorem 13.12.

E
[
cut
(
S, S

)]
=
∑
{i,j}∈E

wijP [i ∈ S, j /∈ S] =
∑
{i,j}∈E

wij
arccos(hTi hj)

π
=
∑
{i,j}∈E

wij
1− h < −iThj

2
· 2 arccos(hTi hj)

π · (1− hTi hj)︸ ︷︷ ︸
≥α

To show this last inequality, �x i, j. Then

2

π
· arccos(hTi hj)

1− hTi hj
≥ inf

u∈[−1,1]

2

π
· arccos(u)

1− u
= inf

θ∈[0,π]

2

π
· θ

1− cos θ
=: α
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Alternative construction of the Max-Cut SDP: Recall that

maxcut(G) =
1

4
max

{
n∑
i=1

n∑
j=1

wij(1− xixj) : ∀i.xi ∈ {−1, 1}

}
Let Sn := {x ∈ Rn : ‖x‖ = 1}. So our constraint is xi ∈ S1. By allowing xi ∈ Sn, we get

1

4
max

{∑
i,j∈V

wij(1− 〈xi, xj〉) : ∀i.xi ∈ Sn

}
=

1

4
max

{∑
i,j∈V

wij(1−Xij) : X � 0

}
which is another SDP-relaxation.

13.3 SDP relaxation of non.convex (in particular binary) quadratic prob-
lems

We consider the probem

min
{
xTQ0x+ cT0 x+ q0 : x ∈ Rn, xTQix+ cTi x+ qi ≷ 0

}
(QCQP)

We can model binary constraints via x2
i = xi (if xi ∈ {0, 1}), or x2

i = 1 (if xi = ±1).
Observe that QCQP is not convex in general. QCQP can be rewritten as

min
{
〈Q0, X〉+ cT0 x+ q0 : x ∈ Rn, X ∈ Sn, 〈Qi, X〉+ cTi x+ qi ≷ 0, X = xxT

}
Now we relax the constraint X = xxT be replacing it with the weaker (but convex)

X � xxT ⇔
(
X x
xT 1

)
� 0

13.14 Proposition. The SDP

min
{
〈Q0, X〉+ cT0 x+ q0 : x ∈ Rn, X ∈ Sn, 〈Qi, X〉+ cTi x+ qi ≷ 0, X � xxT

}
is a relaxation of QCQP. Its optimal value gives a lower bound to the optimal value of QCQP.

13.15 Remark. Binary constraints xi ∈ {0, 1} in the SDP relaxation become Xii = xi.

For short write X =

(
X x
xT 1

)
and the same for X

∗
.

13.16 Proposition. If (X∗, x∗) is an optimal solution of the SDP, and rank(X
∗
) = 1, then x∗

solves the original problem.

Proof. If X � xxT and rankX = 1, then we can write X
∗

= (u, α)(u, α)T for some u ∈ Rn,α ∈ R.
Thus we obtain X = uuT , α2 = 1 and x = αu = ±u. Therefore X = xxT and we have a solution
which is feasible for QCQP (hence optimal, since we regarded a relaxation).

13.17 Example. We regard k-exact quadratic knapsack:

max
{∑

cijxixj :
∑

aixi ≤ b,
∑

xi = k, xi ∈ {0, 1}
}

This means, we must take exactly k items and any combination of 2 items might have some
�synergy� bonus. By taking value function c as diagonal matrix, we obtain the original k-exact
knapsack. ai are the individual weights, b is the capacity.
The SDP relaxation is

max
{
〈C,X〉 :

∑
aixi ≤ b,

∑
xi = k,X � 0, diag(X) = x

}
We can add the redundant constraint 1X1 = k2 (which comes from squaring 1Tx = k).
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13.4 Completely positive formulation of mixed-integer QP

13.18 De�nition (Copositive cone). A matrix X ∈ Sn is copositive if uTXu ≥ 0 for all u ∈ Rn
+

(note that in contrast to psd-matrices, we only demand this for u ≥ 0). This set is denoted Cn.

13.19 De�nition (Completely positive cone). A matrix X ∈ Sn is completely positive if
X =

∑q
i=1 uku

T
k for some q ∈ N and uk ∈ Rn

+. (Again only regard uk ≥ 0.) The set is denoted C ∗n .

13.20 Proposition. 1. If X ∈ C ∗n we can always choose q ≤ n(n+1)
2

.

