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1 Real Algebra

In previous lectures we focused on extension of Q, or we took C when we needed an algebraically
closed �eld. Now we regard R as basis.
Much is based on work of E.Artin, U. Schreyer. The standard textbook is �Real Algebraic Geom-
etry� by Bochnak, Coste and Roy.

1.1 Real Fields

De�nition. An ordered �eld (angeordneter Körper) is a �eld K together with a total order ≤ on
K such that

(1) ∀x, y, z ∈ K : x ≤ y =⇒ x+ z ≤ y + z

(2) ∀x, y ∈ K : 0 ≤ x, 0 ≤ y =⇒ 0 ≤ xy
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We will use the notation x < y :⇔ x ≤ y ∧ x 6= y.

Example. • Of course, Q and R are ordered �elds.

• For f ∈ R[X] \ {0}, with f =
∑d

i=m aiX
i and am 6= 0 we de�ne 0 < f :⇔ 0 < am. This can

be expanded to R(X), where we say 0 < f
g
⇔ 0 < f · g. To obtain a total order we de�ne

q1 ≤ q2 :⇔ q1 = q2 ∨ 0 < q2 − q1.

For any r ∈ R we have 0 < X < r. So X is like an in�nitesimal.

Remark. Let (K,≤) be an ordered �eld. Then ∀x ∈ K : 0 ≤ x2. So we have 0 < 12 = 1 and by
induction n < n+ 1, which implies charK = 0.

Proof. If 0 ≤ x, then 0 ≤ x · x by the second axiom. Otherwise x < 0. So we have 0 < −x so we
get 0 < (−x)(−x) = x2.

De�nition. A cone (Kegel) of a �eld K is a subset P ⊆ K such that

(1) ∀x, y ∈ P : x+ y ∈ P

(2) ∀x, y ∈ P : xy ∈ P

(3) ∀x ∈ K : x2 ∈ P .

A cone is called proper is −1 /∈ P .

Lemma. Let (K,≤) be an ordered �eld.

(1) Then P := {x ∈ K : x ≥ 0} is a proper cone, the positive cone of (K,≤), and we have
P ∪ (−P ) = K.

(2) Conversely, if P is a proper cone with P ∪ (−P ) = K, then x ≤ y :⇔ y − x ∈ P de�nes a
total order of K.

Proof. The �rst is clear.
For the second we claim P ∩ (−P ) = {0}. Assume 0 6= a ∈ P ∩ (−P ). Let x ∈ K \ P . Thus
−x ∈ P . But then we get x = (a−1)2 · a(−x)(−a) ∈ P , which is a contradiction.

Remark. The set
∑
K2 := {x2

1 + . . .+ x2
n : xi ∈ K,n ∈ N} is a cone. It is contained in any cone

of K.

1.1 Lemma. Let P be a proper cone of K and a ∈ K.

1. −a /∈ P implies P [a] := {x+ ay : x, y ∈ P} is a proper cone of K.

2. P is contained in the positive cone of an ordering of K.

Proof. 1. The �rst two axioms are calculation and use of a2 ∈ P . The third follows from
P ⊆ P [a] (take y = 0). So P [a] is a cone.

Assume −1 ∈ P [a] with −1 = x + ay. Then y 6= 0, because −1 /∈ P . But in this case
−a = (x+ 1)y−1 = (x+ 1)y(y−1)2 ∈ P we get a contradiction.

2. By applying the above construction, we get a chain, whose union forms an upper bound.
By Zorn's Lemma there is a maximal proper cone Q containing P . So we need to check
Q ∪ (−Q) = K: Let −a /∈ Q. Then a ∈ Q[a], but Q[a] is a proper cone, so Q[a] = Q.
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Theorem. Let K be a �eld. TFAE (The following are equivalent)

1. K has an ordering.

2. K has a proper cone.

3. −1 /∈
∑
K2

4. ∀x1, . . . , xn ∈ K :
∑
x2
i = 0 =⇒ ∀i : xi = 0

Proof. The chain (1)⇒ (2)⇒ (3) is clear with the above.

Assume (3) and
∑n

i=1 x
2
i = 0 with x1 6= 0. Then −1 =

∑n
i=2

(
xi
x1

)2

, which is a contradiction.

(4)⇒(3): Assume −1 =
∑
x2
i ∈

∑
K2. Then we can add 12 on both sides, so 0 = 12 +

∑
x2
i . By

(4) this implies 1 = 0.  .
(3)⇒(1): Since −1 /∈

∑
K2, this cone is proper. By Lemma 1.1 the cone

∑
K2 is contained in

the positive cone of an ordering of K. So in particular K has an ordering.

De�nition. A �eld K which has these properties is called real �eld.

Remark. Every real �eld contains a copy of Q. This already follows from the characteristic.

Proposition. Let K be a real �eld, P a proper cone. Then P is the intersection of the positive
cones Q of all orderings of K where P ⊆ Q. In particular

∑
K2 is the intersection of positive

cones of all orderings.

Proof. Assume −a /∈ P . By Lemma 1.1.(1) P [a] is a proper cone of K. By Lemma 1.1.(2) P [a] is
contained on the positive cone Q of some ordering of K. Then a ∈ Q, so −a /∈ Q. so each element
not contained in P is cut o� by some ordering.

Example. • Every sub�eld of R is a real �eld.

• Recall our ordering on R(X). Then this also becomes a real �eld.

1.2 Real Closed Field (reell abgeschlossene Körper)

De�nition. A real �eld K is called real closed if it does not have a proper real algebraic extension.
That is: if K ≤ K1 is an algebraic extension and K1 is a real �eld, then K = K1.

Example. R is real closed: Let R ≤ K1 be an algebraic extension. But we already know this allows
only for K1 = R or K1 = C. But C is not real, since −1 ∈

∑
C2.

Example. Ralg := {x ∈ R : a alg. over Q} is a real closed �eld. The proof idea is Ralg(i) = Q.

More general we will show: If K real and K(i) alg. closed, then K is real closed.

1.2 Theorem. Let K be a real �eld. TFAE

1. K is real closed.

2. K2 = {a ∈ K : a ≥ 0} and any polynomial of odd degree as a root in K.

3. K(i) = K[X]/(X2 + 1) is algebraically closed.
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Proof. (1)⇒(2) Put Q := K2. We want to show Q =
∑
K2. Assume a =

∑
b2
i /∈ Q. Then

K < K(
√
a) is a proper algebraic extension. Since K is real closed, this is not a real �eld.

By the above characterisation we can write −1 as a sum of squares:

−1 =
m∑
i=1

(xi + yq
√
a)2 with xi, yi ∈ K

=
m∑
i=1

(x2
i + ay2

i ) + λ
√
a compare coe�cients

−1 =
∑

x2
i + a

∑
y2
i

−a =
(

1 +
∑

x2
i

)(∑
y2
i

)(∑
y2
i

)−2

∈
∑

K2

⇒ −a =:
∑

z2
i

But then
∑
b2
i +

∑
z2
i = 0, which only is possible if bi = zi = 0, so a = 0.  

Next we claim Q ∪ −Q = K: We just showed if a /∈ Q, then −a ∈
∑
K2 = Q. Therefore Q

is the positive cone of an ordering of K.

Claim 3: If f ∈ K[X], d := deg f is odd, then f has a root in K. To this end assume f has
no root and is of minimal degree. We know f has an irreducible factor of odd degree, so wlog
f is irreducible. Then consider K < K[X]/(f) =: L, which cannot be a real �eld. Again −1
is a sum of squares −1 =

∑
hi =

∑
hi + gf , so hi ∈ K[X] with deg hi < d and g ∈ K[X].

Then we have deg (
∑
h2
i ) = 2 max{deg hi : i} ≤ 2(s − 1). Note that we do not have any

cancellation of the leading coe�cients since they are sums of squares. From
∑
h2
i = −1− gf

we conclude

deg g + d = deg(gf) = deg
(∑

h2
i

)
≤ 2d− 2

so deg g ≤ d − 2, but also deg g is odd. By minimality of f we know g has a root x ∈ K.
But then −1 =

∑
hi(x) in K, which is a contradiction.

