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0 introduction

First let us recall the background of linear algebra and compare this to concepts in algebraic

geometry.
Linear Algebra Algebraic Geometry

motivation Solve a system of linear equations solve a system of polynomial equations

concepts vector space over a field,dimension algebraic variety over a field, coordinate
ring, sheaf of rings, dimension, degree,
genus

qualitative dimker ¢ + dimime =n Main focus

statements

algorithms Gaussian elimination Grobner basis

(symbolic)

numerical inner product, norm, iterative meth- numerical algebraic geometry, freshly

algorithms ods emerging; homotopy methods

Algebraic geometry combines many fields:
e Algebra
e Geometry
e Topology

e Number theory ~ arithmetic geometry (but left out in this lecture)

This lecture focuses on varieties over C (mainly we need “algebraically closed). Further we will put
the focus on geometric ideas. We will follow the lecture held by Andreas Gathmann from 2002/03,

sometimes their corresponding numbers will be given.
0.1 Example (Exercise 0.1.1). Let n > 1 an regard

Ch={(z,9) €C?*: = (x—1)(x—2)...(x—2n)}
=:f(z)




If we want to have some solution, we just choose x and compute y. As a manifold it has dimension
1. To actually show that C,, is a smooth submanifold of C? we write

Crn =A{(z,y) € C*: F(z,y) = 0} F(z,y) =y — [(z)

When taking the derivative we get
! ’
grad F(z,y) = (=f'(2),2y) =0 = y =0, f(2) =0, = f(z)=0

But f(z) only has single roots. Therefore V(z,y) € C,.grad F(x,y) # 0. So C, is a smooth
submanifold.

To understand this example better, we take a look at the case n = 1. Let x € C\ {1,2}.
Then y = +/(z — 1)(z — 2). Consider some circle around 1 with radius r. x(¢) = r - ¢ and
y(p) = /T - €2 in particular 2(0) = r, y(0) = /7 an y(27) = —/T.

Next we want to know, how our solution set looks topologically. What we have is two planes,
where in each a circle (the smallest containing 1 and 2) is cut out and both of these circles are
identified. In general, we will have n holes in each of the 2 planes.

When we add some point co, and go to the Riemann sphere, we get a more compact image. In the
case n = 2 get a torus (the hole of the torus is the gap between the tubes). After compactification
we get a surface of “genus” n — 1 (intuitively n — 1 holes).

The first one to visualise these concepts was Riemann, although at his time, topology was not
developed yet.

0.2 Example (Exercise 0.1.2). In Example 0.1, the function f only had single roots, which was
an important condition. Now let

Co={(z,y) € C*: y* = f(2)}

and f(z) has a double root. Remember that a cut was a circle between two roots of f. So this
circle now degenerates into a single point, so the tube becomes a line. This creates a singularity.

0.3 Example (Exercise 0.1.3). Let C; := {(z,y) € C? : f(z,y) = 0} and f is some general
polynomial of degree d. Then we write

Ch={(z,y) € C*: li(z,y) ... la(z,y) = 0}

where the [; are linear “in general position”.

The “Homotopy type” of Cy and C), should be the same. Note that Cy is smooth, whereas C/, is
not.

The zero set of C’, is a union of d complex lines = C. The compactification of a line is Cy, the
Riemann-sphere. The compactification of all the lines are d sphere, who are pairwise connected by
lines (their connections form a complete graph).

0.4 Lemma (Degree-genus formula for planar curves). To compute the genus in Exam-

ple 0.3, we have
d d—1
1=(2)--0- (%)

Proof. Consider the spheres a nodes from an initially empty graph. We need d— 1 edges to connect
them. Each additional edge creates a loop, which topologically means a hole. O]



1 Affine varieties

1.1 Algebraic sets and the Zariski topologiy
Let k be some algebraically closed field.

1.1 Definition. We call A™ = k™ an affine space. Then S C k[X7, ..., X,,] has a zero set Z(S) :=
{a € A" : Vf € S.f(a) = 0}. Such sets are called algebraic sets, or affine varieties. If S =

{fi,..., £}, we write Z(S) = Z(f1,..., f).
1.2 Example. 1. We always have A = Z(0) and Z(k[Xq,...,X,]) = 0.
2. Z(Xy —a,..., X, —a) = {a}. any linear subspan is affine.
Let (S) be the ideal in k[X] generated by S. Note Z(S) = Z((9)).
1.3 Lemma. Let R be some commutative ring. Equivalent are
1. Every ideal of R is finitely generated.
2. Every ascending chain of ideals is stationary.

In this case, we call R a Noetherian ring.
1.4 Theorem. In particular, if k is a field, then k[X, ..., X,] is Noetherian.

Proof. Assume ideal I C R[X] is not finitely generated. Take some 0 # fy € I of minimum degree.
Inductively take fiq1 € I'\ (fo,-..,f;) of minimum degree. Then we have deg f < deg f;11. Let
a; be the leading coefficient of f;. Consider [; := (aq,...,a;) € I;11. If R is Noetherian, then at
some point we will have a,,+1 € (ao, ..., an). Let ro,..., 1, € R such that a,,.1 = ) r;a;. Define
the new polynomial

fi= fins1 — Z 1y X 408 fnr1—deg fi f.
i=0
Therefore deg f < deg f,,+1, which is a contradiction. O]

1.5 Lemma. 1. If S; C Sy C k[X], then
2. 7(U,5) = N Z(S).
3. Z(S1-S3) =Z(S1)U Z(S,).

1.6 Definition (Zariski topology). The closed sets of A™ are the algebraic sets. Define the
Zariski topology on a subset X C A" as the induced topology.

1.7 Example. [about Al

1.2 Hilbert’s Nullstellensatz
1.8 Definition. For a subset X C A" define vanishing ideal of X as

I(X):={f €klz] :Yae X.f(a) =0}



algebraic sets in A" % ideals in kx|
Figure 1: bijection between algebraic sets ans ideal

So we have

1.9 Proposition (Hilbert’s Nullstellensatz, weak form). Assume k is algebraically closed.
Then the mazximal ideals in kx| are all of the form (x1 — ay, ..., T, — ay,).

Before we prove this, let us recall some things from Algebra.

1.10 Remark. e First note that m, := (z1—aq, ..., 2, —a,) is maximal. To obtain this result,
recall that an ideal is maximal iff its factor is a field.

e We also need the fact that there is an infinite sequence ag, ay, ... € C, which are algebraically
independent.

1.11 Lemma. Let K C L = K(ay,...,a,) some finitely generated field extension. Take N C
{1,...,n} mazimal such that (a;)icn are algebraically independent over K. Wlog we have N =
{1,...,m}. This yields an intermediate field K < K(ay,...,a,) < L. The first extension is purely
transcendental, the second one is a finitely generated algebraic extension.

Proof of Proposition 1.9. For the full proof, see Algebra II. We will provide a shorter proof for the
case k = C.

Let m C Clz] be some maximal ideal. By Hilbert’s basis theorem, there are fi,..., f. € C[z] such
that m = (f1,..., f). Let K be the subfield of C generated by the coefficients of (fi, ..., f.). Next
we go down to a smaller gin of coefficients and put mg := m N K|z].

mo is maximal ideal of K|[z]: Assume we had an intermediate ideal my C m{ C Klz]. Then
over C we also get an intermediate ideal m = mClx] C myC[z] C C[z], which is a contra-
diction.

There is a ring morphism L := K{[z|/my — C: By Lemma 1.11 we can split Q < L into tran-
scendental and algebraic part

QSE:Q(yhvyT)SL

Now we define the map ¢ : Q(v1, . ..,y,) — C via y; — a;, where the a; are some algebraically
independent numbers (which exist by Remark 1.10).

Now let E < E(b) be some algebraic extension. Then we can extend ¢ : E — C to some
map from F(b). But from F to L we have a sequence of simple extensions, so we can extend
ptoamap p: L — C.

Put a; := ¢(z;). Then we find the common root

OZQO(fi($1,...,ZL'n)):fi((l/l,...,(l/n) O
Recall, that we assume our field k£ to be algebraically closed, and put A"(k) := k™. We have a map
¢ from A™ to the maximal ideals in k[zy,...,2,] via a — (x; —a,...,x, —a). This is a special

case of figure 1. The Nullstellensatz says that ¢ is a bijection.



1.12 Remark. 1. X;CXy = ](Xl) D) ](XQ) and LCI, = Z(Il) D) Z(Ig)
2. Let X be algebraic. Then Z(I(X)) = X.

of item 2. Direction D is clear by definition.
Let X = Z(J), J exists since X is algebraic. Now we have [(X) = I(Z(J)) 2 J. Using item 1 we
get Z(I(X)) € Z(J) = X. O

1.13 Example. Assume X = {a} C A", so I(X) = (z —a). Let m € N.g. Then Z((z — a)™) =
Z(x —a). Put J:= (z —a)™. Then Z(J)={a} but I(X) = (z —a) D J.
So we see, multiplicities create problems.

1.14 Definition. Let J be an ideal in k[z]. The radical of J is
VI:={feklz]:ImeN.f"eJ}
The ideal .J is called radical ideal if \/J = J.

1.15 Remark. 1. v/J is an ideal.

2. JC .

3. If X is algebraic, then I(X) is radical.

Let f € \/I(X). Then we have f™ € I(X) for some m € IN. Thus Vp € X.f(p)™ = 0, so
f(p) = 0. So we already have f € I(X).

4. Taking the radical is monotone.
1.16 Theorem. Let .J be an ideal in k[z]. Then I(Z(J)) =+/J.

Proof. O: The radical is monotone and we have I(Z(J)) 2 J. But the LHS already is its own

radical, so I(Z(J)) = /(I(Z(J)) 2 VJ.

C: Rabonivich’s trick: add a new variable ¢ and define the ideal J:=J+ (tf — 1) C k[z,t]. Now
assume (p,7) € Z(J). Since J C J, this in particular means p € Z(.J). But then we need
0=r7-f(p)—1=—1, which cannot be. So Z(.J) = 0.

Using the weak Nullstellensatz (Proposition 1.9), we get J = (1). Hence we have a represen-
tation

1:(ft_1)90+2figi

i=1

where f; € J and g, € k[z,t]. Substitute ¢ by f~'. This yields an identity of rational
functions

1= filw)-g (@ )

Let N be the largest degree of the g; in t. Then we can rewrite this as a polynomial equation

Zfl ) Ngi(x, f7)



The RHS are multiples of the f;, so it lies in (f1,..., f,) = J. But this shows f~ € J, hence
fei.
]

1.17 Example. Assume we have one variable and f € k[z], f monic. Then we can factor it
f=@—a)™...(x—a)™

Then \/(f) = ((z — a1) ... (z — a,)). This means the ideal of f is radical iff f is square-free. Since
we have just one variable, the question can be decided efficiently.

However, for many variables, the question whether an ideal, given by some generators, is radical
has a best know double-exponential-time algorithm.

1.3 Irreducibility

Example. Regard the following set Z = (x1,x2) = Z(x1) U Z(x3). This can be written as a union
of proper subsets z(x;) C Z(xy, ).

A2

Figure 2: A set which is the union of two of its subsets.

1.18 Definition. 1. A topological space X is called reducible if there are closed sets X1, Xo C X
such that X = X; U X,. Otherwise we call X irreducible

2. A topological set X is called disconnected if there are closed sets Xi, Xy C X such that
XiNXy=0and X = X; UX,. Otherwise call X connected.

1.19 Example. These concepts strongly depend on the topology.
1. Let XR with euclidean topology. Then X = (—o0,0] U [0,00). So R is reducible.
2. Al is irreducible.
3. If X is Hausdorff and irreducible, then X consists of a single point.

4. Let X be irreducible, then X is connected. The converse implication does not hold.
1.20 Lemma. An algebraic set X is irreducible iff 1(X) is a prime ideal.

Proof. = Suppose X is irreducible. First note I(X) # k[z], since X # (. To show that I(X)
is prime, assume fg € I(X). Then X C Z(f)U Z(g). To get an equality, we write X =
(Z(f)NX)U(Z(g)NX). Since X is irreducible, wlog X = Z(f)NX, which means Z(f) C X,
so f e I(X).



< Now suppose [(X) is a prime ideal. Let X = X; U Xy, with X; closed. Then I(X) =
I(X) N I(X3) (exercise).

Since I(X) is prime, this implies wlog I(X) = I(X;), so X = X;. Hence X is irreducible. [
1.21 Corollary. A" is irreducible.
Proof. 1(A™) = {0} is a prime ideal, since k[z] is an integral domain. Then apply Lemma 1.20. O

1.22 Lemma. Let f € k[zy,...,x,] be a square-free polynomial. Then Z(f) is an irreducible
algebraic set iff f is irreducible.

Proof. Assume f is irreducible, then ZI(Z(f)) = (f) is prime.
Alternatively: Let Z(f) irreducible and f = gh. Wlog Z(g) = Z(f). Then

(9) = I(Z(9)) = I(Z(f)) = V() “2° (f)

But ¢ is a divisor of f, so (¢g) = (f).
On the other hand, if f = gh is a proper factorisation, then Z(f) = Z(g) U Z(h). ]

More generally, let f € k[zy,...,x,] square-free with decomposition f = f; - ... f. and each f;
irreducible. Then Z(f) = Z(f:)-
Let X be a topological space and S C X. Then we have the closure of S defined as

g::ﬂA

SCACX
A closed

1.23 Remark. If X C A", S C X, then S = Z(I(9)).

1.24 Lemma. Let X be a topological space. Then X is irreducible iff every non-empty open subset
U C X is dense, i.e. U=2X.

Proof. =: Assume U C X is open. Take any open set ) # W C X. Assume U N'W = (). Then
we go over to the complements and get X = (X \ U) U (X \ W). So X would be reducible.

<: analogous O]

1.25 Definition. A topological space X is called Notherian if every descending chain X D X; D
... of closed sets is stationary.

1.26 Proposition. If X is algebraic, then X is Notherian.

Proof. Let (X;);en be our descending chain of closed sets. This corresponds to a chain of ideals in
k[z]

I(X) CI(X,) C...

However, since k[x] is Noetherian, we know that this chain is stationary, i.e. Im.Vi > m.I(X,,) =
I(X;). Going back to the zero sets, we get

X, = Z(1(X)) = Z(I(Xn)) = X =

1.27 Proposition. 1. Fvery Noetherian topological space X is finite union of irreducible closed
subsets X = X;U...UX,.



2. Assume X; € X; for i # j. Then the above decomposition is unique up to permutation.

Proof. 1. Assume the statement were false for X. Then X is reducible (otherwise it were its
own decomposition), say X = X; U X| with X, X] # X. But then the statement must fail
for one of these, say Xj. Then we continue the argument and we get an infinite descending
chain X; O X, D ..., which contradicts Noetherian.

2. Assume we have two decompositions
X=XjUu..uX,=XjU...UX,

where all X;, X J’ are closed and irreducible.

s

X =J&x:nxj)

j=1

Since X; is irreducible, there must be some j with X; = X7 N X;. Wlog we say X; C X].
But the other way round we get X] C X, for some j. This yields X; C X}, so j =1 and we
have X; = X]. Now we just subtract X; from everything. Note X;\ X; = X; (Due to our
assumption, it can’t be empty and () # U = X; \ X, is an open subset of X;, so U = X;). So
we just continue with the equality

t s
Uxi\xi={Jx\x O
i=2 j=2

1.28 Example. Let X = Z(f) C A" square-free. Write f = f;-...- f. as factorisation into irreud-
cible polynomials. Then Z(f) = Z(f1)U...Z(f.) is a decomposition into irreducible components.

1.29 Definition. An affine variety is an irreducible algebraic set.

1.30 Definition. Let X be an irreducible topological space. The dimension of X is the largest
n € IN such that there exists a chain

XoCXjC...CcX,=X

where all X, are irreducible and closed.
If X is Notherian with irreducible components Xi, ..., X,, then we define dim X := maxdim Xj.

1.31 Example. e We have the obvious cases dim{p} = 0 and dim A! = 1.

e For higher dimension the definition just yields dim A™ > n. Equality holds, but it requires
further proof.

2 Functions, Morphisms and Varieties

2.1 Functions on affine varieties
2.1 Definition. Let X C A" an affine variety. Then we put
A(X) = lan, ., 2] [T(X)

the coordinate ring of X, also written k[X].
Any f € A(X) define a function X — k via p — F(p), where f = F' mod I(X) and F' € k[z].
This is well defined, because if F' — F' € I(X), then F(p) = F(p) for all p € X.