2. We have the chain

C ∗n ⊆ Sn+ ∩Rn×n
+ ⊆ Sn+ ⊆ (Sn+ +Rn×n

+ ) ⊆ Cn

3. Cn and C ∗n are proper cones and dual to each other (thus the notation C ∗n is justi�ed).

Proof. 1. C ∗n ⊆ Sn, and the a�ne dimension of Sn is n(n+1)
2

.

2. trivial. For the last note Sn+,Rn×n
+ ⊆ Cn and it is a cone.

3. It su�ces to show duality and that one of the cones is proper.

We show that Cn is proper:

convex: It is the intersection of in�nitely many half-spaces.

convex: clear

non-empty interior: We have Sn+ ⊆ Cn and Sn+ has non-empty interior

pointed: Let X ∈ Cn ∩ −Cn. Then we get uTXu = 0 for all u ∈ Rn
+. By taking u = ei, we

get Xii = 0. Then we continue with u = ei+ej and obtain 0 = 2Xij +Xii+Xjj = 2Xij.
Hence X = 0, which shows that Cn is pointed.

Now let Y ∈ dual (C ∗n ). This means

∀X ∈ C ∗n .〈X, Y 〉 ≥ 0

⇔∀u1, . . . , uq ≥ 0.
∑

uTk Y uk ≥ 0

⇔∀u ≥ 0.uTY u ≥ 0⇔ Y ∈ Cn

Now we consider the following MIQP: B ⊆ [n] denote the indices of binary variables.

min
{
xTQx+ cTx : Ax = b,X ≥ 0,∀i ∈ B.xi ∈ {0, 1}

}
Now in the relaxation the matrix X = xxT is completely positive, due to the constraint x ≥ 0.
Furthermore, we rewrite aTi x = bi to a

T
i xx

Tai = b2
i .

13.21 Theorem (Burer). Under some mild assumptions the completely positive programme specifyspecify

min
{
〈Q,X〉+ cTx : Ax = b,∀i.aTi Xai = b2

i ,∀i ∈ B.Xii = xi, X � 0
}

is equivalent to the original MIQP.
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14 Robust Optimisation

So far we regarded problem of the type

min {f0(x) : ∀i ∈ [n].fi(x) ≤ 0}

where all fi are convex.
If we have some constraint of the type

x1 + x2 + x3 + x7 ≤ 2 x ≥ 0

we can think of this as a precise constraint. But of we get our constraint from real world data, we
can have error in the measurement, e.g.

1.2037x1 + 2.3303x2 − 5.7701x3 ≤ 0

Here it might happen that a slight change in the coe�cients makes the problem infeasible.
Formally, assume that the objective and constraints depend on a parameter θ.
If we have some estimate θ0 of θ, one can solve the nominal problem

min {f0(x, θ0) : ∀i.xi(x, θ0) ≤ 0} (NP)

The solution of eq. (NP) is not guaranteed to be feasible for the �true� value of the unknown
parameter θ. In Robust Optimisation we protect ourselves by optimising against the worst-case in
some uncertainty set Θ ⊆ Rk.
Formally the robust counterpart is

min

{
sup
θ∈Θ

f0(x, θ) : ∀i.∀θ ∈ Θ.fi(x, θ) ≤ 0

}
(RP)

This is an alternative to the stochastic programming approach, where θ is a random variable and
one solves

min {E0f0(x, θ) : ∀i.P (fi(x, θ) ≤ 0) = 1} (SP)

14.1 robust Linear Programming

Consider the robust LP

min

{
sup
θ∈Θ

c(θ)T · x : ∀θ ∈ Θ.A(θ)x ≤ b(θ)

}
(RLP)

Wlog we can assume that c and b are not a�ected by the uncertainty, by moving it to A. To see
this, observe that eq. (RLP) is equivalent to

min
{
t : ∀θ ∈ Θ.A(θ)x− b(θ)z ≤ 0, c(θ)Tx ≤ t, z = 1

}
Let aTi (θ denote the i-th row of A(θ) and rewrite

min
{
cTx : ∀i.∀θ ∈ Θ.aTi (θ)x ≤ bi

}
Constraints of this form are called semi-in�nite linear constraints, because they involve a �nite
number of variables but an in�nite amount of linear constraints parametrised by θ. It still is a
convex problem.
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14.2 Robust counterpart of eq. (RLP) for di�erent uncertainty models

