
Public Key Cryptography

Henning Seidler

April 25, 2024

1 / 218

Introduction

Organisation

one lecture a week

irregular example sheets, including programming tasks

Install Python, including IPython
at least one task needs SageMath
you are advised to create your own tools collection

notes/slides, example sheets on ISIS

Exam

part of “Secure Cryptography”
cannot be examined alone

oral exam at the end, about PKC and CryptoSec

details will be announced towards the end of the semester

prior to the exam no registration necessary

2 / 218

Introduction

Organisation

one lecture a week

irregular example sheets, including programming tasks

Install Python, including IPython
at least one task needs SageMath
you are advised to create your own tools collection

notes/slides, example sheets on ISIS

Exam

part of “Secure Cryptography”
cannot be examined alone

oral exam at the end, about PKC and CryptoSec

details will be announced towards the end of the semester

prior to the exam no registration necessary

2 / 218

Introduction

Organisation – Further Information

Questions?

check course description(!)

read announcements

ask in the forum

only if question contains private information, mail
henning.seidler@tu-berlin.de

Literature

Galbraith – “Mathematics of Public Key Cryptography”

“Handbook of Applied Cryptography”(?)

Wikipedia/Write-Ups/papers/. . .

Tell me, if you find a matching text book.

3 / 218

mailto:henning.seidler@tu-berlin.de
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf

Introduction

Organisation – Further Information

Questions?

check course description(!)

read announcements

ask in the forum

only if question contains private information, mail
henning.seidler@tu-berlin.de

Literature

Galbraith – “Mathematics of Public Key Cryptography”

“Handbook of Applied Cryptography”(?)

Wikipedia/Write-Ups/papers/. . .

Tell me, if you find a matching text book.

3 / 218

mailto:henning.seidler@tu-berlin.de
https://www.math.auckland.ac.nz/~sgal018/crypto-book/main.pdf

Introduction

Goals

There are two kinds of cryptography in this world: cryptogra-
phy that will stop your kid sister from reading your files, and
cryptography that will stop major governments from reading
your files. This [lecture] is about the latter.

(Bruce Schneier)

give you an overview about Public Key Crypto

typical encryption schemes

also tell you, what can go wrong

including practical tasks

prepare you for CTFs

4 / 218

Introduction

Goals

There are two kinds of cryptography in this world: cryptogra-
phy that will stop your kid sister from reading your files, and
cryptography that will stop major governments from reading
your files. This [lecture] is about the latter.

(Bruce Schneier)

give you an overview about Public Key Crypto

typical encryption schemes

also tell you, what can go wrong

including practical tasks

prepare you for CTFs

4 / 218

Introduction

$> whoami && jobs

AG Rechnersicherheit
We’re a registered student organization. Basically a group of
students interested in (IT) security topics.

Weekly Meetups:

Tue, 6pm - 8pm
TEL 20, Auditorium 3 and via Jitsi
Techtalks and discussions about recent events or techniques
No knowledge needed - just be interested and eager to learn
new things! :-)

We participate in hacking contests (CTFs) as
ENOFLAG/LEGOFAN/Last-Email!

5 / 218

Introduction

$> cat ˜/.todo

Upcoming events
this Saturday: Bambi-CTF (beginner)

Attack-Defense CTF
Exploit other teams while fixing
our own vulnerabilities

several weekends:
play Jeopardy CTFs

tasks with security flaws
find secret code (Flag)

?? 2024: FaustCTF

8.6.2024: CryptoCTF

22.6.2024 LNDW

6 / 218

Introduction

$> exit

See/Hear you on Tuesday :-)

Auditorium 3 @ TEL 20. floor on Tuesday 6 - 8 pm

https://meet.enoflag.de/erstis on Tuesday 6 - 8 pm

E-Mail: hi@enoflag.de / mailing list

Links: https://enoflag.de and
https://www.agrs.tu-berlin.de

7 / 218

https://meet.enoflag.de/erstis
https://enoflag.de
https://www.agrs.tu-berlin.de

Introduction

Story

How this lecture was created:

played RuCTFe, had an afterparty

after drinks and pizza (ca. 1 AM),
Júlia: “We should teach each other, what we know.”
me: “I could teach crypto.”
next morning, it still seemed a good idea

Winter 18/19: course of 8 lectures and exercises in AGRS

since summer 2020 full lecture

Questions so far?

8 / 218

Introduction

Story

How this lecture was created:

played RuCTFe, had an afterparty

after drinks and pizza (ca. 1 AM),
Júlia: “We should teach each other, what we know.”
me: “I could teach crypto.”
next morning, it still seemed a good idea

Winter 18/19: course of 8 lectures and exercises in AGRS

since summer 2020 full lecture

Questions so far?

8 / 218

Cryptography

What is Cryptography?

Setting:

B

9 / 218

Cryptography

What is Cryptography?

Setting:

k

attack

9 / 218

Cryptography

What is Cryptography?

Symmetric:

¤

secure ¤

9 / 218

Cryptography

What is Cryptography?

Symmetric:

¤
¤

µ(B)

9 / 218

Cryptography

What is Cryptography?

Symmetric:

¤
¤

µ(B)

attack?

9 / 218

Cryptography

What is Cryptography?

Asymmetric:

What if we do
not have a secure

connection?

9 / 218

Cryptography

What is Cryptography?

Asymmetric:

¤

b

b

9 / 218

Cryptography

What is Cryptography?

Asymmetric:

b ¤

b

µ(B)

9 / 218

Cryptography

What is Cryptography?

Asymmetric:

b ¤

b

µ(B)

attack?

9 / 218

Cryptography

What is Cryptography?

Asymmetric:

b ¤

b

µ(B)

attack?

¤: Secret Key

b: Public Key

9 / 218

Cryptography

What is Cryptography?

cryptography: (in strict sense) design of cryptosystems

cryptoanalysis: breaking encryption

cryptology: both, but often “cryptography” used instead

encrypt: c ∼ enc (m, kenc) (can be ambiguous)

decrypt: m = dec (c , kdec)

symmetric: kenc = kdec

asymmetric: kenc ̸= kdec, but related

Kerckhoff’s Principle (Open Design)

enc and dec are known,
only key kdec secret (and kenc if both same)

10 / 218

Cryptography

What is Cryptography?

cryptography: (in strict sense) design of cryptosystems

cryptoanalysis: breaking encryption

cryptology: both, but often “cryptography” used instead

encrypt: c ∼ enc (m, kenc) (can be ambiguous)

decrypt: m = dec (c , kdec)

symmetric: kenc = kdec

asymmetric: kenc ̸= kdec, but related

Kerckhoff’s Principle (Open Design)

enc and dec are known,
only key kdec secret (and kenc if both same)

10 / 218

Cryptography

What is Cryptography?

cryptography: (in strict sense) design of cryptosystems

cryptoanalysis: breaking encryption

cryptology: both, but often “cryptography” used instead

encrypt: c ∼ enc (m, kenc) (can be ambiguous)

decrypt: m = dec (c , kdec)

symmetric: kenc = kdec

asymmetric: kenc ̸= kdec, but related

Kerckhoff’s Principle (Open Design)

enc and dec are known,
only key kdec secret (and kenc if both same)

10 / 218

Cryptography

What is Cryptography?

cryptography: (in strict sense) design of cryptosystems

cryptoanalysis: breaking encryption

cryptology: both, but often “cryptography” used instead

encrypt: c ∼ enc (m, kenc) (can be ambiguous)

decrypt: m = dec (c , kdec)

symmetric: kenc = kdec

asymmetric: kenc ̸= kdec, but related

Kerckhoff’s Principle (Open Design)

enc and dec are known,
only key kdec secret (and kenc if both same)

10 / 218

Cryptography Abstract Concepts

Mathematical Model

Definition (Cryptosystem)

A cryptosystem is a quintuple (P,C ,K , enc, dec) where

P is the set of all plaintexts

C is the set of all ciphers

K is the set of all keys/key pairs

enc : P × K ; C is the encryption relation
(not necessarily a map)

dec : C × K → P is the decryption function

∀m ∈ P, k ∈ K . dec (enc (m, k) , k) = m, or
∀m ∈ P, (kdec, kenc) ∈ K . dec (enc (m, kenc) , kdec) = m

enc, dec are efficiently computable

Kerckhoff: The whole cryptosystem in known.

11 / 218

Cryptography Abstract Concepts

Mathematical Model

Definition (Cryptosystem)

A cryptosystem is a quintuple (P,C ,K , enc, dec) where

P is the set of all plaintexts

C is the set of all ciphers

K is the set of all keys/key pairs

enc : P × K ; C is the encryption relation
(not necessarily a map)

dec : C × K → P is the decryption function

∀m ∈ P, k ∈ K . dec (enc (m, k) , k) = m, or
∀m ∈ P, (kdec, kenc) ∈ K . dec (enc (m, kenc) , kdec) = m

enc, dec are efficiently computable

Kerckhoff: The whole cryptosystem in known.

11 / 218

Cryptography Abstract Concepts

Attack Scenarios

What does Eve know?

CO: ciphertext only

KP: known plaintext, i.e. pairs of cipher and message

CPA: chosen plaintext attack

CCA1: chosen cipher attack, at the beginning, Eve can request
decryption for chosen ciphers

CCA2: adaptive chosen cipher attack, after being given the task, Eve
can request decryption for chosen ciphers

Example

CPA: minimum for public key crypto

CCA2: impersonate authentication server (ssh login)

12 / 218

Cryptography Abstract Concepts

Attack Scenarios

What does Eve know?

CO: ciphertext only

KP: known plaintext, i.e. pairs of cipher and message

CPA: chosen plaintext attack

CCA1: chosen cipher attack, at the beginning, Eve can request
decryption for chosen ciphers

CCA2: adaptive chosen cipher attack, after being given the task, Eve
can request decryption for chosen ciphers

Example

CPA: minimum for public key crypto

CCA2: impersonate authentication server (ssh login)

12 / 218

Cryptography Abstract Concepts

Attack Scenarios

What is a success?

OW: one-way, decrypting cipher

NM: non-malleability, change cipher that decryption still yields a
meaningful message

PA: plaintext awareness, generate a cipher, whose decryption yields a
meaningful message

IND: indistinguishability, which given cipher matches given message
answer must be significantly better than guessing

combine attacker’s power and notion of success

Strongest goal: IND-CCA2

13 / 218

Cryptography Abstract Concepts

Attack Scenarios

What is a success?

OW: one-way, decrypting cipher

NM: non-malleability, change cipher that decryption still yields a
meaningful message

PA: plaintext awareness, generate a cipher, whose decryption yields a
meaningful message

IND: indistinguishability, which given cipher matches given message
answer must be significantly better than guessing

combine attacker’s power and notion of success

Strongest goal: IND-CCA2

13 / 218

Cryptography Abstract Concepts

The IND-CCA2 Game

parameter 1n

Eve

Charlie

k ←R KGen (1n)

b ←R {0, 1},
c = enc (mb, k)

PPT algo A

outputs m0,m1

output b′ ∈ {0, 1}

m0,m1

c

m or cj ̸= c

enc (m, k) or dec (cj , k)

Eve wins if b′ = b
PPT = probabilistic polynomial time
secure if for every A and every polynomial p, Eve’s winning
chance is less than 1

2 + 1
p(n)

14 / 218

Cryptography History

Caesar-Cipher

by Albert Uderzo,

taken from

https://asterix.fandom.com/de/wiki/Julius_C%C3%A4sar

100 BC - 44 BC
Simple substitution

A → D

B → E

C → F

. . .

(much) later with arbitrary shift

15 / 218

https://asterix.fandom.com/de/wiki/Julius_C%C3%A4sar

Cryptography History

Polyalphabetic Ciphers

Renaissance

Johannes Trithemius

Giovan Battista Bellaso

Leon Battista Alberti

Blaise de Vigenére

Different Ceaser-ciphers for
different letters, depending on
keyword

Broken by

Charles Babbage (1854)

Friedrich Wilhelm Kasiski
(1863)

find length of keyword

search for blocks that occur
multiple times

greatest common divisor of
differences of their
occurrences ; keylength

then break separate indices by
frequency

16 / 218

Cryptography History

Rotor Machines

Starting during and after World War I

Enigma by Arthur Scherbius, broken by project “Ultra” (Alan Turing)

M-209 by Boris Hagelin, used by USA,
broken by German cryptoanalysts, from 1943 on

several others

Enigma

M-209

17 / 218

Cryptography History

Public Key Cryptography

DH key exchange: Whitfield Diffie, Martin Hellman, 1976

works in a group
nowadays mostly elliptic curves over a finite field

RSA: Ron Rivest, Adi Shamir, Leonard Adleman, 1977

works in the ring of integers modulo n

Enter Mathematics

18 / 218

Cryptography History

Public Key Cryptography

DH key exchange: Whitfield Diffie, Martin Hellman, 1976

works in a group
nowadays mostly elliptic curves over a finite field

RSA: Ron Rivest, Adi Shamir, Leonard Adleman, 1977

works in the ring of integers modulo n

Enter Mathematics

18 / 218

Cryptography Mathematical Background

Modular Arithmetic

ring is essentially abstraction of Z

ring of integers modulo n: notation Zn

just append “ mod n” to every operation

addition: as usual

multiplication: as usual

negation: −a is the number with a+ (−a) = 0
here −0 = 0 or −a = n − a for a > 0

multiplicative inverse: a−1 is the number with a · a−1 = 1

not always possible
works iff gcd(a, n) = 1
if n prime, works for all 0 < a < n

19 / 218

Cryptography Mathematical Background

Modular Arithmetic

ring is essentially abstraction of Z

ring of integers modulo n: notation Zn

just append “ mod n” to every operation

addition: as usual

multiplication: as usual

negation: −a is the number with a+ (−a) = 0
here −0 = 0 or −a = n − a for a > 0

multiplicative inverse: a−1 is the number with a · a−1 = 1

not always possible
works iff gcd(a, n) = 1
if n prime, works for all 0 < a < n

19 / 218

Cryptography Mathematical Background

Modular Arithmetic

ring is essentially abstraction of Z

ring of integers modulo n: notation Zn

just append “ mod n” to every operation

addition: as usual

multiplication: as usual

negation: −a is the number with a+ (−a) = 0
here −0 = 0 or −a = n − a for a > 0

multiplicative inverse: a−1 is the number with a · a−1 = 1

not always possible
works iff gcd(a, n) = 1
if n prime, works for all 0 < a < n

19 / 218

Cryptography Mathematical Background

Modular Arithmetic

ring is essentially abstraction of Z

ring of integers modulo n: notation Zn

just append “ mod n” to every operation

addition: as usual

multiplication: as usual

negation: −a is the number with a+ (−a) = 0
here −0 = 0 or −a = n − a for a > 0

multiplicative inverse: a−1 is the number with a · a−1 = 1

not always possible
works iff gcd(a, n) = 1
if n prime, works for all 0 < a < n

19 / 218

Cryptography Mathematical Background

Example Ring – CPU/ALU

modern CPU uses 64 Bit ; can save 264 numbers

all computations run modulo 264

1 . . . 12 = 264 − 1 = −1
for arithmetic, ALU does not care about signed/unsigned

“Negative” Numbers

−a is the number that satisfies a+ (−a) = 0

say a is a with all bits flipped,

a+ a = 1 . . . 1 (in every bit add 0 and 1)

a+ a+ 1 = (1)0 . . . 0 = 0 (overflow)

hence −a = a+ 1

20 / 218

Cryptography Mathematical Background

Example Ring – CPU/ALU

modern CPU uses 64 Bit ; can save 264 numbers

all computations run modulo 264

1 . . . 12 = 264 − 1 = −1
for arithmetic, ALU does not care about signed/unsigned

“Negative” Numbers

−a is the number that satisfies a+ (−a) = 0

say a is a with all bits flipped,

a+ a = 1 . . . 1 (in every bit add 0 and 1)

a+ a+ 1 = (1)0 . . . 0 = 0 (overflow)

hence −a = a+ 1

20 / 218

Cryptography Basic Algorithms

Algorithms

Need algorithms for the following: (b bits input)

addition, subtraction,

efficient multiplication

division with remainder in Z, in particular modulo-operator

division/multiplicative inverse in Zp (or Zn, if possible)