9



2.2 Remark. /(X) is a prime ideal, so A(X) is an integral domain.

2.3 Definition. Let X C A™ an affine variety. Then quotient field of A(X) is called field of
rational functions in X.

2.4 Definition. Let X C A™ an affine variety and p € X. Then the local ring of X defined at p

Ox,p = {§  f,9 € A(X), g(p) # 0}

2.5 Remark. 1. For ¢ € Oy, the expression ¢(p) := % is well-defined.

=

2. Ox, is a local ring in the sense of Algebra II.

mx,p = {g € Ox,: f(p) = 0}

is an ideal. The evaluation map ev : Ox, — k via g — % is a ring morphism. ker(ev) =

mx p, which means Ox,/mx, = k, so mx, is a maximal ideal. Furthermore let I C Ox,
be another ideal with I & mx,. Then there exists § € I such that f(p) # 0. But in this

case 1 = g . % € I, so I = Ox,. Therefore my, is the only maximal ideal.
2.6 Example. Let X := Z(x124 — zo73) C AL (The polynomial is irreducible.) We have

At—k

where T; = x; mod [(X).
Now let

K(X)>pe L=
T2

218

Note that A(X) is not factorial.

Uw={peX:p#0Vpy#0}

@ € Ox(U). Take p € U. Verify ¢ € Ox . If ps # 0, write ¢ = % If py # 0, write p = x;i
What we want (but is impossible): f,g € A(X) such that

—

Vp € U.g(p) #0Ap(p) = %

10



2.2 Relative Nullstellensatz
Let X be an affine variety,Y C X closed, I C A(X) some ideal.

Ix(Y):={fe AX):¥peY.f(p) =0} vanishing ideal
Zx(I):={pe X :Vfelf(p)=0} -zero set

2.7 Theorem. We have
Zx(Ix(Y)) =Y Ix(Zx(I)) = V1
Proof. Exercise, derive from the case X = k". n

Let X be an affine variety, p € X and A(X) an integral domain. Then K(X) is defined as the
field of fractions of A(X).

f
p € Oxpi= {90 € K(X):3f,9 € AX).9(p) # 0.0 =
. fo _ ._ . _ R
Then ¢(p) := 47 is well-defined. Furthermore we put my,, := {p € Ox, : ©(p) = 0}, which is

the unique maximal ideal.

2.8 Definition. Let U C X open. Then we define Ox(U) := [,y Ox, the ring of regular
fractions on U.

This is a well-defined function. Let ¢ : U — k, via p — ¢(p). For all p € U there exists some
V C U, a neighbourhood of p and there exist f,g € A(X) such that

quv.g<q>7éow<q>:%

Remark. Any ¢ : U — k satisfying the properties arise from a ¢ € Ox .
Proof. Suppose we have ?7subsets V.V’ C U and f, f'.q.¢' € A(X) with f, g ?7on V, f'. ¢ 770on

V' where

e Vaolp) = 1) v e Vool = 11
Claim. f/g=f'/g
Proof. X is irreducible. Therefore () # V NV’ is dense in X. Hence

VpeVnV'.fp)g(p) = f'(p)g(p)
so fg' — f'g € A(X). H
O]

2.9 Definition. Let f € A(X). Then X, :={p € X : f(p) # 0} is the distinguished open subset.

2.10 Proposition. We have

Ox(Xy) = {% cg€eAX),re ]N} =: A(X)s
In particular (using f = 1) we have Ox(X) = A(X).

11



Proof. The inclusion A(X); C Ox(Xy) is trivial.
Take p € Ox(Xy).

h
Vp € X739y, hy € A(X).gy(p) ZONp = —-

p

Define the ideal I := (g, : p € Xy) C A(X). Then Zx(I) C Zx(f). By the relative Nullstellensatz
we get

VI=1Ix(Zx(I)) 2 Ix(Zx(f)) > f

Therefore there is some r € IN with f" € I. Hence there exist some u, € A(X) such that
" = sumpu,g, as a finite sum. Multiplying with ¢ yields

flo= ;up gpp = ;uphp € A(X)

=hp N——

=:H

Hence Vp € X;.¢(p) = ﬁ;’;;, which shows ¢ € A(X);. ]

2.11 Remark. Let g € k[x,y] non-constant. Then |Z(g)| > 1, i.e. the zero set is not a single
point.

Proof. Regard ¢ as polynomial in y and write

9(x,y) = folz) + filz)y + ... + fulz)y"

for some f; € k[z]. Since g is non-constant, it has a root and wlog we say 0 = ¢(0,0) = f(0). If
f =0=0 we are done, because any pair (x,0) is a root.
So assume fy # 0. If f; has another root, we are done as well. Otherwise (after scaling) we have

Jo=2a™.
So we have the form

g(z,y) ="+ filz)y + ... + fulx)y"

Then find some ¢ # 0 such that g(z,¢) # 0. Since k is algebraically closed, this has another root.
Over C use some sufficiently “small” €. Then we cannot have cancellation. O

Take U := k?\ {(0,0)}. What is ¢ € O2(U)?
Not only locally, but globally we have ¢ = % for f,g € k[z1,xs] and ged(f,g) = 1. For allp € U

with g(p) # 0 we have ¢(p) = %. But by Remark 2.11 ¢ must be constant, i.e. g € k. Therefore

=1
2.12 Remark. The above argument shows Oz = k[z1, 25].

2.13 Corollary. U = k?\ {(0,0)} is not a distinguished open set.

2.3 Sheaves

Let X be some topological space.

2.14 Definition (Presheaf). A presheaf F' of rings:

12



assign to each open subset U C X a ring F(U)

e For every inclusion U C V' of open sets we have a ring morphism pyy : F(V) — F(U)
e F(0)=0
e pyy =id

e for U CV CW we have pwu = pyu o pwy (note we have weird order of composition)

The elements of F(U) are called the sections of F on U. For V. C U we have pyv(f) = fiv.

2.15 Definition. A presheaf is called a sheaf if I satisfies the glueing property /sheaf-axiom:
Let U C X open and {U; : i} an open cover of U and f; € F(U;) such that

Viuj'fi\UiﬂUj = fj|U,L-mUj
Then there exists some f € F(U) such that fiy, = f;.

2.16 Example. Let X be some affine variety. Let V' C U C X open sets. We have the restriction

Claim. The restriction u— Ox(U) defines a sheaf.
We call Ox the structure sheaf of the affine variety X.

The above definitions can equivalently be given in terms of categories.

2.17 Definition. Let %x be the category of open sets in X, where we have a morphisms for
each containment U C V. A presheaf is a contravariant functor F' from %x to the category of
sets. A presheaf of rings/k-algebas/...is a contravariant functor F' from %x to the category of
rings/k-algebras/. . ..

2.18 Example. Let X = R. For U C R open let F'(U) be the ring of constant real-valued functions
on U. For U CV C R open, py is the restriction of functions.

This is a presheaf but not a sheaf. To see this let U; = (0, 1), Us = (2,3) and U = U; UU,. Choose
functions f; : U; — R with f; : x — <. Then there is no constant function that restricts to both f;
and fo.

2.19 Example. Let X = R" and let F'(U) be the ring of continuous functions on U. Further let
pvu be the restriction of functions from V' to U.

This is a sheaf. For an open set U C X with cover U = UZ U; and continuous functions f; : U; — R
we define f(x) = f;(x) for x € U;. This is well-defined due to the given conditions that the functions
agree on their intersection.

The difference between Example 2.18 and Example 2.19 is global versus local property. To make
Example 2.18 work, we have to weaken the condition to locally constant functions.

2.20 Example. If X C A" is an affine variety, then the ring Ox(U) of regular functions on open
subsets of X form a sheaf of rings Oy, called the sheaf of reqular functions on X.

2.21 Definition. A ringed space is a pair (X, F) where X is a topological space and F is a sheaf
of rings on X. In this case F is called the structure sheaf of the ringed space, usually written Ox.
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2.22 Example. If 7 is a sheaf on X, U C X open, then the restriction Fjy with F(V') = (Fjy)(V)
for all V' C U is again a sheaf.

2.23 Definition. Let P € X be some fixed point, F a presheaf on X. Define the equivalence on
pairs (U, ¢) where P € U open, ¢ € F(U) via:

(U, ) ~p (U',¢') & 3V open.P € V. CUNU Ay = @[y
The set of all such equivalence classes is called the stalk Fp at P. It elements are called germs.

2.24 Remark. If F is a presheaf of rings/. .., then it stalks are rings/.... The addition works via

(U, 0)]p + (U, )p = [(UNT pppnvr + Clunu)]
The multiplication works likewise. Due to our assumptions this is well-defined.

2.25 Lemma. Let X be an affine variety and P € X. The stalk of Ox at P is isomorphic to
Px.p.

Proof. By definition we have

Ox(U) = ﬂ Ox,pr € Ox,p C K(X)
Preu

C: For [(U,p)]p we have ¢ € Ox(U) C Ox p. Assume [(U,p)|p ~ [(U',¢')|p. we need to show
that ¢ and ¢ are equal in Ox p. First take some open V with P € V C UNU’ and
ev = ¢y € Ox(V) € Ox.p.

DO: Let ¢ € Ox p. Then ¢ = g for some f,g € A(X) and g(P) # 0. Let U = X \ Z(g). Hence
Y e Ox(U) and [(U,¢)]p € (Ox)p (the stalk of Ox at P). O

2.4 Morphisms between affine varieties

2.26 Definition. Let (X, Ox) and (Y, Oy) be ringed spaces, where Ox, Oy are sheaves of k-value
functions. Let f: X — Y be some map.

1. If U CY open and ¢ : U — k, then the pullback is f*o = o f: f7YU) — k.

2. f is called a morphism if it is continuous and it pulls back regular functions to regular
functions, i.e.

YU CY open.f*Oy(U) C Ox(fHU))

Recall that for an affine variety X C A™ we have Ox(X) = A(X).

2.27 Lemma. Let f : X = Y be a continuous map between affine varieties. TFAE
1. f is a morpism
2. Vo e AYY).f*p € A(X)
3. Vpe XVo € Oyyp.fr0 € Oxyp

Proof. item 1=-item 2 trivial

14



item 2=-item 3 Take ¢ € Oy ). Write ¢ = ¢ with g,h € A(Y) and h(f(p)) # 0. Then
f*g, f*h € A(X) by item 2. Therefore

o= — [T e Oxp

item 3=item 1 Use the fact Oy (U) = (), oy Oy, otherwise clear O

2.28 Example. 1. Let f : A' — A! via  + 2% This is continuous. For any polynomial
¢ : A — k the composition ¢ o f is a polynomial, so f is a morphism by Lemma 2.27.

2. Let f: A" — A™ given by = — (fi(x),..., fm(x)) where f; € k[z] are polynomials. Then f
is a morphisms of affine varieties.

Furthermore every morphisms has this shape. To see this, let y; : A™ — k be the projection
on the i-th component. Then f*y; = y; o f = f; is a polynomial.

3. More generally let X C A" Y C A™ affine varieties. Take a polynomial map f: X — Y.
Then f is a morphism of affine varieties and every morphism has this form. The proof is the
same as in the global case before.

We have the following correspondence:

affine varieties X  A(X) k-algebra
finitely generated
integral domain

2.29 Lemma. Let A be some finitely generated k-algebra which is an integral domain. Then there
is some affine variety X C k™ such that A(X) = A.

Proof. Let A= {ay,...,a,). Consider the (surjective) k-algebra morphism
ikl ., > A T > a;
Then J := ker 7 is a prime ideal. We put X := Z(J) C A". Then
IX)=1(ZJ)=VJ=J = A2klz,...,2,]/J = A(X) O

2.30 Remark. Technically X — A(X) is a contravariant functor. A map X 5V becomes
A(Y) L5 A(X) and we have (go f)* = f* o g*. This functor is full and faithful.

2.31 Lemma. Let X C A™)Y C A™ affine varieties and 1) : A(Y) — A(X) an algebra morphism.
Then there is a unique morphism f : X — 'Y of affine varieties such that f* = .

Proof. Write A(A™) = k[z1,...,2,]. Then we have the projection A(Y) = k[y1,...,Um). Define
fi - ¥(y;) € A(X). This defines a function f: X — k™ via f = (f1,..., fm)-
Take G € I(Y'), where G(y1,...,Yyn) is a polynomial. Then we can write

G(fr,o s Jm) = G@W@), -, P (Um))

= w(G(yl, e Um)) 1) morphism
=1(0) = GelY)

Hence for p € X we have G(f1(p),..., fm(p)) = 0. Therefore (fi(p),..., fm(p)) € Z(I(Y)) =Y.
Then f is a morphism. Furthermore f () = fi = ¢(w), so f* =1). O
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2.32 Definition. A morphism f : X — Y is called isomorphism is there is some morphism
g:Y — X such that fog=1idy and go f = idyx.

2.33 Remark. Not every bijective morphism is an isomorphism.
Let X = Z(y* — 2%) C A%, Then f : A' — X via t — (t*,1%) is a bijective morphism. For the
inverse we have

: (z,y) #(0,0)
0 :(x,y)=(0,0)

8 <

fﬂawz{

But the pullback of an isomorphism is again an isomorphism.

A(X) = Kl 9]/ (1% — 2% L5 k[1]
T — t2
Y= 3

Then im(f*) = k[t?, 3] (all without the monomial ¢').

2.5 Products and Tensors

We regard the embeddings
a€A:=klxy, ...,z = klr1, ... 20,1, Ym] = C < kly1,...,ym] =2 B30
We define products via a - b = a(z) - b(y).
2.34 Lemma. 1. C =span{a-b:a € A becb}
2. Let a; and b; linear independent. Then the (a;b;) are linearly independent.

We have the following universal property If this universal property holds, we call C := A ® B the

X

7N

v B

DNy

C

A

Figure 3: Universal property for binary coproduct

tensor product. In terms of categories this is the coproduct.
Remark. For the coproduct we have thw following properties:
o klz] @ kly] = klz,y]
e Because of commutativity we have
V(aiapbjby) = alasar)B(b;bj) = afai)a(ay)B(b;)B(bjr) = v(aib;)y(aiby)
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Let X C A” and Y C A™ be affine varieties. We define a product X xY C A" x A™. Then X XY
is Zariski-closed.

2.35 Lemma. [(X xY) =1(X x A™)+ I(A" x Y)
Proof. C clear

D Let A=I(X)® L, B=1(Y) @ M. Then we use the following vector space decomposition

I(X)@B+AQI(Y)+ LM CI(X x A™) + I(A" X Y)+1®@ M

ARB=IX)@IYV)+I(X)9M+L@I(Y)+L®M
CIXxY)+LoMCA®B

So we have all equalities. Hence we now have to show (X x Y)N M ® L = 0. To this end
let [; be basis of L, m; a basis of M. For f € L® M

[continue )
O

2.36 Proposition. Let X, Y be affine varieties. Then X XY 1is irreducible, hence an affine variety.

Proof. The elegant proof consists of the following steps
1. AX xY)=A(X)® A(Y)
2. A(X),A(Y) are integral domains
3. Kathlén
O

Pedestrian proof of Proposition 2.36. Show that (X xY') is prime. Let f-g € I(X xY). Assume
f ¢ I(X xY). We have to show g € I(X x Y). Let p’ € X be arbitrary. Then the function
qg— f,q9)g,q) € I(Y). But I(Y) is prime, so g(p/,-) = 0 or f(p/,-) = 0 as a function on Y.
Therefore

V' e XY CZ(f(p,-)UZ(g®,-))

Since Y is irreducible, we get Y C Z(g(p/,-)) if there is ¢ with f(p', q) # 0. We get (Y \ Z(f(-,q)) X
Y C Z(g), where the first part is an non-empty open subset of X. Since X is irreducible, X \
Z(f(-,q)) is dense in X. Hence X xY C Z(g). ]

For varieties we have the following diagram for products. This yields the conversee picture for the
coordinate ring, defining a coproduct (inversed arrows).

2.37 Lemma. Let X be an affine variety and f € A(X). Let Xy :={x € X : f(x) £ 0} #0 be
a distinguished open set. Then the ringed space (Xy, (Ox)|x,) is isomorphic to an affine variety
with coordinate ring A(X);.

Proof. We define the algebraic set Z := {(z,\) € A x A' : \f(z) = 1}. We have a bijection
7 Z — Xy via (z,\) — z; it inverse is ¢ : @ — (2, ﬁ)

¢ is a morphism of ringed spaces unfold the definitions

projection 7 is a morphism of ringed spaces same
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v
BN

z
x

S

Figure 4: Universal property for product of varieties

Figure 5: Universal property for coproduct of coordinate rings

AQ

Z=Z(xy—1)

AT\ {0} = X;
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As an example, how the proof works, take the following picture.

2.38 Definition. A ringed space (X, Ox) is called an affine variety over k if
1. X is irreducible
2. Ox is a sheaf over k-value functions

3. X is isomorphic to an affine variety in the old sense.

Example. The general linear group GL, (k) is an affine variety but only in the new sense. The
regular functions of GL, (k) are of the form

A

for polynomials F and e € IN.

2.39 Remark. Not every open subset of an affine variety is an affine variety. For example U :=
A%\ {0} is not an affine variety. We know O(U) = k[z, y]. There we have the maps

U~ A?
o klx,y] — O(U) = klz,y]

If U we an affine variety, then we would have U = A? as varieties. But ¢ : U < A2 is not surjective.
However, every open set is a finite union of affine varieties.