An uncertainty model is given by

• the functions a : Θ→ Rn

• the uncertainty set Θ ⊆ Rk

Alternatively we can specify the row-uncertainty set

A = {a(θ) : θ ∈ Θ}

such that the semi-de�nite constraint

∀θ ∈ Θ.a(θ)Tx ≤ b (SIC)

is equivalent to

∀a ∈ A.aTx ≤ b (SIC)

14.2.1 Polyhedral uncertainty

A is a polytope described by its vertices A = conv({v1, . . . , vk}). Equivalently

a(θ) =
k∑
i=1

θivi Θ =
{
θ ≥ 0 :

∑
θi = 1

}
14.1 Proposition. In the polyhedral uncertainty model eq. (SIC) is equivalent to ∀i ∈ [k].vTi x ≤ b.

Proof. Assume ∀i.vTi x ≤ b. Then if a ∈ A, i.e. a =
∑
θivi for some θ ∈ Θ, we have∑

θi(v
T
i︸ ︷︷ ︸

a

x) ≤
∑

θi︸ ︷︷ ︸
=1

b

and thus aTx ≤ b. Conversely if ∀a ∈ A.aTx ≤ b, then in particular this holds at vi ∈ A.

14.2.2 Conic uncertainty model

A = {a+ Pθ︸ ︷︷ ︸
a(θ)

: Fθ �K h︸ ︷︷ ︸
θ∈Θ

}

for some proper cone K ⊆ Rl, i.e. h ∈ Rl.

14.2 Theorem. Assume that the conic inequality is essentially strictly feasible. Then in the conic
uncertainty model eq. (SIC) is equivalent to the following system that involves additional variable
z ∈ Rl:

∃z ∈ Rl.
(
aTx+ hT z ≤ b, F T z = P Tx, z �K∗ 0

)
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Proof. Observe that eq. (SIC) is equivalent to

sup
a∈A

aTx ≤ b

⇔ sup
θ:Fθ�Kh

(a+ Pθ)T x ≤ b

⇔ sup
θ:Fθ�Kh

θTP Tx ≤ b− aTx

The problem in the last line is a conic programming problem and string duality holds (p∗ = d∗),
because we assume Fθ �K h is essentially strictly feasible. So

sup
{
θTu : Ft�Kh

}
= inf

{
hT z : F T z = u, z �K∗ 0

}
holds for all u. For u = P Tx we obtain

eq. (SIC)⇔ ∃z �K∗ 0.F T z = u, hT z ≤ b− aTx

14.2.3 Budgeted uncertainty set

In this uncertainty model we assume that we know a nominal scenario a and for each coordinate
i there is a maximal deviation |ai − ai| ≤ δi. In addition we give a constant Γ ≥ 0 such that∑ |ai−ai|

δi
≤ Γ.

Equivalently we can parametrise the budgeted uncertainty set as follows, introducing θi = |ai−ai|
δi

:

A = {a+ diag(δ)θ : ‖θ‖∞ = 1, ‖θ‖1 ≤ Γ}

Let K ∈ Rl. Then we regard the problem

∀Θ.FΘ �K h→ (a+ PΘ)Tx ≤ b (10)

⇔ ∃z ∈ Rl.aTx+ hT z ≤ b, F T z = P Tx, z �K∗ 0 (11)

14.3 Example (Robust Knapsack). Regard the continuous knapsack problem

max
{
pTx : wTx ≤ W,x ≥ 0

}
where p is the pro�t, w are the weights, W is the capacity.
However, this problem is easy to solve, by just taking the most valuable (by ratio) item.
Now assume that w is uncertain and lives in a Γ-budgeted uncertainty set

w ∈ W = {w + diag(δ)θ : ‖θ‖1 ≤ Γ, ‖θ‖∞ ≤ 1}

For knapsack, we can restrict to positive deviations

Ŵ =
{
w + δT θ :

∑
θi ≤ Γ,∀i.0 ≤ θi ≤ 1

}
This is a constraint of the same form as eq. (10), with

a = w P = diag(δ) F = (I,−I,1)T h = (1,0,Γ) K = R2n+1
+

Hence the semi-in�nite constraint

∀w ∈ W .wTx ≤ W ⇔ ∃(z, y, ξ) ≥ 0.wTx+ 1T z + Γξ ≤ W, z − y + Γ1 = diag(δ)x

So the robust counterpart of the knapsack problem reduces to this LP.

max
{
pTx : wTx+ 1T z + Γξ ≤ W, z + Γ1 ≥ diag(δ)x, x, z, ξ ≥ 0

}
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14.2.4 Ellipsoidal uncertainty

Let E be some ellipsoid.