(2)⇒(3) See Algebra II

(3)⇒(1) Take K ≤ K1 an algebraic �eld extension. Since any extension is contained in the
algebraic closure, so K1 ≤ K(i). That leaves only K1 = K and K1 = K(i). But the latter is
not real, since −1 is a sum of squares. So K1 = K, hence K is real closed.

1.3 Proposition (Intermediate Value Theorem). Let R be a rial closed �eld, a, b ∈ R with
a < b. Let f ∈ R[X] such that f(a)f(b) < 0. Then there is some ξ ∈ [a, b] with f(ξ) = 0.

Proof. By Theorem 1.2 R(i) is algebraically closed, so f splits into linear factors. But as in C, if
x = c+ di is a root, then also the conjugate x = c− di is a root. So all factors of f are of the form
X − ei and (X − ci)2 + d2

i . From f(a)f(b) < 0 we know that in the interval, one of the factors
must have a sign change. But the quadratic ones always yields non-negative values. So one of the
ei mus be in the interval. So ei ∈ [a, b] with f(ei) = 0 as desired.

De�nition. Let (K,≤) be an ordered �eld. A real closure of (K,≤) is a �eld extension K ≤ R
such that

1. R is real closed
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2. The inclusion K ≤ R is order preserving. If x ≥ 0 in K, then x ≥ 0 in R and x = y2 for
some y ∈ R.

change sub�eld to ⊆, because ≤ is taken

1.4 Theorem. Every ordered �eld (K,≤) has a real closure. This is unique up to isomorphism: If
K ≤ R and K ≤ R′ are real closures, then there exists a unique order-preserving K-isomorphism
R→ R′.

Proof. Let K be an algebraic closure of K. Thus every algebraic extension of K is a sub�eld of
K, so we just look at the real ones. Consider{

(F,≤)ordered �eld : K ≤ F ≤ K,K ↪→ F order preserving
}

We say (F,≤) � (F ′,≤′) i� F ≤ F ′ and F ↪→ F ′ preserves order. Thus the above set gets an
order, so we can apply Zorn's Lemma. As is the proof for the algebraic closure, the union of a
chain is an upper bound, so we have a maximal element (R,≤). It remains to show that R is real
closed. Put P := {x ∈ R : x ≥ 0} and Q := {y2 : y ∈ R}. Clearly Q ⊆ P , by axioms. But we
claim P = Q.
Assume a ∈ P \Q. The set of elements∑

i

bi (ci + di
√
q)2 bi, ci, di ∈ R, bi ≥ 0

is the cone generated by P and
√
a in R (

√
a). This cone P ′ is proper, because otherwise we would

have

−1 =
∑
i

bi
(
ci + di

√
a
)2

=
∑
i

bi(c
2
i + d2

i ) + (. . .) ·
√
a

and by comparing coe�cients, we get −1 =
∑

i bi(c
2
i + d2

i ), which is an equation in R. But R is
ordered, so −1 is not positive, while the sum is. So P ′ is proper.
Therefore there is an ordering of R(

√
a) whose positive cone is P ′. But that is a contradiction to

the maximality of R. Hence P = Q.
Let R ≤ E ≤ K be a �eld extension, with E real. Let ≤E be an ordering of E. Since {x ∈ R :
x ≥ 0} = {y2 : y ∈ R} we know that ≤E extends he order of R: If x ≥R 0, then x = y2 for some
y ∈ R ⊆ E. So x = y2 in E, so x ≥E 0. By the maximality of R, we get R = E. Hence R is real
closed.

For the proof of uniqueness, we need the following

Theorem. Let (K,≤) be an ordered �eld and f ∈ K[X]. Let K ≤ R be a real closure. The number
of distinct zeros of f in R is the same for all real closures.

of Theorem 1.4 cont. Assume we have the following picture Where R,R′ is real closed and K ≤ F
is a �nite algebraic extension. Then we claim every order-preserving morphism ϕ : K → R′ can
be extended to an order preserving morphism ϕ′ : F → R′.
Let F = K(a) for a primitive element a. Let f ∈ K[X] be the minimal polynomial of a. Let
a1 < a2 < . . . < an be the zeros of f in R, say a = aj. By the above theorem, f has exactly n
zeros in R′, say b1 < . . . < bn. De�ne ϕ′ : F = K(a) → R′ via a = aj 7→ bj. By our knowledge
from Algebra, we know such a morphism exists. But it remain to show that ϕ′ actually preserves
order.
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K

F

R

R′

ϕ

Take y ∈ K(a), with y ≥ 0. Then y is a square in R, say y = z2 for some z ∈ R. Let
x2
i := ai+1 − ai for some xi ∈ R. Then there is a morphism ψ : K(a1, . . . , an, x1, . . . , xn−1, y, z) =:
K(α) → R′,which extends ϕ. Now we can say ψ(ai+1) − ψ(ai) = ψ(xi)

2 ≥ 0, and ψ(ai) are the
zeros of f . Together with the order we get ψ(ai) = bi and in particular ψ(aj) = bj = ϕ′(aj). Thus
ψ|K(a) = ϕ′, so ϕ′(y) = ψ(y) = ψ(z)2 ≥ 0, so ϕ′ is order preserving.
LetK ≤ R be an algebraic extension. Using Zorn's Lemma any ϕ : K → R has an order preserving
extension R → R′. This is unique, because if a ∈ R is the j-th root of its minimal polynomial
f ∈ K[X], then a has to be mapped to the j-th root of f in R′.

De�nition. An ordered �eld (K,≤) is called archimedian if for any α ∈ K there is some n ∈ N
such that α < n.

Remark. Note that 1 + . . . + 1 6= 0 in any ordered �eld, so every ordered �eld contains (a copy
of) the natural numbers, so the above comparison actually makes sense.

Example. 1. Sub�eld of R are archimedian.

2. The �eld R(X),≤) with in�nitesimal X > 0 is not archimedian, because X−1 is not bounded
by any natural number.

1.5 Exercise. Let (K,≤) be archimedian. Then Q is dense in K, which means for all a, b ∈ K
where is some q ∈ Q with a < q < b.

1.6 Exercise. Let (K,≤) be archimedian. Then there is an order preserving mophism K ↪→ R of
�elds. Up to isomorphism, the archimedian �elds are exactlythe sub�eld of R.
See: �Real Algebra�, by A. Prestel.

1.3 Counting real roots

Let R be a real closed �eld.

Proposition. Let f ∈ K[X] and a, b ∈ R with a < b.

1. (Rolle) If f(a) = f(b) = 0 then f ′(c) = 0 for some a < c < b.

2. (Mean Value Theorem) There is some c ∈ (a, b) with f(b)− f(a) = f ′(c)(b− a).

3. If for all x ∈ (a, b) we have f ′(x) > 0, then f is strictly increasing in (a, b).

Proof. 1. Wlog a, b are consecutive zeros of f , say f = (X − a)m(X − b)mg with n,m ≥ 1 and
g without root in (a, b). By Proposition 1.3 g has constant sign on (a, b). Furthermore we
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have

f ′ = (X − a)m−1(X − b)n−1g1 for g1 = m(X − b)g + n(X − a)g + (X − a)(X − b)g′

Then g1(a) = m(a − b)g(a) < 0 and g1(b) = n(b − a)g(b) > 0 have opposite sign. By
Proposition 1.3 there is some c ∈ (a, b) with g1(c) = 0, so f ′(c) = 0.

2. Apply 1 to f̃ = f − f(a)−m(X − a), m := f(b)−f(a)
b−a .

3. Clear after 2.

For this section let R be a real closed �eld.

De�nition. The variation var(a1, . . . , an) of a sequence (a1, . . . , an) in R is the number of its strict
sign changes. For some polynomial f =

∑n
i=0 aiX

i we put vc(f) := var(a0, . . . , an).

Example. var(1,−2, 3, 4) = 2, but var(1, 0,−2, 0, 3, 0, 0, 4) = 2, because the zeroes are no strict
changes. vc(f)(Xn − 1) = var(−1, 0, . . . , 0, 1) = 1; vc(Xn + 1) = 0.