[one lecture missing ]

2.40 Lemma. Let X,Y be prevarieties and f : X — Y some map. Let Uy,..., U, be an open
cover of X and Vy,...,V, an open cover of Y where V; are affine such that f(U;) CV;. Assume

Vi. (fiv,)” Oy (Vi) € Ox(U;) (1)
Then f is a morphism.

Proof. Wlog we may assume the U; are affine. First show f is continuous: Use that fiy, : U; — V;
is continuous due to eq. (1). Taka any open V' C Y and decompose it as V' = [J,(V NV;). Then
V) =U,(f~1 (V)N U;). The remaining part is an exercise. O

Remark. Take the isomorphism ¢ : A'\ {0} — A"\ {0} via x — 2. Then glueing yields P*.
Assume we have a non-constant polynomial f : A — A'. Then we can extend this to a function
f P — P! by mapping f : oo — oo. Check that f is a morphism. Put Vi = P!\ {oo} and
Vo = P\ {0} as affine open cover of P. Now we have to check the conditinos of Lemma 2.40. For
i=1, eq. (1) is clear. Fori =2 take new coordinates T = + and §J = i Write f(x) =1,
Then

a;x’.
~ L1
Ty w0

which is a rational function. Moreover, since we are close to zero, this denominator is non-zero,
so the function s reqular.
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2.6 Varieties

Let = be some topological space and regard X x X with product topology.

2.41 Claim. Fquivalent are
1. X is Hausdorff, i.e. for any x1 # x4y there exist open U; > x; such that Uy N Uy = ().
2. A= {(z,x) :x € X} is a closed subset of X x X.
3. for all continuous fi, fo: Y — X the set {y € Y : f1(y) = fo(y)} is closed in Y.

Proof. item l<item 2: Show that X x X \ A is open: Take (z1,22) € X x X \ A, so x1 # xs.
Take U; according to Hausdorff. Then Uy NUs = 0, so (x1,22) € Uy x Uy € X x X\ A.

The converse direction works the same way.

item 2=item 3: Let f := (f1, f2) : Y — X x X continuous. Then {y : fi(y) = fo(y) = f~1(A)
is closed.

item 3=-item 2: Take the projection m; : X x X — X. Then A = {(x1,22) : m(X1,22) =
o (1, x2)} is closed. O

2.42 Definition. Let X be a prevariety. We call X a wvariety if for every prevariety Y and every
morphisms fi, fo : Y — X the set {y: fi(y) = fo(y)} is closed in Y.

Remark. Let XY C A" concrete affine varieties, X x Y C A" x A",
Let X, Y prevarieties (Zariski). How to define a topology on X x Y ¢ Take affine open covers

Then we have

XxY=JuixV

i?j

Then W C X XY is called open if for all i,j the set W N (U; x V) is open in the Zariski-topology
of U; x V;. Howewver, this characterisation depends on the covering.
We can turn X XY into a prevariety.

Recall the universal property of the product.

2.43 Lemma. A prevariety X is a variety iff A(X) is closed in X x X. The proof is as before
with topological spaces using the categorical characterisation of the product.

Example. This prevariety X is not a variety. We have embeddings
jliAl‘—>X<—’A13j2
but the set {y : j1(y) = ja(y)} = AV \ {0} is not closed.

2.44 Lemma. Every concrete affine variety is a variety.
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N

SN

7z
XxY

Figure 6: Universal property for binary product, m; are morphisms, for any Z, f, g there exists a
unique 7 such that the diagram commutes

° Al

Proof. Let X C A" closed and I(X) = (f1,..., f)-
A={(z,y):x=vy, fi(x)=0,..., fr(z) =0} T A" x A"
is Zariski-closed. O

2.45 Lemma. Any open or closed irreducible subset of a variety is a variety.

Proof. Let ) ## U C X open. We already know U is a prevariety. Hence Ay = Ax N (U x U) is
closed in U x U since Ay is closed in X x X.
Similar for Y C X closed. O

3 Projective Varieties

3.1 Projective spaces and projective varieties

3.1 Definition. A projective n-spaceover k, denoted P™ is the set of 1-dimensional linear subspaces

of kntt,
Alternatively wwe may define an equivalence on k"' \ {0}, saying a ~ b & It € k*.a = tb.
Then P = (k"1 \ {0})/ ~. We denote the classes by [ag : ... : a,) = [(ag,...,an)]~, called

homogeneous coordinates of IP.

3.2 Example. Take [ag : a;] € P'. If ag # 0, we can write this as [1 : ay], where a; = 2 is

uniquely determined. If ag = 0, then [0 : a;] = [0: 1] =: co. Again P! = A'U{oo}.

3.3 Example. Take p:=[ag:...:a,] € P" If ag # 0, we can write p = [1 : o : ... : ). These
«; are called affine coordinates and are uniquely determined. For ag = 0, point p corresponds to a
point in P"~!. So again P" = A"UP" !

We have the surjection

EMA {0} — P (k)

(Toy ooy p) = [0 s ooty
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Regarding the case k = C, we can turn P"(C) into a topological space via quotient topology of
euclidean topology on €™\ {0}.
If we take the sphere S?" ™! = {z € C"*! : ||z|]| = 1}, which is compact, then we have the surjection

Let f € k[xo,...,x,] homogeneous of degree d. Then in this space

Z(f)=Alao:...:a,] € P": f(ag,...,a,) =0}

We can decompose k[z] into homogeneous subspaces

Kla] = €D Klala

deN
This yields a decomposition for each polynomial f =", f (),
3.4 Lemma. Let I C k(x| an ideal. Equivalent are
1. I 1s generated by homogeneous polynomials.
2. Forall f € 1,d e N we have f4 € I.

Such ideal are called homogeneous.

Proof. item 1=item 2 Assume [ = (f,..., f,) with f; homogeneous. Take f € I, written as
f=>"a;f; with deg f; = d;. Then

9 = sum(a; f;) @ = Za?_di fi = fDer

item 2=item 1 We simply have

I: (fl""?fr): (fl(())7 1(1)7"'> D
3.5 Definition. Let I C k[z] a homogeneous ideal. Define the zero set
Z(I)=A{lag:...:a,]:Vfelf(a)=0}

We call the sets Z([) the algebraic sets of P™.
3.6 Lemma. 1. Let I, C Iy homogeneous ideals. Then Z(1,) O Z(15).

2. Let (I — 1) be a family of homogeneous ideals. Then (Z(1;) = Z (U, L)-
3. Let Iy, Iy homogeneous ideals. Then Z (1)U Z(1y) = Z(1; - I5).
Proof. Same as for A™. O]

We define the Zariski topology on P™ to be the topology where the algebraic sets are the closed
sets.
Let L C A""! be some linear subspace of dimension d + 1.

7 AP\ {0} — P
\{0} — 7(L\ {0})

where the latter is a projective linear subspace of P" of dimension d.
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l’gZO

Example. Describe a line in P3. E.g. take xy = z3 = 0.
{z:20=23=0}={[0:a;:as:0]:0# (a,as) € k*}
This is isomorphic to P!.

Example. Two conics in A", let X| = {z : vy = 23} and Xy = {x : 1125 = 1}. However, in the

projective setting, we add a point at infinity and then both curves are isomorphic.

Regard the embedding

AT = IP_,%0 C p?
(x1,29) = [1: 2 : 2]
Ty T2
(-, —> < [.CL'Q T .TQL.’EO 7é 0

Lo Lo
Let f(x) = xy — 27 = 0. Then we have the homogenisation f = zgzs — 22 = 0, or more general
f=abef (%),
The closure in P? is given by the equation zoxy — 22 = 0. If 2y = 0, then z; = 0, so the only point
added was [0 : 0 : 1], which is the point at infinity. For an intuition, that latter two entries (0, 1)
show in which direction this infinity lies. This additional point turn the parabola into a circle.
However, for the hyperbola ziz5 — 1 = 0, we get the same homogenisation x5 — 22 = 0 (up to

permutation of variables). Here the points added are [0:0: 1] and [0:1:0]. Again this turn the
hyperbola into a circle.

3.7 Definition. Let X C P". Then the vanishing ideal I(X) is the ideal generated by the
homogeneous polynomials vanishing on X.

Remark. Also for the Zariski topology on P™ we want the following as for A"
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e irreducible sets
e decomposition into irreducible sets
For a homogeneous ideal I in k[x] we have
ZaA(I) C A™H Zp(I) C P"

3.8 Lemma. Let X C P" a non-empty algebraic set. Then X is irreducible iff 1(X) is a prime
ideal.

Proof. as for A" n

Remark (Warning). The ideal m = (zg,...,2,) s a homogeneous ideal in k[z]. However,

Remark. Let fi,..., f, be homogeneous polynomials.

3.2 Cones and Projective Nullstellensatz

3.9 Definition. A affine algebraic set X C A"*! is called a cone of X # () and VA € k.AX C X.
If X C IP" is projective algebraic, then

C(X) :={(xo,. .., @p) s [wo: ... 2] € X} U{O}
is called the cone over X.

3.10 Lemma. 1. Let I C k[z] be a homogeneous ideal. If X = Zp(I) C P, then C(X) =
Zu(I).

2. Conversely if X C P" is projective algebraic, then 1(C(X)) = I(X)

of the pitfall in item 2. Let f € k[zo,...,x,]. f vanishes on a cone C' 5 p # 0. Hence for all d,
f@ vanishes on C. This means

VA0 = f(Ap) =D fD0p) =D MO (p)

and therefore Vd.f@(p) = 0. O

Definition. Let A be some k-algebra. If we have a decomposition

A:@Ad

delN

where Ay - Ao C Agie, then A is a graded k-algebra.

We are now interested in the grading of our polynomial ring. Therefore we partition

klz] = @D kil

delN
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into homogeneous subsets. Let I C k[x] is an ideal, then [ is called homogeneous if I = @, la
where I; = I N k[z]q. In this case

klz] /I = €D klxla/ I

is again a graded k-algebra.

Now let I C k[z] be some homogeneous ideal. Then Z,(I) C A" is an algebraic set and a cone.
On the other hand Zp (/) C P" is a (projective) algebraic set. Z, (/) is the cone over Zp(I).

We have a bijection between projective algebraic sets in P" and affine cones in A"™!. As special
case we get ) C P" «» {0} C A"l Recall for an algebraic cone C'(X) we have the bijection to
homogeneous ideals, where for the corresponding ideal we have I C (xg,...,x,).

3.11 Proposition (Projective Nullstellensatz). 1. Let X C P" an algebraic set. Then
Zp(I(X)) = X.

2. Let I C k[x] be some homogeneous ideal such that I C (xq,...,x,). Then I(Zp(I)) = /1.
9. Zp(I) =0 < VI = (x0,...,2).
Proof. 1. As in the affine case.
2. Let X =Zp(I). Then
[(Ze(1)) = 1(X) = [(C(X)) = I(Zu(I) = VI

where the last part follows from the affine Nullstellensatz.
O

Now the question is, what the regular functions Pp.(U) are? They are rational functions. However,

they also have to be well-defined,i.e. independent of the representative. Therefore for a regular

function % we need deg p = deg g, both homogeneous, and finally for regularity ¢(z) # 0.

3.3 Projective varieties as ringed spaces
Let X C P" be a projective variety. Define
S(X) == klzo,...,xn)/1(X)
as the homogeneous coordinate ring. S(X) is a graded algebra and an integral domain.

3.12 Definition. The field of rational functions in X is defined as

K(X):= {g:HdE]N.f,gGS(X)d,g%O}

This is a subfield of the field of fractions of S(X).
For p € X define

Ox,p = {g € K(X):g(p) # 0} local ring
For open U C X define
Ox(U) := ﬂ Ox, ring of regular functions on U
peU

We obtain a sheaf of k-valued functions.
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3.13 Example. For X = P" we get Opn(P") = k, i.e. only the constant functions. More generally
Ox(X) =k

3.14 Proposition. Let X C P" be a projective variety. Then (X,Ox) is a prevariety.

Proof. Putting P} := {x € P" : x; # 0}, we can write P" = J,.y P}. These sets are open. Wlog
we focus on ¢ = 0. We have bijections

A" — Pi(ay, ..., a,) = (lray: . ran)(ag: ... ay) — <ﬂ,...,%>
Qo Qo

and these are inverse to each other.
Have X = (J,c. (X NPY), where X NP} are open subsets of X. If X = Z(fy,..., f,) where f; are
homogeneous polynomials, define

gj(x1, ... xn) = f;(L, 2y, ..., 2p) dehomogenisation

Define Y := Z(g1,...,9-) € A" an algebraic set. We get bijections inverse to each other Y =
P§ N X. We have to check that these bijections are morphisms of k-ringed spaces.
Let U C Y open and ¢ € Oy(U). Locally ¢ is given by ¢ = £, where p, ¢ are polynomials. The

pullback with respect to the map Y < Pj N X looks like

k:(\\
©
I
y PrAX
(ﬂ a_n>k—«(ao an)
ag’ 7 ag
p(2. )b
w<a0: an): ’ . I
Q<Z_(l),-~ 73_3)a0

If D > degp, then

is a polynomial of degree D and

t ta, n
F(tao,. .., tay,) :p(ﬂ,...,i> ap :p<ﬂ,...,a—> abt? ]
ap ag Qo ap
3.15 Lemma. Let X C P" a projective variety. Let fi,..., fm € klx] homogeneous polynomials of
the same degree without a common root, i.e. ¥p € X.3i.fi(p) # 0. then the f; define a morphism
X =P p= (folp), - fin(P))
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fo€ X : fol) # 0} = (P) — — Py = A™

Jregular
Fnm) k
2R

Proof. First note that the above map is well-defined.
Again we partition P™ = | J,.y P} and focus on 7 = 0. Then

1 Ym
TOoY p:F(—,...,—)
(To®)(p) " "
so T o ¢ is a regular function. O

3.16 Example. Let o : P! — P? define by (s : t) — (s* : st : t?) = (z : y : 2). Then ¢ is a
morphism by the above Lemma 3.15.

Claim. ¢ : P2 — Zp(xz — y?) is a bijection.

O

we have to check

Our next goal is to describe P x P™. Consider the map
[P x P Pt
((QZO Lo .’En), (yo Lo ym)) — [(xiyj)ign,jgm]

First note that the right hand side is non-zero and well-defined. In homogeneous coordinates z;;
we have z;jz; = z;jzij, because we just have products (which commute).

3.17 Proposition. 1. The image X = f(P™ x P™) is a projective variety in P"+1)m+1)-1
which is the zero set of the quadratic polynomials 2525 = 2 2.

2. The map f : P" x Pm — X is an isomorphism.

3. The closed subsets of P™ x P™ are exactly the subsets that are zero sets of polynomials in
k[x, ylwhich are bihomogeneous in x and y respectively.

Proof. 1. We already noticed that f(x,y) satisfy the quadratic equations. The equations can
be rewritten as
0=det (¥ “
Z’i’j Zi'j’
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and this is the condition of having a rank 1 matrix. But the rank-1-matrices are exactly
those, which arise as product of two vectors and these vectors are unqgiue up to scaling.
Hence this map is injective.

2. By Example 3.16 f is a morphism since it is given by quadratic polynomials. We have to
check that the inverse

X 5P x P = UUIP” P™),, =A™ x A™

1=07=0

is a morphism. Regarding the pullback, we have where wlog we have zpp = 1.

PO f (P, x (P™),,) (P, X (P™),, X AT x AT

\f‘l)

Zij 1 ((Zz'O)i7 (Zoj))

[some more confusing stuff ]

3. Let Y C OP™ x P™ be closed. Then f(Y) is closed in X C P™+)0m+)=1Gq it is the zero
set of homogeneous polynomials ¢ (2) of degree dj. Then Y is the zero set of pr(r ®y and
or(r®y) is homogeneous of degree di in = and homogeneous of degree dj, in y. Conversely the
zero set of bihomogeneous polynomials can be written as the zero set of the bihomogeneous
polynomials of the same degree (in z and y) by replacing a single polynomial f with many
polynomials z¢f. Such polynomials are homogeneous polynomials in the z;y;. ]

3.18 Example. P! x P! is isomorphic to X C P? where X is the zero set of zp9211 — 201210. Lhis
will be a quadric surface.

First we fix a subvariety {{} x P! C P*P! for all £ € P!. All of these are lines. Likewise we have
lines P! x {n} C P*P! for n € P'. We get two partitions

PP x Pt = | J{G <P = [P x{n} ={(&n) :&me Py

&epl nePpl

And this is a double-ruled surface.

We already know that IP" is a prevariety, now we want to show that it is a variety. To this end we
want to show that A(P") is closed in P™ x P™.