Addition/Subtraction

naive approach: digit-wise, with carry bit ; O(b)

Multiplication

naive/school-method: O(b2)
Karatsuba: divide-and-conquer, O

(
blog2 3

)
Fast-Fourier-Transformation: O(b log b)

Division

reduce to multiplication, same complexity

21 / 218

Cryptography Basic Algorithms

Algorithms

Need algorithms for the following: (b bits input)

✓ addition, subtraction,

efficient multiplication

division with remainder in Z, in particular modulo-operator

division/multiplicative inverse in Zp (or Zn, if possible)

Addition/Subtraction

naive approach: digit-wise, with carry bit ; O(b)

Multiplication

naive/school-method: O(b2)
Karatsuba: divide-and-conquer, O

(
blog2 3

)
Fast-Fourier-Transformation: O(b log b)

Division

reduce to multiplication, same complexity

21 / 218

Cryptography Basic Algorithms

Algorithms

Need algorithms for the following: (b bits input)

✓ addition, subtraction,

✓ efficient multiplication

division with remainder in Z, in particular modulo-operator

division/multiplicative inverse in Zp (or Zn, if possible)

Addition/Subtraction

naive approach: digit-wise, with carry bit ; O(b)

Multiplication

naive/school-method: O(b2)
Karatsuba: divide-and-conquer, O

(
blog2 3

)
Fast-Fourier-Transformation: O(b log b)

Division

reduce to multiplication, same complexity

21 / 218

Cryptography Basic Algorithms

Algorithms

Need algorithms for the following: (b bits input)

✓ addition, subtraction,

✓ efficient multiplication

✓ division with remainder in Z, in particular modulo-operator

division/multiplicative inverse in Zp (or Zn, if possible)

Addition/Subtraction

naive approach: digit-wise, with carry bit ; O(b)

Multiplication

naive/school-method: O(b2)
Karatsuba: divide-and-conquer, O

(
blog2 3

)
Fast-Fourier-Transformation: O(b log b)

Division

reduce to multiplication, same complexity

21 / 218

Cryptography Basic Algorithms

Algorithms

Theorem (Extended Euclidian Algorithm)

For all a, b ∈ Z there are s, t ∈ Z such that

s · a+ t · b = gcd(a, b)

def EEA(a,b):

if b == 0: return (a,1,0)

d,s,t = EEA(b, a % b)

return (d, t, s - (a//b) * t)

Modular Inverse in Zn

assume gcd(a, n) = 1, (always works if n prime and 0 < a < n)

compute d , s, t = EEA(a, n), clearly d = 1

1 = s · a+ t · n means s · a ≡ 1 mod n

so s = a−1 in Zn

22 / 218

Cryptography Basic Algorithms

Algorithms

Theorem (Extended Euclidian Algorithm)

For all a, b ∈ Z there are s, t ∈ Z such that

s · a+ t · b = gcd(a, b)

def EEA(a,b):

if b == 0: return (a,1,0)

d,s,t = EEA(b, a % b)

return (d, t, s - (a//b) * t)

Modular Inverse in Zn

assume gcd(a, n) = 1, (always works if n prime and 0 < a < n)

compute d , s, t = EEA(a, n), clearly d = 1

1 = s · a+ t · n means s · a ≡ 1 mod n

so s = a−1 in Zn

22 / 218

Cryptography Basic Algorithms

Algorithms

Theorem (Extended Euclidian Algorithm)

For all a, b ∈ Z there are s, t ∈ Z such that

s · a+ t · b = gcd(a, b)

def EEA(a,b):

if b == 0: return (a,1,0)

d,s,t = EEA(b, a % b)

return (d, t, s - (a//b) * t)

Modular Inverse in Zn

assume gcd(a, n) = 1, (always works if n prime and 0 < a < n)

compute d , s, t = EEA(a, n), clearly d = 1

1 = s · a+ t · n means s · a ≡ 1 mod n

so s = a−1 in Zn

22 / 218

Cryptography Basic Algorithms

Algorithms

Theorem (Extended Euclidian Algorithm)

For all a, b ∈ Z there are s, t ∈ Z such that

s · a+ t · b = gcd(a, b)

def EEA(a,b):

if b == 0: return (a,1,0)

d,s,t = EEA(b, a % b)

return (d, t, s - (a//b) * t)

Modular Inverse in Zn

assume gcd(a, n) = 1, (always works if n prime and 0 < a < n)

compute d , s, t = EEA(a, n), clearly d = 1

1 = s · a+ t · n means s · a ≡ 1 mod n

so s = a−1 in Zn

22 / 218

Cryptography Number Theory

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem (CRT))

Let ni ∈ Z (pairwise) coprime, ai ∈ Z arbitrary for i = 1, . . . , k. Then
the system

ai ≡ x mod ni i = 1, . . . , k

has a unique solution 0 ≤ x <
∏

ni .

Algorithm for 2 congruences:

1, s, t = EEA(n1, n2) ; 1 = s · n1 + t · n2
solution x := a2 · s · n1 + a1 · t · n2

continue recursively with: a′ = x and n′ = n1 · n2

23 / 218

Cryptography Number Theory

Chinese Remainder Theorem

Theorem (Chinese Remainder Theorem (CRT))

Let ni ∈ Z (pairwise) coprime, ai ∈ Z arbitrary for i = 1, . . . , k. Then
the system

ai ≡ x mod ni i = 1, . . . , k

has a unique solution 0 ≤ x <
∏

ni .

Algorithm for 2 congruences:

1, s, t = EEA(n1, n2) ; 1 = s · n1 + t · n2
solution x := a2 · s · n1 + a1 · t · n2

continue recursively with: a′ = x and n′ = n1 · n2

23 / 218

Cryptography Number Theory

Example (CRT)

Consider the system

x ≡ 1 mod 3

x ≡ 2 mod 5

x ≡ 3 mod 7

combine first two:

EEA(3, 5) = (1, 2,−1) as 1 = 2 · 3 + (−1) · 5
; a′ = 2 · 2 · 3 + 1 · (−1) · 5 = 7

reduced system, continue recursively

x ≡ 7 mod 15

x ≡ 3 mod 7

24 / 218

Cryptography Number Theory

Example (CRT)

Consider the system

x ≡ 1 mod 3

x ≡ 2 mod 5

x ≡ 3 mod 7

combine first two:

EEA(3, 5) = (1, 2,−1) as 1 = 2 · 3 + (−1) · 5
; a′ = 2 · 2 · 3 + 1 · (−1) · 5 = 7

reduced system, continue recursively

x ≡ 7 mod 15

x ≡ 3 mod 7

24 / 218

Cryptography Number Theory

Example (CRT)

Consider the system

x ≡ 1 mod 3

x ≡ 2 mod 5

x ≡ 3 mod 7

combine first two:

EEA(3, 5) = (1, 2,−1) as 1 = 2 · 3 + (−1) · 5
; a′ = 2 · 2 · 3 + 1 · (−1) · 5 = 7

reduced system, continue recursively

x ≡ 7 mod 15

x ≡ 3 mod 7

24 / 218

Cryptography Number Theory

Fermat’s Little Theorem

Theorem

Let p prime, a arbitrary, then ap ≡ a mod p.

Proof by induction on a:

Base: a = 0 ✓
Step:

(a+ 1)p =

p∑
k=0

(
p

k

)
ak = ap + 1 +

p−1∑
k=1

p(p − 1) . . . (p − k + 1)

1 · 2 · . . . · k︸ ︷︷ ︸
p divides this

ak

≡ ap + 1
IH≡ a+ 1 mod p

Corollary (Alternative formulation)

p prime, a coprime to p (i.e. no multiple), then ap−1 ≡ 1 mod p.

25 / 218

Cryptography Number Theory

Fermat’s Little Theorem

Theorem

Let p prime, a arbitrary, then ap ≡ a mod p.

Proof by induction on a:

Base: a = 0 ✓

Step:

(a+ 1)p =

p∑
k=0

(
p

k

)
ak = ap + 1 +

p−1∑
k=1

p(p − 1) . . . (p − k + 1)

1 · 2 · . . . · k︸ ︷︷ ︸
p divides this

ak

≡ ap + 1
IH≡ a+ 1 mod p

Corollary (Alternative formulation)

p prime, a coprime to p (i.e. no multiple), then ap−1 ≡ 1 mod p.

25 / 218

Cryptography Number Theory

Fermat’s Little Theorem

Theorem

Let p prime, a arbitrary, then ap ≡ a mod p.

Proof by induction on a:

Base: a = 0 ✓
Step:

(a+ 1)p =

p∑
k=0

(
p

k

)
ak = ap + 1 +

p−1∑
k=1

p(p − 1) . . . (p − k + 1)

1 · 2 · . . . · k︸ ︷︷ ︸
p divides this

ak

≡ ap + 1
IH≡ a+ 1 mod p

Corollary (Alternative formulation)

p prime, a coprime to p (i.e. no multiple), then ap−1 ≡ 1 mod p.

25 / 218

Cryptography Number Theory

Fermat’s Little Theorem

Theorem

Let p prime, a arbitrary, then ap ≡ a mod p.

Proof by induction on a:

Base: a = 0 ✓
Step:

(a+ 1)p =

p∑
k=0

(
p

k

)
ak = ap + 1 +

p−1∑
k=1

p(p − 1) . . . (p − k + 1)

1 · 2 · . . . · k︸ ︷︷ ︸
p divides this

ak

≡ ap + 1
IH≡ a+ 1 mod p

Corollary (Alternative formulation)

p prime, a coprime to p (i.e. no multiple), then ap−1 ≡ 1 mod p.

25 / 218

Cryptography Number Theory

Euler’s Theorem

Generalise Fermat’s Little Theorem:

Definition (Euler’s Phi-Function)

φ(n) := |Z∗
n| = | {a ∈ Zn : gcd(a, n) = 1} |

Lemma (How to compute φ(n)?)

Let n =
∏

peii factorisation. Then φ(n) =
∏
(pi − 1) · pei−1

i .

Theorem (Euler)

Let n ≥ 2 and a ∈ Z∗
n. Then aφ(n) ≡ 1 mod n.

Special case: n = p prime, φ(p) = p − 1, exactly Fermat
Proof e.g. via group theory (Lagrange’s Theorem).

26 / 218

Cryptography Number Theory

Euler’s Theorem

Generalise Fermat’s Little Theorem:

Definition (Euler’s Phi-Function)

φ(n) := |Z∗
n| = | {a ∈ Zn : gcd(a, n) = 1} |

Lemma (How to compute φ(n)?)

Let n =
∏

peii factorisation. Then φ(n) =
∏
(pi − 1) · pei−1

i .

Theorem (Euler)

Let n ≥ 2 and a ∈ Z∗
n. Then aφ(n) ≡ 1 mod n.

Special case: n = p prime, φ(p) = p − 1, exactly Fermat
Proof e.g. via group theory (Lagrange’s Theorem).

26 / 218

Cryptography Number Theory

Euler’s Theorem

Generalise Fermat’s Little Theorem:

Definition (Euler’s Phi-Function)

φ(n) := |Z∗
n| = | {a ∈ Zn : gcd(a, n) = 1} |

Lemma (How to compute φ(n)?)

Let n =
∏

peii factorisation. Then φ(n) =
∏
(pi − 1) · pei−1

i .

Theorem (Euler)

Let n ≥ 2 and a ∈ Z∗
n. Then aφ(n) ≡ 1 mod n.

Special case: n = p prime, φ(p) = p − 1, exactly Fermat
Proof e.g. via group theory (Lagrange’s Theorem).

26 / 218

Cryptography Number Theory

Euler’s Theorem

Generalise Fermat’s Little Theorem:

Definition (Euler’s Phi-Function)

φ(n) := |Z∗
n| = | {a ∈ Zn : gcd(a, n) = 1} |

Lemma (How to compute φ(n)?)

Let n =
∏

peii factorisation. Then φ(n) =
∏
(pi − 1) · pei−1

i .

Theorem (Euler)

Let n ≥ 2 and a ∈ Z∗
n. Then aφ(n) ≡ 1 mod n.

Special case: n = p prime, φ(p) = p − 1, exactly Fermat
Proof e.g. via group theory (Lagrange’s Theorem).

26 / 218

Cryptography Number Theory

Prime Number Theorem

Theorem (Prime-Number-Theorem)

Let π(n) denote the number of primes up to n. Then π(n) ∼ n
ln(n) .

There are more primes than you would think.

Example (Make a guess)

π(100) =

π(10 000) =

27 / 218

Cryptography Number Theory

Prime Number Theorem

Theorem (Prime-Number-Theorem)

Let π(n) denote the number of primes up to n. Then π(n) ∼ n
ln(n) .

There are more primes than you would think.

Example (Make a guess)

π(100) =

π(10 000) =

27 / 218

Cryptography Number Theory

Prime Number Theorem

Theorem (Prime-Number-Theorem)

Let π(n) denote the number of primes up to n. Then π(n) ∼ n
ln(n) .

There are more primes than you would think.

Example (Make a guess)

π(100) = 25 ∼ 1/4 of numbers

π(10 000) = 1229 ∼ 1/8 of numbers

27 / 218

RSA

RSA

28 / 218

RSA How does it work?

RSA

THE classic in Public Key Cryptography
besides Diffie-Hellman key-exchange (; later section)

published April, 1977

simple design, scheme yet unbroken

named after

Ron Rivest
Adi Shamir
Leonard Adleman

featured in Martin Gardner’s “Mathematical Games”, Aug 1977;
including the first RSA-challenge (129 decimal digits, 100$),
solved in 1994,

already included idea of signature via RSA

29 / 218

RSA How does it work?

RSA

THE classic in Public Key Cryptography
besides Diffie-Hellman key-exchange (; later section)

published April, 1977

simple design, scheme yet unbroken

named after

Ron Rivest
Adi Shamir
Leonard Adleman

featured in Martin Gardner’s “Mathematical Games”, Aug 1977;
including the first RSA-challenge (129 decimal digits, 100$),

solved in 1994,

already included idea of signature via RSA

29 / 218

RSA How does it work?

RSA

THE classic in Public Key Cryptography
besides Diffie-Hellman key-exchange (; later section)

published April, 1977

simple design, scheme yet unbroken

named after

Ron Rivest
Adi Shamir
Leonard Adleman

featured in Martin Gardner’s “Mathematical Games”, Aug 1977;
including the first RSA-challenge (129 decimal digits, 100$),
solved in 1994,

already included idea of signature via RSA

29 / 218

RSA How does it work?

RSA

Setup:

p, q primes
n := p · q =⇒ φ(n) = (p − 1)(q − 1)
choose e coprime to φ(n)
d := e−1 mod φ(n) (extended Euclidean Algorithm)

Keys:

public key (n, e)
private key (n, d), possibly p, q, φ(n)

Usage:

encrypt c = me mod n
decrypt m = cd mod n

30 / 218

RSA How does it work?

RSA

Setup:

p, q primes
n := p · q =⇒ φ(n) = (p − 1)(q − 1)
choose e coprime to φ(n)
d := e−1 mod φ(n) (extended Euclidean Algorithm)

Keys:

public key (n, e)
private key (n, d), possibly p, q, φ(n)

Usage:

encrypt c = me mod n
decrypt m = cd mod n

30 / 218

RSA How does it work?

RSA

Setup:

p, q primes
n := p · q =⇒ φ(n) = (p − 1)(q − 1)
choose e coprime to φ(n)
d := e−1 mod φ(n) (extended Euclidean Algorithm)

Keys:

public key (n, e)
private key (n, d), possibly p, q, φ(n)

Usage:

encrypt c = me mod n
decrypt m = cd mod n

30 / 218

RSA How does it work?