Remark. If f hat t terms, then vc(f) ≤ t− 1.

Denote by N+(F ) the number of positive roots in R, counted with multiplicity.

1.7 Theorem (Décartes Rule,1637). For f ∈ R[X] \R we have N+(f) ≤ vc(f). In particular,
a polynomial with t terms has at most t− 1 positive roots.

Example. 1. Let f = Xn − 1, so t = 2 terms and N+(f) = 1 (only 1),so this bound is sharp.

2. f =
∑n−1

i=0 X
i = Xn−1

X−1
. We have vc(f) = 0 = N+(f).

3. For f = X3 −X2 +X − 1 we have vc(f) = 3 but N+(f) = 1.

of Theorem 1.7. Induction over the number of terms: For the case t = 1 the polynomial has the
form f = anX

n, which has no sign change and no positive root.
Now let f =

∑n
i=m aiX

i with m < n and anam 6= 0. This we rewrite as

f = Xm
(
anX

n−m + . . .+ am
)

=: Xm · f̃ ,

so wlog we can assume m = 0. Then we look at the next coe�cient after a0 (note that we
allow gaps), so f = anX

n + . . . + aqX
q + a0 where aqa0 6= 0 and q > 1. Regard the derivative

f ′ = nanX
n−1 + . . . + qaqx

q−1. Note that f ′ has one term less, so we can apply our induction
hypothesis. We have

vc(f) =

{
vc(f ′) : aqa0 > 0

vc(f ′) + 1 : aqa0 < 0

It is su�cient to show

N+(f) ≤

{
N+(f ′) : aqa0 > 0

N+(f ′) + 1 : aqa0 < 0
(1)

Let 0 < x1 < . . . < xs be the positive roots of f with multiplicities µi. By Rolle, there are roots
y1, . . . , ys−1 of f ′ such that 0 < x1 < y1 < x2 < . . . < xs−1 < ys−1 < xs. Moreover xi is root if
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f ′ with multiplicity µi. Note that N+(f) =
∑
µi. Furthermore N+(f ′) ≥ (s − 1) +

∑
(µi − 1).

Therefore eq. (1) follows in the case aqa0 < 0. So now assume aqa0 > 0, so wlog both are positive.
Hence f(0) > 0 and f ′(0) > 0, so we start positive and have a positive slope. Thus between 0 and
x1 there must be a maximum y0 of f . But in that point we must have f ′(y0) = 0, so we have found
another root of f ′. So in this case we get N+(f ′) ≥ 1 + (s− 1) +

∑
(µi − 1) = N+(f).

Remark (Supplement to Décartes Rule). For f ∈ R[X] \R we have N+(f) ≡ vc(f) mod 2.

Example. Let f =
∑n

k=0(−1)kXn−k, so vc(f) = n. But also we have N+(f) = 0 if n is even, and
N+(f) = 1 if n is odd.

Generalisation: Let f ∈ R[X] and ξ ∈ R. We de�ne the variation of the derivatives of f at ξ via

vderξ(f) := var(f(ξ), f ′(ξ), f ′′(ξ), . . .)

For −∞ ≤ a < b ≤ ∞ denote by N(a,b](f) the number of roots in f in the interval (a, b], counted
with multiplicity. Earlier we had the special case N+(f) = N(0,∞](f).

1.8 Theorem (Budan (1807), Fourier (1820)). Let f ∈ R[X] \ R and −∞ ≤ a < b ≤ ∞.
Then

N(a,b](f) ≤ vdera(f)− vderb(f)

N(a,b](f) ≡ vdera(f)− vderb(f) mod 2

Remark. • We have shown the special case a = 0 and b =∞.

• vder0(f) = var(f(0), f ′(0), . . .) = var(k! · ak : k = 0, . . . , n) = vc(f)

• vder∞(f) = 0 (that means vderM(f) for some su�ciently large number M)

Given f ∈ R[X] square-free (i.e. gcd(f, f ′) = 1). We apply the Euclidean Algorithm to f and
f ′,putting f0 := f and f1 := f ′. The recursive steps are written as fi−1 = qifi−fi+1 for i = 1, . . . , l.
(We already know the �nal result, but we are interested in the fi we obtain during the computation.)
Note that

gcd(fi+1, fi) = gcd(fi, fi−1) = . . . = gcd(f ′, f) = 1

For ξ ∈ R we de�ne Vξ(f) := var(f0(ξ), . . . , xl(ξ).

1.9 Theorem (Sturm, 19th cent.). Let f ∈ R[X] (be square-free), a, b ∈ R with a < b and
f(a) 6= 0 6= f(b). Then

#{ξ ∈ (a, b) : f(ξ) = 0} = Va(f)− Vb(f)

Remark. The condition square-free can be removed, because that would just add the same factor
in our sequence in the variation. But var(ai : i) = var(ai · b : i).

Example. Take f = X3−X=(X-1)X(X+1)=: f0. Then f1 = f ′ = 3X2− 1. The algorithm yields
f = 1

3
Xf ′ − 2

3
X and f1 = 9

2
f2 − 1, that is f2 = 2

3
X and f3 = 1. So we get the following table

ξ −2 −1
2

1
2

2
Vξ(f) 3 2 1 0
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f0 f1

ξ− - +
ξ 0 +
ξ+ + +

Remark. Denote by lc(f) := an the leading coe�cient for f = anX
n + . . ., where a0 6= 0. Put

V∞(f) := var(lc(f0), lc(f1), . . .) and likewise V−∞ := V∞(f(−X)).
If ξ is the largest root of f , then f has constant sign on the interval (ξ,∞) and this sign is the
same one as lc(f).

Corollary. Sturm's theorem also holds for −∞ ≤ a < b ≤ ∞. In particular

#{ξ ∈ R : f(ξ) = 0} = V−∞(f)− V∞(f).

Proof. Assume as zeroes of f0, . . . , fl are contained in the interval (−M,M). Then by the previous
observation sgn(fi(M)) = sgn(lc(fi)) for all 0 ≤ i ≤ l. Hence V∞(f) = VM(f). Similarly V−∞(f) =
V−M(f). Now we apply Sturm on the interval (−M,M) and obtain the result.

of Theorem 1.9. Let ξ1 < . . . < ξs be the roots in R of f0, . . . , fl. In the open interval (ξi, ξi+1)
all of the functions f0, . . . , fl have constant sign. In particular ξ 7→ Vξ(f) is constant on these
intervals.
Let ξ ∈ {ξ1, . . . , ξs} and ξ− and ξ+ are �close� to ξ (i.e. ξ = ξi and ξi−1 < ξ− < ξi < ξ+ < ξi+1). It
su�ces to show

Vξ−(f) =

{
Vξ+(f) + 1 : f(ξ) = 0

Vξ+(f) else
(2)

To that end we have the following observations

(A) fi(ξ) > 0 implies fi(ξ−) > 0 and fi(ξ+) > 0 by intermediate value theorem. Likewise we have
fi(ξ) < 0 implies fi(ξ−) < 0 and fi(ξ+) < 0

(B) Let f(ξ) = 0, i.e. f0(ξ) = 0. Since f is square-free we get f ′(ξ) 6= 0; wlog f ′(ξ) > 0. Then for
the sign we get the following table Therefore var(f0(ξ−), f1(ξ−) = 1 and var(f0(ξ+), f1(ξ+) = 0.

(C) Let fi(ξ) = for some i > 0. Since gcd(fi−1, fi) = 1 we get fi(ξ) · fi−1(ξ) 6= 0 (otherwise X − ξ
would be a common factor). From the above algorithm we have fi−1(ξ) = qi(ξ)fi(ξ)−fi+1(ξ) =
fi+1(ξ). So these have di�erent sign; wlog fi−1(ξ) < 0 and fi+1(ξ) > 0. Hence we obtain the
sign table No mater which sign we have at the unknown places, we still have one sign change

fi−1 fi fi+1

ξ− - ? +
ξ - 0 +
ξ+ - ? +

in every line. Therefore

var(fi−1(ξ−) =, fi(ξ−), fi+1(ξ−)) = var(fi−1(ξ+) =, fi(ξ+), fi+1(ξ+)) = 1

From item B and item C we get that eq. (2) is �locally true�. There may be several i such that
fi(ξ) = 0. But from that it is easy to see that eq. (2) holds in general.