A(Pn):{(x,y):rk(‘;s - ;”:)g}:{(x,y):vzq.det (;C Zj):o}

So we have characterised it by a set of bihomogeneous polynomials. Thus A(P") is closed in
P™ x P,

3.19 Corollary. Every projective varielty X is a variety.

Proof. Let X C P™ irreducible closed. Then A(X) = A(P™) N (X x X). Since A(P") is closed in
P x P*, A(X) is closed in X x X. O
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3.4 The Main Theorem in Projective Varieties

3.20 Lemma. Let fi,..., fs € klz] \ k homogeneous with Zpn(f1,..., fs) = 0. Then there exists
some d € N such that klx]g C (f1,..., fs)-

Proof. By the Nullstellensatz \/(fi1,..., fs) = (Xo, ..., X,) because Zgn+1(f1,..., fs) = {0}. Thus
there exist some d; € IN with 2% € (f1,..., fs). Put d := 3. d; — n. Then for all o € N**! with
||y = d there is some ¢ with a; > d; (otherwise |a| < Y% (d;) —1). Hence 2* € (f1,..., fs). O

However, this is just the existence. To get some quantitative statement, we can use the Effective
Nullstellensatz. Let D := maxdeg f;. Then d < D" is sufficient (shown only around 1990, while
the existence was around 1900).

3.21 Theorem. The projection m : P™ x A™ — A" s closed, i.e. it maps closed sets to closed
sets.

Remark (Illustration). Let Z C P™ x A" closed, zero set of equations fi(x,y) = 0, where f; are
bihomogeneous. Then there exist polynomials g1, ..., gy Such that

yem(Z) e 3r.filv,y)=...= fi(z,y) =0 q(y) = ... = gu(y) =0

So this basically is quantifier elimination.

Remark. If we use resultants, then we basically do quantifier elimination as well. However, there
we demand that the polynomials are monic. This corresponds to the condition that we take the
projective variety.

Theorem 3.21 even holds in a more general setting. Let X,Y be topological spaces, X compact
and Z C X x Y closed. Then the projection my : Z — X is closed.

Example. Theorem 3.21 does not hold if we take an affine variety instead of a projective one.
Take mo : A x A — A. The set Z .= Z(xy — 1) is closed. But my(Z) =k \ {0} is not closed, so my
s not closed.

Proof of Theorem 3.21. Let Z C P™ x A™ closed. Then Z is the zero set of polynomials f(X,Y),
.y [s(X,Y), where f; are homogeneous in X, say of degree d;. Then y ¢ my(2) iff f1(X,y), ...,
fs(X,y) have no common root in P™. By Lemma 3.20 this happens iff

dd € INf%Qd = k{x]d < (f1<X7 y)7 . '7fs(X7 y))
We have to show {y € A" : y & m(Z)} is open. To this end it is enough to show for all d € IN that
Ug={y e A" : A < (1(X,y),.... [{(X,9))}

is an open subset of A",
Fix some y € A". We have y € U, iff the following linear map is surjective

Tyijﬁj,dl X...X%,dS%%
(91,2 95) Zgifi(X=y>
i=1

This means rk(7,) > dim.#; =: N. Let M, be the representation matrix with respect to the

bases of monomials of the spaces J5_4,, ..., #_q,. The entries of M, are polynomials in y. Then
rk(7,) > N iff there is some non-vanishing N x N-subdeterminant of M,. And this is an open
condition in the Zarisky topology. O]
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Put 5 := maxdeg f;. Then (by the Effective Nullstellensatz) we may take d < ¢™, but then

2
N =~ “—, so the size grows doubly exponential.

3.22 Corollary. Let X be a projective variety and 'Y any variety. Then the projection mo : X XY —
Y is a closed map.

Proof. Closedness is a local property. So we may assume Y is affine, so Y C A" closed. Let
X C P™ be closed. Let Z C P™ x A" be closed. Then by Theorem 3.21 m(X x Y) is closed in
A" so (X xY) is closed in Y. O

3.23 Definition. A variety X is called complete if the projection 7 : X x Y — Y is a closed map
for all varieties Y.

Corollary 3.22 shows that all projective varieties are complete.

3.24 Corollary. Let f : X — Y be a morphism of varieties and assume X is complete. Then
f(X) is closed in Y.

Proof. Define I' : X — (X xY) via z — (2, f(x)). Hence f = my oI'. Furthermore I'(X)
is the inverse image of A under f x id. So I'(X) = (f xid)"" (A(Y)) is closed. Therefore
f(X) =m(I'(X)) is closed by the Main Theorem (Theorem 3.21). O

3.25 Corollary. Let X C P" be some projective variety consisting of more than one point. Let
f € klz] \ k homogeneous. Then Z(f)NX # 0.

Proof. Assume otherwise. Then f is non-zero on X. Let P,Q € X be two distinct points and
choose g := (x — P)¥%/ 50 g(P) = 0 and g(Q) # 0. Define the morphism F : X — P! via
R — (f(R),g(R)). Note that this is well-defined, since f is non-zero (so we cannot get 0) and
both are homogeneous of the same degree. Then F(X) C P! is closed, due to Corollary 3.24
and irreducible (because X is irreducible). So F(X) = P! or F(X) is a single point. Since
(0:1) ¢ F(X), so F(X) is a single point. But F(P) = (1:0) and F(Q) 7é (1:0) so we have to
distinct points in F(X). O

Remark. Corollary 3.25 fails for affine varieties. We could take parallel lines in the plane. X =
Zy) CA? and f=y— 1.

3.26 Corollary. Every regular function on a complete variety is constant.

Proof. Let f: X — A! be a regular function. Then we can regard it as a morphism f : X — P!
By Corollary 3.24 f(X) C P! is closed, irreducible. So f(X) is a single point. O

3.27 Example (Veronese Embedding). Let

{fi(Io,--.,$n):O§i§N;: (n;;—d) _1}

be the set of all monomials in k[z]s. The map Fy: P* — PV via (2o : ... :2,) — (fo(z) :...:
fn(z)) is a morphism. Fy(P") C PV is closed by Theorem 3.21, so F,(IP") is a projective variety
(called Veronese variety).

Claim. F,, : P* — F(P") is an isomorphism.

injectivity: Let x; # 0, then the image will contain z{ 'x,..., ¢ 'x,, from which we can
uniquely recover xg, ..., x,. Hence the map is injective.
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inverse morphism: The inverse can be expressed via 2—] =% xdr’. So we recover (% Sl ‘f:—”) =
(xo:...:x,) by rational functions.
Let g1(z) = ... = gu(x) = 0, and g; some arbitrary homogeneous polynomials of degree d. Then

we may write
gi(x) = Z a;, X"
|p|=d
Introducing new variables y,, we may rewrite these as linear forms
li = Z QipYu
u|=d
Then the Veronese map restricts to a bijection
ZIP”(QI; Ce ,gn) L) Z]pN(ll, c. ,ZN) N F(Pn)

3.28 Corollary. Let X C P" be a projective variety. Let f € klx]q, d > 0. Then X \ Zp(f) is an
affine variety.

Proof. This is known already if f is a linear form. If f = x(, recall For the general case we use the

(P"),, —— {z: 29 # 0} T An
C C, closed
XN (IPn)mo image
veronese map of degree d. O

- -
pr —— F(P") —— pN
-
c C

X — F(X)

-

X\ Zpn(f) ——— F(X)\ Zp~ (1) affine variety

4 Dimension

4.1 The Dimension of Projective Varieties

4.1 Definition. Let X be a Noetherian topological space. The dimension dim X is the maximal
n € IN such that there exists a chain

XoCX;...CX,CX

where the X are irreducible, closed subsets.
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4.2 Lemma. 1. If Xqg C ... C X, 1s a chain of maximal length, then dim X; = 1.
2. If Y C X s a closed subvariety, then dimY < dim X.

3. Let f: X =Y be a surjective morphism of projective varieties Then every chain Yy C ... C
Y, can be lifted to a chain X; such that f(X;) =Y;. In particular dim X > dimY".

Proof. 1. If otherwise, then we could switch the chain up to X; to obtain a longer chain for X.
2. Any chain for Y can be properly extended to a chain for X.
3. Induction on dimY.

IB: For dimY =0, Y is just a single point. then everything is clear.

IS: Take a chain Yy € ... C Y, =Y. Let Zi,...,Z, be the irreducible components of
f~YY,_1). Then we have

F(Z) U UF(Z) = Y

By Theorem 3.21 all f(Z;) are closed. Since Y,,_; is irreducible, there must be some 4
with f(Z;) = Y,_1. Next we apply the induction hypothesis to f : Z; — Y,,_; (note
dimY,,; < dimY’). So there is a chain X, C ... C X,,1 = Z; such that f(X;) =Y.
Then w extend this chain by X and we are done. O

In the general setting we have some projective variety X C P™. Let p € P"\ X. Wlog p(0 :
...:0:1) by change of coordinates. Let H C P™ be a projective linear subspace of codimension
1 with p ¢ H. Wlog H = {z : z, = 0}. Define a projection map © : P*\ {p} — H via

p

. H =~ pr1
m(q)

Figure 7: Projection from point p onto hyperplane H

(ap:...:an)— (ag:...:ap—1:0). Now we can restrict this map to X, so we get the projection
X — 7m(X) € H and we know 7(X) is closed by Theorem 3.21. Note X is a zero set of polynomials
and be intersection with a line, the intersection becomes the zero set of a univariate polynomials.
Hence it only has finitely many points. This means the fibres of 7 are finite.

[missing lecture ]

4.3 Proposition. Let C PV be a projective variety with dim X > 1, f € k[z] \ k homogeneous
such that f ¢ I(X). Then dim(X NZ(f)) =dim X — 1.

Remark. We already know Zx(f) := X N Z(f) # 0.

Proof. Using the Veronese-embedding we can assume f is linear. Put n := dim X and X; := Zx(f).
Then dim X; < dim X. By the Lemma there exists a linear form f;, vanishing on none of the | ref
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components of X;. Put Xy := Zx, (f1). Suppose X = C; U ... U is the decomposition into
irreducible components. Hence

Zx,(f1) = Zey,(f1) V... U Ze,(fr)
We have Z¢.(f1) C C; for all i. Therefore

Thus we have dim Xy = dim Zx, (f1) < dim Xj.

If Xy # (), proceed inductively: Find a linear form f, such that X3 := Zx,(f2) satisfies dim X3 <
dim X,. Note that f5 is linearly independent of fy, fi.

Continuing this way, we obtain linear forms fy, ..., f,, such that Z(fo,..., fn) = 0 and m < n.
Consider a morphism ¢ : X — P™ given by z — (fo(z) : ... : fi(x)) (which is well-defined,
since started with a homogeneous form). After change of coordinates assume f;(x) = x;. So ¢ is
a composition of projections as considered before. Thus ¢(X) C P™ is closed. By the corollary
dim ¢(X) = dim X. Therefore

n=dmX =dimp(X)<m<n
So n = m, and this is only possible if the dimension goes down by 1 in each step. Hence dim X;; =

dim X; — 1, which in particular means dim Zx(f) =n — 1. O

4.2 Noether Normalisation

4.4 Theorem. Let X C P" be a projective variety. Then there is some m < n and there are linear
forms @1, ..., pm such that Zx(po,...,om) =0 an

p: X =P z = (po(x) i ...t om(x))
is surjective with finite fibres. Furthermore for all homogeneous f € klz| there is a representation
fPHafP "+ . +ap=0 (2)
in S(X) = k[z]/I(X) where s; € k[z] homogeneous of degree D — i.

sketch. We obtain ¢ as a composition of projections X — P"~! with centre p € P\ X as considered
before. The property eq. (2) is shown as in 7?7 using the morphism

X —P" (o:...:xp) > (xd:. . o2t | f(z)

where d := deg f. After a change of coordinates Z(xo,...,z,) = 0, so this morphism is well-
defined. O

4.5 Remark. 1. m=dimz.

2. One can shown that Zariski-almost-all choices (o, ..., @m) satisfy the theorem. (There is
some open set of possible choices, which satisfy the conditions, and open implies dense.) So
when construction these forms, we may choose them at random.

4.6 Theorem. Let X C A be an affine variety, not a point. Then there is some m < n and there
are affine linear forms 11, ..., 1V, such that

¢3X—>Am $'—>(¢1<I),,¢m($))
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is surjective with finite fibres and for all g € k[z] there is a representation
g° +b1g" '+ . +bp=0
in A(X) where b; € klx].
Remark. e The comorphism
O kly] = A(X)

15 regular and provides an integral ring extension. Note that yi,...,ym are algebraically
independent.

e Recall the transcendence degree of k(X) over k is the mazimal number of algebraically inde-
pendent elements from X. We will show dim X = trdeg, k(X).

e One can show that almost all choices of 1, ..., 1, are good for Theorem /4.6.

4.3 Algebraic Intermezzo

Let K C L be some finite field extension. We defined [L : K] = dimg L. For a € L* consider the
map fi, : L — L via b+ ab. u, is a linear isomorphism of k-vector spaces.

Definition. The norm of a is Ny /k(a) := det(u,) € K*.

4.7 Proposition. 1. Nyjx : L* — K* is a group homomorphism (group structure given by
Haras = Hay © Has-)

2. Ifa € K, then Ny k(a) = a.

3. If K < L < FE are finite field extensions, a € L, then

Ngx(a) = (Nyyg) ™

4. Take minimal polynomial

min(a) = X M X b 4\ e K[X]

then Npk(a) = L ALK

Pof. 1. (Whendid wedotbis? ]

2.

3. Take some basis eq,...,e, of L as a K-vector space, and f1,..., f, basis of L-vector space
E. For a € L with ae; = Y \;je; we get ae;fi = > Aije; fi. The representation matrix of the
multiplication with a in E has the block diagonal form

A
A= [)‘U] e Kmxm
A

n

or written with tensors pug/x(a) = pr/x(a)®id. Therefore Np i (a) = (det A)" = (Np/x(a))".
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4. K(a) has basis 1,q,...,a% 1. The representation matrix of y, in this basis is

0 ... 0 —X\
b _A;dl Ni(ey/xe (@) = (=1)"H(=Aa) = £Aq
1N
By item 3 we get Ny k(o) = L AFA ], O

4.4 Integral Ring extensions

4.8 Definition. Let S C R be an extension of rings. An element a € R is called integral (algebraic)
over S if there is a monic polynomial f € S[z] such that f(a) = 0. The ring extension is called
integral if any element a € R is integral over S.

4.9 Theorem. 1. Let S C R be a ring extension. Then {a € R : aintegral over S} is a subring,
called the integral closure of S in R.

2. If SC R and R C T are integral ring extension, then S C T is integral.

Remark. o The first part can be shown constructively. For computations with algebraic num-
bers, there are corresponding operations with their minimal polynomials, so we just have to
check that the results are monic again.

e A crucial observation is: a integral over K iff Sla] is a finitely generated S-module.

e To show the hard direction, we need M - ad(M) = det M - I.

4.10 Definition. Let S be an integral domain and K its field of fractions. We call S integrally
closed if S is the integral closure of S in K, i.e. If a € K integral over S, then a € S.

4.11 Proposition. Fvery factorial ring S is integrally closed.

Proof. Suppose § € K is integral over S, where a,b € S, b # 0 and gcd(a,b) = 1. Take the

minimal polynomial

(g) +>\1<5) ++)\d:():>ad+)\1(adflb+—i—)\dbd):O

Hence b | a%, so b is a unit. Thus ¢ € S. O

4.12 Example. Regard polynomial ring k[t] with subring S := k[t t?]. The field of fractions is
K = k(t). t is integral over S since it is a zero of X% —t? € S[X]. But t ¢ S, so S is not integrally
closed. The corresponding picture is Neil’s parabola which has a singularity at the origin.

4.13 Lemma. Let S C R be an extension of integral domains and K C L their corresponding
fields of fractions. If a € R is integral over S, then Np k(a) is integral over S.
In particular Npjx(a) € S if S is integrally closed.
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Proof. Let f = 3 \X?" € K[X] be the minimal polynomial of a over K with Ay = 1. Let
a := aj,...,a, € L be the zeros of f in the algebraic closure. Let g € S[X] be monic with
g(a) = 0. Since S C K and f is minimal, we get f | g, so write ¢ = fh for some h € K|z].

Furthermore g(a;) = 0 as well. Hence ay,...,a, are integral over S. The ); are elementary
symmetric polynomials in a1, ..., a,, so the \; are integral over S. Therefore Ny x(a) = j:)\([iL:K(a)]
is integral over S. O

Now again regard affine Noether normalisation of an affine variety X C A". Let ¢); be affine linear,
sufficiently general. Put

b X — A" z = (Y1(2), .. (1))
Then 1 is surjective with finite fibres and ¢*(k[y]) C A(X) is an integral extension.

e ¢ is a closed map (see the proof) For a closed subvariety Z C X we have dim Z > dim¢(Z),
proof as for Lemma 4.2

e As for 7?7 we see that dim Z = dim ¢ (7).
As a conclusion we have dim X = m.