Example (Key Generation)

choose primes p = 47 and q = 97, yields n = 4559

choose e = 17

φ(n) = (p − 1)(q − 1) = 4416

,d, = EEA(e, phi), yields d = 3377

Example (En-/Decryption)

message m = 102 (first letter of flag...)

encrypt: cipher

c = me mod n = 10217 mod 4559 = 2993

decrypt: get back message

m = cd mod n = 29933377 mod 4559 = 102

31 / 218

RSA How does it work?

Example (Key Generation)

choose primes p = 47 and q = 97, yields n = 4559

choose e = 17

φ(n) = (p − 1)(q − 1) = 4416

,d, = EEA(e, phi), yields d = 3377

Example (En-/Decryption)

message m = 102 (first letter of flag...)

encrypt: cipher

c = me mod n = 10217 mod 4559 = 2993

decrypt: get back message

m = cd mod n = 29933377 mod 4559 = 102

31 / 218

RSA How does it work?

Correctness of RSA

Theorem

For every message 0 ≤ m < n we have m = (me)d mod n.

slightly wrong “proof”.

med ≡ m1+kφ(n) ≡ m ·
(
mφ(n)

)k
≡ m · 1k ≡ m mod n

by Euler. But this only works for m, n coprime.

Proof.

If p | m, then med ≡ 0 ≡ m mod p. Else

med ≡ m1+k(q−1)(p−1) ≡ m ·
(
mp−1

)k(q−1) ≡ m · 1k(q−1) ≡ m mod p

So med ≡ m mod p. Analogue for q.
Hence med ≡ m mod n by CRT.

32 / 218

RSA How does it work?

Correctness of RSA

Theorem

For every message 0 ≤ m < n we have m = (me)d mod n.

slightly wrong “proof”.

med ≡ m1+kφ(n) ≡ m ·
(
mφ(n)

)k
≡ m · 1k ≡ m mod n

by Euler.

But this only works for m, n coprime.

Proof.

If p | m, then med ≡ 0 ≡ m mod p. Else

med ≡ m1+k(q−1)(p−1) ≡ m ·
(
mp−1

)k(q−1) ≡ m · 1k(q−1) ≡ m mod p

So med ≡ m mod p. Analogue for q.
Hence med ≡ m mod n by CRT.

32 / 218

RSA How does it work?

Correctness of RSA

Theorem

For every message 0 ≤ m < n we have m = (me)d mod n.

slightly wrong “proof”.

med ≡ m1+kφ(n) ≡ m ·
(
mφ(n)

)k
≡ m · 1k ≡ m mod n

by Euler. But this only works for m, n coprime.

Proof.

If p | m, then med ≡ 0 ≡ m mod p. Else

med ≡ m1+k(q−1)(p−1) ≡ m ·
(
mp−1

)k(q−1) ≡ m · 1k(q−1) ≡ m mod p

So med ≡ m mod p. Analogue for q.
Hence med ≡ m mod n by CRT.

32 / 218

RSA How does it work?

Correctness of RSA

Theorem

For every message 0 ≤ m < n we have m = (me)d mod n.

slightly wrong “proof”.

med ≡ m1+kφ(n) ≡ m ·
(
mφ(n)

)k
≡ m · 1k ≡ m mod n

by Euler. But this only works for m, n coprime.

Proof.

If p | m, then med ≡ 0 ≡ m mod p.

Else

med ≡ m1+k(q−1)(p−1) ≡ m ·
(
mp−1

)k(q−1) ≡ m · 1k(q−1) ≡ m mod p

So med ≡ m mod p. Analogue for q.
Hence med ≡ m mod n by CRT.

32 / 218

RSA How does it work?

Correctness of RSA

Theorem

For every message 0 ≤ m < n we have m = (me)d mod n.

slightly wrong “proof”.

med ≡ m1+kφ(n) ≡ m ·
(
mφ(n)

)k
≡ m · 1k ≡ m mod n

by Euler. But this only works for m, n coprime.

Proof.

If p | m, then med ≡ 0 ≡ m mod p. Else

med ≡ m1+k(q−1)(p−1) ≡ m ·
(
mp−1

)k(q−1) ≡ m · 1k(q−1) ≡ m mod p

So med ≡ m mod p.

Analogue for q.
Hence med ≡ m mod n by CRT.

32 / 218

RSA How does it work?

Correctness of RSA

Theorem

For every message 0 ≤ m < n we have m = (me)d mod n.

slightly wrong “proof”.

med ≡ m1+kφ(n) ≡ m ·
(
mφ(n)

)k
≡ m · 1k ≡ m mod n

by Euler. But this only works for m, n coprime.

Proof.

If p | m, then med ≡ 0 ≡ m mod p. Else

med ≡ m1+k(q−1)(p−1) ≡ m ·
(
mp−1

)k(q−1) ≡ m · 1k(q−1) ≡ m mod p

So med ≡ m mod p. Analogue for q.
Hence med ≡ m mod n by CRT.

32 / 218

RSA How does it work?

RSA Details

Generating primes of B bit

generate random bit sequence p = pB−1 . . . p11 (last bit 1)
(Random Number Generators ; “Cryptography for Security”)

test, whether p is (probably) prime (; later section)

chance: ∼
2B

ln 2B

2B
= 1

ln 2B
∼ 1

B (Prime Number Theorem)

Choosing e

pick e = 65537 = 216 + 1 = 0x10001

does not work =⇒ new primes

alternatively:
e ∈ {3, 5, 17, 257, 65537} = {22k + 1 : k = 0, . . . , 4}
Fermat primes: coprime iff e ∤ φ(n),
e = 10 . . . 012, only 2k + 1 ≤ 17 multiplications ; fast

33 / 218

RSA How does it work?

RSA Details

Generating primes of B bit

generate random bit sequence p = pB−1 . . . p11 (last bit 1)
(Random Number Generators ; “Cryptography for Security”)

test, whether p is (probably) prime (; later section)

chance: ∼
2B

ln 2B

2B
= 1

ln 2B
∼ 1

B (Prime Number Theorem)

Choosing e

pick e = 65537 = 216 + 1 = 0x10001

does not work =⇒ new primes

alternatively:
e ∈ {3, 5, 17, 257, 65537} = {22k + 1 : k = 0, . . . , 4}
Fermat primes: coprime iff e ∤ φ(n),
e = 10 . . . 012, only 2k + 1 ≤ 17 multiplications ; fast

33 / 218

RSA How does it work?

RSA Details

Generating primes of B bit

generate random bit sequence p = pB−1 . . . p11 (last bit 1)
(Random Number Generators ; “Cryptography for Security”)

test, whether p is (probably) prime (; later section)

chance: ∼
2B

ln 2B

2B
= 1

ln 2B
∼ 1

B (Prime Number Theorem)

Choosing e

pick e = 65537 = 216 + 1 = 0x10001

does not work =⇒ new primes

alternatively:
e ∈ {3, 5, 17, 257, 65537} = {22k + 1 : k = 0, . . . , 4}
Fermat primes: coprime iff e ∤ φ(n),
e = 10 . . . 012, only 2k + 1 ≤ 17 multiplications ; fast

33 / 218

RSA How does it work?

RSA Details

Generating primes of B bit

generate random bit sequence p = pB−1 . . . p11 (last bit 1)
(Random Number Generators ; “Cryptography for Security”)

test, whether p is (probably) prime (; later section)

chance: ∼
2B

ln 2B

2B
= 1

ln 2B
∼ 1

B (Prime Number Theorem)

Choosing e

pick e = 65537 = 216 + 1 = 0x10001

does not work =⇒ new primes

alternatively:
e ∈ {3, 5, 17, 257, 65537} = {22k + 1 : k = 0, . . . , 4}
Fermat primes: coprime iff e ∤ φ(n),
e = 10 . . . 012, only 2k + 1 ≤ 17 multiplications ; fast

33 / 218

RSA How does it work?

RSA Details

Generating primes of B bit

generate random bit sequence p = pB−1 . . . p11 (last bit 1)
(Random Number Generators ; “Cryptography for Security”)

test, whether p is (probably) prime (; later section)

chance: ∼
2B

ln 2B

2B
= 1

ln 2B
∼ 1

B (Prime Number Theorem)

Choosing e

pick e = 65537 = 216 + 1 = 0x10001

does not work =⇒ new primes

alternatively:
e ∈ {3, 5, 17, 257, 65537} = {22k + 1 : k = 0, . . . , 4}

Fermat primes: coprime iff e ∤ φ(n),
e = 10 . . . 012, only 2k + 1 ≤ 17 multiplications ; fast

33 / 218

RSA How does it work?

RSA Details

Generating primes of B bit

generate random bit sequence p = pB−1 . . . p11 (last bit 1)
(Random Number Generators ; “Cryptography for Security”)

test, whether p is (probably) prime (; later section)

chance: ∼
2B

ln 2B

2B
= 1

ln 2B
∼ 1

B (Prime Number Theorem)

Choosing e

pick e = 65537 = 216 + 1 = 0x10001

does not work =⇒ new primes

alternatively:
e ∈ {3, 5, 17, 257, 65537} = {22k + 1 : k = 0, . . . , 4}
Fermat primes: coprime iff e ∤ φ(n),
e = 10 . . . 012, only 2k + 1 ≤ 17 multiplications ; fast

33 / 218

RSA How does it work?

Modular Exponentiation

Need to compute ab mod n

Naive approach A

(b − 1) multiplications, one modulo

huge intermediate results, size b · log a instead of log n

Square-and-Multiply

1: function Pow(a, b, n)
2: c ← 1
3: for i = log b, . . . , 0 do
4: c ← c2 mod n
5: if bi = 1 then ▷ if(b & (1 << i))

6: c ← c · a mod n
7: return c

total: ≤ 2 log b mult. and mod of size log n

34 / 218

RSA How does it work?

Modular Exponentiation

Need to compute ab mod n

Naive approach A

(b − 1) multiplications, one modulo

huge intermediate results, size b · log a instead of log n

Square-and-Multiply

1: function Pow(a, b, n)
2: c ← 1
3: for i = log b, . . . , 0 do
4: c ← c2 mod n
5: if bi = 1 then ▷ if(b & (1 << i))

6: c ← c · a mod n
7: return c

total: ≤ 2 log b mult. and mod of size log n

34 / 218

RSA How does it work?

Modular Exponentiation

Need to compute ab mod n

Naive approach A

(b − 1) multiplications, one modulo

huge intermediate results, size b · log a instead of log n

Square-and-Multiply

1: function Pow(a, b, n)
2: c ← 1
3: for i = log b, . . . , 0 do
4: c ← c2 mod n
5: if bi = 1 then ▷ if(b & (1 << i))

6: c ← c · a mod n
7: return c

total: ≤ 2 log b mult. and mod of size log n

34 / 218

RSA How does it work?

Modular Exponentiation

Need to compute ab mod n

Naive approach A

(b − 1) multiplications, one modulo

huge intermediate results, size b · log a instead of log n

Square-and-Multiply

1: function Pow(a, b, n)
2: c ← 1
3: for i = log b, . . . , 0 do
4: c ← c2 mod n
5: if bi = 1 then ▷ if(b & (1 << i))

6: c ← c · a mod n
7: return c

total: ≤ 2 log b mult. and mod of size log n

34 / 218

RSA How does it work?

Example

modulus n = 4559

public exponent e = 17 = 24 + 1

message m = 102

Further computations in Zn:

c := 102 m1 mod n

c := 1022 = 1286 m2 mod n

c := 12862 = 3438 m4 mod n

c := 34382 = 2916 m8 mod n

c := 29162 = 521 m16 mod n

c := 521 · 102 = 2993 m17 mod n

In total: 5 multiplications

35 / 218

RSA How does it work?

Further Optimisation

During setup also compute (once)

dp = d mod p − 1 dq = d mod q − 1 qinv = q−1 mod p

decryption

cp = c mod p cq = c mod q

mp = c
dp
p mod p mq = c

dq
q mod q

h = qinv(mp −mq) mod p

m = mq + hq mod n

Proof of correctness.

cd ≡ c
k·(q−1)+dq
q ≡ c

dq
q ≡ mq ≡ mq + hq ≡ m mod q

cd ≡ c
dp
p ≡ mp ≡ mq + qq−1(mp −mq) ≡ mq + hq ≡ m mod p

(Special cases p | c and q | c .) Hence, m = cd mod n by CRT.

36 / 218

RSA How does it work?

Further Optimisation

During setup also compute (once)

dp = d mod p − 1 dq = d mod q − 1 qinv = q−1 mod p

decryption

cp = c mod p cq = c mod q

mp = c
dp
p mod p mq = c

dq
q mod q

h = qinv(mp −mq) mod p

m = mq + hq mod n

Proof of correctness.

cd ≡ c
k·(q−1)+dq
q ≡ c

dq
q ≡ mq ≡ mq + hq ≡ m mod q

cd ≡ c
dp
p ≡ mp ≡ mq + qq−1(mp −mq) ≡ mq + hq ≡ m mod p

(Special cases p | c and q | c .) Hence, m = cd mod n by CRT.

36 / 218

RSA How does it work?

Further Optimisation

During setup also compute (once)

dp = d mod p − 1 dq = d mod q − 1 qinv = q−1 mod p

decryption

cp = c mod p cq = c mod q

mp = c
dp
p mod p mq = c

dq
q mod q

h = qinv(mp −mq) mod p

m = mq + hq mod n

Proof of correctness.

cd ≡ c
k·(q−1)+dq
q ≡ c

dq
q ≡ mq ≡ mq + hq ≡ m mod q

cd ≡ c
dp
p ≡ mp ≡ mq + qq−1(mp −mq) ≡ mq + hq ≡ m mod p

(Special cases p | c and q | c .) Hence, m = cd mod n by CRT.

36 / 218

RSA How does it work?

Further Optimisation

During setup also compute (once)

dp = d mod p − 1 dq = d mod q − 1 qinv = q−1 mod p

decryption

cp = c mod p cq = c mod q

mp = c
dp
p mod p mq = c

dq
q mod q

h = qinv(mp −mq) mod p

m = mq + hq mod n

Proof of correctness.

cd ≡ c
k·(q−1)+dq
q ≡ c

dq
q ≡ mq ≡ mq + hq ≡ m mod q

cd ≡ c
dp
p ≡ mp ≡ mq + qq−1(mp −mq) ≡ mq + hq ≡ m mod p

(Special cases p | c and q | c .) Hence, m = cd mod n by CRT.

36 / 218

RSA How does it work?

Complexity Analysis

cp = c mod p cq = c mod q

mp = c
dp
p mod p mq = c

dq
q mod q

h = qinv(mp −mq) mod p

m = mq + hq mod n

Assume log d = log n = B, and log p = log q = B
2 ,

d , dp, dq equally many 0s and 1s

normal ∼ 3
2B mult. of size B

via CRT 3 + 2 · 32 ·
B
2 op.s of size B

2 , 1 mod of size B

∼ 3
2B op.s of size B

2
factor 2-4, depending on multiplication method
can be run in parallel ; another factor 2

37 / 218

RSA How does it work?

Complexity Analysis

cp = c mod p cq = c mod q

mp = c
dp
p mod p mq = c

dq
q mod q

h = qinv(mp −mq) mod p

m = mq + hq mod n

Assume log d = log n = B, and log p = log q = B
2 ,

d , dp, dq equally many 0s and 1s

normal ∼ 3
2B mult. of size B

via CRT 3 + 2 · 32 ·
B
2 op.s of size B

2 , 1 mod of size B

∼ 3
2B op.s of size B

2
factor 2-4, depending on multiplication method
can be run in parallel ; another factor 2

37 / 218

RSA How does it work?

Complexity Analysis

cp = c mod p cq = c mod q

mp = c
dp
p mod p mq = c

dq
q mod q

h = qinv(mp −mq) mod p

m = mq + hq mod n

Assume log d = log n = B, and log p = log q = B
2 ,

d , dp, dq equally many 0s and 1s

normal ∼ 3
2B mult. of size B

via CRT 3 + 2 · 32 ·
B
2 op.s of size B

2 , 1 mod of size B

∼ 3
2B op.s of size B

2
factor 2-4, depending on multiplication method
can be run in parallel ; another factor 2

37 / 218

RSA How does it work?