Exercise. Show the statement still holds if you drop the condition gcd(f, f ′) = 1.

Proof. The main idea is var(f0(ξ), . . . , fl(ξ)) = var(f0(ξ) · g(ξ), . . . , fl(ξ), g(ξ)) as long as g(ξ) 6=
0.
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2 Tarski-Seidenberg principles and applications

Let R be a real closed �eld.
Motivation: We regard the quadratic equation, let a, b, c ∈ R.

∃X ∈ R.aX2 + bX + c = 0 (3)

As over R we have ∃X ∈ R.X2 + pX + q = 0 ⇔ p2

4
− q ≥ 0. The important observation is that

the left hand side has an existential quanti�er, whereas the right hand side is quanti�er-free. So
we eliminated a quanti�er, which makes the decision easier by far. Thus eq. (3) is equivalent to

(a 6= 0 ∧ b2 − 4ac ≥ 0) ∨ (a = 0 ∧ b 6= 0) ∧ (a = b = c = 0) (4)

By Theorem 1.9 we have a way to check eq. (3) for arbitrary degree. For f ∈ R[X] the question
∃x ∈ R.f(X) = 0 can be expressed by a quanti�er-free formula.
Furthermore this can be generalised to an arbitrary number of variables. We iterate the single
variable case and eliminate a quanti�er in each step.
In particular the existence of a root of f ∈ R[X1, . . . , Xn] is decidable. In contrast the question ∃x ∈
Zn.f(x) = 0 is undecidable. It was proven by Julia Robinson, Putnam, David and Matjasevich,
which solved Hilbert's 10th problem.

De�nition. Let R be a real closed �eld. Then we de�ne the sign function sgn : R→ {+, 0,−} in
the canonical way.

Let f1, . . . , fr ∈ R[X] and let x1 < x2 < . . . < xN be the roots of the fi 6= 0. By intermediate value
theorem the sign of the fi on each interval (xj, xj+1) is constant. Denote this by sgn fi(xj, xj+1).
De�ne the sign table SGN(f1, . . . , fr) ∈ {−, 0,+}r×(2N+1). For the number of columns we have
N + 1 intervals and the N roots.

sgn f1(−∞, x1) sgn(f1(x)) . . . sgn f1(xN ,∞)
...

sgn fr(−∞, x1) . . . sgn fr(xN ,∞)

Example. Assume we have the following picture. Thus we get the sign table

x1 x2

SGN(f1, f2) =

(
+ 0 − 0 +
+ + + 0 −

)
2.1 Lemma. Let f ∈ R[X] and a, b ∈ R with a < b. Let ε := sgn(f ′) be constant on (a, b). Then
the sign table of f on [a, b] is determined by εa := sgn f(a), εb := sgn f(b) and ε. If b = ∞, then
the sign table of f on [a,∞) is determined by εa and ε. Similarly for a = −∞.

Proof. Wlog let ε = +. By Rolle f has at most one root in (a, b). Now we have some case
distinctions.
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Case εa = +: We start positive and go up, so it remains positive.

Case εa = 0: We start at zero, then go up.

Case εa = −, εb = +: We have some root.

Case εa = −, εb = 0: We end with a root.

Case εa = −, εb = −: We stay negative all the time.

Corollary. Let f ∈ R[X] with f ′ 6= 0. We compute the division f = qf ′ + g with deg g < deg f ′.
Then the sign table of f is determined by the sign table of (f ′, g).

Proof. Let x1 < . . . < xN be the zeroes of f ′. So we have f(xi) = g(xi), so we have the signs
here. By Lemma 2.1 the sign of f on (xi, xi+1) are determined by the signs of f(xi) = g(xi) and
sgn f ′(xi, xi+1). Similarly for (−∞, x1) and (xN ,∞).

Although this yields a recursive algorithm to compute the sign table of any polynomial, it has
exponential complexity (Fibonacci).

Example (Cubic Equation). We know we can restrict ourselves to the case f = X3 + pX +
q. Then we have f ′ = 3X2 + p. The question is, when do we have the sign table SGN(f) =
(−, 0,+, 0,−, 0,+)? Computing the polynomial division we get X3 + pX + q = 1

3
X · (3X2 + q) + g

with g := 2p
3
X + q. Let x1, x3 be the roots of f ′ and x2 be the root of g. If f has 3 roots, then the

picture of f ′ and g looks like the example above. For the sign table we get

SGN(f ′, g) =

(
+ 0 − − − 0 +
+ + + 0 − − −

)
for this to happen we need p < 0, f ′(x2) < 0. Rewriting this we get p < 0 and 27q2 + 4p3 < 0,
which nicely turn out to be the discriminant. Actually we may drop the �rst condition.
But all computations are equivalences. So we get a simple criterion whether f has 3 roots in R.

Let f1, . . . , fr ∈ R[X] with deg fi ≤ m. Then SGN(f1, . . . , fr) ∈ {−, 0,+}r×(2N+1) where for the
number of zeroes we have N ≤ r ·m. Let Wr,m be the set of all matrices of format r × (2N ∗ 1)
over {−, 0,+} where N ≤ r ·m.

2.2 Lemma. There is a map ϕ : W2r,m → Wr,m such that for all real closed �elds R and all lists
f1, . . . , fr ∈ R[X] with deg fi ≤ m, fr /∈ R we have

SGN(f1, . . . , fr−1, fr) = ϕ (SGN(f1, . . . , fr−1, f
′
r, g1, . . . , gr))

where for i < r we put gi := fr mod fi and gr := fr mod f ′r.

Proof sketch. We show that SGN(f1, . . . , fr) is completely determined by SGN(f1, . . . , fr−1, f
′
r, g1, . . . , gr).

Let x1 < . . . < xN be he zeroes in R of f1, . . . , fr−1, f
′
r. From the table of (f1, . . . , fr−1, f

′
r) we

obtain a function Θ : {1, . . . , N} → {1, . . . , r} such that

fΘ(i)(xi) = 0 : Θ(i) 6= r

f ′r(xi) = 0 : Θ(i) = r

Then fr(xi) = gΘ(i)(xi) for all i (since gΘ(i) = fr mod fΘ(i)). From the sign table of (f1, . . . , fr−1, f
′
r, g1, . . . , gr)

we can derive the sign of fr(xi) for i = 1, . . . , N . Moreover we know the sign of f ′r on the intervals
(xi, xi+1). Thus by Lemma 2.1 we obtain the sign of fr on each of these intervals.
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Remark. In Lemma 2.2, for r = 1 we get the above corollary.

2.3 Theorem. Let f1, . . . , fr ∈ Z[X, Y1, . . . , Yn]. We put m := max{degX fi : i} and let W ′ ⊆ Wr,n

(the set of �allowed� tables). Then there is a Boolean combination B(Y ) of polynomial equations
and inequalities in Y1, . . . , Yn over Z such that for all real closed �elds R and for all y ∈ Rn we
have

SGN(f1(X, y), . . . , fr(X, y)) ∈ W ′ ⇔ B(y)

Example. We look at the simple case r = 1, where f =
∑n

i=0 YiX
i ∈ Z[X, Y0, . . . , Yn]. For any

y ∈ Rn+1 we get f(X, y) ∈ R[X]. Then there are some conditions B : Rn+1 → bool such that
∃x.f(x, y) = 0⇔ B(y).

Proof of Theorem 2.3. Induction on m:

IB m = 0: Then all polynomials contain no X. So in this case take

B(Y ) :=
∨

(ε1,...,εr)T∈W ′

r∧
i=1

(sgn fi(y) = εi)

IS m > 0: Wlog let m = deg fr. Write fi := hi,mi
(Y )Xmi + . . . + hi,0(Y ) where hi,mi

(Y ) 6= 0.
Claim: It is su�cient to �nd a quanti�er-free formula for

mr ·
r∏
i=1

hi,mi︸ ︷︷ ︸
=:h(y)

6= 0 ∧ (SGN(f1(X, y), . . . , fr(X, y)) ∈ W ′)

So we have one case where all leading coe�cients are non-zero.

f1(X, y) = h1,m1(y)Xm1︸ ︷︷ ︸
?
=0

+h1,m1−1(y)Xm1−1︸ ︷︷ ︸
6=0

+ . . .