4.14 Proposition. Let X be a variety an U C X non-empty open. Then dimU = dim X. So
dimension s a local property.

Proof. Regard a longest chain of irreducible closed subsets
0A£UycC...cU,=U
So dim U = n. Consider the chain of their closures in X
UpC...CU,=X

We have U; C Uy, since U; = U; N U (note that U is closed in U). So dim U < dim X.

Step 1 Let Xy C ... C X,, = X be a longest chain of irreducible subsets. Assume X, N U # ().
Consider

D#£AXoNUCX NUC...CX,NU

which is a chain of irreducible closed subsets. Suppose X; NU = X, NU. Then X;,; =
X; U (Xi41 \ U) which is a proper union of closed sets. This contradicts irreducibility. So in
this case dim U > dim X.

Step 2 Let X be a projective variety. We will, construct a chain Xg C ... C X,, = X such that
XoNU # (0, so we can use Step 1. Use descending recursion starting with X, = X.

Assume we already constructed X; C ... C X,, = such that X; NU # () and dim X; = i. Pick
a non.constant homogeneous polynomial f that does not vanish on any of the components
of X;\ U (it just intersects them). By the dimension theoremthere is a component of Zx (f)
of dimension dim X; — 1 =4 — 1. Call this component Xj.

We have to show X; 1 NU # (. Otherwise X; ; C X;\ U. By construction X; ; is a proper
subset of any of the components of X; \ U. Hence dim X;_; < dim(X; \ U) < dim X;, which
would mean dim X;_; <i—2. 4

This shows that statement for projective varieties.
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Step 3 Let X C A" an affine variety. Take X C IP"_the projective ClosuE. Then U C X C X.
Apply Step 2 twice, which yields dim X = dim X and dimU = dim X.

Step 4 Let X be any variety. Take a longest chain Xy C ... C X,, = X. Let V be an affine
open subset of X containing the point Xy. By Step 1 dimV = dim X. As before, find a
non-empty affine open subset W C U. Then dim W = dim U. Since W and V are both open
W NV #0(. Then

dimX =dimV =dim(VNW) =dimW = dimU O

4.15 Corollary. 1. dim A" =n as A" is an open subset of P".
2. dim(P™ x P™) =n+m as A" x A™ is an open subset of P™ x P™,
Next we show a special case of the Affine Dimension Theorem.

4.16 Proposition. Let f € k[x] non-constant. Then any component of Z(f) C A" has dimension
n— 1.

Proof. Factor f into irreducibles and write f = [ f*, with f; » f;. Hence

Z(f)=2Z(f)U...UZ([)

and the Z(f;) are the irreducible components of Z(f). So we may assume X := Z(f) is irreducible.
The projective closure X C P" is the zero-set of the homogenisation f € k[zg,z] of f. By ??

dim Zpn (fv) = dim X — 1. Now Zx(f) = Zpn (f) N A™ is a non-empty open subset of X. By

Proposition 4.14 we get dim Zy»(f) = dimpn(f) =n — 1. O

For the converse let X C A" be closed irreducible with dim X = n —1. Take f € I(X)\ {0}. Then
X C Z(f). Then one of the irreducible components Z( f;) must correspond to X.

4.17 Remark. We have a bijection correlation between closed subvarieties of A™ of dimension
n — 1 and non-constant irreducible polynomials in k[z]. Varieties of dimension n — 1 are called
hyper-surfaces of A™.

4.18 Theorem. Let X C A™ be an affine variety with dim X > 1 and f € k[z| such that f ¢ I(X).
Then every irreducible component of Zx(f) has dimension dim X — 1.

Proof. First argue that it is sufficient to prove dim Zx (f) > dim X — 1 if Zx(f) # 0.
Let Zx(f) = Z1 U...U Z,. be the decomposition into irreducible components. We want to show
dim 7Z; = dim X — 1. Take g € k[z] such that

gel(ZyU...uZ)\I1(Z)
If such g would not exist, then

Put X, := X\ Zx(g). Then X, is an affine variety. Furthermore X, N Zx(f) = X, N Z;, which is
irreducible and () £ Z; N Xy C Z; is open. Our reduced theorem yields

dimZ; =dim(UNZ(f)) >dimU — 1 =dim X — 1
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Now we show dim Zx(f) > dim X — 1. We already know this statement for X = A". Idea: Use
Noether normalisation Let ¢ : X — A™ be some surjective morphism such that

e
S:=kly,..  ym] = AX) =R

is an integral extension and the map is injective. Let K, L be the fields of fractions of S, R. Then
we have a group morphism Ny k : L* — K*. We put fo := Ny /k(f) € K*. f is integral over S,
so fo is integral over S (since S is integrally closed, namely factorial). But fy € K, so fy € S.

Claim. /fRN S =/foS

Proof. 2: We already know fy € S. Recall fo = Np/k(f). The minimal polynomial ming(f) =
X4+ M X4+ + \g has coefficients \; € S (again integrality of S).

M= FrA A A f = (T NS M) fESfR

N S
-

cER

By some Lemma fo = Nk (f) = XD e fR. So fy € FRNS C/FRN S, which shows
VS C VFRNS.

C: Let g € v/fRNS. Then there exists some N > 1 such that ¢"¥ € fR, so there is some h € R
with g% = fh.

(NL/K(Q))N = Np/k (QN) = NL/K(f) ) NL/K<h)
—_——— ——

fo es
By using Ny x(g) = =5 we get
gV € oS = g e/ foS O
Claim. Geometrically the claim states V(Zx(f)) = Zam(fo). So we transfer the setting to A™.

Proof. Put Z := Zx(f). Then the claim is equivalent to

VIRNS = (¥ (\/ﬁ) NST-Satz W) Y Ix(2)) = Lam(0(2)) = I(Zam (fo)) NST-Satz VoS
O

By the theorem for A™ we already know dim Zgm(fo) > m — 1. So
dim Zx(f) > dimv (Zx(f)) > dim Zyn(fo) =n—1=dim X — 1 O

Remark. An earlier sketch for the proof was

X = Zx(f)
vl o
A" ———— Zan(fo)

V(Zx(f)) 2 Zar(fo)
dim Zx(f) > dimy (Zx(f)) > dim Zyn(fo) =n — 1
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Now we can refine 77.

4.19 Corollary. Let X C P" be a projective variety with dimension dim X > 1 and f € k[zo, ..., x,]\
k homogeneous such that f ¢ I(Z). Then Zx(f) # 0 and every irreducible component of Zx(f)
has dimension dim X — 1.

Proof. Go to the affine charts and use the affine dimension theorem. O]

4.20 Corollary. Let X C P" be a projective variety of dimension dimX = n > r > 1 and let
fi,-- oy fr € klx] \ k be homogeneous. Then Zx(fi,..., fr) # 0 and every irreducible component of
Zx(fi,-.., fr) has dimension > n —r.

Proof. Induction on r.
Base case: This is Corollary 4.19.

Step: Let Zx(f1) = XjU...UXj irreducible components. By the dimension theorem dim X; > n—
1. By the induction hypothesis for every ¢ we have Zx,(fs,..., f) # 0 and every irreducible
component of it has dimension > (n — 1) — (r — 1) = n —r. For every irreducible component
of Zx(fi,..., fr) there is some ¢ such that it occurs as a component of Zx,(fa,..., fr). O

4.21 Corollary. 1. If fi1,..., fn € k[x] \ k are homogeneous, then Zpn(f1,..., fn) # 0.

2. Special case n = 2: Any two projective curves in P? intersect. (This is clearly false in A2.)

4.22 Corollary. Let X C AN be an affine variety with dim X =n >r > 1 and let fi,...,f. €
kx9 \ k. Then either Zx(f1,...,fr) = 0 or every irreducible component of Zx(fi,...,f.) has
dimension > n —r.

Proof. As for P". O

For some affine variety X we have a topological definition of dim X, so we have the concept of
dim A(X). However, the latter is an algebraic object. So we want to have a connection with the
transcendence degree. Via Noether normalisation we have ¥ : X — A™, with dim X = m. So we
have to check m = trdeg, A(X). One key observation is

V" (klyr, ..., Ym]) € A(X) integral

But we want to use a different approach via products.
Let X and Y be varieties and

fcXoC...C X=X
lcYyc...cY,=Y

be longest chains of irreducible closed subsets, so dim X = n and dimY = m. For their product
we get the chain

CC()XS/OC...X()XYmCXlXYmC...CXnXYm
of length n +m. So we have dim(X xY)>m+n=dimX +dimY.

4.23 Proposition. If X and Y are varieties, then dim(X X Y) =dim X + dim Y.

Proof. We already know dim(A™ x A™) = dim (A™™) = n + m and the same for P.
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Sketch Let X and Y be projective varieties. Use Noether Normalisation. Let ¢ : X — P™ and
¥ 1Y — P™ be surjective, finite fibres and integral extensions of the rings. (¢ and ¢ are
finite surjective morphisms). Consider

T=pxyY: X xY = P"xP"

Now 7 is surjective, finite fibres,.... As before 7 is a closed map and the dimension is the
same, so dim(X x Y) =m + n.

Essential: If Z C X x Y is closed with 7(Z) = n(X x Y, then Z = X x Y, use proof of ?7.
Let X C A™, Y C A" affine varieties. Take their projective closures X CP™and Y C P*. Then
X =XnNA" Y =Y NA"

XxY=(XxY)Nn(A™x A")
dim(X xY) =dim(X xY) =dim X +dimY = dim X +dimY
If X and Y are any varieties, use affine covers and the previous part. O

From Linear Algebra recall: Let X, Y < kY. Then dim(X NY) > dim X + dimY — N. Now we
show a similar statement for varieties.

4.24 Theorem. Let X, Y C A" be affine varieties. Then any component of X NY has dimension
at least dim X + dimY — N.

Proof. Consider the diagonal A := {(x,z) : z € AN}. Then we have an isomorpism
XNy = (XxY)NA z— (x,x)

Moreover A is the zero set of the N polynomials z; —y;. We know dim(X xY) =dim X +dimY,
and each equation can reduce the dimension by at most 1. Thus

dim(X NY) = dim((X x Y)NA) > dim X + dimY — N 0

4.25 Remark. The theorem also holds for projective varieties.

4.5 The structure of morphisms

First we discuss finite morphisms.

4.26 Definition. Let X and Y be affine varieties and ¢ : X — Y be a morphisms. We call ¢
finite if o*(A(Y')) € A(X) is an integral ring extension.

Example. The morphism ¢ : X — A™ in the affine Noether Normalisation is finite.

4.27 Lemma. A finite morphism ¢ has finite fibres. (This might be a reason for the name.) But
the converse is not true.

Proof. Let X C A™ closed and z1,...,x,, are the coordinate functions on X. Fix some i. Since
z; is integral over ¢*(A(Y)), there exist degree d € IN and coefficients ay, ...,aqs € A(Y') such that

7 + ¢ (a)af T+ 4 g (ag) = 0
Let n € Y. For all £ € ¢7(n) we have
©*(a;)(§) = ai(p(§)) = ai(n) &+ ai(mE™ + ..+ aa(n) =0

This equation only has finitely many solutions, but 7 was arbitrary, so p~*(n) is finite. O]
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Recall Nakayama’s Lemma from Algebra 2.

4.28 Proposition. Let A C B be an integral extension of rings. Take some proper ideal I C A.
Then I - B C B (the ideal in B generated by 1) is a proper ideal.

4.29 Definition. A morphism ¢ : X — Y of varieties is called closed embedding if (X)) is a closed
subset and ¢ : X — ¢(X) is an isomorphism.

Example. If Y s a variety, X C Y closed subvariety. Then the inclusion X — Y is a closed
embedding.

4.30 Remark. 1. A close embedding ¢ : X — Y of affine varieties is finite.

2. The composition of two finite morphisms is finite.

Proof. 1. First «* : A(Y) — A(X) is surjective. Thus *(A(Y)) = A(X), so in particular this
extension is integral.

2. Let A C B, B C C integral ring extensions. Then A C (' is an integral ring extension (see
Algebra 2).
O

4.31 Theorem. A finite morphism is a closed map.

Proof. Let ¢ : X — Y be a finite morphism. We can assume that ¢ is dominant, i.e. (p(X) =Y.
We have to show that ¢ is surjective. Assume Y C A™ is closed with coordinate functions
Y1, .-, Ym. Let n € Y. The fibre of ¢ ~!(n) is given by the equations

Vi.o" (y:)(€) = vi(0(§) = yi(n)
which means
" (Y1) =m0 (Yn) = M0
This generates an ideal
(0" (1) = s, @7 (Yn) — ) € A(X)
Let my, := (y1 — M1, ..., Yn — 1n) be the maximal ideal of 7 in A(Y").

* inj,

my C A(Y) =5 ¢*(m,) C ¢"(A(Y)) = A

By assumption A = ¢*(A(Y')) € A(X) = B is an integral extension. By Nakayama ¢*(m,)A(X) =
I - B C B, where ¢*(m,) is the ideal generated by ¢*(y;) — n;. Hence indeed

(@ (1) = m, - @ (Yn) — ) C A(X)
which shows ¢~1(y) # 0. O
4.32 Proposition. If p: X — Y is a surjective finite morphism, then dim X = dim Y.

Proof. Since ¢ is surjective, ¢* is injective. So p*(A(Y)) C A(X) is an integral ring extension and
©*(K(Y)) C K(X) is an algebraic extension. Hence

dimY = trdeg, K(Y) = trdeg " (K(Y)) = trdeg, K(X) =dim X O

41

add
def



But we also want to present an alternative proof.

Proof. For every chain
PCcYyCcYiC...CY,=Y
of irreducible closed subsets there is a chain
lcXocXyC...CcX,=X

of irreducible closed subsets such that ¢(X;) = Y;. (Proof as for ??, using that ¢ is closed.)
If Z C X is a closed subvariety such that p(Z) = ¢(X) then Z = X. (Proof as for 77.) O

4.33 Remark. 1. The notion of a finite morphism can be extended to general varieties X, Y.
A morphism ¢ : X — Y is called finite if any y € Y has an affine open neighbourhood V
such that o= '(V) =: U is affine and o : U — V is finite.

Both definitions are consistent. “Finiteness of morphisms” is a local notion.

2. Tt follows easily that a finite morphism ¢ : X — Y is a closed map with finite fibres and
dim X = dimY if ¢ is surjective.

3. Let X C P" some projective variety such that p:=(0:...:0:1) ¢ X and P"' @ H C P"
with p ¢ H. Then the projection

7 X —» Pt (ap: .. an)— (ag:...:ap1)

(from p we draw a line through x € X and see which point in H we hit) is finite, as follows
from ?7.

Now look at any morphism of varieties ¢ : X — Y, and assume that it is dominant.

1. dim X > dimY

2. dimp(y) > dim X —dim Y if ¢! (y) # 0. Moreover, equality holds for almost al y.
Now we regard general morphisms (instead of just finite ones).
4.34 Proposition. If p: X — Y is a dominant map of varieties, then dimY < dimX.
Proof. Wlog X,Y are affine. Then we have

P (A(Y)) € A(X) P (K(Y)) € K(X)

Looking at the transcendence degree we get
dimY = trdeg, K(Y) = trdeg;, ¢"(K(Y)) < trdeg, K(X) = dim X O

4.35 Proposition. Let ¢ : X — Y be a dominant morphism of varieties. For all y € ¢(X) and
all components F of the fibre o~ (y) we have dim F' > dim X —dim Y. (From Proposition 4.3/ we
know this is non-negative.)
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Proof. Wlog Y affine (because it is a local statement), say Y C A" and dimY = m. By the
exercise, there are gy, ..., g, € A(CY) and some open V C Y such that Z(gy,...,gm) NV = {y}.
(This means locally y is the intersection of m curves. Globally this need not be true, since those
curves can have other intersection points.)

Wlog V is affine. Let U C o~ (V) an affine open set such that U N F # (. The fibre p=!(y) N U
is given by the m equalities ¢*(y;) = n; for i = 1,...,m if we restrict on U.

As a corollary of the Dimension Theorem, every component of this fibre has dimension > dim U —
m = dim X — m. In particular dim F' = dim(F NU) > dim X —dimY. O

4.36 Example. Consider the map
P A? — A2 (z,y) = (z,2y) = (&)

If £ # 0, we can find a preimage. However, if £ = 0, then we must have n = 0 as well in the
image. Thus ¢(A?) = (A* x A') U {(0,0)}. For the fibres we have p~'(&,n) = (£,67'n) and
©1(0,0) = {0} x AL

Take some affine variety Y and some 0 # s € A(Y'). Put
Yii={y €Y :s(y) #0}
which is an affine variety and
AY.) = AW, = { L g€ A(Y),e e N}

4.37 Theorem (Structure Theorem). Let ¢ : X — Y be a dominant morphism of affine
varieties. Then dim X > dimY and there exists s € A(Y) \ {0} and a finite surjective morphism
) Xopes) — Ay X A? where d :== dim X — dim Y such that the following diagram commutes

(0
Xpr(s) — Y, x A?