Example

private key: n = 4559, d = 3377, p = 47, q = 97

compute once: dp = 19, dq = 17, qinv = 16

decrypt c = 2993

cp = 32 cq = 83

mp = c
dp
p mod p = 8 mq = c

dq
q mod q = 5

h = qinv(mp −mq) mod p = 1

m = mq + hq mod n = 102

Note: These computations are nearly possible by hand.

38 / 218

RSA How does it work?

Example

private key: n = 4559, d = 3377, p = 47, q = 97

compute once: dp = 19, dq = 17, qinv = 16

decrypt c = 2993

cp = 32 cq = 83

mp = c
dp
p mod p = 8 mq = c

dq
q mod q = 5

h = qinv(mp −mq) mod p = 1

m = mq + hq mod n = 102

Note: These computations are nearly possible by hand.

38 / 218

RSA How does it work?

Definition (Addition Chain, D. Knuth, TAOCP Vol. 2)

An addition chain for integer n of length l is a sequence

1 = a0, a1, . . . , al = n

such that every entry is a sum of 2 previous ones.

Example

For 15 we have 1, 2, 3, 6, 12, 15 of length 5.
Application: faster modular exponentiation,
square-and-multiply: 15 = 11112 ; 7 multiplications

x2 = x · x mod n x12 = x6 · x6 mod n

x3 = x2 · x mod n x15 = x12 · x3 mod n

x6 = x3 · x3 mod n

39 / 218

RSA How does it work?

Definition (Addition Chain, D. Knuth, TAOCP Vol. 2)

An addition chain for integer n of length l is a sequence

1 = a0, a1, . . . , al = n

such that every entry is a sum of 2 previous ones.

Example

For 15 we have 1, 2, 3, 6, 12, 15 of length 5.

Application: faster modular exponentiation,
square-and-multiply: 15 = 11112 ; 7 multiplications

x2 = x · x mod n x12 = x6 · x6 mod n

x3 = x2 · x mod n x15 = x12 · x3 mod n

x6 = x3 · x3 mod n

39 / 218

RSA How does it work?

Definition (Addition Chain, D. Knuth, TAOCP Vol. 2)

An addition chain for integer n of length l is a sequence

1 = a0, a1, . . . , al = n

such that every entry is a sum of 2 previous ones.

Example

For 15 we have 1, 2, 3, 6, 12, 15 of length 5.
Application: faster modular exponentiation,
square-and-multiply: 15 = 11112 ; 7 multiplications

x2 = x · x mod n x12 = x6 · x6 mod n

x3 = x2 · x mod n x15 = x12 · x3 mod n

x6 = x3 · x3 mod n

39 / 218

RSA How does it work?

Definition (Addition Chain, D. Knuth, TAOCP Vol. 2)

An addition chain for integer n of length l is a sequence

1 = a0, a1, . . . , al = n

such that every entry is a sum of 2 previous ones.

Example

For 15 we have 1, 2, 3, 6, 12, 15 of length 5.
Application: faster modular exponentiation,
square-and-multiply: 15 = 11112 ; 7 multiplications

x2 = x · x mod n x12 = x6 · x6 mod n

x3 = x2 · x mod n x15 = x12 · x3 mod n

x6 = x3 · x3 mod n

39 / 218

RSA How does it work?

Problem with Addition Chains

Let l(n) denote length of smallest addition chain for n.

Finding l(n) is hard

Let |n|1 denote number of 1s. Known bounds are:

log n + log |n|1 − 2.13 ≤ l(n) ≤ log n + |n|1 − 1

l(n) ∈ log n + (1 + o(1)) · log n

log log n

Theorem (Downey, Leong, Seth, 1981)

Given a1, . . . , ak , find smallest chain containing them all is
NP-complete.

Exercise (Challenge)

Find a small addition chain for 2127 − 3.

40 / 218

RSA How does it work?

Problem with Addition Chains

Let l(n) denote length of smallest addition chain for n.

Finding l(n) is hard

Let |n|1 denote number of 1s. Known bounds are:

log n + log |n|1 − 2.13 ≤ l(n) ≤ log n + |n|1 − 1

l(n) ∈ log n + (1 + o(1)) · log n

log log n

Theorem (Downey, Leong, Seth, 1981)

Given a1, . . . , ak , find smallest chain containing them all is
NP-complete.

Exercise (Challenge)

Find a small addition chain for 2127 − 3.

40 / 218

RSA How does it work?

Problem with Addition Chains

Let l(n) denote length of smallest addition chain for n.

Finding l(n) is hard

Let |n|1 denote number of 1s. Known bounds are:

log n + log |n|1 − 2.13 ≤ l(n) ≤ log n + |n|1 − 1

l(n) ∈ log n + (1 + o(1)) · log n

log log n

Theorem (Downey, Leong, Seth, 1981)

Given a1, . . . , ak , find smallest chain containing them all is
NP-complete.

Exercise (Challenge)

Find a small addition chain for 2127 − 3.

40 / 218

RSA How does it work?

Parameter Size

strength of key given in bit size of n

ssh-keygen currently has default 3072

secure key should have 4096; more threatened by Quantum
Computers, than classical factoring

p, q should have same bitlength

Standard-setting

Assume n ∼ 4096 Bit, e = 65537.

Encryption: 17 op.s of size 4096

Decryption: d ∼ 4096 Bit

Square-and-Multiply: ∼ 6000 op.s of size 4096
optimised: ∼ 2× 2100-3000 op.s of size 2048

Can we swap the effort? NO! (see later)

41 / 218

RSA How does it work?

Parameter Size

strength of key given in bit size of n

ssh-keygen currently has default 3072

secure key should have 4096; more threatened by Quantum
Computers, than classical factoring

p, q should have same bitlength

Standard-setting

Assume n ∼ 4096 Bit, e = 65537.

Encryption: 17 op.s of size 4096

Decryption: d ∼ 4096 Bit

Square-and-Multiply: ∼ 6000 op.s of size 4096
optimised: ∼ 2× 2100-3000 op.s of size 2048

Can we swap the effort? NO! (see later)

41 / 218

RSA How does it work?

Parameter Size

strength of key given in bit size of n

ssh-keygen currently has default 3072

secure key should have 4096; more threatened by Quantum
Computers, than classical factoring

p, q should have same bitlength

Standard-setting

Assume n ∼ 4096 Bit, e = 65537.

Encryption: 17 op.s of size 4096

Decryption: d ∼ 4096 Bit

Square-and-Multiply: ∼ 6000 op.s of size 4096
optimised: ∼ 2× 2100-3000 op.s of size 2048

Can we swap the effort? NO! (see later)

41 / 218

RSA Security of RSA

Theorem of Secret Parameters

Theorem (Theorem of Secret Parameters)

Given one entry of the private key (p, q, φ(n), d) and the public key,
we can efficiently compute the full private key.

42 / 218

RSA Security of RSA

Theorem of Secret Parameters

Theorem (Theorem of Secret Parameters)

Given one entry of the private key (p, q, φ(n), d) and the public key,
we can efficiently compute the full private key.

Corollary

If d is known, it is not sufficient to just replace e and d.
need new primes (computational effort)

Exercise

We can also break the key, if dp or dq is given beside the public key.

42 / 218

RSA Security of RSA

Theorem of Secret Parameters

Theorem (Theorem of Secret Parameters)

Given one entry of the private key (p, q, φ(n), d) and the public key,
we can efficiently compute the full private key.

p, q known see key generation

φ(n) known solve quadratic equation:

a := n − φ(n) = p + q − 1 known

n = p · q = p · (a+ 1− p)

Equation x2 − (a+ 1)x + n = 0 has two solution: p, q

42 / 218

RSA Security of RSA

Theorem of Secret Parameters – d known

Assume d is known.

e small: Test ed − 1 = ∗ · φ(n) for all ∗ ≤ 2e; likely ∗ =
⌈
ed−1
n

⌉

else: Note: gcd(∗, n) ∈ {1, p, q, n}
1: function Factor(d , e, n)
2: s ← M2 (ed − 1) ▷ multiplicity of 2
3: k ← ed−1

2s ▷ “odd part”
4: while True do
5: pick random 0 < a < n
6: if gcd(a, n) > 1 then ▷ very low chance
7: return gcd

8: for i = 0, . . . , s − 1 do

9: if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

10: return gcd

Chance of success ≥ 1
2 per loop,

but the “why” is more complicatded

43 / 218

RSA Security of RSA

Theorem of Secret Parameters – d known

Assume d is known.

e small: Test ed − 1 = ∗ · φ(n) for all ∗ ≤ 2e; likely ∗ =
⌈
ed−1
n

⌉
else: Note: gcd(∗, n) ∈ {1, p, q, n}

1: function Factor(d , e, n)
2: s ← M2 (ed − 1) ▷ multiplicity of 2
3: k ← ed−1

2s ▷ “odd part”
4: while True do
5: pick random 0 < a < n
6: if gcd(a, n) > 1 then ▷ very low chance
7: return gcd

8: for i = 0, . . . , s − 1 do

9: if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

10: return gcd

Chance of success ≥ 1
2 per loop,

but the “why” is more complicatded

43 / 218

RSA Security of RSA

Theorem of Secret Parameters – d known

Assume d is known.

e small: Test ed − 1 = ∗ · φ(n) for all ∗ ≤ 2e; likely ∗ =
⌈
ed−1
n

⌉
else: Note: gcd(∗, n) ∈ {1, p, q, n}

1: function Factor(d , e, n)
2: s ← M2 (ed − 1) ▷ multiplicity of 2
3: k ← ed−1

2s ▷ “odd part”

4: while True do
5: pick random 0 < a < n
6: if gcd(a, n) > 1 then ▷ very low chance
7: return gcd

8: for i = 0, . . . , s − 1 do

9: if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

10: return gcd

Chance of success ≥ 1
2 per loop,

but the “why” is more complicatded

43 / 218

RSA Security of RSA

Theorem of Secret Parameters – d known

Assume d is known.

e small: Test ed − 1 = ∗ · φ(n) for all ∗ ≤ 2e; likely ∗ =
⌈
ed−1
n

⌉
else: Note: gcd(∗, n) ∈ {1, p, q, n}

1: function Factor(d , e, n)
2: s ← M2 (ed − 1) ▷ multiplicity of 2
3: k ← ed−1

2s ▷ “odd part”
4: while True do
5: pick random 0 < a < n
6: if gcd(a, n) > 1 then ▷ very low chance
7: return gcd

8: for i = 0, . . . , s − 1 do

9: if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

10: return gcd

Chance of success ≥ 1
2 per loop,

but the “why” is more complicatded

43 / 218

RSA Security of RSA

Theorem of Secret Parameters – d known

Assume d is known.

e small: Test ed − 1 = ∗ · φ(n) for all ∗ ≤ 2e; likely ∗ =
⌈
ed−1
n

⌉
else: Note: gcd(∗, n) ∈ {1, p, q, n}

1: function Factor(d , e, n)
2: s ← M2 (ed − 1) ▷ multiplicity of 2
3: k ← ed−1

2s ▷ “odd part”
4: while True do
5: pick random 0 < a < n
6: if gcd(a, n) > 1 then ▷ very low chance
7: return gcd

8: for i = 0, . . . , s − 1 do

9: if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

10: return gcd

Chance of success ≥ 1
2 per loop,

but the “why” is more complicatded

43 / 218

RSA Security of RSA

Notation: ed − 1 = ∗ · φ(n) = k · 2s , k odd
Interesting Code part:

for i = 0, . . . , s − 1 do

if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

return gcd

Do not really need d , but just some multiple of φ(n)

Proof (beginning).

gcd(a, n) = 1 =⇒ (ak)2
s
= a∗·φ(n) =

(
aφ(n)

)∗
≡ 1 mod n

=⇒ (ak)2
s − 1 ≡ 0 mod n

=⇒ gcd
(
(ak)2

s − 1, n
)
= n

Look for first step i with gcd
(
(ak)2

i − 1, n
)
> 1, (could be n)

but if not, the gcd is p or q ; know everything

44 / 218

RSA Security of RSA

Notation: ed − 1 = ∗ · φ(n) = k · 2s , k odd
Interesting Code part:

for i = 0, . . . , s − 1 do

if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

return gcd

Do not really need d , but just some multiple of φ(n)

Proof (beginning).

gcd(a, n) = 1 =⇒ (ak)2
s
= a∗·φ(n) =

(
aφ(n)

)∗
≡ 1 mod n

=⇒ (ak)2
s − 1 ≡ 0 mod n

=⇒ gcd
(
(ak)2

s − 1, n
)
= n

Look for first step i with gcd
(
(ak)2

i − 1, n
)
> 1, (could be n)

but if not, the gcd is p or q ; know everything

44 / 218

RSA Security of RSA

Notation: ed − 1 = ∗ · φ(n) = k · 2s , k odd
Interesting Code part:

for i = 0, . . . , s − 1 do

if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

return gcd

Do not really need d , but just some multiple of φ(n)

Proof (beginning).

gcd(a, n) = 1 =⇒ (ak)2
s
= a∗·φ(n) =

(
aφ(n)

)∗
≡ 1 mod n

=⇒ (ak)2
s − 1 ≡ 0 mod n

=⇒ gcd
(
(ak)2

s − 1, n
)
= n

Look for first step i with gcd
(
(ak)2

i − 1, n
)
> 1, (could be n)

but if not, the gcd is p or q ; know everything

44 / 218

RSA Security of RSA

Notation: ed − 1 = ∗ · φ(n) = k · 2s , k odd
Interesting Code part:

for i = 0, . . . , s − 1 do

if gcd
(
(ak)2

i − 1, n
)
/∈ {1, n} then

return gcd

Do not really need d , but just some multiple of φ(n)

Proof (beginning).

gcd(a, n) = 1 =⇒ (ak)2
s
= a∗·φ(n) =

(
aφ(n)

)∗
≡ 1 mod n

=⇒ (ak)2
s − 1 ≡ 0 mod n

=⇒ gcd
(
(ak)2

s − 1, n
)
= n

Look for first step i with gcd
(
(ak)2

i − 1, n
)
> 1, (could be n)

but if not, the gcd is p or q ; know everything

44 / 218

RSA Security of RSA

Proof Idea.

started with observation

(ak)2
s − 1 ≡ 0 mod n

congruence also holds modulo p, q

also possibly for smaller exponents x , y (pick smallest)

(ak)2
x − 1 ≡ 0 mod p (ak)2

y − 1 ≡ 0 mod q

assume x , y differ (chance ≥ 50%), wlog x < y

(ak)2
x − 1 ≡ 0 mod p (ak)2

x − 1 ≡/ 0 mod q

=⇒ gcd
(
(ak)2

x − 1, n
)
= p

try out all x ; success

45 / 218

RSA Security of RSA

Proof Idea.

started with observation

(ak)2
s − 1 ≡ 0 mod n

congruence also holds modulo p, q

also possibly for smaller exponents x , y (pick smallest)

(ak)2
x − 1 ≡ 0 mod p (ak)2

y − 1 ≡ 0 mod q

assume x , y differ (chance ≥ 50%), wlog x < y

(ak)2
x − 1 ≡ 0 mod p (ak)2

x − 1 ≡/ 0 mod q

=⇒ gcd
(
(ak)2

x − 1, n
)
= p

try out all x ; success

45 / 218

RSA Security of RSA

Groups

Definition

A group is a structure G = (G , ◦, ∗−1, 1) such that

◦ is associative
∀g ∈ G . 1 ◦ g = g = g ◦ 1 (neutral element)

∀g ∈ G . g ◦ g−1 = 1 = g−1 ◦ g (inverse element)

If in addition, ◦ is commutative, we call G abelian group.

Often refer to G as the group, or just define ◦ explicitly.

Example

(Z,+), (Zn,+)

(Z∗
n, ·) all numbers coprime to n

Sn: the group of permutations of n elements

point addition on elliptic curves (; later section)

46 / 218

RSA Security of RSA

Groups

Definition

A group is a structure G = (G , ◦, ∗−1, 1) such that

◦ is associative
∀g ∈ G . 1 ◦ g = g = g ◦ 1 (neutral element)

∀g ∈ G . g ◦ g−1 = 1 = g−1 ◦ g (inverse element)

If in addition, ◦ is commutative, we call G abelian group.