The idea is that if leading coe�cients vanish, we may apply the IH.

Let g1, . . . , gr ∈ Z(Y )[x] be the remainders of the division of fr by f1, .., fr−1, f
′
r. More

precisely h2efr = qfi + g̃i where q, gi ∈ Q[X, Y ] and deg gi < m = deg fr, gi = g̃i
h2e

. In
particular h(y) 6= 0 implies g1(X, y) = fr(X, y) mod f1(X, y). Note that g1 and g̃1 have the
same sign, so they can be exchanged in the table. Now we use Lemma 2.2. Let W ′′ be the
inverse image of W ′ under ϕ : W2r,m → Wr,m. For all R and all y ∈ Rn we have

h(y) 6= 0 ∧ SGN(f1(X, y), . . . , fr(X, y)) ∈ W ′ ⇔ h(y) 6= 0 ∧ SGN(f1(X, y), . . . , f ′r(X, y), g1(X, y), . . . , gr(X, y)) ∈ W ′′

The new polynomials f ′r(X, y), g1(X, y), . . . , gr(X, y) have degree < m. If degree m appeared
µ times among f1(X, y), . . . , fr(X, y) then we have eliminated one occurrence, so it appears
µ − 1 times now. By repeating that procedure we can achieve that the maximum of the
degrees is m− 1. Thus we can apply the IH.

2.4 Corollary. Let K be a real �eld and f1, . . . , rf ∈ K[X, Y1, . . . , Yn], (ε1, . . . , εr) ∈ {−, 0,+}r.
Then there is a boolean combination B(Y ) of polynomial equations and inequalities in Y1, . . . , Yn
with coe�cients in K such that for all real closed �eld extensions K ⊆ R and all y ∈ Rn we have

∃x ∈ R.
r∧
i=1

sgn fi(x, y) = εi ⇔ B(y)
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Proof. In the fi replace the coe�cients in K by indeterminants T1, . . . , Tp, thus obtaining poly-
nomial Fi ∈ Z[X, Y, T ]. Then apply Theorem 2.3 to F1, . . . , Fr and W

′ where W ′ consists of the
tables containing the column εT . In the resulting boolean formula B(Y, T ) we replace the Tj by
the original coe�cients of the fi.

Notions from logic

Let K be a real �eld. We regard the signature σ = {0, 1,+, ·,−, (·)−1,≤}. A �rst order formula in
the language of ordered �eld is obtained by the above signature, i.e. using variables, quanti�cation
over elements of K, using the elements of σ and boolean combinations. Denote by L(K) the
set of these formulas. A formula without free variable is called a sentence. But even a sentence
is neither true nor false on its own. It requires a �eld to be evaluated. As example regard
∀y.∃x.0 ≤ y → y = x2, which holds in R but not in Q. For a formula with free variables we need
an additional assignment.

2.1 Quanti�er elimination

2.5 Theorem (Tarski '31, Seidenberg '54). Let K be a real �eld and ϕ ∈ L(K) with free
variables x1, . . . , xn. Then there is a quanti�er-free formula ψ ∈ L(K) with the same free variables
such that for all real closed extensions K ⊆ R and all x ∈ Rn we have

R |= ϕ(x)⇔ R |= ψ(x)

Proof. Induction on ϕ, where ∧,¬,∃ is su�cient. The base case is clear (choose ψ := ϕ), similarly
¬ and ∧. Additionally any atomic formula (created by = and ≤) can be stated via the sgn-function.
Wlog we can regard any boolean combination in disjunctive normal form

B(X, Y ) =
∨
i

∧
j

(sgn fij(X, Y ) = εij)

2.4
==⇒∃X.B(X, Y ) ≡

∨
i

(
∃X.

∧
(sgn fij(X, Y ) = εij)

)
≡
∨
i

B′(X, Y ) ≡ B′′(X, Y )

2.6 Corollary (Transfer priciple). Let R1 ⊆ R2 be extensions of real closed �eld. Let ϕ ∈ L(R1)
be a sentence. Then R1 |= ϕ⇔ R2 |= ϕ.

2.7 Corollary (Artin-Lang-Theorem). Let R ⊆ R1 be real closed �elds, A a �nitely generated
R-algebra and ϕ : A → R1 be an R-homomorphism. Then there exists an R-algebra morphism
ψ : A→ R.

Proof. We can write A = R[X1, . . . , Xn]/I where I = 〈f1, . . . , fr〉 (note A is the homomorphic
image of a polynomial ring). Put ξi := ϕ(Xi) ∈ R1. Then ξ := (ξ1, . . . , ξn) ∈ Rn

1 satis�es
fi(ξ) = ϕ(fi(X)) = 0. The statement

∃X1.∃Xn.
∧
i

fi(x1, . . . , xn) = 0

is true over R1. By transfer principle (Corollary 2.6) this formula is true over R as well. Hence
there exist ξ′i ∈ R (and putting ξ′ := (ξ′1, . . . , ξ

′
n)) such that fi(ξ) = 0 for i = 1, . . . , r. Thus

evaluation at ξ′ gives an R-algebra morphism ψ : A→ R.
We can evaluate R[X1, . . . , Xn] → R via Xi 7→ ξ′i. But under that evaluation fi 7→ fi(ξ

′) = 0. so
ψ(I) = 0 and we get the diagramme
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R[X1, . . . , Xn] R

A = R[X1, . . . , Xn]/I

Compare this with the following theorem from Algebra 2:

Theorem. Let L ⊆ K1 be algebraically closed �eld and A a �nitely generated K-algebra with
K-algebra morphism ϕ : A→ K1. Then there exists a K-algebra morphism A→ K.

This was used to prove Hilbert's Nullstellensatz. So it is reasonable that we use Artin-Lang to
show the real Nullstellensatz.

2.2 Hilbert's 17-th problem

Let f ∈ R[X1, . . . , Xn] be such that ∀x ∈ Rn.f(x) ≥ 0.
Question: Is f a sum of squares?
The degree must be even, so out 2d = deg f . Some easy answers we know from Linear Algebra:

• true for n = 1

• true for d = 1 and n ≥ 1.

• true for n = 2 and d = 2, bivariate quartics

Hilbert: The answer is �no� in all other cases.

Example (Motzkin's counter-example). De�ne f := Z6 + x4Y 2 + X4Y 2 − 3X2Y 2Z2. Then
by AM-GM-inequality we have

1

3

(
Z6 +X4Y 2 +X2Y 4

)
≥ 3
√
Z6 ·X4Y 2 ·X2Y 4 = X2Y 2Z2

Thus f(x, y, z) ≥ 0 for all x, y, z ∈ R.
Now suppose f = g2

1 + . . . + g2
t with gi ∈ R[X, Y, Z]. Note that f is homogeneous of degree 6,

so wlog the gi are homogeneous of degree 3. None of the gi may contain X3 or higher, since
the leading coe�cient of X6 would be a sum of squares, hence positive. Neither do they contain
Y 3, X2Z, Y 2Z,XZ2, Y Z2. Hence they are linear combinations of X2Y,XY 2, XY Z, Z3. Therefore
the only way to obtain X2Y 2Z2 is to square XY Z, but this always yields a positive coe�cient.

Remark (Barvinok, Blekkerman). Let Pn,d := {f ∈ R[X1, . . . , Xn]2d : f ≥ 0}. This is a
convex cone. But

Σn,d =

{
k∑
i=1

g2
i : gi ∈ R[X1, . . . , Xn]d

}
⊆ Pn,d

is a convex cone as well. It can be shown that this is a proper cone, but even more, if we restrict
to the unit ball in Rn, then

vol(Σn,d)

vol(Pn,d)

n→∞−−−→ 0

with an exponential decrease (d �xed).
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2.8 Theorem (Hilbert's 17-th problem, Artin 1927). Let f ∈ R[X1, . . . , Xn] be such that
∀x ∈ Rn.f(x) ≥ 0. Then f is a sum of squares of rational functions.