RN

Y,

Proof. Suppose X C A" closed and let z; be the coordinate functions on X.

o (AY)) € A(X) =klz1,...,an] = ¢"(K(Y)) C ¢ (K(Y))[z1,...,2n5] € K(X)

-

fin.gen. ¢*(K(Y))-algebra

Noether normalisation with base field ¢*(K(Y)) yields: After sufficiently general linear transfor-
mation of coordinates, we can assume that x4, ..., x4 are algebraically independent over ¢*(K(Y))
and

S Ko, 24 €@ (K ) e, an] 3)
is an integral ring extension. Moreover,

trdegy, " (K (Y)) + trdeg . g (yy) K (X) = trdeg;, K(X) = dim X

~~

~
=dimY ==d
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P (AY)s) —— @ (A(Y)s)[71, ..., 2]
(**)
" (A(Y)) A(Xp(s))

Each z4,1,...,zx is a zero of a monic polynomial with coefficients in ¢* (K (Y))[x1, . . ., z4], because
eq. (3) is an integral ring extension. Now we can choose 0 # s € A(Y) (“common denominator”)
such that all these polynomials have their coefficients in the ring p*(A(Y)s)[z1,. .., xq). We obtain
an integral extension. Justification for (**): ¢*(A(Y;)) C A(Xyx(s), SO

P (AY)) [z, wa] © A(X (o)

We have equality, since (the restrictions of) x1,...,zy generate A(Xy«(y)).
We write

O (AYS) 21, .., za) = " (A(YS)) @ klzn, . .., m4] = A(X,) @ A(AY) = A (Y, x AY)

and obtain This corresponds to the commutative diagram of affine varieties where ) is finite (and

~ integral
a® 1€ A(Y;) @ klr, ..o wg]) —— @ (AYL)) 21,y 2a] ———= A (Xpe(s)

Xon(s) v {y} x A C Y, x A?

roj
cpsurjectik Jﬂp‘]

y €Y

surjective). [

4.38 Corollary. Letp : X — Y be a dominant morphism of varieties. Then there exists a non-
empty open subset V. C 'Y such that V C o(X). Moreover, for all y € V we have dim ¢~ (y) =
dim X —dimY.

Proof. Wlog X, Y affine and put d := dim X —dim Y. By the Structure Theorem after restricting
to affine pen subsets, we can assume that section 4.5 commutes. Hence ¢ is surjective. Let

Y
Xpr(s) — Yy x A

RN

Y,
y €Y, then o' (y) = v=' ({y} x A?). Let Z be a component of ¢™(y). Then ¢(Z) is closed
and the restriction Z — 1(Z) is a finite morphism (check). Hence dim Z = dim¢(Z) < d, since
¥(Z) C{y} x A% On the other hand we already know dim Z > d. O
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Consider the Boolean algebra generated by the closed subsets of a variety X. These are the sets
that can be obtained form closed sets by finitely many unions, intersections and complements of
X. Such sets are called constructible.

4.39 Theorem (Chevalley). Let ¢ : X — Y be morphism of varieties. Then ¢(X) is con-
structible.

Proof. Induction on dim ¢(X). For dim ¢(X), ¢(X) is a point and thus constructible.
Now assume dim p(X) > 0. By the corollary there exists some open V' C o(X) with § # V' C

o(X). Put Y := o(X)\ V. If Y = (), then V = ¢(X) is open and we are done (has the form
p(z) # 0 for some polynomial p).

Let Y’ 2 (). Then dimY”’ < dim ¢(X). Let X; be a component of ¢~'(Y”). Then

p(X)=VUp(p'(Y)) =V U w(X,)

We have dim ¢(X;) < dimY’ < dim ¢(X). By induction hypothesis all p(X;) are constructible
and so ¢(X) is. O

4.40 Remark (Outlook). Let ¢ : X — Y be a dominant morphism of varieties. Assume
dimX = dimY. By the corollary ¢~!(y) is finite for almost all y € Y. The field extension
©*(K(X)) C K(X) is a finite algebraic extension (same dimension, so same transcendence degree).
Let d := [K(X) : ¢*(K(Y))] be the degree of this extension. One can show that #¢~*(y) = dfor
almost all y € Y if the extension is separable.

4.41 Example. Take ¢ : A — A via z — 2% Then #¢ 1(0) = 1 but #¢ (y) = 2 for y # 0.
But it makes sense, to introduce multiplicities. Then we will have the same value for all, compare
to the Fundamental Theorem of Algebra. This will lead to the concept of schemes.

4.6 Birational equivalence

4.42 Definition. Let X, Y be varieties.

1. A rational map ¢ from X to Y written ¢ : X — Y is a morphism ¢ : U — Y where U is a
non.empty open subset of X.

2. We say that two rational maps ¢ : U = Y, ¢ : V = Y are equal if Vp € U N V.p(p) = ¥(p).

3. We call ¢ dominant if o(U) =Y.

4.43 Remark. 1. A rational map ¢ : U — Y is dominant iff o(U) contains a non-empty open
subset.

2. fp: X =Y and ¢ : Y — Z are rational maps and ¢ is dominant, then ¢)oy is a well-defined
rational map.

3. If both ¢ and ¢ are dominant, then 1 o ¢ is dominant. Hence varieties with dominant
birational maps form a category.

4.44 Definition. Let X, Y be varieties.

1. A birational map ¢ :— Y is a dominant rational map that has an inverse. l.e.there is a
rational map ¢ : Y — X such that ¢y oo =idyx and ¢ oy =idy.
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2. X and Y are called birational equivalent if there is a birational map between them.

Exercise. 1. Varieties X and Y are birational equivalent iff there exist non-empty open subsets
UCX andV CY such that U is isomorphic to V.

2. Varieties X and 'Y are birational equivalent iff K(X) = K(Y) as fields.
Example. A" and P" are birational equivalent but not isomorphic.

4.45 Example (Blow-up of a point in A?). Consider the morphism A%\ {0} — P! via (zg, 1) —
(o : z1) and its graph

I = {((zo,21), %0 : 1)) € (A*\ {0}) x P' : woyy — 2190 = 0}

The closure X of I' in A2 x P! is given by

X = {((%’o,xl%yo cy1)) € A x Pl agyy — 2y = 0}
The projection 7 : X — A2 satisfies:

e T is surjective

o 7 Yxo,z1) = {((z0,71), (w0 : 1))} (single point) if (zg, z1) # 0.
e 771(0,0) = (0,0) x PL. Geometrically, we can approach 0 from all directions. So the fibre is
the union of all points in P!. This is the blow-up.

The origin has been replace by P!. In other words it has been “blown up” to a P!.
7 induces an isomorphism

X\ 7(0,0) = A*\ {(0,0)} ((zo, 1), (w0 : x1)) 4= (w0, 21)

In particular X is birational equivalent to A2. But we can show that X and A2 are not isomorphic,
because X contains P! as subvariety, and thus cannot be embedded into A2

Remark. ]f)~( is a self-intersection curve (has a singularity), then we can use the blow-up to make
the curve smooth.

Our goal is the following theorem.

4.46 Theorem. Assume chark = 0. Any variety Z over k is birational equivalent to an affine
irreducible hypersurface in some A™.

For the proof we will need the Theorem of the primitive element from Algebra II.

Proof. Wlog Z C A" is a closed subvariety. Let zq,...,x, be the coordinate functions on Z.
Then A(Z) = k[xy, ..., 2, and K(Z) = k(x1,...,z,). Let d := dim Z = trdeg, K(Z). After some
permutation of the x; we can assume x1, ..., x4 are algebraically independent. Then k(z1,...,x4) C
k(xy,...,x,) is a finite algebraic field extension. Since char k = 0, any field extension is separable,
so a finite extension is generated by a single element. Therefore there is some y € K(Z) such that
K(Z) = k(z1,...,24)(y). Let f=TN + TN + ...+ gy be the minimal polynomial of y over
k(z1,...,24). Each coefficient is a quotient, and give all of them the same denominator ¢; = %
with a;,b € k[xy,...,x4) and b # 0. Consider the polynomial

Fi=b-f=bT"+a,T" ' +... +ay € k[z1,...,z4)[T]
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We may assume ged(b, aq,...,ay) =1, thus F is primitive and hence irreducible (Gauss Lemma).
The zero set 5 C A%l of F is an irreducible hypersurface. Consider the rational map

piA" D Z o C AT = (21(p), - 2a(p), y(p))
It is defined, where y is defined.
Claim. ¢ is dominant.

Proof. Suppose G € k[xy,..., x4, T| vanishes on im ¢. Then G(x1,...,2z4,y) = 0. Now view G as

an element of k[xy, ..., z4][T], i.e. as a univariate polynomial. Since F is the minimal polynomial,
F | Gin k(xq,...,zq)[T], but since F' is primitive, we also have F' | G in k[zy,...,z4)[T]. Thus G
vanishes on 7, since 7 is the zero set of F. n

We have a well-defined comorphism ¢* : K () — K(Z). ¢* is surjective, since K (Z) is generated
by x1,...,24,y. Hence K (7€) = K(Z). Thus 2 and Z are bivariate equivalent. O

¥

Tlustration:

5 Tangent spaces and Derivatives

5.1 Tangent spaces

Let F' € k[, ...,2,], p € k™. The first order approximation of F at p is given by the affine linear
polynomial

" IF
1 ._ .
Fy oz, (p)(xi — pi)

i=1

which is just the first Taylor-polynomial. Clearly Flgl)(p) = 0. Furthermore we have the rules

F+6)MN=r"+cl
(F-G)Y =F(p)-GY + FY-G(p)

5.1 Definition. Let Z C A™ a closed subvariety and p € Z. The embedded tangent space of Z at
p is defined as the affine linear subspace

T7Z = {¢e€ A" :VF € [(Z).FV(£) = 0}
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5.2 Lemma. If [(Z) = (Fy,..., Fy) and p € Z, then
77 =27 ()Y, ..., (F)P)

Proof.

5.3 Example. 1. T/A" = A",
2. If Z C A™ is a hypersurface with I(Z) = (F) and p € Z, then

T];Z:Z(Fp(l)):{geA”: gf(f)(fz—]?z)zo}

3. Let Z=Z(x*+y*—1), (§,n) € Z. Then 9,F = 2z and 9,F = 2y.
Fi) (a,y) = 26z — &) + 2n(y — 1)
equation of the tangent line at (£, 7).

5.4 Definition. 1. The differential of F € k[z1,...,x,] at p € k" is defined as the linear form

F
d,F k" =k vHZa'(p)vi

2. The tangent space T,Z of Z C A" at p is defined as the sub-vectorspace

1,7 = ﬂ ker (d,F')

Fel(Z)
5.5 Example. 1. T;Z=p+T,Z.

2. Let [(Z) = Fy,...,Fs). Then T,Z = kerd,Fy N ... Nkerd,Fs. Le. T,Z is the kernel of the
Jacobian matrix [%(p) :

J i<s,j<n

5.6 Proposition. Let Z C A" a closed subvariety, | € N. Then p € {Z : dimT,Z > k} is closed

m 4.

Proof. Let I(Z) = Fi,...,F,). Take the Jacobian matrix J(p) = [gfé (p)} . Then T,Z =
J i<s,j<n
ker(J(p)). Hence dim7,Z = n — rank J(p). Now it is sufficient to show {p € O

Let ¢ : X — Y be a morphism of affine varieties. Take some p € X and put q := ¢(p) € Y.
Then ¢* : A(Y') = A(X). We have ¢*(m,,) C m,, and thus ¢*(m?2) C m2. ¢* induces a linear map
mq/mg — mp/mf). Take the duals. One calls d,p : T,X — T,Y the derivative of ¢ at p.

5.7 Theorem. Let ¢ : X — Y and ¢ : Y — Z be morphisms of affine varieties and let p € X.
Then dy(¢ o ) = dypytp o dpp (“chain rule”). Moreover d,idx = idp,x. We have a (covariant)
functor from the category of pointed affine varieties to the category of k-vector spaces.
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M, /M2
(mp/mp)* —— (mg/m3)*
T,X - T, X

Proof. Put q := (p) and r := 1(q). We have
AZ) 5 AY) 5 A(X)

with ¢* o 0* = (¢ o ¢)*. Thus ]

5.8 Remark. Let X C A™ Y C A" closed and ¢ : X — Y given by p(x) = (®1(x),..., P, (2))
where ®; € k[xy,...,2,]. Let p € X. Then dyp : T,X — T,,)Y is given by

09,
dpp - v = ( ’(p)) ‘v
? Ox; i<n,j<m

forall v e T,X.

5.2 Regular points

Let X be some variety and p € X. A local ring Ox, := {¢ € K(X) : p € dom ¢} has a maximal
ideal mx , := {¢ € Ox, : ¢(p) = 0}. Furthermore Ox,/mx, = k.
Let A be some ring and 1 € S C A, S ??closed from localisation S™!1A = {% ca€ A s€ S}. We S

can embed A — S7'A via a — £.

L IfS={f":neN} weget STTA=:A;.

2. Let p C A be some prime ideal. Put S := A\ p. Then S™'A =: A,.
Let A = A(X), for some affine X. Put p := m,. Then

1= 0, = {1 g€ 400,90 £ 0]

5.9 Definition. Let X be a variety and p € X. We define the tangent space of X at p by
T,X := (mX,p/mggp)*, where my , denotes the maximal ideal if Ox,.

5.10 Lemma. Let X C A" closed, p € X. The morphism A(X) — Ox,, induces an isomorphism
mp/mf, — mX’p/mggp.
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Let ¢ : X — Y be a morphism of varieties, p € X and ¢ := ¢(p). This induces a ring morphism

oy Oyy — Ox, (V)] = [(¢”'(V),g09)]

such that o5 (my,) € mx . This induces a linear map
*
dpep : (me/m?X,p) =T,X = 1Y
We get a functor from the category of pointed varieties over k to the category of k-vector-spaces.

5.11 Remark. Let p € U C Xopen. Then Oy, = Ox ), and therefore T,U =T, X.

5.12 Lemma. Let 5# C A" be an irreducible closed hypersurface. Then dim T, = dim 5 for
almost all p € F7.

Proof. Let s = Z(F) for F' € k[zo, ..., x,| irrducible. Then T,5¢ = kerd,F. It is sufficient to
show d,F" # 0 for almost all p. Suppose this does not hold. Since we have an open set, this already
means d,F' = 0 for all p € 7. Since I(J€) = (F') we have Vi.F | 6F Due to the degree, this is

only possible if ‘9F = 0 for all 7. For chark = 0 this is impossible. Assume chark = ¢ > 0. Then
(by Algebra I/II) there must exist some G € k[xg, ..., x,] such that

F(zo,...,xn) = G(zg,...,xL)

Y n

But in the coefficients of G we may take g-th roots and use the Frobenius map. Therefore there
exists some H € k[x,...,x,| such that F' = HY, contradicting the irreducibility. ]

5.13 Theorem. Let X be a variety. Then
1. dim X < dim7T,X for allp € X.
2. {pe X :dim X =dimT,X} is open and non-empty, and thus dense.
Proof. Put ¢ := min {dim7,X : p € X}. Then by Proposition
{peX dimT,X >5+1}

is closed in X. But is also is a proper subset of X by definition of §. So we have dim 7, X = ¢ for
almost all p € X.

For the first part is is sufficient to show dim X = §. We know that X is birational equivalent to a
hypersurface # C A™*! for some n. Therefore there exist non-empty open set U C X, V C #
and some isomorphism ¢ : U — V. Hence for all p € U we have

dpp : TyX =T, U — Typp)V = T

For their dimensions by Lemma 5.12 we have dim T}, = dim .2 dim X for almost all p € X.
Thus dim 7}, X = dim X for almost all p € X. From this we get dim X = 9. O]

(0]

5.14 Definition. Let X be a variety. A point p € X is called regular if dim7,X = dim X.
Otherwise p is called singular. Denote by Reg(X) the set of regular points and by Sing(X) the set
of singular points. The variety is called non-singular/smooth if Sing(X) = ().

5.15 Corollary. Reg(X) is a non-empty open subset of X. Sing(X) C X is closed.
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Let X be some variety over k, p € X and ) # Reg(X) C X open. Thus Sing(X) := X \ Reg(X)
is closed. By definition we had p € Reg(X) < dim X = dim7,X.
More explicitly let X C A™ closed and irreducible, say X = I(fi,..., fs) for some s < n. Then

o, 1 _
Vp € X.rank [&Ej (p)] . =s
_ fi
T,X = ker [(%Zj (p)} 5

n—s<dmX <dmT,X =n—s
Now we return to the case k = C and use calculus.

5.16 Corollary. Let X C CV be a closed subvariety. Then Reg(X) is an analytic submanifodl
of CN of dimension dim X. In particular Reg(X) is a real C*-submanifold of CN = R*Y of real
dimension 2dim X.