Often refer to G as the group, or just define ◦ explicitly.

Example

(Z,+), (Zn,+)

(Z∗
n, ·) all numbers coprime to n

Sn: the group of permutations of n elements

point addition on elliptic curves (; later section)

46 / 218

RSA Security of RSA

Groups

Definition

A group is a structure G = (G , ◦, ∗−1, 1) such that

◦ is associative
∀g ∈ G . 1 ◦ g = g = g ◦ 1 (neutral element)

∀g ∈ G . g ◦ g−1 = 1 = g−1 ◦ g (inverse element)

If in addition, ◦ is commutative, we call G abelian group.

Often refer to G as the group, or just define ◦ explicitly.

Example

(Z,+), (Zn,+)

(Z∗
n, ·) all numbers coprime to n

Sn: the group of permutations of n elements

point addition on elliptic curves (; later section)

46 / 218

RSA Security of RSA

Groups

Definition

A group is a structure G = (G , ◦, ∗−1, 1) such that

◦ is associative
∀g ∈ G . 1 ◦ g = g = g ◦ 1 (neutral element)

∀g ∈ G . g ◦ g−1 = 1 = g−1 ◦ g (inverse element)

If in addition, ◦ is commutative, we call G abelian group.

Often refer to G as the group, or just define ◦ explicitly.

Example

(Z,+), (Zn,+)

(Z∗
n, ·) all numbers coprime to n

Sn: the group of permutations of n elements

point addition on elliptic curves (; later section)

46 / 218

RSA Security of RSA

Some more Algebra

Definition

Let G be a group, g ∈ G . The order of g , oG (g) or just o (g), is the
smallest number k > 0 with gk = 1.

Example

G = (Z∗
7, ·), g = 2, then 23 = 8 = 1, but 21, 22 ̸= 1 so o (2) = 3

G = (Z7,+), g = 2, then we take multiples of 2 and look for 0
(neutral element), multiples are 2, 4, 6, 1, 3, 5, 0, so o (2) = 7

Lemma (Properties of order)

Let G be a group, g ∈ G

o (g)
∣∣∣ |G | (element order divides group order), g |G | = 1

If gn = 1, then o (g) | n.

47 / 218

RSA Security of RSA

Some more Algebra

Definition

Let G be a group, g ∈ G . The order of g , oG (g) or just o (g), is the
smallest number k > 0 with gk = 1.

Example

G = (Z∗
7, ·), g = 2, then 23 = 8 = 1, but 21, 22 ̸= 1 so o (2) = 3

G = (Z7,+), g = 2, then we take multiples of 2 and look for 0
(neutral element), multiples are 2, 4, 6, 1, 3, 5, 0, so o (2) = 7

Lemma (Properties of order)

Let G be a group, g ∈ G

o (g)
∣∣∣ |G | (element order divides group order), g |G | = 1

If gn = 1, then o (g) | n.

47 / 218

RSA Security of RSA

Some more Algebra

Definition

Let G be a group, g ∈ G . The order of g , oG (g) or just o (g), is the
smallest number k > 0 with gk = 1.

Example

G = (Z∗
7, ·), g = 2, then 23 = 8 = 1, but 21, 22 ̸= 1 so o (2) = 3

G = (Z7,+), g = 2, then we take multiples of 2 and look for 0
(neutral element), multiples are 2, 4, 6, 1, 3, 5, 0, so o (2) = 7

Lemma (Properties of order)

Let G be a group, g ∈ G

o (g)
∣∣∣ |G | (element order divides group order), g |G | = 1

If gn = 1, then o (g) | n.

47 / 218

RSA Security of RSA

Some more Algebra

Definition

Let G be a group, g ∈ G . The order of g , oG (g) or just o (g), is the
smallest number k > 0 with gk = 1.

Example

G = (Z∗
7, ·), g = 2, then 23 = 8 = 1, but 21, 22 ̸= 1 so o (2) = 3

G = (Z7,+), g = 2, then we take multiples of 2 and look for 0
(neutral element), multiples are 2, 4, 6, 1, 3, 5, 0, so o (2) = 7

Lemma (Properties of order)

Let G be a group, g ∈ G

o (g)
∣∣∣ |G | (element order divides group order), g |G | = 1

If gn = 1, then o (g) | n.
47 / 218

RSA Security of RSA

Definition

Let G be a group, g ∈ G . If o (g) = |G |, then G is called cyclic, and
g is called generator. Equivalently: G = ⟨g⟩ = {gn : n ∈ Z}.

Example

Z = (Z,+): Z = ⟨1⟩
G = (Z7,+), g = 2: multiples are 2, 4, 6, 1, 3, 5, 0, so Z7 = ⟨2⟩
G = (Z∗

7, ·): g = 3, powers are 3, 2, 6, 4, 5, 1, so Z∗
7 = ⟨3⟩

Lemma

The multiplicative group of every finite field is cyclic.

In particular for prime p there is some g < p such that Z∗
p = ⟨g⟩.

48 / 218

RSA Security of RSA

Definition

Let G be a group, g ∈ G . If o (g) = |G |, then G is called cyclic, and
g is called generator. Equivalently: G = ⟨g⟩ = {gn : n ∈ Z}.

Example

Z = (Z,+): Z = ⟨1⟩
G = (Z7,+), g = 2: multiples are 2, 4, 6, 1, 3, 5, 0, so Z7 = ⟨2⟩
G = (Z∗

7, ·): g = 3, powers are 3, 2, 6, 4, 5, 1, so Z∗
7 = ⟨3⟩

Lemma

The multiplicative group of every finite field is cyclic.

In particular for prime p there is some g < p such that Z∗
p = ⟨g⟩.

48 / 218

RSA Security of RSA

Definition

Let G be a group, g ∈ G . If o (g) = |G |, then G is called cyclic, and
g is called generator. Equivalently: G = ⟨g⟩ = {gn : n ∈ Z}.

Example

Z = (Z,+): Z = ⟨1⟩
G = (Z7,+), g = 2: multiples are 2, 4, 6, 1, 3, 5, 0, so Z7 = ⟨2⟩
G = (Z∗

7, ·): g = 3, powers are 3, 2, 6, 4, 5, 1, so Z∗
7 = ⟨3⟩

Lemma

The multiplicative group of every finite field is cyclic.

In particular for prime p there is some g < p such that Z∗
p = ⟨g⟩.

48 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∼= Zp ×Zq CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n,

also in Z∗
p and Z∗

q, so o
(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success

Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Notation: ed − 1 = x · φ(n) = k · 2s

Proof (cont.)

Zn
∗ ∼= Zp

∗ ×Zq
∗ CRT

order of ak :
(
ak
)2s

= 1 in Z∗
n, also in Z∗

p and Z∗
q, so o

(
ak
)
| 2s

=⇒ oZ∗p

(
ak
)
= 2l1 oZ∗q

(
ak
)
= 2l2 for some l1, l2 ≤ s

Let g , h be generators of Z∗
p,Z

∗
q (i.e. Z∗

p = ⟨g⟩ = {gn : n ∈ N})
random a ; ak ∼= (g y , hz) (a bit random) in Z∗

p ×Z∗
q for some y , z

o (g y) = 2l1 , o (hz) = 2l2 are 2-powers; if different ; success
Assume wlog l1 < l2, then

(ak)2
l1 ≡ 1 mod p (ak)2

l1 ̸≡ 1 mod q

p | (ak)2l1 − 1 q ∤ (ak)2
l1 − 1 =⇒ gcd

(
(ak)2

l1 − 1, n
)
= p

49 / 218

RSA Security of RSA

Proof (cont.)

Recall ak ∼= (g y , hz) ∈ Z∗
p ×Z∗

q

M2

(
|Z∗

p|
)
: How much squaring is irreversible in Z∗

p?

M2 (y): How much squaring did we already do?

l1: How much squaring do we still have to do?

M2

(
|Z∗

p|
)
= M2 (p − 1) = M2 (y) + l1

Case distinction:

M2 (p − 1) < M2 (q − 1): if z odd, then M2 (z) = 0, so

l1 ≤ M2 (p − 1) < M2 (q − 1) = l2

Chance ≥ 50% (works at least if z odd)

M2 (p − 1) = M2 (q − 1): if y , z different parity (odd/even), then
l1 ̸= l2; again 50% chance

50 / 218

RSA Security of RSA

Proof (cont.)

Recall ak ∼= (g y , hz) ∈ Z∗
p ×Z∗

q

M2

(
|Z∗

p|
)
: How much squaring is irreversible in Z∗

p?

M2 (y): How much squaring did we already do?

l1: How much squaring do we still have to do?

M2

(
|Z∗

p|
)
= M2 (p − 1) = M2 (y) + l1

Case distinction:

M2 (p − 1) < M2 (q − 1): if z odd, then M2 (z) = 0, so

l1 ≤ M2 (p − 1) < M2 (q − 1) = l2

Chance ≥ 50% (works at least if z odd)

M2 (p − 1) = M2 (q − 1): if y , z different parity (odd/even), then
l1 ̸= l2; again 50% chance

50 / 218

RSA Security of RSA

Proof (cont.)

Recall ak ∼= (g y , hz) ∈ Z∗
p ×Z∗

q

M2

(
|Z∗

p|
)
: How much squaring is irreversible in Z∗

p?

M2 (y): How much squaring did we already do?

l1: How much squaring do we still have to do?

M2

(
|Z∗

p|
)
= M2 (p − 1) = M2 (y) + l1

Case distinction:

M2 (p − 1) < M2 (q − 1): if z odd, then M2 (z) = 0, so

l1 ≤ M2 (p − 1) < M2 (q − 1) = l2

Chance ≥ 50% (works at least if z odd)

M2 (p − 1) = M2 (q − 1): if y , z different parity (odd/even), then
l1 ̸= l2; again 50% chance

50 / 218

RSA Security of RSA

Proof (cont.)

Recall ak ∼= (g y , hz) ∈ Z∗
p ×Z∗

q

M2

(
|Z∗

p|
)
: How much squaring is irreversible in Z∗

p?

M2 (y): How much squaring did we already do?

l1: How much squaring do we still have to do?

M2

(
|Z∗

p|
)
= M2 (p − 1) = M2 (y) + l1

Case distinction:

M2 (p − 1) < M2 (q − 1): if z odd, then M2 (z) = 0, so

l1 ≤ M2 (p − 1) < M2 (q − 1) = l2

Chance ≥ 50% (works at least if z odd)

M2 (p − 1) = M2 (q − 1): if y , z different parity (odd/even), then
l1 ̸= l2; again 50% chance

50 / 218

RSA Security of RSA

Calm Down

51 / 218

RSA Security of RSA

Recap

What we did so far:

public key (n, e)

private key (n, d)

every entry p, q, d , φ(n) allows to compute all others

Next Steps:

goal: find original plaintext in other words: focus on OW-CPA or
OW-CCA

exploit properties of RSA

52 / 218

RSA Security of RSA

Recap

What we did so far:

public key (n, e)

private key (n, d)

every entry p, q, d , φ(n) allows to compute all others

Next Steps:

goal: find original plaintext in other words: focus on OW-CPA or
OW-CCA

exploit properties of RSA

52 / 218

RSA Security of RSA

RSA-Problem

Definition (RSA-Problem)

Given n, e,me mod n, find m (i.e. the e-th modular root).

Example (x3 without and with modulo 187)

50 100 150

2

4

6

·106

50 100 150

50

100

150

Difference

In Z we have an order and monotonicity, allows e.g. bisection.

53 / 218

RSA Security of RSA

RSA-Problem

Definition (RSA-Problem)

Given n, e,me mod n, find m (i.e. the e-th modular root).

Example (x3 without and with modulo 187)

50 100 150

2

4

6

·106

50 100 150

50

100

150

Difference

In Z we have an order and monotonicity, allows e.g. bisection.

53 / 218

RSA Security of RSA

RSA-Problem

Definition (RSA-Problem)

Given n, e,me mod n, find m (i.e. the e-th modular root).

Example (x3 without and with modulo 187)

50 100 150

2

4

6

·106

50 100 150

50

100

150

Difference

In Z we have an order and monotonicity, allows e.g. bisection.

53 / 218

RSA Security of RSA

Connection of Problems

Clearly, we have the reduction

RSA-problem ≤p finding d ≤p Factoring

But we just showed:

find d ≡BPP Factoring

i.e. equivalent in “bounded error probability polynomial time”.

Theorem (Coron, May, 2004)

Using Coppersmith (see later): finding d ≡p Factoring

i.e. they are equivalent in deterministic polynomial time. For the first
reduction, the converse is open.

finding d
?
≤p RSA-problem

54 / 218

RSA Security of RSA

Connection of Problems

Clearly, we have the reduction

RSA-problem ≤p finding d ≤p Factoring

But we just showed:

find d ≡BPP Factoring

i.e. equivalent in “bounded error probability polynomial time”.

Theorem (Coron, May, 2004)

Using Coppersmith (see later): finding d ≡p Factoring

i.e. they are equivalent in deterministic polynomial time. For the first
reduction, the converse is open.

finding d
?
≤p RSA-problem

54 / 218

RSA Security of RSA

Connection of Problems

Clearly, we have the reduction

RSA-problem ≤p finding d ≤p Factoring

But we just showed:

find d ≡BPP Factoring

i.e. equivalent in “bounded error probability polynomial time”.

Theorem (Coron, May, 2004)

Using Coppersmith (see later): finding d ≡p Factoring

i.e. they are equivalent in deterministic polynomial time.

For the first
reduction, the converse is open.

finding d
?
≤p RSA-problem

54 / 218

RSA Security of RSA

Connection of Problems

Clearly, we have the reduction

RSA-problem ≤p finding d ≤p Factoring

But we just showed:

find d ≡BPP Factoring

i.e. equivalent in “bounded error probability polynomial time”.

Theorem (Coron, May, 2004)

Using Coppersmith (see later): finding d ≡p Factoring

i.e. they are equivalent in deterministic polynomial time. For the first
reduction, the converse is open.

finding d
?
≤p RSA-problem

54 / 218

RSA Security of RSA

Insecure Special Cases

What can go wrong?

In general, RSA is secure but take care if:

e is small: several attacks, find m

same n, but different e: find m

m is very small: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

There is a standard, avoiding all/most of these.

Public-Key Cryptography Standard (PKCS)

PKCS #1 covers RSA, currently in version 2.2

https://tools.ietf.org/html/rfc8017a

55 / 218

https://tools.ietf.org/html/rfc8017a

RSA Security of RSA

Insecure Special Cases

What can go wrong?

In general, RSA is secure but take care if:

e is small: several attacks, find m

same n, but different e: find m

m is very small: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

There is a standard, avoiding all/most of these.

Public-Key Cryptography Standard (PKCS)

PKCS #1 covers RSA, currently in version 2.2

https://tools.ietf.org/html/rfc8017a

55 / 218

https://tools.ietf.org/html/rfc8017a

RSA Small Public Exponent e – Simple Cases

Small Public Exponent e

Scenario: Hybrid Encryption

Use asymmetric crypto to exchange key, then use (faster) symmetric
encryption
send AES key (128/256 Bit) via RSA (4096 Bit)

Toy Example 0

m < e
√
n, so me < n =⇒ me mod n = me

don’t compute modulo

Decrypt: m = e
√
c in Z (e.g. bisection, no floating point!)

Example

Key (10 720 441, 3), i.e. n has 24 Bit, message m = 102

m3 mod n = 1 061 208 mod 10 720 441 = 1 061 208

56 / 218

RSA Small Public Exponent e – Simple Cases

Small Public Exponent e

Scenario: Hybrid Encryption

Use asymmetric crypto to exchange key, then use (faster) symmetric
encryption
send AES key (128/256 Bit) via RSA (4096 Bit)

Toy Example 0

m < e
√
n, so me < n =⇒ me mod n = me

don’t compute modulo

Decrypt: m = e
√
c in Z (e.g. bisection, no floating point!)