Proof. Put K := R(X1, . . . , Xn). Suppose f /∈ ΣK2. By chapter 1 there is an ordering ≤ on K refref
such that f < 0. Let R be the real closure of (K,≤). We have −f > 0, so there is some z ∈ R
such that −f = z2. Consider the following statement in L(R):

ϕ := ∃X1 . . . ∃Xn.∃z.f(X1, . . . , Xn) + z2 = 0 ∧ z 6= 0

We know that ϕ holds over R, but it also is a statement over R. By Corollary 2.6 we have
∃x1, . . . , xn, z ∈ R.f(x1, . . . , xn)+z2 = 0∧z 6= 0. So f(x1, . . . , xn) < 0 which is a contradiction.

Remark (Supplement). Let k ⊆ R be some sub�eld (e.g. k = Q) and f ∈ k[X1, . . . , Xn] such
that ∀ξ ∈ kn.f(ξ) ≥ 0. Then there are a1, . . . , at ∈ k with ai > 0 and g1, . . . , gt ∈ k(X1, . . . , Xn)
such that f =

∑
aig

2
i .

Proof. Look at

P :=

{
t∑
i=1

aig
2
i : ai ∈ k, ai > 0, gi ∈ k(X1, . . . , Xn)

}

This is the cone in k(X1, . . . , Xn) generated by {a ∈ k : a > 0}. So P is the intersection of all
positive cones of orderings of k(X1, . . . , Xn) containing {a ∈ k : a > 0}. Now suppose f /∈ P .
Then there is an ordering ≤ of k(X1, . . . , Xn) such that f < 0. Let R be the real closure of

(k(X1, . . . , Xn),≤) and let k̃ denote the real closure of k, so k̃ ⊆ R. By Corollary 2.6 we have

∃ξ ∈ k̃n.f(ξ) < 0. But Q ⊆ k and Q is dense in R. By assumption we have ∀ξ ∈ Rn.f(ξ) ≥ 0  
check

3 Real Algebra

3.1 Digression on commutative Algebra

Let A be a commutative ring, I ⊂ A an ideal.

De�nition. A minimal prime ideal over I is a prime ideal p of A such that I ⊆ p and p is minimal
with that property. That is if p′ is a prime ideal with I ⊆ p′ ⊆ p, then p = p′.

De�nition. The radical of I is the ideal
√
I := {a ∈ A : ∃n ∈ N.an ∈ I}.

Note that I ⊆
√
I.

Example. Let A = Z, so every ideal is principal. Let I = (a) for a = pe11 . . . perr . Then
√

(a) =
(p1 . . . pr) =

⋂r
i=1(pi).

Theorem. 1. Every proper ideal has a minimal prime ideal.

2.
√
I is the intersection of the minimal prime ideals over I.

3. (E.Noether) If A is noetherian, then there are only �nitely many minimal primes.
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Proof. 1. The set {p prime ideal : I ⊆ p} is non-empty, since I can be extended to a maximal
ideal. With Zorn's Lemma we can show that this set has a minimal element.

2. Note that if p is prime and I ⊆ p, then
√
I ⊆ p. (If a ∈

√
I, then an ∈ I, so a ∈ I.) Hence√

I is contained in the intersection. To show equality we assume wlog I = 0 (otherwise go to
A/I). Assume a /∈

√
0, so a is not nilpotent, which means ∀n.an 6= 0. Thus S := {an : n ∈ N}

does no intersect 0. (Then S is muliplicative, and we can work in S−1A.) There is a maximal
ideal J not intersection S (Zorn's Lemma).

Claim: J is a prime ideal.
Suppose a, b ∈ A\J , but ab ∈ J . Then by maximality ((a)+J)∩S 6= 0 and ((b)+J)∩S 6= 0.
Therefore we get s = ca+ x and s′ = c′b+ y for some c, c′ ∈ A, s, s′ ∈ S and x, y ∈ J . Thus
S 3 ss′ = cc′ab+ z ∈ J for some z ∈ J . But S and J do not intersect.  

3. Suppose there is an ideal I of A with in�nitely many minimal primes. Since A is noetherian,
we can assume that I is maximal with this property. Then I is not prime. Hence there are
a, b ∈ A\I such that ab ∈ I. For any prime p ⊇ I we must have a ∈ p or b ∈ p. So I+(a) ⊆ p
or I + (b) ⊆ b. So if p1, p2, . . . are in�nitely many minimal primes over I, there is a partition
N+ = C1 ⊕ C2 such that i ∈ C1 =⇒ I + (a) ⊆ pi and j ∈ C2 =⇒ I + (b) ⊆ pj. Wlog
C1 is in�nite, so I + (a) has in�nitely many minimal primes, contradicting the maximality
of I.

3.2 Real Nullstellensatz

De�nition. An ideal I ⊆ A is called real if

∀n.∀a1, . . . , an ∈ A.a2
1 + . . .+ a2

n ∈ I =⇒ a1, . . . , an ∈ I

Compare this to R where
∑
a2
i = 0 =⇒ ai = 0, which holds in any real �eld.

Remark. Assume I is a prime ideal of A. Let K be the quotient �eld of A/I. Then I is real i�
K is a real �eld.

As a motivation we recall from Algebra 2

Theorem (Hilbert's Nullstellensatz, weak version). Let K be an algebraically closed �eld
and f1, . . . , fs ∈ K[X1, . . . , Xn] such that f1(x) = 0, . . . , fs(x) = 0 has no solution in Kn. Then
there are g1, . . . , gs ∈ K[X1, . . . , Xn] such that

∑s
i=1 gifi = 1.

Now we replace �algebraically closed� by �real closed�.

3.1 Theorem (Real Nullstellensatz). Let R be a real close �eld, f1, . . . , fs ∈ R[X1, . . . , Xn] be
such that f1(x) = 0, . . . , fs(x) = 0 has no solution in Rn. Then there are g1, . . . , gs, p1, . . . , pt ∈
R[X1, . . . , Xn] such that

s∑
i=1

gifi = 1 +
t∑

j=1

p2
j (5)

Remark. Again, as in Hilbert's case, the converse holds as well. If we had the above representation
and ξ were a common solution, then 0 =

∑
gifi(ξ) = 1 +

∑
p2
j(ξ) ≥ 1 is a contradiction.

3.2 Lemma. Assume A is a noetherian commutative ring and I ⊆ A is a real ideal. Then we
have:
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1. I is a radical ideal.

2. All minimal prime ideals of I are real.

Proof. 1. Let an ∈ I. We do induction on n. For n = 1 we have a ∈ I, so let n > 1. If n is even,

we have
(
a

n
2

)2
= an ∈ I, but the left part is a (sum of) square(s). So a

n
2 ∈ I. If n is odd, we

get
(
a

n+1
2

)2

= an+1 ∈ I, so an+1
2 ∈ I. In both cases we are done by induction hypothesis.

2. By item 1 I is redical. Let p1, . . . , pt be the minimal prime ideals of I. Suppose p1 is not
real and assume a2

1 + . . . + a2
n ∈ p1 for some a1, . . . , an ∈ A \ p1 (we do not have to regard

squares which lie in p1, since those get absorbed anyway). Let bi ∈ pi \ pi for i = 2, . . . , t.
Then b := b2 . . . bt /∈ p1, since it is a prime ideal, but b ∈ p2 ∩ . . . ∩ bt. Now we multiply the
above sum with b2 and obtain

(a1b)
2 + . . .+ (anb)

2 ∈ p1 ∩ . . . ∩ pt =
√
I = I

Since I is real, we get a1b ∈ I ⊆ p1, which is a contradiction.