∀a ∈ E .aTx ≤ b⇔ ∀θ.‖θ‖2 ≤ 1→ (a+ Pθ)Tx ≤ b

This model is related to normally distributed measures a ∼ δ(a,Σ). Its dual problem is an SOCP
(note that the dual for the polyhedral case is an LP).

14.3 Robust counterpart of SOCP

Here we regard the question whether we can handle the robust counterpart of semi-in�nite con-
straints of the form

∀θ ∈ Θ.∀θ ∈ ‖A(θ)x+ b(θ)‖ ≤ c(θ)Tx+ d(θ)

In general the answer is �no�, but possible is Θ is a Euclidean ball and c, d are constant. Norms
are per default 2-norms.

Remark. If A and b are a�ne wrt θ, then

‖A(θ)x+ b(θ)‖ ≤ t⇔ ‖y0(x) + L(x)θ‖ ≤ t

for some a�ne functions y0 and L. Say

A(θ) = A0 +
∑

θiAi b(θ) = b0 +
∑

θibi

then we can rewrite

A(θ)x+ b(θ) = A0x+ b0︸ ︷︷ ︸
=:y0(x)

+
∑

θi(Aix+ bi)︸ ︷︷ ︸
=:L(x)

14.4 Lemma. For all s ∈ R we have

inf
{
svTLθ : ‖θ‖ ≤ 1

}
= inf

{
vTLz : ‖z‖ ≤ |s|

}
14.5 Theorem. Let A,B ∈ Sn and assume ∃x.xTAx > 0. Then(

∀x.xTAx ≥ 0→ xTBx >≥ 0
)
⇔ ∃λ ≥ 0.B � λA

Proof. Exercise

This can be seen as a strong duality result for the problem

min
{
xTBx : xTAx ≥ 0

}
14.6 Theorem. The semi-in�nite SOCP-constraint

∀‖θ‖ ≤ t.‖y0(x) + L(x)θ‖ ≤ 1

is equivalent to

∃λ ≥ 0.

t− λ y0(x)T 0
y0(x) tI L(x)

0 L(x)T λI

 � 0
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Proof. Fix some x and write y0 = y0(x) and L = L(x). By using Schur-complement Lemma 9.8,
the semi-in�nite SOC-constraint is equivalent to

∀‖θ‖ ≤ 1.M :=

(
t (y0 + Lθ)T

y0 + Lθ tI

)
� 0

⇔ ∀‖θ‖ ≤ 1.∀s ∈ R, v ∈ Rn.(s, v) ·M · (s, v)T ≥ 0

⇔ ∀‖θ‖ ≤ 1.∀s ∈ R, v ∈ Rn.s2t+ 2s(y0 + Lθ)Tv + t‖v‖2 ≥ 0

⇔ ∀s ∈ R, v ∈ Rn.s2t+ 2syT0 v + t‖v‖2 + inf
{
svTLθ : ‖θ‖ ≤ 1

}
≥ 0

Lemma 14.4⇐======⇒ ∀s ∈ R, v ∈ Rn.∀‖z‖2 ≤ s2.s2t+ 2syT0 v + t‖v‖2 + 2vTLz ≥ 0

⇔

(s, v, z)

1 0 0
0 0 0
0 0 −I

sv
z

 ≥ 0→ (s, v, z)

 t yT0 0
y0 tI L
0 LT 0

sv
z

 ≥ 0


and we are done using Theorem 14.5.