Example

Key (10 720 441, 3), i.e. n has 24 Bit, message m = 102

m3 mod n = 1 061 208 mod 10 720 441 = 1 061 208

56 / 218

RSA Small Public Exponent e – Simple Cases

Small Public Exponent e

Scenario: Hybrid Encryption

Use asymmetric crypto to exchange key, then use (faster) symmetric
encryption
send AES key (128/256 Bit) via RSA (4096 Bit)

Toy Example 0

m < e
√
n, so me < n =⇒ me mod n = me

don’t compute modulo

Decrypt: m = e
√
c in Z (e.g. bisection, no floating point!)

Example

Key (10 720 441, 3), i.e. n has 24 Bit, message m = 102

m3 mod n = 1 061 208 mod 10 720 441 = 1 061 208

56 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Padding

Artificially enlarge message to m′ = Pad (m), such that m′ ≈ n.

Toy Example 1: multiply with fixed, known number

Encrypt: m′ := m · r for fixed r ∈ Z∗
n; c = (m′)e mod n

Decrypt: m = r−1 · (c)d mod n

Break

RSA is multiplicative

If we know enc (m), then we also know enc (x ·m) for every x .
Reduce to previous case, put

c ′ :=
(
r−1
)e · c =

(
r−1
)e · (m′)e =

(
r−1m′)e =

(
r−1rm

)e
= me

So we know me , if m small, decrypt as before

57 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Padding

Artificially enlarge message to m′ = Pad (m), such that m′ ≈ n.

Toy Example 1: multiply with fixed, known number

Encrypt: m′ := m · r for fixed r ∈ Z∗
n; c = (m′)e mod n

Decrypt: m = r−1 · (c)d mod n

Break

RSA is multiplicative

If we know enc (m), then we also know enc (x ·m) for every x .
Reduce to previous case, put

c ′ :=
(
r−1
)e · c =

(
r−1
)e · (m′)e =

(
r−1m′)e =

(
r−1rm

)e
= me

So we know me , if m small, decrypt as before

57 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Padding

Artificially enlarge message to m′ = Pad (m), such that m′ ≈ n.

Toy Example 1: multiply with fixed, known number

Encrypt: m′ := m · r for fixed r ∈ Z∗
n; c = (m′)e mod n

Decrypt: m = r−1 · (c)d mod n

Break

RSA is multiplicative

If we know enc (m), then we also know enc (x ·m) for every x .

Reduce to previous case, put

c ′ :=
(
r−1
)e · c =

(
r−1
)e · (m′)e =

(
r−1m′)e =

(
r−1rm

)e
= me

So we know me , if m small, decrypt as before

57 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Padding

Artificially enlarge message to m′ = Pad (m), such that m′ ≈ n.

Toy Example 1: multiply with fixed, known number

Encrypt: m′ := m · r for fixed r ∈ Z∗
n; c = (m′)e mod n

Decrypt: m = r−1 · (c)d mod n

Break

RSA is multiplicative

If we know enc (m), then we also know enc (x ·m) for every x .
Reduce to previous case, put

c ′ :=
(
r−1
)e · c =

(
r−1
)e · (m′)e =

(
r−1m′)e =

(
r−1rm

)e
= me

So we know me , if m small, decrypt as before

57 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Toy Example 2: Fill with 0s

Putting m′ = m || 0 . . . 0

is just m′ = m · 2k , so same as version 1.

Toy Example 3: Concatenate

concatenate m with itself: m′ = m || . . . ||m
But mathematically, that is just

m′ = m · 1 0 . . . 01︸ ︷︷ ︸
⌈logm⌉

0 . . . 01 . . . 012

guess length of m: logm < log n, i.e. small, we can test all

we know 10 . . . 010 . . . 01 . . . 012 (i.e. in binary)

break like Version 1

58 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Toy Example 2: Fill with 0s

Putting m′ = m || 0 . . . 0 is just m′ = m · 2k , so same as version 1.

Toy Example 3: Concatenate

concatenate m with itself: m′ = m || . . . ||m
But mathematically, that is just

m′ = m · 1 0 . . . 01︸ ︷︷ ︸
⌈logm⌉

0 . . . 01 . . . 012

guess length of m: logm < log n, i.e. small, we can test all

we know 10 . . . 010 . . . 01 . . . 012 (i.e. in binary)

break like Version 1

58 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Toy Example 2: Fill with 0s

Putting m′ = m || 0 . . . 0 is just m′ = m · 2k , so same as version 1.

Toy Example 3: Concatenate

concatenate m with itself: m′ = m || . . . ||m

But mathematically, that is just

m′ = m · 1 0 . . . 01︸ ︷︷ ︸
⌈logm⌉

0 . . . 01 . . . 012

guess length of m: logm < log n, i.e. small, we can test all

we know 10 . . . 010 . . . 01 . . . 012 (i.e. in binary)

break like Version 1

58 / 218

RSA Small Public Exponent e – Simple Cases

Padding

Toy Example 2: Fill with 0s

Putting m′ = m || 0 . . . 0 is just m′ = m · 2k , so same as version 1.

Toy Example 3: Concatenate

concatenate m with itself: m′ = m || . . . ||m
But mathematically, that is just

m′ = m · 1 0 . . . 01︸ ︷︷ ︸
⌈logm⌉

0 . . . 01 . . . 012

guess length of m: logm < log n, i.e. small, we can test all

we know 10 . . . 010 . . . 01 . . . 012 (i.e. in binary)

break like Version 1

58 / 218

RSA Coppersmith

Coppersmith

Theorem (Coppersmith, 1996)

Let f ∈ Z[x] normalised, e = deg f . Then we can compute all x0 ∈ Z
with f (x0) ≡ 0 mod n and |x0| ≤ e

√
n in polynomial time.

polynomial time ̸= efficient

Theorem (from Nina Jekel, Bsc-thesis, 2017)

Let f ∈ Z[x] normalised, deg f = e. Assume we have an upper bound
for our roots

X ≤ 1

2
n

1
e
−ε

for some ε > 0. Then the running time of Coppersmith is in

O
(
e9

ε5
log n

)

59 / 218

RSA Coppersmith

Coppersmith

Theorem (Coppersmith, 1996)

Let f ∈ Z[x] normalised, e = deg f . Then we can compute all x0 ∈ Z
with f (x0) ≡ 0 mod n and |x0| ≤ e

√
n in polynomial time.

polynomial time ̸= efficient

Theorem (from Nina Jekel, Bsc-thesis, 2017)

Let f ∈ Z[x] normalised, deg f = e. Assume we have an upper bound
for our roots

X ≤ 1

2
n

1
e
−ε

for some ε > 0. Then the running time of Coppersmith is in

O
(
e9

ε5
log n

)

59 / 218

RSA Coppersmith

Coppersmith

Theorem (Coppersmith, 1996)

Let f ∈ Z[x] normalised, e = deg f . Then we can compute all x0 ∈ Z
with f (x0) ≡ 0 mod n and |x0| ≤ e

√
n in polynomial time.

polynomial time ̸= efficient

Theorem (from Nina Jekel, Bsc-thesis, 2017)

Let f ∈ Z[x] normalised, deg f = e. Assume we have an upper bound
for our roots

X ≤ 1

2
n

1
e
−ε

for some ε > 0. Then the running time of Coppersmith is in

O
(
e9

ε5
log n

)
59 / 218

RSA Coppersmith

Coppersmith

Proof idea.

Transform into lattice problem, apply LLL-algorithm to reduce base
Way(!) too involved for this course.

Corollary (Application in RSA)

If m has (significantly) fewer than log(n)/e bits, and we have any
fixed padding, we can compute m.

In Sagemath implemented as f.small roots(), (but has issues)
Alternatively: CTF-writeup from github

If you want an implementation of a crypto algorithm, write a
crypto CTF challenge that needs it and read writeups.

(ubuntor)

60 / 218

RSA Coppersmith

Coppersmith

Proof idea.

Transform into lattice problem, apply LLL-algorithm to reduce base
Way(!) too involved for this course.

Corollary (Application in RSA)

If m has (significantly) fewer than log(n)/e bits, and we have any
fixed padding, we can compute m.

In Sagemath implemented as f.small roots(), (but has issues)
Alternatively: CTF-writeup from github

If you want an implementation of a crypto algorithm, write a
crypto CTF challenge that needs it and read writeups.

(ubuntor)

60 / 218

RSA Coppersmith

Coppersmith

Proof idea.

Transform into lattice problem, apply LLL-algorithm to reduce base
Way(!) too involved for this course.

Corollary (Application in RSA)

If m has (significantly) fewer than log(n)/e bits, and we have any
fixed padding, we can compute m.

In Sagemath implemented as f.small roots(), (but has issues)
Alternatively: CTF-writeup from github

If you want an implementation of a crypto algorithm, write a
crypto CTF challenge that needs it and read writeups.

(ubuntor)

60 / 218

RSA Coppersmith

Coppersmith – Application

Example (PWN-CTF 2018, Whistle)

Padding PKCS#1 v1.5 (RFC 2313, Nov 1993),
but applied padding for private-key-operation (i.e. for md mod n):

m′ = 00 || 01 ||FF . . .FF || 00 ||m

n ∼ 4096 bit, e = 3, m ∼ 128 bit AES key, so padding is

0 . . . 0︸ ︷︷ ︸
15

1 1︸ ︷︷ ︸
rest

0 . . . 0︸ ︷︷ ︸
8

0 . . . 0︸ ︷︷ ︸
128

Counting and adding correct 2-power:

f (x) = (24081 − 28+128 + x)3 − c

m has much fewer than log(n)/e ≈ 1365 bits ; Coppersmith finds m

61 / 218

RSA Coppersmith

Coppersmith – Application

Example (PWN-CTF 2018, Whistle)

Padding PKCS#1 v1.5 (RFC 2313, Nov 1993),
but applied padding for private-key-operation (i.e. for md mod n):

m′ = 00 || 01 ||FF . . .FF || 00 ||m

n ∼ 4096 bit, e = 3, m ∼ 128 bit AES key, so padding is

0 . . . 0︸ ︷︷ ︸
15

1 1︸ ︷︷ ︸
rest

0 . . . 0︸ ︷︷ ︸
8

0 . . . 0︸ ︷︷ ︸
128

Counting and adding correct 2-power:

f (x) = (24081 − 28+128 + x)3 − c

m has much fewer than log(n)/e ≈ 1365 bits ; Coppersmith finds m

61 / 218

RSA Coppersmith

Coppersmith – Application

Example (PWN-CTF 2018, Whistle)

Padding PKCS#1 v1.5 (RFC 2313, Nov 1993),
but applied padding for private-key-operation (i.e. for md mod n):

m′ = 00 || 01 ||FF . . .FF || 00 ||m

n ∼ 4096 bit, e = 3, m ∼ 128 bit AES key, so padding is

0 . . . 0︸ ︷︷ ︸
15

1 1︸ ︷︷ ︸
rest

0 . . . 0︸ ︷︷ ︸
8

0 . . . 0︸ ︷︷ ︸
128

Counting and adding correct 2-power:

f (x) = (24081 − 28+128 + x)3 − c

m has much fewer than log(n)/e ≈ 1365 bits ; Coppersmith finds m

61 / 218

RSA Coppersmith

Coppersmith – Application

Example (PWN-CTF 2018, Whistle)

Padding PKCS#1 v1.5 (RFC 2313, Nov 1993),
but applied padding for private-key-operation (i.e. for md mod n):

m′ = 00 || 01 ||FF . . .FF || 00 ||m

n ∼ 4096 bit, e = 3, m ∼ 128 bit AES key, so padding is

0 . . . 0︸ ︷︷ ︸
15

1 1︸ ︷︷ ︸
rest

0 . . . 0︸ ︷︷ ︸
8

0 . . . 0︸ ︷︷ ︸
128

Counting and adding correct 2-power:

f (x) = (24081 − 28+128 + x)3 − c

m has much fewer than log(n)/e ≈ 1365 bits ; Coppersmith finds m

61 / 218

RSA Coppersmith

Coppersmith Failure

Example (NSUCrypto 2019, Problem 3)

We know p, q have 500 bits. Given n = pq and

h = 32019p2 + 52019q2 mod n2 + 8 · 2019︸ ︷︷ ︸
=:N

Find p, q.

Multiply with p2, use n2 = p2q2 and rewrite into

0 ≡ p4 −
(
h ·
(
32019

)−1
)
p2 + 52019 ·

(
32019

)−1
n2 mod N

If we assume p < q, then p2 < n, so p4 < n2 < N.
But ε too small ; takes too long.
Likewise if q < p.

62 / 218

RSA Coppersmith

Coppersmith Failure

Example (NSUCrypto 2019, Problem 3)

We know p, q have 500 bits. Given n = pq and

h = 32019p2 + 52019q2 mod n2 + 8 · 2019︸ ︷︷ ︸
=:N

Find p, q.
Multiply with p2, use n2 = p2q2 and rewrite into

0 ≡ p4 −
(
h ·
(
32019

)−1
)
p2 + 52019 ·

(
32019

)−1
n2 mod N

If we assume p < q, then p2 < n, so p4 < n2 < N.

But ε too small ; takes too long.
Likewise if q < p.

62 / 218

RSA Coppersmith

Coppersmith Failure

Example (NSUCrypto 2019, Problem 3)

We know p, q have 500 bits. Given n = pq and

h = 32019p2 + 52019q2 mod n2 + 8 · 2019︸ ︷︷ ︸
=:N

Find p, q.
Multiply with p2, use n2 = p2q2 and rewrite into

0 ≡ p4 −
(
h ·
(
32019

)−1
)
p2 + 52019 ·

(
32019

)−1
n2 mod N

If we assume p < q, then p2 < n, so p4 < n2 < N.
But ε too small ; takes too long.
Likewise if q < p.

62 / 218

RSA Håstad Broadcast

Håstad Broadcast

Lemma

If a message is encrypted with the same exponent e but e different
moduli ni , we can recover the message.

Scenario: Send invitation to an event.

Proof.

If some gcd(ni , nj) ̸= 1, we found a prime factor. ✓
So wlog system of congruences with coprime ni

ci ≡ me mod ni i = 1, . . . , e

Put x = me and solve via CRT. Unique solution me mod
∏

ni

m < ni =⇒ me <
∏

ni =⇒ me mod
∏

ni = me

then just compute root in Z (as before).

63 / 218

RSA Håstad Broadcast

Håstad Broadcast

Lemma

If a message is encrypted with the same exponent e but e different
moduli ni , we can recover the message.

Scenario: Send invitation to an event.

Proof.

If some gcd(ni , nj) ̸= 1, we found a prime factor. ✓
So wlog system of congruences with coprime ni

ci ≡ me mod ni i = 1, . . . , e

Put x = me and solve via CRT. Unique solution me mod
∏

ni

m < ni =⇒ me <
∏

ni =⇒ me mod
∏

ni = me

then just compute root in Z (as before).

63 / 218

RSA Håstad Broadcast

Håstad Broadcast

Lemma

If a message is encrypted with the same exponent e but e different
moduli ni , we can recover the message.

Scenario: Send invitation to an event.

Proof.

If some gcd(ni , nj) ̸= 1, we found a prime factor. ✓
So wlog system of congruences with coprime ni

ci ≡ me mod ni i = 1, . . . , e

Put x = me and solve via CRT. Unique solution me mod
∏

ni

m < ni =⇒ me <
∏

ni =⇒ me mod
∏

ni = me

then just compute root in Z (as before).

63 / 218

RSA Håstad Broadcast

Håstad Broadcast

Lemma

If a message is encrypted with the same exponent e but e different
moduli ni , we can recover the message.

Scenario: Send invitation to an event.

Proof.

If some gcd(ni , nj) ̸= 1, we found a prime factor. ✓
So wlog system of congruences with coprime ni

ci ≡ me mod ni i = 1, . . . , e

Put x = me and solve via CRT. Unique solution me mod
∏

ni

m < ni =⇒ me <
∏

ni =⇒ me mod
∏

ni = me

then just compute root in Z (as before).