Notation. Let V ⊆ Rn, F ⊆ R[X1, . . . , Xn] and R be real closed. Then we de�ne

J(V ) := {f ∈ R[X1, . . . , Xn] : ∀ξ ∈ V.f(ξ) = 0} the vanishing ideal

Z(F ) := {ξ ∈ Rn : ∀f ∈ F.f(ξ) = 0} the zero set

For F = {f1, . . . , fn} we also write Z(F ) = Z(f1, . . . , fn).

Remark. • Let I := 〈F 〉 be the generated ideal. Then Z(I) = Z(F ).

• V := Z(J(V )) is the Zariski-closure of V , by de�nition.

• Suppose V = Z(F ). Then V = V , i.e. V is Zariski-closed.

Remark. J(V ) is a real ideal.

Proof. Suppose f 2
1 + . . .+ f 2

s ∈ J(V ) for some fi ∈ R[X1, . . . , Xn]. Take ξ ∈ V and evaluate, then
f1(ξ)2 + . . .+fs(ξ)

2 = 0, which is an equality in the real �eld R. Therefore f1(ξ) = . . . = fs(ξ) = 0,
which means f1, . . . , fs ∈ J(V ).

Now we can reformulate the real Nullstellensatz.

3.3 Theorem (Real Nullstellensatz, (Dubois '69, Risler '70)). Let R be a real closed �eld
and I ⊆ R[X1, . . . , Xn] a real ideal. Then

J(Z(I)) = I

Proof. J(Z(I)) ⊇ I: Let f ∈ I and ξ ∈ Z(I). Then by de�nition f(ξ) = 0, so f ∈ J(Z(I)).

J(Z(I)) ⊆ I: For f ∈ R[X1, . . . , Xn] \ I there exists some x ∈ Z(I) such that f(x) 6= 0. If f /∈ I,
then there is some minimal prime ideal p such that I ⊆ P and f /∈ p. By Lemma 3.2 p is real.
Assume g1, . . . , gt generate the ideal p (�nitely many, since noetherian). The quotient �eld
K of R[X]/p is real. Let R1 be the real closure of K. Then we obtain a canonical morphism

ϕ : R[X]→ R[X]/p ; K ; R1 denoted Xi 7→ Xi

We have f(X1, . . . , Xn) 6= 0 and gi(X1, . . . , Xn) = 0 for i = 1, . . . , t (as polynomials). By
transfer principle there are x1, . . . , xn ∈ R such that f(x1, . . . , xn) 6= 0 and gi(x1, . . . , xn) = 0
for i = 1, . . . , t. So x := (x1, . . . , xn) ∈ Rn satis�es x ∈ Z({g1, . . . , gt}) = Z(p) ⊆ Z(I), since
I ⊆ p. So x ∈ Z(I) but f(x) 6= 0.

17



De�nition. Let A be a commutative ring, I ⊆ A an ideal. The real radical R
√
I is de�ned as the

smallest real ideal containing I.

Proposition. We have the explicit form

R
√
I =

{
a ∈ A : ∃m ∈ N.∃b1, . . . , bt ∈ A.a2m + b2

1 + . . .+ b2
t ∈ I

}
Proof. RHS is an ideal: Let a ∈ RHS and c ∈ A. Then

(ac)2m + (b1c
m)2 + . . .+ (btc

m)2 = c2m · (. . .) ∈ I =⇒ ac ∈ RHS

Let a, a′ ∈ RHS, say a2m +
∑
b2
i ∈ I and (a′)2m′ +

∑
b′2i ∈ I. We use the trick

(a+ a′)2(m+m′) + (a− a′)2(m+m′) = a2m · c+ (a′)2m′ · c′

for some c, c′, which are sums of squares, since all the odd powers cancel out and at least one
of a, a′ has su�ciently high power. Finally this yields

(a+ a′)2(m+m′) + (a− a′)2(m+m′) + c(b2
1 + . . .+ b2

t ) + c′(b′21 + . . .+ b′2t )

= c
(
a2m +

∑
b2
i

)
+ c′

(
(a′)2m′ +

∑
b′2i

)
∈ I

and on the left hand side we in fact have a sum of squares.

RHS is real ideal: Let a2
1 + . . .+ a2

n ∈ RHS. We have

a4m
1 + s.sq. = (a2

1 + . . .+ a2
n)2m + s.sq. ∈ I

so a1 ∈ RHS, the same for all ai.

minimal: Let I ⊆ J , J a real ideal. Let a ∈ RHS via (am)2 + b2
1 + . . . + b2

t ∈ I ⊆ J . Since J is
real we get am ∈ J and since J is radical, this means a ∈ J .

Remark. 1. We have I ⊆
√
I ⊆ R

√
I for any ideal I in a commutative ring.

2. Let I ⊆ R[X1, . . . , Xn] for some real �eld R, then Z( R
√
I) = Z(I).

Proof. 1. Let a ∈
√
I, via am ∈ I. Then a2m ∈ I, so a ∈ R

√
I.

2. Z(·) has inverse inclusion, so Z(I) ⊆ Z( R
√
I) is clear with the above. For the other way, let

ξ ∈ Z(I) and f ∈ R
√
I, say f 2m + g2

1 + . . .+ g2
t ∈ I. This we evaluate at ξ and obtain

f(ξ)2m + g1(ξ)2 + . . .+ gt(ξ)
2 = 0 in R

Thus f(ξ)m = 0, so f(ξ) = 0. Hence (ξ) ∈ Z( R
√
I.

3.4 Theorem (Real Nullstellensatz'). Let R be a real closed �eld, I ⊆ R[X1, . . . , Xn] an ideal.
Then J(Z(I)) = R

√
I.

Proof. We have Z( R
√
I) = Z(I). Now apply the Real Nullstellensatz (Theorem 3.3) to the real

ideal R
√
I.

Theorem. Let R be real closed, f1, . . . , fs ∈ R[X1, . . . , Xn] such that the system f1(X) = 0, . . . ,
fs(X) = 0 has no solution in Rn. Then there are polynomials g1, . . . , gs, p1, . . . , pt ∈ R[X1, . . . , Xn]
such that

s∑
i=1

gifi = 1 +
t∑
i=1

p2
i

18



Proof. Put I := 〈f1, . . . , fs〉. Since we do not have a solution, we have Z(I) = ∅. Thus J(Z(I)) =
R[X1, . . . , Xn]. By Theorem 3.4 we have 1 ∈ R

√
I. Using the characterisation, there exist p1, . . . , pt

such that 12m + p2
1 + . . .+ p2

t ∈ I.

Example. Consider R[X, Y ] with I = (X2 + Y 2 + 1). Then Z(I) = ∅ and thus J(Z(I)) = (1) =
R[X, Y ] = R

√
I. However, if we lift the de�nition to C, then R

√
I = I.

Now we alter the ideal to I = (X2 + Y 2). Then Z(I) = {(0, 0)}, and J(Z(I)) = (X, Y ).
Check (X, Y ) = R

√
X2 + Y 2: Clearly X2 + Y 2 ∈ (X, Y ) and by the characterisation of real ideals

we have equality.

3.3 Cones in Commutative Rings

In section 1.1 we de�ned cones in �elds.

De�nition. A cone P of A is a subset P ⊆ A such that

1. ∀a, b ∈ P.a+ b ∈ P

2. ∀a, b ∈ P.ab ∈ P

3. ∀a ∈ A.a2 ∈ P .

The cone P is called proper if −1 /∈ P .

Remark. The set

ΣA2 =

{
n∑
i=1

a2
i : n ∈ N, a1, . . . , an ∈ A

}

is a cone of A. It is contained in all cones of A.

Example. LetM ⊆ Rn, for some real closed �eld R. Then {f ∈ R[X1, . . . , Xn] : ∀ξ ∈M.f(ξ) ≥ 0}
is a cone of A. Basically, we just took J(M) and replaced �=� by �≥�.

Remark. The intersection of a family of cones of A is a cone of A.

De�nition. Let a1, . . . , ar ∈ A. Denote by P [a1, . . . , ar] the smallest cone of A containing a1, . . . , ar.

Example. 1. P [a] = {x+ ya : x, y ∈ ΣA2}, because any powers of a get absorbed in x and y.