5.17 Example. Take f := y?> — 23 and X = Z(f). Then we simply set the derivative (0,0) =
(%, %) = (—3x?,2y). This gives us Sing(X) = {(0,0)}.

5.3 Non-singularity of fibres

5.18 Lemma. Let X be a variety with n = dim X. Let uq, ..., u, algebraically independent over k
such that k(uy, ..., us) C K(X) is a separable algebraic extension. Then dyuy, ..., d,u, are linearly
independent for almost all p € X.

Proof. Wlog X affine. Let A(X) = k[z1,...,2y]. For p € X we have
(T,X)" = span{dpz1,...,dpxn}

which is at least n-dimensional since dim7,X > dimX = n. Fir 1 < ¢ < N. Then z; is
algebraically independent on uq, ..., us, since

trdegy, k(z1,...,z,) =dim X =n
There is a separable irreducible polynomial
F(uy, ... ,un, T) = agT* + ag1 T + ...+ ag a; € kluy, ..., uy),aq #0
such that F(uy,...,u,, ;) = 0. Take the derivative at p € X
0=)> ——(wl(p),...,un(p),zi(p))dp(a; ou) + or (ui(p), - -, un(p), i(p)) -dp;

‘7:1 - ~ J/

£0

We have 95 (u, z;) # 0 since F is separable. Therefore for almost all p € X we have %& (u(p), z;(p)) #
0 for all 7. For those p we have span{d,zi,...,d,, xn} C span{d,(agou),...,d,(agou)}. Moreover
for all p € X since a; € k[uy, ..., u,] we have

span{d,(ag o u),...,dy(az o u)} C span{dyus, ..., dpyu,}
Since dim span{d,z1, ...,d,xn} > n, we know that d,uy,...,dyu, are linearly independent. ]
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Example. An illustration of Lemma 5.18 is given in the following image: Here dim X = 1.
u=1x € A(X), p € X. Take the projection d,x : T,X — k via ({,n) — &. Then d,x # 0 but
d,x = 0. But this is only the case for g and —q.

5.19 Proposition. Let ¢ : X — Y be a dominant morphism of varieties. Assume chark = 0.
Then dyp : T,X — Ty,,)Y is surjective for almost all p € X.

Proof. Wlog XY are affine. Put m := dimY. Take a transcendence basis, i.e. v1,...,v,, € K(Y)
which are algebraically independent. Define u; € K(X) by u; := ¢*v;. Then the u; are algebraically
independent as well. So we can extend them to a transcendence basis u1, . .., u, of K(X). Now we
apply Lemma 5.18 to uy, ..., u,, which tells us dyuy,...,d,u, are linearly independent for almost
all points p € X. By the chain rule dyu; = d,v; o d,p where ¢ := p(p). Hence d,vy,...,d,v,, are
linearly independent (otherwise we would some a dependency between the u;). The dual map of
dpp going my/m2 — my,/m> sends dgv; — dpu;. (Recall dgv; = (v; — vip) mod m?.) Therefore
(dyp)™ is injective so dyp is surjective. O

5.20 Example. Proposition 5.19 is false in chark = p. As counterexample take ¢ : Al — A!
given by x — zP. This map is surjective but d,p = 0.

5.21 Theorem. Assume char K = 0 and X 1is smooth. Let ¢ : X — Y be a dominant morphism
of varieties. Then there is a dense subset V. C'Y such that for all y € V all components of o~ (y)
are smooth.

Proof. Wlog assume Y is smooth (replace Y by Reg(Y), and X by ¢ !(Reg(Y)), which are both
dense subsets). Put

U :={pe X :dyp surjective}
By Proposition 5.19 U contains a non-empty open subset.

Claim. We have (X \U) C Y.

Proof. Otherwise ¢(X \ U) would be dense in Y. Then there is a component Z of X \ U such that
©(Z) is dense in Y. Apply Propositionto the restriction ¢; : Z — Y of ¢. There is some p € Z
such that dyp, : 1,7 — T,,Y is surjective. Therefore d,p : T,X — T, )Y is surjective as well.
This means p € U, contradicting p € Z C X \ U. O

Put V := Y \ ¢(X \ U), which is non-empty open. For ¢ € V we have ¢ '(q) € U. Let F be
a component p'(q). Let p € F. Then T,F C kerd,p, which means ¢ is constant on F. Put
n:=dim X and m :=dimY. Then we get

n—m<dmF <dim7,F <dimkerd,p =dim7T,X —dimY =n—m

So we have equality dim F' = dim T, F', hence p is a regular point of F'. O
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In general, when cutting a variety with a hyperplane we want to keep as many properties as
possible. However, the number of components may go up. As example, just intersect a circle with
a line. The circle was irreducible, the intersection, 2 points, has 2 components.

Application to general hyperplane sections

Let Z C A™ be a closed subvariety. Put m :=dimZ > 1. For 0 # ¢ € k™ and b € k consider the
affine hyperplane

Hyo = {x ek = b}

Consider the morphism
Y k"X Z = k" xk (c,x)H(c,quZ)
i=1

¢ is dominant. For (c,b) € k™ x k we get

0 e, b) {x S Zcixi = b} =ZNHy,

Assume Z is smooth (all components). By Theorem 5.21 Z N H, . is smooth for almost all (b,c) €
k™ X k.
This is a theorem by Bertini. A similar result holds for projective subvarieties Z C P".

5.4 Projective Embeddings of smooth varieties

Our goal is the following theorem:

5.22 Theorem. Any smooth projective variety X s dimension n is isomorphic to a closed subva-
riety of P21,

5.23 Corollary. Any smooth projective curve is isomorphic to a curve in P3.

5.24 Remark. e The bound 2n + 1 for the dimension is optimal.

e However, if we drop the condition of smoothness, the statement becomes false. In this case
there is no bound.

e Whitney: Let M be an abstract C'*°-manifold, n := dim M. Then we can embed M = S C
RN, where N = 2n suffices.

For the proof, we quote the following theorem, inspired from calculus (see “Inverse Function The-
orem”).

5.25 Theorem. Let ¢ : X — Y be a finite morphism of varieties, which is bijective. Assume that
the derivatives dp : T, X — T,)Y are bijective for all x € X. Then ¢ is an isomorphism.

Proof (idea) of Theorem 5.22. Let X C PY be a smooth projective subvariety, n := dim X. Sup-
pose N > 2n+ 1. We show that for a generic point £ € PY '\ X the projection ¢ : X — PN~! with
centre ¢ defines an isomorphism onto its image.

We know
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e ¢ is a finite morphism for any ¢ € PV \ X.
e p(X)=:Y is closed in PN-1.

For ¢ : X — Y beign an isomorphism we need it to be injective. We also need that the derivatives
dyp : T, X — Ty)Y is injective for all z € X. O

of Theorem 5.22. Let X C P¥ be a smooth projective subvariety, n := dim X. For p € X let
T,X denote the tangent space of X at p, seen as projective subspace passing through p. Suppose
¢ € PV\ X is chosen such that:

1. Any line though ¢ intersects X in at most one point.
2. £¢ UpeX T, X
Then the projection ¢ : X — PV¥~! with centre ¢ satisfies the hypothesis the Theorem 5.22.
1. ¢ is injective.
2. all d,p are injective.

Therefore by Theorem 5.25 ¢ : X — ¢(X) is an isomorphism. Iterate the projection until N =
2n + 1.

Now we have to show the existence of such a &. Let U; C PV denote the set of £ that violate item 1,
and likewise define U,, violating condition item 2. Show that dimU; < 2n+ 1 and dim U, < 2n.
Then PV \ (U; UUy) # 0, since N > 2n + 1, and get the existence of some £ as above.

Consider the set (which is not a variety)

= {(a,b,c) PV x X x X a,b,ccollineanb;ﬁc}

with the projections m : I' — PN and m : v — X x X via m @ (a,b,¢) — (b,c). We have
Uy = m(T), so dimU; < dimT. Moreover for (b,¢) € X x X with b # ¢ we have 7, ' (b, c) = P

Apply Theorem on dimension of fibres to mo. We get dim%y < dim(X x X) + 1. (Apply Theorem {zef
to irreducible component of T".) Thus dim U; < 2n + 1. :
[Where does next paragraph belong to? ] 1€

Let (b,c) € X x X with b # c. The projection m : I' — X x X is dominant, but we want to show
T is irreducible.

1 =dimm,'(bc) >dimF —dim(X x X) =dimF —2n = dimF <2n+1

¢ : X — Y surjective, Y irreducible. For all y € Y the fibres p~!(y) are irreducible of the same
dimension. Hence X is irreducible.
For U, consider the set

R:={(a,b) eP" x X :a € TyX }

with the projections pi,pa. Then Uy = pi(R) and for all b € X we have Py (b) = Ty X. Therefore
we get dim R < n +n. Thus dimU; < dim R < 2n. ]

5.26 Example. Take X = A and Y = Z(y? — 23). Define ¢ : X — Y via t — (¢2,¢3). Then ¢ is
bijective, finite morphism. But ¢ is not an isomorphism. The derivatives dyp : T, X — T,,;)Y are
injective for t # 0, but dye = 0. Moreover Y is not smooth, since Sing(Y") = {(0,0)}.
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6 Schemes

Let k algebraically closed. By the Nullstellensatz we have a bijection between Z C A} and radical
ideals I C k[X1q,..., X,).

Regard the one-dimensional case in A' where Z = {0}. This corresponds to I = (X) C k[X].
Note that here we have k[X]/(X) = k. But what if we take I = (X?). Then if we have some
polynomial f € k[X]/(X?). This corresponds to Taylor expansion up to degree 1. We can go up
to arbitrary I = (X™%1) so Taylor expansion up to degree m.

Also we want to get rid of the condition that £ is algebraically closed. In fact, we won’t even need
a k-algebra, but a commutative ring with 1 suffices.

6.1 Affine Schemes

Let R be a commutative ring.

6.1 Definition. We put Spec(R) as the set of prime ideals of R, and call it the Spectrum of R, or
the affine scheme of R. If p € Spec(R), we have the canonical homomorphism

R — R/p — K(p) f=f modp

where K (p) is the field of fractions of R/p.
Any f € R defines a function

Spec(R) = [[ K(p)

peSpec(R)
which we denote f(p) := f mod p.
6.2 Example. 1. If k£ is a field, then Spec(k) = {0}.
2. SpecClz] ={(z —a):a € C} =C.
3. SpecZ = {0} U{(p) : p € P}.

6.3 Lemma. Let I C R some ideal. Then

Vi= () »

pESpec R, ICp

6.4 Definition. For S C R define
Z(S):={peSpecR:VfeSfep}={peSpecR:SCp}
6.5 Remark. For a family (/;) of ideals in R we have

(2z(1) =2 (Z Ii>
V(L) U Z(8) = Z(1, - )

We define a topology on Spec R by declaring the Z(S) for subsets S C R to be the closed sets.
Define for M C Spec R the vanishing ideal

I(M)={f€R:VmeMfm)=0}=[)m

meM

For example if M = {p}, we have I(M) = p.
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6.6 Lemma. Let M C Spec R and J C R some ideal. Then

Proof. For the first part we have

1(z) = () p=V7
)

peZ(J
and the second statement follows by definition. m

6.7 Corollary. Let p € Spec R. Then {p} = Z(p), because
M= {p},I(M)=p = M=Z(I(M))=Z(p)
Hence a point p is closed iff p is a maximal ideal.

6.8 Example. Regard some affine variety X with ring R = A(X). Then we have a bijection

{Y:Y C X closed} — Spec A(X) topological space
Y s I(Y)
Z(p) <1 p

Let ¢ : R — S be a morphism of commutative rings. This yields a morphism ¢* : Spec S — Spec R
via *(q) = ¢~ ().

Claim. ¢* is continuous.
Proof. Let I C R be some ideal. Then
(") (Z(I) ={ag € Spec S : ¢ (q) € Z(I)} ={q: T C " (@)} = {a:9(]) Ca} = Z(p(I)) O
6.9 Definition. Let f € R and regard X = Spec R. Then
Xy ={peSpecR: f(p) # 0} = X\ Z(f)
is called distinguished open subset. Then Xy for f € R form a basis of the topology of Spec R.

Recall the localisation

Rf:{%:aeR,ne]N}

If p € Spec R we have the localisation R, = {% ca,be Rb ¢ p}, which is a local ring.

6.10 Definition. Regard X = Spec R. For any open subset U C X we define
o) := {(%)peU top € Ry, Vp e U3V CU openpe VAIf,ge RVGeV.g¢ qgNp, = g € Rq}

Things to verify:
e O(U) is a ring.
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e (O(U)), is a presheaf.
e It is a sheaf.
6.11 Lemma. For any p € X the stalk Ox, is isomorphic to R,.

Proof. Regard the map Ox, — R, given by (U, ¢) — ¢,. This is well-defined, since for a presheaf,
we say  ~ 1 iff they agree on an open neighbourhood. For surjectivity take g € R, where g ¢ p.

Put U := X, define ¢ = (¢1)qev € OU) by ¢, = § € R,. For injectivity assume p, = 0 € R,.

Then we have ¢, = § for all ¢ € V,where V' is some open neighbourhood of p. Since ¢, = 0, there
exists some s € R\ p such that sf =0 € R. Consider ¢ € V N X,. There we have s(q)f(q) = 0,
so f(q) =0. Hence ¢ =0in V N X,. O

6.12 Proposition. Let X = Spec R. For any f € Rwe have O(Xy) = Ry. In particular O(X) =
R (in the global setting).

6.2 Morphism and Locally Ringed Spaces

6.13 Definition. A locally ringed space is a ringed space (X, Ox) such that Ox p is a local ring
for all P € X.

Notation. Let mx p denote the mazimal ideal of Ox p and K(P) the residue field Ox p/mx p.
A morphism of locally ringed spaces from (X;Ox) to (Y, Oy) is given by
e f: X — Y is continuous

e for all open U C Y the function f§; : Oy (U) — Ox(f~'(U)) is a ring homomorphism such
that the following hold:

1. for all open V C U the following diagram commutes

*

Oy (U) —— Ox(f~1(V))

‘pU,V lpf—l(U),f—l(V)

ov(v) I ox (11 (1))

2. For all P € X the induced map on stalks given by

f;; : Oy’f(p) — OX’p

(T oNsm) = [T W) fo ()]

satisfies (fjé)_1 (mx p = my s(p)

6.14 Proposition. Let R, S be rings. Put X := SpecR and Y := SpecS. Then we have a
one-to-one correspondence between morphisms X — Y and ring homomorphisms R — S.

Proof. If f: X — Y, we get a ring homomorphism f; : S = Oy (Y) —» Ox(X) = R.
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If » : S — R is a ring homomorphism, then define f : X — Y via p — ¢~ (p). Since for every
I C S we have f~Y(Z(I)) = Z(¥(I)), f is continuous. For each p € X we localise ¢ to get

Uy 2 Oy, () = Sy-1(p) — By = Oxp

@besbgvm) LoD )¢y

b (b)

Therefore ¢, (mx,) = my, s(y), since

seuy (myy) & @) €p e ac () = fp) & 5 € myp)

The maps on the stalks give ring homomorphisms f7; : Oy(U) — Ox (f~Y(U)) by definition of
structure sheaf such that f; = 1.
We still need to check “one-to-one”. For a morphism f: X — Y and fy : S — R we get some

g: X — Y as above. Since (f;‘)_1 (mx,p) = my, s we have g(p) = (f;)‘l (p) = f(p). O

6.15 Definition. Let X = Spec R and I C R some ideal. Define Y := Spec(R/I). Take the
canonical projection ¥ : R — R/I. Thus by Proposition 6.14, taking S = R/I, we have a
morphism f: X — Y. Actually we have f:Y — X an im(f) = Z(I). Y is called an affine closed
subscheme of X.

6.16 Definition. Let Y; := Spec(R/I;) for i = 1,2 be closed subschemes of X = Spec R. Then we
redefine

Y1 UY, := Spec(R/(I; N I3)) Y1 NY; := Spec(R/(I1 + 1))
6.17 Example. Let X = Spec C[x1, x| and take
Y1 = Spec(C[xq, 2]/ {x2)) Yy = Spec(Clxy, x2)/{wy — 25 + a*))
for some a € C. Then
Y1 NYs = Spec Clzq] /(1 — a)(x1 + a))

For a # 0 we have Y} N Y, = C x C, since the map C[z;1] — C x C given by f — (f(a), f(—a)) has
kernel {(z1 — a)(z; + a)). So Y1 NY; is the disjoint union of two points (a,0) and (—a, 0) in C2.
However, for a = 0, Y; N Yy = Clxy]/(z?) has only 1 point (0,0) in €2, but with multiplicity 2 We
say that Y7 NY5 is a scheme of length 2.