63 / 218

RSA Håstad Broadcast

Håstad Broadcast

Lemma

If a message is encrypted with the same exponent e but e different
moduli ni , we can recover the message.

Scenario: Send invitation to an event.

Proof.

If some gcd(ni , nj) ̸= 1, we found a prime factor. ✓
So wlog system of congruences with coprime ni

ci ≡ me mod ni i = 1, . . . , e

Put x = me and solve via CRT. Unique solution me mod
∏

ni

m < ni =⇒ me <
∏

ni =⇒ me mod
∏

ni = me

then just compute root in Z (as before).

63 / 218

RSA Håstad Broadcast

Example

Same message m, e = 3, ci = me mod ni :

c1 = 533 n1 = 551

c2 = 333 n2 = 943

c3 = 357 n3 = 527

CRT yields

m3 ≡ 1061208 mod 273825511

=⇒ m3 = 1061208

=⇒ m = 102

64 / 218

RSA Håstad Broadcast

Example

Same message m, e = 3, ci = me mod ni :

c1 = 533 n1 = 551

c2 = 333 n2 = 943

c3 = 357 n3 = 527

CRT yields

m3 ≡ 1061208 mod 273825511

=⇒ m3 = 1061208

=⇒ m = 102

64 / 218

RSA Håstad Broadcast

General Håstad Broadcast

Theorem

Let ni be coprime. Assume we modify some base message via
mi = fi (m) for i = 1, . . . , k for known polynomials fi . If

k ≥ e ·max{deg fi : i = 1, . . . , k},

then we can recover m from the fi and ci = me
i mod ni .

Special case: fi = id is original Håstad.

Typical padding fi (m) = 2∗ ·m + ∗ or f (m) = 2∗ · ∗+m
so often deg fi = 1

Corollary

Any fixed padding scheme becomes dangerous, given enough
messages. Use randomised padding.

65 / 218

RSA Håstad Broadcast

General Håstad Broadcast

Theorem

Let ni be coprime. Assume we modify some base message via
mi = fi (m) for i = 1, . . . , k for known polynomials fi . If

k ≥ e ·max{deg fi : i = 1, . . . , k},

then we can recover m from the fi and ci = me
i mod ni .

Special case: fi = id is original Håstad.

Typical padding fi (m) = 2∗ ·m + ∗ or f (m) = 2∗ · ∗+m
so often deg fi = 1

Corollary

Any fixed padding scheme becomes dangerous, given enough
messages. Use randomised padding.

65 / 218

RSA Håstad Broadcast

General Håstad Broadcast

Theorem

Let ni be coprime. Assume we modify some base message via
mi = fi (m) for i = 1, . . . , k for known polynomials fi . If

k ≥ e ·max{deg fi : i = 1, . . . , k},

then we can recover m from the fi and ci = me
i mod ni .

Special case: fi = id is original Håstad.

Typical padding fi (m) = 2∗ ·m + ∗ or f (m) = 2∗ · ∗+m
so often deg fi = 1

Corollary

Any fixed padding scheme becomes dangerous, given enough
messages. Use randomised padding.

65 / 218

RSA Håstad Broadcast

Proof.

put gi (x) = fi (x)
e − ci , so all gi (m) ≡ 0 mod ni ,

Note: deg gi = e · deg fi ≤ k

with CRT compute Ti with Ti ≡ 1 mod ni and Ti ≡ 0 mod nj
for i ̸= j and put

g(x) :=
k∑

i=1

Ti · gi (x)

adding degree ≤ k , so deg(g) ≤ k

g(m) ≡ 0 mod ni for all i :

summands j ̸= i vanish because of Tj

summand i because of definition of gi

by CRT g(m) ≡ 0 mod
∏

ni

m < min
i

ni <
(∏

ni

) 1
k ≤

(∏
ni

) 1
deg g

so we find m via Coppersmith

66 / 218

RSA Håstad Broadcast

Proof.

put gi (x) = fi (x)
e − ci , so all gi (m) ≡ 0 mod ni ,

Note: deg gi = e · deg fi ≤ k

with CRT compute Ti with Ti ≡ 1 mod ni and Ti ≡ 0 mod nj
for i ̸= j and put

g(x) :=
k∑

i=1

Ti · gi (x)

adding degree ≤ k , so deg(g) ≤ k

g(m) ≡ 0 mod ni for all i :

summands j ̸= i vanish because of Tj

summand i because of definition of gi

by CRT g(m) ≡ 0 mod
∏

ni

m < min
i

ni <
(∏

ni

) 1
k ≤

(∏
ni

) 1
deg g

so we find m via Coppersmith

66 / 218

RSA Håstad Broadcast

Proof.

put gi (x) = fi (x)
e − ci , so all gi (m) ≡ 0 mod ni ,

Note: deg gi = e · deg fi ≤ k

with CRT compute Ti with Ti ≡ 1 mod ni and Ti ≡ 0 mod nj
for i ̸= j and put

g(x) :=
k∑

i=1

Ti · gi (x)

adding degree ≤ k , so deg(g) ≤ k

g(m) ≡ 0 mod ni for all i :

summands j ̸= i vanish because of Tj

summand i because of definition of gi

by CRT g(m) ≡ 0 mod
∏

ni

m < min
i

ni <
(∏

ni

) 1
k ≤

(∏
ni

) 1
deg g

so we find m via Coppersmith

66 / 218

RSA Håstad Broadcast

Proof.

put gi (x) = fi (x)
e − ci , so all gi (m) ≡ 0 mod ni ,

Note: deg gi = e · deg fi ≤ k

with CRT compute Ti with Ti ≡ 1 mod ni and Ti ≡ 0 mod nj
for i ̸= j and put

g(x) :=
k∑

i=1

Ti · gi (x)

adding degree ≤ k , so deg(g) ≤ k

g(m) ≡ 0 mod ni for all i :

summands j ̸= i vanish because of Tj

summand i because of definition of gi

by CRT g(m) ≡ 0 mod
∏

ni

m < min
i

ni <
(∏

ni

) 1
k ≤

(∏
ni

) 1
deg g

so we find m via Coppersmith
66 / 218

RSA Polynomials

Polynomial Rings

Polynomials

A (univariate) polynomial is an expression of the form

f =
D∑

k=0

akx
k

We can add/subtract/multiply (as long as can do so with the ak).
; polynomials form a ring.
Coefficients ak ∈ R, the ring of polynomials (in x) is denoted R[x].

Special Properties of C[x]

We can do polynomial division (with remainder).

Every polynomial splits into linear factors (Vieta/Viète).

Don’t want Complex Numbers ; What holds over Zn?

67 / 218

RSA Polynomials

Polynomial Rings

Polynomials

A (univariate) polynomial is an expression of the form

f =
D∑

k=0

akx
k

We can add/subtract/multiply (as long as can do so with the ak).
; polynomials form a ring.
Coefficients ak ∈ R, the ring of polynomials (in x) is denoted R[x].

Special Properties of C[x]

We can do polynomial division (with remainder).

Every polynomial splits into linear factors (Vieta/Viète).

Don’t want Complex Numbers ; What holds over Zn?

67 / 218

RSA Polynomials

Polynomial Rings

Polynomials

A (univariate) polynomial is an expression of the form

f =
D∑

k=0

akx
k

We can add/subtract/multiply (as long as can do so with the ak).
; polynomials form a ring.
Coefficients ak ∈ R, the ring of polynomials (in x) is denoted R[x].

Special Properties of C[x]

We can do polynomial division (with remainder).

Every polynomial splits into linear factors (Vieta/Viète).

Don’t want Complex Numbers ; What holds over Zn?

67 / 218

RSA Polynomials

Polynomial Division

Let g , h ∈ Zn[x] given as

g =

D1∑
k=0

gkx
k h =

D2∑
k=0

hkx
k

with D1 ≥ D2.

Then first step of division is

g =
(
gD1 · h

−1
D2
· xD1−D2

)
· h + Rem1

where deg(Rem1) < deg g . Continue with Rem1 and h.

We always just multiply with inverse of leading coefficient of h.

As long as this exists, we can perform polynomial division.

68 / 218

RSA Polynomials

Polynomial Division

Let g , h ∈ Zn[x] given as

g =

D1∑
k=0

gkx
k h =

D2∑
k=0

hkx
k

with D1 ≥ D2.
Then first step of division is

g =
(
gD1 · h

−1
D2
· xD1−D2

)
· h + Rem1

where deg(Rem1) < deg g .

Continue with Rem1 and h.

We always just multiply with inverse of leading coefficient of h.

As long as this exists, we can perform polynomial division.

68 / 218

RSA Polynomials

Polynomial Division

Let g , h ∈ Zn[x] given as

g =

D1∑
k=0

gkx
k h =

D2∑
k=0

hkx
k

with D1 ≥ D2.
Then first step of division is

g =
(
gD1 · h

−1
D2
· xD1−D2

)
· h + Rem1

where deg(Rem1) < deg g . Continue with Rem1 and h.

We always just multiply with inverse of leading coefficient of h.

As long as this exists, we can perform polynomial division.

68 / 218

RSA Polynomials

Polynomial Division

Let g , h ∈ Zn[x] given as

g =

D1∑
k=0

gkx
k h =

D2∑
k=0

hkx
k

with D1 ≥ D2.
Then first step of division is

g =
(
gD1 · h

−1
D2
· xD1−D2

)
· h + Rem1

where deg(Rem1) < deg g . Continue with Rem1 and h.

We always just multiply with inverse of leading coefficient of h.

As long as this exists, we can perform polynomial division.

68 / 218

RSA Polynomials

In Zn[x] we mostly can do division with remainder
(behaves like Euclidean Ring)

for polynomial division, we must divide by coefficients

i.e. must be able to invert elements

if it fails, we found a divisor of n

have solved the problem otherwise

Euclidean Algorithm for polynomials

(Extended) Euclidean Algorithm works for polynomials

we can compute the gcd of two polynomials

Linear Factors

Let f ∈ Zn[x] and f (x0) = 0. Then there is g ∈ Zn[x] with
f = (x − x0)g , which we can compute via polynomial division.

69 / 218

RSA Polynomials

In Zn[x] we mostly can do division with remainder
(behaves like Euclidean Ring)

for polynomial division, we must divide by coefficients

i.e. must be able to invert elements

if it fails, we found a divisor of n

have solved the problem otherwise

Euclidean Algorithm for polynomials

(Extended) Euclidean Algorithm works for polynomials

we can compute the gcd of two polynomials

Linear Factors

Let f ∈ Zn[x] and f (x0) = 0. Then there is g ∈ Zn[x] with
f = (x − x0)g , which we can compute via polynomial division.

69 / 218

RSA Polynomials

In Zn[x] we mostly can do division with remainder
(behaves like Euclidean Ring)

for polynomial division, we must divide by coefficients

i.e. must be able to invert elements

if it fails, we found a divisor of n

have solved the problem otherwise

Euclidean Algorithm for polynomials

(Extended) Euclidean Algorithm works for polynomials

we can compute the gcd of two polynomials

Linear Factors

Let f ∈ Zn[x] and f (x0) = 0. Then there is g ∈ Zn[x] with
f = (x − x0)g , which we can compute via polynomial division.

69 / 218

RSA Franklin-Reiter-Related-Message-Attack

Franklin-Reiter-Related-Message-Attack

Theorem

If two messages are related via m2 = f (m1) for some known
polynomial f , we often can recover them from ci = me

i mod n. The
time is O

(
(e · deg f)2

)
arithmetic operations.

If f is linear and e = 3 the attack is guaranteed to work.

Proof.

Define polynomials

g(x) = xe − c1 h(x) = f (x)e − c2

=⇒ g(m1) = h(m1) = 0

=⇒ (x −m1) | gcd(g , h)

Mostly gcd is linear, if e = 3 and deg f = 1, this is guaranteed.

70 / 218

RSA Franklin-Reiter-Related-Message-Attack

Franklin-Reiter-Related-Message-Attack

Theorem

If two messages are related via m2 = f (m1) for some known
polynomial f , we often can recover them from ci = me

i mod n. The
time is O

(
(e · deg f)2

)
arithmetic operations.

If f is linear and e = 3 the attack is guaranteed to work.

Proof.

Define polynomials

g(x) = xe − c1 h(x) = f (x)e − c2

=⇒ g(m1) = h(m1) = 0

=⇒ (x −m1) | gcd(g , h)

Mostly gcd is linear, if e = 3 and deg f = 1, this is guaranteed.

70 / 218

RSA Franklin-Reiter-Related-Message-Attack

Example

message: “Diary entry ??: Today I investigated [secret stuff].”

?? are consecutive numbers,

assume only last digit changed: f (x) = x + 237·8 (count bytes)

g(x) = x3 − c1 h(x) = (x + 2296)3 − c2

Calling Euclidean Algo:

r1 = h − g = 3 · 2592x2 + 3 · 2296x + c1 − c2 cancel x3

r2 = g −
(
3 · 2592

)−1
xr1 − ∗ · r1 = k(x −m1) cancel x3, x2

for some k ∈ Zn.

If inverting 3 · 2592 or k fails, then gcd (∗, n) ∈ {p, q}.
So we get m1 (and also m2).

But there’s an even less artificial scenario . . .

71 / 218

RSA Franklin-Reiter-Related-Message-Attack

Example

message: “Diary entry ??: Today I investigated [secret stuff].”

?? are consecutive numbers,

assume only last digit changed: f (x) = x + 237·8 (count bytes)

g(x) = x3 − c1 h(x) = (x + 2296)3 − c2

Calling Euclidean Algo:

r1 = h − g = 3 · 2592x2 + 3 · 2296x + c1 − c2 cancel x3

r2 = g −
(
3 · 2592

)−1
xr1 − ∗ · r1 = k(x −m1) cancel x3, x2

for some k ∈ Zn.

If inverting 3 · 2592 or k fails, then gcd (∗, n) ∈ {p, q}.
So we get m1 (and also m2).

But there’s an even less artificial scenario . . .

71 / 218

RSA Franklin-Reiter-Related-Message-Attack

Example

message: “Diary entry ??: Today I investigated [secret stuff].”

?? are consecutive numbers,

assume only last digit changed: f (x) = x + 237·8 (count bytes)

g(x) = x3 − c1 h(x) = (x + 2296)3 − c2

Calling Euclidean Algo:

r1 = h − g = 3 · 2592x2 + 3 · 2296x + c1 − c2 cancel x3

r2 = g −
(
3 · 2592

)−1
xr1 − ∗ · r1 = k(x −m1) cancel x3, x2

for some k ∈ Zn.

If inverting 3 · 2592 or k fails, then gcd (∗, n) ∈ {p, q}.
So we get m1 (and also m2).

But there’s an even less artificial scenario . . .
71 / 218

RSA Coppersmith Short Pad

Coppersmith Short Pad

“Why 256 Bit padding is not enough for e = 3.”

Theorem

Let R ≤ log(n)/e2, and mi = m · 2R + ri for i = 1, 2. Then we can
(probably) recover the message from the cipher ci = me

i mod n.
This always works for e = 3.

Scenario

intercept handshake

receiver won’t send ACK

handshake is sent again, but with different random padding

72 / 218

RSA Coppersmith Short Pad

Coppersmith Short Pad

“Why 256 Bit padding is not enough for e = 3.”

Theorem

Let R ≤ log(n)/e2, and mi = m · 2R + ri for i = 1, 2. Then we can
(probably) recover the message from the cipher ci = me

i mod n.
This always works for e = 3.

Scenario

intercept handshake

receiver won’t send ACK

handshake is sent again, but with different random padding

72 / 218

RSA Coppersmith Short Pad

Starting to break it

Define polynomials

g(x , y) = xe − c1 h(x , y) = (x + y)e − c2

See y as parameter and x as actual variable.

If y = r2 − r1, then common root
g(2Rm + r1, y) = h(2Rm + r1, y) = 0.

Algebra knows something about this:
Search Engine “polynomials common root” ; resultants

Lemma

Let R comm. ring with 1. If g , h ∈ R[x], then the resultant
res(g , h) = 0 iff they have a common root.