14.4 Adjustable robust counterpart for 2-stage problems

Regard the problem

min
{
cTx+ pTy : Ax ≤ 0, Tx+Wy ≤ h

}
In the following table, all functions of θ are a�ne.

type of constraint uncertainty set Θ reformulation
∀θ ∈ Θ.a(θ)Tx ≤ b(θ) conic inequality Fθ �K h, budgeted/ellipsoidal CP over K∗, LP/SOCP

≤ f for all ‖A(θ)x+ b(θ)‖ ≤ c(θ)Tx+ d(θ) - hard, even if Θ is a polytope
‖A(θ)x+ b(θ)‖ ≤ cTx+ d Ball SDP
∀θ.∃y.T (θ)x+W (θ)y ≤ t(θ) - hard

14.4.1 Two-stage-problem

min
{
cTx+ pTy : Ax ≤ b, Tx+Wy ≤ h

}
The robust counterpart is

sup
θ∈Θ

inf
y
cTx+ pTy : Ax ≤ b, ∀θ ∈ Θ.T (θ)x+W (θ)y ≤ b(θ)

Assuming that W (θ) = W is a �xed recourse: Then we get the relaxation

min
x,y(θ)

sup
θ
cTx+ pTy(θ) : Ax ≤ b,∀θ ∈ Θ.T (θ)y +Wy(θ) ≤ h(θ), y(θ) = y0 + yθ

14.7 Theorem. Let Θ = {θ : Fθ �k f} essentially strictly feasible. Let ti be the rows of T with
ti(θ) = zi+Tiθ and hi(θ) = ηi+hTi θ. Then a safe solution to the robust 2-stage LP can be obtained
by solving the conic programme, where the constraint ti(θ)

Tx+ wTi y(θ) ≤ hi(θ) is replaced by

zTi x+ wTi y0 + zif ≤ ηi

F T zi = T Ti x+ Y Twi − hi, zi �K∗ 0
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15 Interior Point Methods

We regard the problem

min {f(x) : x ∈ intχ,Ax = b}

where f is convex and χ is convex.
We have χ ⊆ dom f . For all t ≥ 0, we consider the perturbed problem

min {t · f(x) + F (x) : Ax = b} (Pt)

where F is a �barrier function�, i.e.

• F is strongly convex, so ∃v > 0.∇2F � vIn.

• F goes to ∞ along every sequence xi ∈ intχ where xi → ∂χ.

As F is strongly convex, there is an only minimiser of eq. (Pt).

x∗(t) = argmin {t · f(x) + F (x) : Ax = b}

This de�nes the central path (x∗(t) : t ∈ N). We will show that the limit x∗(∞) is an optimal
solution of eq. (Pt).
The advantages of this method:

• Use techniques from unconstrained optimisation.

• For a certain class of problems we can prove convergence to an ε-suboptimal solution, in time
polynomial in input size and − log ε.

• works well both in theory and in practice

15.1 The Newton Method for Unconstrained Problems

Here we want to solve the problem

p∗ = inf {f(x) : x ∈ Rn}

We assume f is strongly convex , so ∇2f(x) � 0 for all x ∈ dom f . (This assumption is justi�ed,
since tf + F from above is strongly convex.)
Given a current iterate x ∈ dom f , we take a 2nd order approximation of f around x:

f(u+ u) ≈ f(x) +∇f(x)Tu+
1

2
uT∇2f(x)u =: f̂(u)

The minimum of f̂(u) satis�es

u = −
(
∇2f(x)

)−1∇f(x)

This de�nes the Newton direction ∆x = − (∇2f(x))
−1∇f(x). The Newton method moves along

∆x to �nd the next iterate x+ = x+ δ∆x for some δ ≤ 1.
The Newton decrement is

λ(x) =
√
∇f(x)T · ∇2f(x)−1 · ∇f(x)

One can show that 1
2
λ(x)2 = f(x)− infu f̂(u).
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15.2 Analysis of Convergence of Newton's Method

15.2.1 Analysis for Regular Functions

The analysis depends on 3 regularity parameters

• ν: strong convexity parameter

• L: Lipschitz constant of ∇f

• M : Lipschitz constant of ∇2f

There exist 2 numbers γ and η (which depend on ν, L,M) and 2 parameters α, β used to set the
step length δ such that:

1st phase: f(x(k))− f
(
x(k+1)

)
≥ γ > 0

2nd phase: quadratic convergence

15.2.2 Convergence Analysis of Self-concordant Functions

15.1 De�nition. Function f : Rn → R is self-concordant if

• dom f is open

• ∇2f(x) > 0 for all x ∈ dom f , in particular f is convex

• f(xi)→∞ for every sequence xi → ∂ dom f

• f ∈ C3, and for all line segments x+ th in dom f , the restriction F (t) := f(x+ th) satis�es

|F ′′′(t)| ≤ 2F ′′(t)
3
2 for all t ∈ domF , i.e.