Note: There is a unique line in C2?, which passes through the scheme, even for a = 0. Y; N
Y, = Spec Clxy, 13]/ (2, 22) is a closed subscheme of the line L = Spec C[x1, zs]/{c171 + cows) iff
{(e1m1 + coxa) C (29, 23) iff ¢; = 0. So Y] is the unique scheme, which contains this line. Hence the
tangent is unique.

6.3 Schemes and Prevarieties

6.18 Definition. A scheme is a locally ringed space (X, Ox), that can be covered by open subsets
U; € X such that (U;, Ox|y,) is isomorphic to an affine scheme Spec R; for all i. A morphism of
schemes is a morphism of locally ringed spaces.

Remark. We allow schemes without “closed diagonal”. Schemes with “closed diagonal” are called
separated.
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If you have a prevariety then it already is a scheme. Now the question is, which additional
properties do we need, such that a scheme is a prevariety.

6.19 Definition. Let Y be a scheme. A scheme over Y is a scheme X together with a morphism
X — Y. A morphisms of schemes X1, X, over Y is a morphism X; — X5 such that the following
commutes If R is a ring, ascheme over R is a scheme over Spec R.

X4 X5

\/

Y

6.20 Example. e X = Spec R is a scheme over k iff there is a morphism £ — R iff R is a
k-algebra.

e A morphism Spec R — Spec .S is a morphism of scheme over k iff the corresponding S — R
is a morphism of k-algebras.

e Regular functions are no longer determined by their values on points, see Example 6.17.
R := Clz]/{2?), X = Spec R has 1 point (x). The 2 functions x € R = Ox(X) and 0 € R
have both the value 0 = x € k[z]/(z) = k, but they are not the same as regular functions.

6.21 Definition. A scheme X over Y with a morphism f : X — Y is of finite type over Y if there
is a covering of Y by open affine V; = Spec B; C V such that f~(V;) can be covered by finitely
many open affines U; ; = Spec A; ; where A; ; is a finitely generated B;-algebra.

In particular, a scheme X over k is of finite type over k if it can be covered by finitely many open
affine U;i = Spec A;, where A; is a finitely generated k-algebra.

6.22 Example. Spec R is of finite type over k iff R is a finitely generated k-algebra.

6.23 Definition. Ascheme X is reduced if the rings Ox(U) have no nilpotent element for all open
UCX.

6.24 Example. Every X = Spec R is reduced and irreducible iff R is a domain.
Proof. <: If R is a domain, then X is reduced. Assume
X=ZNHuz(J)=2Z(1-J)

and Z(1),Z(J) C X. Then there exist some f € I\ J and g € J\ I. Since R is a domain,
we have (0) € X = Z(I-J). Hence (0) € I-J > fg,so fg = 0. Since R is a domain, we have

f=00rg=0. 4

=: We need to show Vf,g € R.fg =0 — f =0V g =0. Assume fg = 0 with ¢ # 0 # f.
If f and ¢ have a common “root” f = h",g = h™, then R is not nilpotent-free. Hence
Spec R = Z(f)U Z(g).

]

6.25 Proposition. Let k be an algebraically closed field. There is a one-to-one correspondence
between prevarieties over k (and their morphisms) and reduced, irreducible schemes of finite type
over k (and their morphisms).
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6.26 Remark. 1. As before, we can glue together schemes.

2. A morphism from a glued scheme X = (J, X; to a scheme Y can be given by morphisms
X; — Y that agree on the overlaps.

6.4 Projective Schemes

6.27 Definition. Let R be a graded ring, i.e. a ring with a decomposition R = @, R@ into
abelian subgroups such that R@ . R} C R@+¢) Element of R? are called homogeneous of degree
d. An ideal I C R is called homogeneous if it can be generated by homogeneous elements. The
irrelevant ideal is Ry = €D, R.

ProjR = {p C R:p hom. prime ideal, R} ¢ p}
If I C R is a homogeneous ideal, we have the zero locus Z(I) := {p € Proj R : I C p}.

6.28 Lemma. Let R be a graded ring.

1. If (I;) is a family of homogeneous ideals of R, then
Nz) =z (Z 1,») C Proj R

2. If I, I, € R are homogeneous ideals, then Z (1) U Z(1y) = Z(1115).
Hence we have a topology on Proj R where the closed sets are those of the form Z(I).

6.29 Definition. Let R be a graded ring and p € Proj R. Then we put

Ry = {5 :3d.f,ge R, f ¢ p}

For U C Proj R open, we put
Oprojr(U) 1= {(gpp)peU :Vp € Uy € Ry, 3V C U open.p € V,3d3f, g€ RINqeV.gd q— = g}

6.30 Proposition. Let R be a graded ring, X = Proj R.
1. Ox is a sheaf and Vp € X.Oxp = Ryy).

2. For every homogeneous element f € R, the distinguished open subset s

Xy =X\Z(f)={pe X.fé¢p}

These open sels cover X. Furthermore, putting

9 r-de
R(f) = {F :gGR( dgf)}

we have (Xf, (OX)‘XJ = Spec Ry) for all f € R,

6.31 Example. Let k algebraically closed. Then Proj k[x, . . .
“is” Proj k[zo, ..., x,]/1(X).

, Ty “is” P Also a variety X C P}
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6.32 Definition. Let k algebraically closed. A projective subscheme of P} is a scheme of the form
Proj k[xg, ..., x,]/I for some ideal I.

6.33 Remark. Projective subschemes do not have to be irreducible (e.g. Proj k[zo, x1, 22|/ {x122))
not reduced (e.g. Poj k[xg, z1]/(x3)).

6.34 Definition. Let I C S := k[, ..., x,] be some homogeneous ideal. The saturation I of I is
I:={seS:Vi<nIdmeNazalscl}
6.35 Example. If f is irreducible and I = (fx, ..., fz,), then T = (f).

6.36 Lemma. Let I,J C S := klxo, ..., x,| homogeneous ideals.

1. 1 is homogeneous. Setting some variable to 1 makes I and I equal, i.e. I[x; — 1] = I[z; — 1].
2. Proj R/I = Proj R/I.

3. ProjR/I = Proj /J iff I = J.

4. 1D = 7% for d large enough.

6.37 Definition. If X is a projective subscheme of P", then I(X) is the saturation of any ideal
J C S :=klxg,...,z,| such that X = ProjS/J. I(X) is called the ideal of X.

6.38 Corollary. We have a one-to-one correspondence between projective subschemes of P} and
saturated homogeneous ideals in k[, ..., x,].

X s I(X)
Proj k[xg, ..., xz,| /T = T

7 First Applications of Scheme Theory

7.1 Hilbert Polynomial

Let I C k[xo,...,2,] a homogeneous ideal.

X := Proj(klxo, ..., z,]/I) = {p : p homogeneous prime ideal, p # (zq,...,z,)}

N

=R

This we enhance wit the Zariski topology. For U C X open we have (Xf, (OX)‘Xf) = Spec (R(f)).
X is called the projective subscheme of P?. I(X) is the saturation of I. Put S(X) := k[z]/I(X).

7.1 Definition. Let X be a projective subscheme of P}. The Hilbert function of X is
hy :IN— N hx(d) = dimy S(X)@

where the latter denotes the degree d part of S(X).

7.2 Example. 1. Let X =P}, I(X) =0 and S(X) = k[zo,...,z,). Then

n+d
n

1

hx(d) = dim k[z, . .., ,]@ = ( ) € —d"+ 0 (n)
n!

For the latter growth, note that n is fixed for the function.
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2. Let X = {(0:1),(1:0)} € Pi. Then I(X) = (zoz1). We have S(X)©® = k and for any

d > 0 only z¢, 2¢ remain as basis. Thus

1 :d=0
hX(d)Z{Q :d>0

3. Let X ={(1:0),(0:1),(1:1)} € P.. Now I(X) = (z171(x9 — 71)). Let d > 1. Then S(X)

has basis ¢, zoz¢ !, 2¢, because of our relation z2z, = zoz?. Hence

1 :d=0
hx(d)=<¢2 :d=1
3 :d>1

4. Let X C P} be the “double point” given by I(X) = (22). If d > 0, S(X)¥ has basis

x4, mox{'. Thus
1 :d=0
hx(d) =
x(d) {2 cd>0

So we have the same Hilbert function as in the case of 2 points.

7.3 Lemma. Let X be a zero-dimensional projective subscheme of P}. Then
1. X is affine, i.e. X = Spec(R) for some k-algebra R. (And R is unique up to isomorphism.)

2. This R 1s a finite-dimensional k-vectorspace. Its dimension is called the length of X. The
interpretation is the number of points of X, counted with multiplicity.

3. For all sufficiently large d we have hx(d) = dimy, R.

Proof. 1. There is a hyperplane H hat does not intersect X. Therefore X C P™\ H, the right
part is affine, so X is affine.

2. We decompose into irreducible components X = X; U...U X,,. Say X; = Spec R;. We can
show that X = Spec(R; X ... X R,,;). (Is related to Chinese Remainder Theorem.) We can
assume wlog that X is irreducible. This basically means we have A™ and the origin. So we
can assume X = Spec(k[z]/I) with /T = (z;...x,). There is some § € IN such that 20 € I
for all 2. Put D := §-n. Now any monomial " ... 2% with > «; > D lies in I (pigeon-hole).
Therefore

kx[]/1 = span{xﬁ“ ooz mod I Zai < D}
which is a finite-dimensional k-vector-space.

3. We can assume k[zg,...,z,] 2 I(X) =: J is homogenisation of ideal I. I C k[zy,...,x,]
is an ideal such that k[zy,...,z,]/lis generated by z® for || < D. Let J C k[z]| be the
homogenisation of .

(K[zo, ... xn)/ DY = klz1, ... 2]/ = R e fleo =1
This map is a k-linear isomorphism of d > D. So

hx(d) = (k[zo, ..., x,)/]) = dim, R O
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7.4 Proposition. Let X be an m-dimensional projective subscheme of P}. Then there is a unique
polynomial xx € Q[d]| such that for sufficiently large d we have hx(d) = xx(d). Moreover

1. degxx =m =dim X.

2. The leading coefficient of x x has the form - —5-positive integer and the latter we call the degree
of X.

Proof. Induction on m, where the base case is Lemma 7.3. Now assume m > 0. By linear change
of coordinates, we can assume that no component of X lies in the hyperplane H = {z : zy = 0}.
Then we have an exact sequence

0= ks 2l [1(X) =22 Ko, ..., 20l /T(X) > Kfz,. 20l (I(X) + (20)) — 0
Claim. The first map is injective.

Proof. Suppose f ¢ I(X), but fxg € I(X). Then X = (X NZ(f))U(X NH). But by assumption
on H we get X = X N Z(f), which would mean X vanishes on f. 4 O

But then restricting to degree d yields another exact sequence
0= (K[, .. 2] TN 2% (K[zo, . .., 2]/ T(X))D = (Ko, ..., 2]/ (T(X) + (20))) P =0

For any short exact sequence 0 — Uy — U; — Uy — 0 we have dim U; = dim Uy + dim Us. In this
case, this yields

hx(d) = hx(d—1)+ hxnu(d)

By induction hypothesis we know (hx(d) — hx(d — 1) = hxnn € Grmd™ 1+ O (d™?). Now we
can apply discrete summation to recover hx. First observe that the terms (Z) form a basis for our

polynomials in d. For the discrete summation, if F'(d)—F(d—1) = ( ), we obtain F(d) = (fill) +C.
Since we can write

m—1 d
hxam = Z C; <@>
i=0

with ¢; € Q and ¢,,_; € N, we recover

which is a polynomial of degree m. O]
7.5 Example. o Let X =P}, so I(X) =0. Then
d 1
hx(d) = ( —gn) =—d"+0 (') = degPp =1
n!

e Let f be homogeneous of degree 6 and put R := k[zo, ..., z,]. Let X = Proj (R/(f)). Then

dim (R/fR)" = dim R — dim(fR)" = (n . d) — dim R0 = (n . d) ) (n o 5>

n n

For n fixed and d — oo, we get hx(d) ~ ﬁédn_l, and n — 1 = dim X. Hence deg X =
0 =degf.
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o If dim X = 0, then X = Spec R. We have yx(d) = dim; R. For R = Ry x ... x R; the
degrees just add up, e.g.

dim (k[z]/(2*) x k[z]/(z —1)*) =2+ 3 =5

7.6 Proposition. Let X, and Xy be m-dimensional subschemes of P} such that dim(X;NX5) < m.
Then deg(X; U X3) = deg X; + deg Xs.

Proof. Put S := k[zg,...,x,]. Then
Then we have the following exact sequence

0— S/(I(X1)NI(Xy)) = S/I(Xy) x S/I(Xe) —S/(I(Xy)+1(X2)—=0f +—(f,f)

Taking the degree-d-part and using the dimension property from earlier, we get ref

hx,(d) + hx,(d) = hx,ux,(d) + hx,nx,(d)
In particular this holds for the Hilbert polynomial

xx: (d) + xx,(d) = xx0x,(d) + Xx10x, (d)
By the assumption, it has a lower degree for X; N X5, so we can rewrite

X0 (d) =~ deg(X0)d" + — deg(X)d™ + O (")
so deg(X; U X3) = deg(X7) + deg(X>). O
7.7 Remark. Let X be a projective subscheme of P}}. Then the expression
g(X) = (=" (xx(0) — 1)
is called the arithmetic genus of X.
1. Tt is an invariant under isomorphisms, i.e. X =Y = ¢(X) = g(Y).

2. If X is a smooth projective curve over C, then g(X) is the topological genus of X.

7.8 Example. If X C P? is a planar curve of degree d, then g(X) = (dgl). For d = 3 we have
g(X) =1, so there is no cubic in P?, which is isomorphic to P!,

7.2 Bézout’s Theorem

7.9 Theorem. Let X be a projective subscheme of P} and let f € k[xy, ..., x| be homogeneous of
degree § such that no component of X is contained in Z(f). Then deg(X NZ(f)) = deg X -deg f.

Proof. Put R := klxg, ..., z,|. We have the exact sequence
0 R/I(X) -5 R/I(X) = R/(I(X) + (f)) = 0
The multiplication with f is injective, due to the assumption (and a similar argument as last time). {ref
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Restricting the degree yields the exact sequence
0 — (R/I(X) ™ <L (R/1I(X)Y = (R/I(X) + (1) =0
So for the Hilbert function we have

hx(d) = hx(d—6)+ thZ(f)(d) - XXmZ(f)(d) = xx(d) — xx(d —9)

Writing
1
Xx(d) = — deg Xd™ + ¢yprd™ ™ + O (d"7?)
m:
we get
deg X _ m— —
Xxnzin(d) = fu (@ — (d— 6)™) + cppy (A" — (d— 6)™) + O (d™2)
. degX m—1 m—2\ __ degX -0 m—1 m—2
= — = -mdd +0(d )_(m_l)!d +0 (d™?) O

7.10 Example. Let C;, 05 be two curves in P? without common component. Let C; be the zero
set of homogeneous polynomials of degree d;. Then deg(C; N Cy) = d; - ds.

7.11 Example. Let P € C} N C5. We have the following cases.

1. Assume Cj and Cy are smooth at P and have different tangent lines. Assume P = (0,0) in
affine chart, C; N A? = Z(f;). Then dimy, k[x,y]/(f1, f2) is the intersection multiplicity at P.

2. Assume P is a smooth point of C} and Cy, but the have the same tangents. For simplicity,
regard f; = y 4+ h.o.t and f, = y + h.o.t. Then dim(k[z,y]/(f1, f2)) > 2, since 1 and = are
linearly independent in this ring.

3. If C; and C5 are singular at P, then both polynomials start with quadratic terms. Hence
1, z,y are linearly independent, so dim k[x, y]/(f1, f2) > 3.

7.12 Corollary. Every isomorphism ¢ : P} — P} is linear, i.e. of the form p(x) = Ax where
A€ GL, (k) and x = (xg, ..., z,)T.

Proof. Let H C P} be a hyperplane and L be some line, not contained in H. Note o(H N L) =
©(H) N p(L). Then by Bézout

1 = deg(p(H) N¢(L)) = deg p(H) - deg p(L) = degp(H) =1

So p(H) is another hyperplane. Therefore z; o ¢ is a linear form, say Zj a;;a;. Going over all ¢
this lifts up to a matrix. O

7.13 Example. regard the twisted cubic in P3
C={(s":s*:st?:t%): (s:t) e P'} = Z(f1, fo, f3)

for some specific quadratic polynomials f;. The question is whether there are homogeneous poly-
nomials f, g such that I(X) = (f, g).

Assume we had these f,g. This means C' = Z(f) N Z(g). If some component of Z(f) would lie
in Z(g), then the intersection would not be a curve (too large). Hence we can apply Bézout, so
3 =degC = deg f -degg. So wlog deg f = 1, which means Z(f) is hyperplane. Assume C were
contained in a hyperplane. A hyperplane in P is given by Y a;z; = 0, for some vector 0 # a € k*.

For the twisted cubic this means Vs, t.> ;543" = 0, which can only be for a = 0. So we have
our final contradiction.
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