2. P [a1, a2] = {x00 + x10a1 + x01a2 + x11a1a2 : xij ∈ ΣA2}.
So technically, we just have P [a1, . . . , ar] = (ΣA2) [a1, . . . , ar] in the sense of adjoining elements
and every adjunction is of degree 2. check

word
check
word

De�nition. A prime cone P of A is a proper cone P of A such that

∀a, b ∈ A.ab ∈ P =⇒ a ∈ P ∨ −b ∈ P

Example. Let A = K be a �eld and P = {x ∈ K : x ≥ 0} be the positive cone of some ordering.
Then P is a prime cone:
Assume ab ∈ P , i.e. ab ≥ 0. If a ≥ 0 we're �ne. Otherwise a < 0. But then b ≤ 0, so −b ≥ 0.

3.5 Proposition. Let P be a prime cone of A and put −P := {−a : a ∈ P}. Then
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1. P ∪ −P = A

2. P ∩ −P is a prime ideal of A, called the support, suppP .

Proof. 1. Let a ∈ A, then a · a = a2 ∈ P , so a ∈ P or −a ∈ P , which means a ∈ −P .

2. P and −P are closed under addition and negation, so it is an additive subgroup. Let
a ∈ P ∩−P and b ∈ A. Then b ∈ P or b ∈ −P . Assume b ∈ P . Then ab ∈ P and (−a)b ∈ P ,
so ab ∈ P ∩ −P . Similarly for b ∈ −P , so P ∩ −P is an ideal.

Check prime: Let ab ∈ P∩−P and a /∈ P∩−P . If a /∈ P , then from the above ab ∈ P implies
−b ∈ P . But we also have a(−b) ∈ P , which implies b ∈ P , so b ∈ P ∩ −P . Analogous for
−a /∈ P .

Example (cont.). We have P = {x ∈ K : x ≥ 0}. Then P ∩ −P = {0}, by computation or
because it is the only prime ideal of a �eld.

Remark. Prime cones of a �eld K are the positive cones of orderings of K.

3.6 Proposition. A subset P of A is a prime cone of A i� there is an ordered �eld (K,≤) and a
ring homomorphism ϕ : A→ K such that

P = {a ∈ A : ϕ(a) ≥ 0} (6)

Proof. Suppose we have ϕ : A → K with eq. (6). Then clearlyP is a proper cone, just use the
properties of the cone of K. To show that P is prime suppose ab ∈ P . Then ϕ(a)ϕ(b) = ϕ(ab) ≥ 0.
Then either ϕ(a) ≥ 0, which means a ∈ P or ϕ(a) < 0. But then ϕ(b) ≤ 0,so ϕ(−b) ≥ 0, which
means −b ∈ P .
For the other direction, if we had ϕ, we would have

kerϕ = {a ∈ A : ϕ(a) ≥ 0 ∧ ϕ(−a) ≥ 0} = P ∩ −P = suppP

Let P be some prime cone. Then we put I := suppP , which is a prime ideal. Then we take
the canonical morphism ϕ : A → A/I ↪→ Fr(A/I) =: K. For K we de�ne the cone Q :={
ϕ(a)
ϕ(b)

: a, b ∈ P, b /∈
}
, which induces an ordering of K.

3.7 Theorem. Let A be a commutative ring. TFAE

1. A has a proper cone.

2. A has a prime cone.

3. There is a morphism ϕ : A→ K for some real �eld K.

4. A has a real prime ideal.

5. −1 /∈ ΣA2

gap

De�nition. A Real algebraic set V ⊆ Rn is the zero set of polynomials f1, . . . , fm ∈ R[X1, . . . , Xn].

V = {ξ +Rn : fi(ξ) = . . . = fm(ξ) = 0}

The coordinate ring R[V ] consists of the restrictions of the polynomial functions to V .

V → R ξ 7→ p(ξ)
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R[X1, . . . , Xn]

R[X1, . . . , Xn]/I(V )

R[V ]

This gives the picture

Corollary (Variants of the Positivstellensatz). Let V ⊆ Rn be a real algebraic set, R some
real closed �eld. Let g1, . . . , gs ∈ R[V ] and

W := {ξ ∈ V : g(ξ) ≥ 0, . . . , gs(ξ) ≥ 0}
Let P ⊆ R[V ] denote the cone generated by g1, . . . , gs. Let f ∈ R[V ]. Then

1. ∀ξ ∈ W.f(ξ) ≥ 0 i� ∃e ∈ N.∃p, q ∈ P.fp = f 2e + q

2. ∀ξ ∈ W.f(ξ) > 0 i� ∃p, q ∈ P.fp = 1 + q

3. ∀ξ ∈ W.f(ξ) = 0 i� ∃e ∈ N.∃p ∈ P.f 2e + p = 0

Proof. Let I(V ) = 〈h1, . . . , hr〉 for some hi ∈ R[V ] (these exist since the ideal is �nitely generated).

1. ∀ξ ∈ W.f(ξ) ≥ 0 means S := {ξ ∈ Rn : hi(ξ) = 0, gj(ξ) ≥ 0,−f(ξ) ≥ 0, f(ξ) 6= 0} is empty.
The elements of the cone generated by g1, . . . , gs,−f are of the form p(−f)+q with p, q ∈ P .
By theorem 2we get S = ∅ ⇔ ∃p, q ∈ P.∃e ∈ N.p(−f) + q + f 2e ∈ 〈h1, . . . , hr〉. So in R[V ] refref
we get the equality q + f 2e = fp.

2. The LHS-condition means S := {ξ ∈ Rn : hi(ξ) = 0, gj(ξ) ≥ 0,−f(ξ) ≥ 0} is empty. By
theorem 2S = ∅ ⇔ ∃p, q ∈ P.p(−f) + q + 12 ∈ 〈h1, . . . , hr〉. So in R[V ] this becomes refref
fp = 1 + q.

3. The LHS-condition means S := {ξ ∈ Rn : hi(ξ) = 0, gj(ξ) ≥ 0,−f(ξ) 6= 0} is empty. By
theorem 2S = ∅ ⇔ ∃p ∈ P.∃e ∈ N.p+f 2e ∈ 〈h1, . . . , hr〉. So in R[V ] this becomes p+f 2e = 0. refref

Example (Blekherman, Parillo, Thomas; SIAM). Let f = X2
1 +X2

2 − 1 be the circle, g1 :=
3X2 −X3

1 − 2 and g2 := X1 − 8X3
2 . We consider the system f(x) = 0,g1(X) ≥ 0 and g2(X) ≥ 0.

draw the gi

By drawing you see that the system has no solution. By theorem 2this means that there exists some refref
p ∈ P [g1, g2] such that p + 1 ∈ 〈f〉. In other words, there exist s0, s1, s2, s12 ∈

∑
R[X1, X2]2 and

t ∈ R[X1, X2] such that

s0 + s1g1 + s2g2 + s12g1g2 + tf = −1

The problem is, that the theory does not tell us how to �nd these values. One can take

s0 =
5

43
X2

1 +
387

44

(
X1X2 −

32

129
X1

)2

+
11

5

(
−X2

1 −
1

22
X1X2 −

5

1
X1 +X2

2

)2

+
1

20

(
−X2

1 + 2X1X2 +X2
2 + 5X2

)2
+

3

4

(
2−X2

1 −X2
2 −X2

)2

s1 = 3

s2 = 1

s12 = 0

t = −3X2
1 +X1 − 3X2

2 + 6X2 − 2
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It turns out there is a nice connection to optimisation.

3.4 Link to semide�nite optimisation

Linear programming deals with optimising a linear function over a polyhedra.

minimise cTx

subject to Ax = b

x ≥ 0

For the feasibility problem we only ask whether there is some x ∈ Rn
+ such that Ax = b. There are

e�cient (polynomial time) algorithms for both of the problems.

• Simplex method: Start somewhere, in each step go to a neighbouring node of the polytope
with higher target value; exponential worst-case, but best average case

• interior-point method: going through the inner part of the polytope, using Newton method

• Semide�nie Programming: S+ :=
{
X ∈ Rn×n : XT = X, positive semide�nite

}
, that is ∀v ∈

Rn.vTXv ≥ 0.
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