∀t ∈ domF.

∣∣∣∣ d

dt
F ′′(t)−

1
2

∣∣∣∣ ≤ 1

Recall that the Newton decrement is

λ(x) =
(
∇f(x)T · ∇2f(x)−1 · ∇f(x)

) 1
2 =

∥∥∥∥∥∥∇2 f(x)−1∇f(x)︸ ︷︷ ︸
Deltax

∥∥∥∥∥∥
x

where ‖ · ‖x is the local norm, associated with the inner product 〈u, v〉x = uT∇2f(x)v.

15.2 Proposition. If f is self-concordant and λ(x) ≤ 0.68, then f(x)− p∗ ≤ λ(x)2.

Proof. Let x ∈ dom f , h ∈ Rn and consider F : t 7→ x + ht. By self-concordance, we have
F ′′(t)−1/2 ≤ F ′′(0)−1/2 + t for all 0 ≤ t ∈ domF . So

F ′′(t) ≥ 1

(F ′′(0)−1/2 + t)
2 =

F ′′(0)

(1 + tF ′′(0)−1/2)
2

for all 0 ≤ t ∈ domF . Integration yields

F ′(t) ≥ F ′(0) +
F ′(0)t

1 + tF ′′(0))1/2
= F ′(0) + F ′′(0)1/2 − F ′′(0)1/2t

1 + tF ′′(0))1/2
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Integrating a second time yields

F (t) ≥ F (0) + t(F ′(0) + F ′′(0)1/2) + log
(
1 + tf ′′(0)1/2

)
(12)

The right hand side is minimised over R at

t∗ =
−F ′(0)

F ′′(0) + F ′′(0)1/2F ′(0)

Plugging this value into eq. (12), we obtain

F (t) ≥ F (0)− F ′(0)F ′′(0)−1/2 + log
(
1 + F ′(0)F ′′(0)−1/2

)
= f(x) + u+ log(1− u)︸ ︷︷ ︸

ρ(u)

where u := −F ′(0)F ′′(0)−1/2. Now we make the derivatives of F explicit:

F ′(0) = hT∇f(x)

F ′′(0) = hT∇2f(x)h

F ′(0)F ′′(0)−1/2 =
hT∇f(x)√
hT∇2f(x)h

=
〈h,
︷ ︸︸ ︷
∇2f(x)−1∇f(x)−∆x

‖h‖x
〉 ≤ ‖∆x‖x = λ(x)

Since the direction h was chosen arbitrary, we obtain a global lower bound p∗ ≥ f(x) + ρ(λ(x)).
Check |u| ≤ λ(x) implies ρ(u) ≥ ρ(λ(x)), i.e. ρ is concave. Our bound was chosen such that
∀0 ≤ u ≤ 0.68.− ρ(u) 5 u2.

15.3 Proposition. Let δ = 1
1+λ(x)

and consider the single damped Newton step x+ := x + δ∆x.
Then

• x+ ∈ dom f

• f(x)− f(x+) ≥ λ(x)− log(1 + λ(x)) In particular, if λ(x) ≥ 1
4
, then f(x)− f(x+) ≥ 0.026,

so a positive constant.

• If λ(x) ≤ 1
4
, then 2λ(x+) ≤ (2λ(x))2.

15.4 Theorem. Let f self-concordant. Given an initial point x(0) ∈ dom f . We consider the
iterates x(k+1) = x(k) − 1

1+λ(x(k))
·∆x. The number if iterations to obtain an ε-suboptimal solution

is in

O(1)︸ ︷︷ ︸
≤38

·
(
f
(
x(0)
)
− p∗

)
+ log log

1

ε︸ ︷︷ ︸
“≤6′′
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Proof. The number of iterations in the �rst phase is at most 1
0.026

(
f
(
x(0)
)
− p∗

)
and 1

0.026
≈ 38.

During the second phase, show by induction, that after k further iterations(
f
(
x(k)
)
− p∗

)
≤ λ(x(k))2 ≤ 1

22k+1

Note that we have ignored equality constraints, since we can express Ax = b by ∃z.x = x0 + Uz
for some matrix U , depending on A.

15.3 Path Following Algorithms

15.3.1 Analysis for Regular Functions

We have the problem

min {f0(x) : ∀i ≤ m.fi(x) ≤ 0, Ax = b} (P)

The central path is de�ned by

x∗(t) = argmin

{
tf0(x) +

m∑
i=1

− log(−fi(x)) : Ax = b

}
(Qt)

Assumptions

• fi are strongly convex, i.e. particular twice di�erentiable

• eq. (P) is essentially strictly feasible

15.5 Proposition. Assume x∗(t) solves eq. (Qt). Then x
∗(t) is feasible for eq. (P) and

f (x∗(t))− p∗ ≤ m

t

missing lecture

16 Polynomial Optimisation

16.1 Notation. Denote Rd[x] = {p ∈ R[x] : deg p ≤ d}. Any p ∈ Rd[x] is associated with its
vector of coe�cients, writing p ∈ Rd+1. (I.e. we do not use any sparsity.)

16.2 De�nition. A polynomial is non-negative if ∀x ∈ R.p(x) ≥ 0, written p ≥ 0. Restricting the
degree, we get the cone

Ppos
d = {p ∈ Rd[x] : p ≥ 0}

When minimising a polynomial, we observe

min {p(x) : x ∈ R} ∼ max{γ ∈ R : p− γ ≥ 0} ∼ max
{
γ ∈ R : p− γ �Ppos

d

}
16.3 De�nition. A polynomial p ∈ R2d[x] is a sum of squares, if there are pi ∈ Rd[x] such that
p =

∑
p2
i . Their cone is denoted Psos

d .

16.4 Proposition. If d is even, then Ppos
d and Psos

d are proper cones.
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16.5 Theorem. Ppos
2d = Psos

2d .

Proof. Squares are trivially non-negative.
Now let 0 ≤ p ∈ Ppos

2d . We factor p over C and obtain p = p2d ·
∏2d

i=1(x− ai). Recall p (z) = p(z),
so p (z) = 0⇔ p(z) = 0. Any real root must have even multiplicity. So after reordering the roots,
we can write p = p2d ·

∏d
i=1(x− ai) (x− ai). Hence by putting q :=

√
p2d ·

∏d
i=1(x− ai) we have

p = q · q = |q(x)|2 = Re(q)2 + Im(q)2

So p can even be written as a sum of 2 squares.

16.6 Theorem. p ∈ R2d[x] is SOS i� there exists some M ∈ Sd+1 such that

M � 0 Sk(M) :=
∑
i+j=k

Mij = pk

i.e. summing over the k-th antidiagonal yields pk.

Proof. Let vx = (1, x, . . . , xd). Then we have p = vTxMvx i� the second constraint holds (summing
up and reordering, to group same powers). Furthermore

M � 0⇔M = P TP for some matrix P

⇔ p(x) = vTx P
TPvx = ‖Pvx‖2 ⇔ p(x) =

d∑
i=0

(Pivx)
2 ⇔ p is SOS

where the Pi are the rows of P .

16.7 Example. Let p = x2 + 4x+ 5. Then the above problem has the solution

M =

(
5 2
2 1

)
=

(
1 0
21 1

)T (
1 0
21 1

)
which gives the decomposition p = (2 + x)2 + 12.

16.1 Multivariate Polynomials

Now regard p ∈ R[x1, . . . , xn], with the notation Rd[x], only here x = (x1, . . . , xn). A polynomial
is written p =

∑
α∈Nn pαx

α. Again, we do not have sparsity, so even zero coe�cients are noted.
For the cones we use Ppos

n,d and Psos
n,d.

16.8 Proposition. The Motzkin polynomial p = x2y4 + x4y2 + 1− 3x2y2 ∈ Ppos \ Psos.

16.9 Theorem (Hilbert, 1888). Ppos
n,2d = Psos

n,2d i� n = 1, 2d = 2 or (n, 2d) = (2, 4).

16.10 Theorem. p ∈ R2d[x] is SOS i� there exists some

M ∈ S(n+dn )
+

∑
α+β=γ

Mα,β = pγ

which are
(
n+2d
n

)
linear constraints.

But (1 +x2 +y2)p(x, y) ∈ SOS, where p is Motzkin. So this is a certi�cate for non-negativity (SOS
divided by something positive). This leads to the Lasserre Hierarchy

v∗r = sup
{
γ :
(

1 +
∑

x2
i

)r
· (p− γ) ∈ SOS

}
The sequence v∗r converges to the optimum.
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