73 / 218

RSA Coppersmith Short Pad

Starting to break it

Define polynomials

g(x , y) = xe − c1 h(x , y) = (x + y)e − c2

See y as parameter and x as actual variable.

If y = r2 − r1, then common root
g(2Rm + r1, y) = h(2Rm + r1, y) = 0.

Algebra knows something about this:
Search Engine “polynomials common root” ; resultants

Lemma

Let R comm. ring with 1. If g , h ∈ R[x], then the resultant
res(g , h) = 0 iff they have a common root.

73 / 218

RSA Coppersmith Short Pad

Resultants

For e = 3 we have

res(g , h) = det



1 0 0 −c1 0 0
0 1 0 0 −c1 0
0 0 1 0 0 −c1
1 3y 3y2 y3 − c2 0 0
0 1 3y 3y2 y3 − c2 0
0 0 1 3y 3y2 y3 − c2



only last e rows contain parameter y

maximal power y e in each of them

in total maximal power (y e)e = y e
2

Resultant is polynomial in y of degree e2(= 9)

74 / 218

RSA Coppersmith Short Pad

Resultants

For e = 3 we have

res(g , h) = det



1 0 0 −c1 0 0
0 1 0 0 −c1 0
0 0 1 0 0 −c1
1 3y 3y2 y3 − c2 0 0
0 1 3y 3y2 y3 − c2 0
0 0 1 3y 3y2 y3 − c2


only last e rows contain parameter y

maximal power y e in each of them

in total maximal power (y e)e = y e
2

Resultant is polynomial in y of degree e2(= 9)

74 / 218

RSA Coppersmith Short Pad

Coppersmith + Franklin-Reiter

res(g , h) ∈ Zn[y] of degree e2

Assumptions: y = r2 − r1 < 2R , with R ≤ log(n)/e2

hence y < e2
√
n, so find via Coppersmith

But now we have Franklin Reiter with linear f :

Relation: m2 = m1 + y =: f (m1)

(Try to) Recover via

x −m1 = gcd (xe − c1, (x + y)e − c2)

original message m = m1//2
R = (m1 >> R)

Formally, R is not given, but for n ∼ 4096 bits, we have R ≤ 455, so
just bruteforce.

75 / 218

RSA Coppersmith Short Pad

Coppersmith + Franklin-Reiter

res(g , h) ∈ Zn[y] of degree e2

Assumptions: y = r2 − r1 < 2R , with R ≤ log(n)/e2

hence y < e2
√
n, so find via Coppersmith

But now we have Franklin Reiter with linear f :

Relation: m2 = m1 + y =: f (m1)

(Try to) Recover via

x −m1 = gcd (xe − c1, (x + y)e − c2)

original message m = m1//2
R = (m1 >> R)

Formally, R is not given, but for n ∼ 4096 bits, we have R ≤ 455, so
just bruteforce.

75 / 218

RSA Coppersmith Short Pad

Coppersmith + Franklin-Reiter

res(g , h) ∈ Zn[y] of degree e2

Assumptions: y = r2 − r1 < 2R , with R ≤ log(n)/e2

hence y < e2
√
n, so find via Coppersmith

But now we have Franklin Reiter with linear f :

Relation: m2 = m1 + y =: f (m1)

(Try to) Recover via

x −m1 = gcd (xe − c1, (x + y)e − c2)

original message m = m1//2
R = (m1 >> R)

Formally, R is not given, but for n ∼ 4096 bits, we have R ≤ 455, so
just bruteforce.

75 / 218

RSA Very Small Message m

Very Small Message m

Brute Force via Meet-in-the-Middle:
Assume m = m1m2 in Z where mi ≤ 2bi

Rewrite:

c = me mod n =⇒ cm−e
1 ≡ me

2 mod n

Strategy:

List cm−e
1 mod n for all m1 ≤ 2b1 ; (parallel write, not trivial)

Look up me
2 mod n for all m2 ≤ 2b2 ; (parallel, only read)

Search for collision

76 / 218

RSA Very Small Message m

Very Small Message m

Brute Force via Meet-in-the-Middle:
Assume m = m1m2 in Z where mi ≤ 2bi

Rewrite:

c = me mod n =⇒ cm−e
1 ≡ me

2 mod n

Strategy:

List cm−e
1 mod n for all m1 ≤ 2b1 ; (parallel write, not trivial)

Look up me
2 mod n for all m2 ≤ 2b2 ; (parallel, only read)

Search for collision

76 / 218

RSA Very Small Message m

Meet in the Middle

start ...

target
...

77 / 218

RSA Very Small Message m

Meet in the Middle

start ...store
target

...

77 / 218

RSA Very Small Message m

Meet in the Middle

start ...store
target

...

probe

match

77 / 218

RSA Very Small Message m

Very Small Message m

List cm−e
1 mod n for all m1 ≤ 2b1 ; store

Look up me
2 mod n for all m2 ≤ 2b2 ; don’t store

Search for collision should be O(1)

Analysis (assume b1 < b2):

Time: O(2b1 + 2b2) = O
(
2b2
)
exp. and O(2b1) inv.

Memory: O
(
2b1 log n

)
Total: if all goes well b1 = b2, so 2b1 ≈

√
m

O(
√
m · poly) time and space

Compare: Brute Force O(m · poly) time, but O(log n) space
; Space-Time-Tradeoff

The probability that a 64 bit number splits into two equally large
parts lies around 18%.

78 / 218

RSA Very Small Message m

Very Small Message m

List cm−e
1 mod n for all m1 ≤ 2b1 ; store

Look up me
2 mod n for all m2 ≤ 2b2 ; don’t store

Search for collision should be O(1)
Analysis (assume b1 < b2):

Time: O(2b1 + 2b2) = O
(
2b2
)
exp. and O(2b1) inv.

Memory: O
(
2b1 log n

)
Total: if all goes well b1 = b2, so 2b1 ≈

√
m

O(
√
m · poly) time and space

Compare: Brute Force O(m · poly) time, but O(log n) space
; Space-Time-Tradeoff

The probability that a 64 bit number splits into two equally large
parts lies around 18%.

78 / 218

RSA Very Small Message m

Very Small Message m

List cm−e
1 mod n for all m1 ≤ 2b1 ; store

Look up me
2 mod n for all m2 ≤ 2b2 ; don’t store

Search for collision should be O(1)
Analysis (assume b1 < b2):

Time: O(2b1 + 2b2) = O
(
2b2
)
exp. and O(2b1) inv.

Memory: O
(
2b1 log n

)
Total: if all goes well b1 = b2, so 2b1 ≈

√
m

O(
√
m · poly) time and space

Compare: Brute Force O(m · poly) time, but O(log n) space
; Space-Time-Tradeoff

The probability that a 64 bit number splits into two equally large
parts lies around 18%.

78 / 218

RSA Common Modulus

Common Modulus

“What if ni are not coprime, but same?”

Theorem

If we have keys (n, e1) and (n, e2) with gcd(e1, e2) = 1, then we can
read every message sent to both.

Corollary

Every key needs its own modulus n, i.e. its own primes.

know ciphers ci = mei mod n for i = 1, 2

Extended Euclid: se1 + te2 = 1, with s < 0 and t > 0

compute c−1
1 mod n (if it fails, we found a factor of n)

Compute m via(
c−1
1

)|s|
ct2 ≡

(
(me1)−1

)|s|
(me2)t ≡ mse1+te2 ≡ m mod n

79 / 218

RSA Common Modulus

Common Modulus

“What if ni are not coprime, but same?”

Theorem

If we have keys (n, e1) and (n, e2) with gcd(e1, e2) = 1, then we can
read every message sent to both.

Corollary

Every key needs its own modulus n, i.e. its own primes.

know ciphers ci = mei mod n for i = 1, 2

Extended Euclid: se1 + te2 = 1, with s < 0 and t > 0

compute c−1
1 mod n (if it fails, we found a factor of n)

Compute m via(
c−1
1

)|s|
ct2 ≡

(
(me1)−1

)|s|
(me2)t ≡ mse1+te2 ≡ m mod n

79 / 218

RSA Common Modulus

Common Modulus

“What if ni are not coprime, but same?”

Theorem

If we have keys (n, e1) and (n, e2) with gcd(e1, e2) = 1, then we can
read every message sent to both.

Corollary

Every key needs its own modulus n, i.e. its own primes.

know ciphers ci = mei mod n for i = 1, 2

Extended Euclid: se1 + te2 = 1, with s < 0 and t > 0

compute c−1
1 mod n (if it fails, we found a factor of n)

Compute m via(
c−1
1

)|s|
ct2 ≡

(
(me1)−1

)|s|
(me2)t ≡ mse1+te2 ≡ m mod n

79 / 218

RSA Common Modulus

Common Modulus

“What if ni are not coprime, but same?”

Theorem

If we have keys (n, e1) and (n, e2) with gcd(e1, e2) = 1, then we can
read every message sent to both.

Corollary

Every key needs its own modulus n, i.e. its own primes.

know ciphers ci = mei mod n for i = 1, 2

Extended Euclid: se1 + te2 = 1, with s < 0 and t > 0

compute c−1
1 mod n (if it fails, we found a factor of n)

Compute m via(
c−1
1

)|s|
ct2 ≡

(
(me1)−1

)|s|
(me2)t ≡ mse1+te2 ≡ m mod n

79 / 218

RSA Common Modulus

Recap – What can go wrong?

In general, RSA is secure but take care if:

✓ e is small: several attacks, find m

✓ m is very small: find m

✓ same n, but different e: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

previous attacks allowed to read messages

first 2 groups had assumptions on the message
Fix: randomised padding, sufficiently long

same modulus allowed reading every message
Fix: delete second key, just use first (both receivers can read
each others messages anyway)

other attacks completely break key

80 / 218

RSA Common Modulus

Recap – What can go wrong?

In general, RSA is secure but take care if:

✓ e is small: several attacks, find m

✓ m is very small: find m

✓ same n, but different e: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

previous attacks allowed to read messages

first 2 groups had assumptions on the message
Fix: randomised padding, sufficiently long

same modulus allowed reading every message
Fix: delete second key, just use first (both receivers can read
each others messages anyway)

other attacks completely break key

80 / 218

RSA Common Modulus

Recap – What can go wrong?

In general, RSA is secure but take care if:

✓ e is small: several attacks, find m

✓ m is very small: find m

✓ same n, but different e: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

previous attacks allowed to read messages

first 2 groups had assumptions on the message
Fix: randomised padding, sufficiently long

same modulus allowed reading every message
Fix: delete second key, just use first (both receivers can read
each others messages anyway)

other attacks completely break key

80 / 218

RSA Common Modulus

Recap – What can go wrong?

In general, RSA is secure but take care if:

✓ e is small: several attacks, find m

✓ m is very small: find m

✓ same n, but different e: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

previous attacks allowed to read messages

first 2 groups had assumptions on the message
Fix: randomised padding, sufficiently long

same modulus allowed reading every message
Fix: delete second key, just use first (both receivers can read
each others messages anyway)

other attacks completely break key

80 / 218

RSA Common Modulus

Recap – What can go wrong?

In general, RSA is secure but take care if:

✓ e is small: several attacks, find m

✓ m is very small: find m

✓ same n, but different e: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

previous attacks allowed to read messages

first 2 groups had assumptions on the message
Fix: randomised padding, sufficiently long

same modulus allowed reading every message
Fix: delete second key, just use first (both receivers can read
each others messages anyway)

other attacks completely break key

80 / 218

RSA Common Modulus

Recap – What can go wrong?

In general, RSA is secure but take care if:

✓ e is small: several attacks, find m

✓ m is very small: find m

✓ same n, but different e: find m

d is small: find d , thus everything

fault in prime generation: factor n, thus everything

previous attacks allowed to read messages

first 2 groups had assumptions on the message
Fix: randomised padding, sufficiently long

same modulus allowed reading every message
Fix: delete second key, just use first (both receivers can read
each others messages anyway)

other attacks completely break key

80 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989)

Assume q < p < 2q, e < φ(n) and d < 1
3n

1
4 . Then we can compute

d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Recall that finding d allows factoring n.

Attack is based solely on the key.

Example

Let n ∼ 4096 bit, choose d ∼ 1000 bit and put e = d−1 mod φ(n).
; already unsafe

Consequences

Decrypting “always” takes rather long

proof uses continued fractions

81 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989)

Assume q < p < 2q, e < φ(n) and d < 1
3n

1
4 . Then we can compute

d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Recall that finding d allows factoring n.

Attack is based solely on the key.

Example

Let n ∼ 4096 bit, choose d ∼ 1000 bit and put e = d−1 mod φ(n).
; already unsafe

Consequences

Decrypting “always” takes rather long

proof uses continued fractions

81 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989)

Assume q < p < 2q, e < φ(n) and d < 1
3n

1
4 . Then we can compute

d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Recall that finding d allows factoring n.

Attack is based solely on the key.

Example

Let n ∼ 4096 bit, choose d ∼ 1000 bit and put e = d−1 mod φ(n).
; already unsafe

Consequences

Decrypting “always” takes rather long

proof uses continued fractions

81 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989)

Assume q < p < 2q, e < φ(n) and d < 1
3n

1
4 . Then we can compute

d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Recall that finding d allows factoring n.

Attack is based solely on the key.

Example

Let n ∼ 4096 bit, choose d ∼ 1000 bit and put e = d−1 mod φ(n).
; already unsafe

Consequences

Decrypting “always” takes rather long

proof uses continued fractions

81 / 218

RSA Wiener Attack

Continued Fractions

Approximate large fractions by short fractions (in terms of bit size)

Example (Euclidean Algo gcd(67, 24))

67 = 2 · 24 + 19 5 = 1 · 4 + 1

24 = 1 · 19 + 5 4 = 4 · 1 + 0

19 = 3 · 5 + 4

yields representation

67

24
= 2 +

19

24
= 2 +

1
24
19

= 2 +
1

1 + 5
19

= 2 +
1

1 + 1
3+ 4

5

= 2 +
1

1 + 1
3+ 1

1+ 1
4

=: [2; 1, 3, 1, 4]

divide – swap – repeat

82 / 218

RSA Wiener Attack

Continued Fractions

Approximate large fractions by short fractions (in terms of bit size)

Example (Euclidean Algo gcd(67, 24))

67 = 2 · 24 + 19 5 = 1 · 4 + 1

24 = 1 · 19 + 5 4 = 4 · 1 + 0

19 = 3 · 5 + 4

yields representation

67

24
= 2 +

19

24
= 2 +

1
24
19

= 2 +
1

1 + 5
19

= 2 +
1

1 + 1
3+ 4

5

= 2 +
1

1 + 1
3+ 1

1+ 1
4

=: [2; 1, 3, 1, 4]

divide – swap – repeat

82 / 218

RSA Wiener Attack

Continued Fractions

Approximate large fractions by short fractions (in terms of bit size)

Example (Euclidean Algo gcd(67, 24))

67 = 2 · 24 + 19 5 = 1 · 4 + 1

24 = 1 · 19 + 5 4 = 4 · 1 + 0

19 = 3 · 5 + 4

yields representation

67

24
= 2 +

19

24
= 2 +

1
24
19

= 2 +
1

1 + 5
19

= 2 +
1

1 + 1
3+ 4

5

= 2 +
1

1 + 1
3+ 1

1+ 1
4

=: [2; 1, 3, 1, 4]

divide – swap – repeat

82 / 218

RSA Wiener Attack

Continued Fractions

Approximate large fractions by short fractions (in terms of bit size)

Example (Euclidean Algo gcd(67, 24))

67 = 2 · 24 + 19 5 = 1 · 4 + 1

24 = 1 · 19 + 5 4 = 4 · 1 + 0

19 = 3 · 5 + 4

yields representation

67

24
= 2 +

19

24
= 2 +

1
24
19

= 2 +
1

1 + 5
19

= 2 +
1

1 + 1
3+ 4

5

= 2 +
1

1 + 1
3+ 1

1+ 1
4

=: [2; 1, 3, 1, 4]

divide – swap – repeat

82 / 218

RSA Wiener Attack

Example (cont.)

What if we stop at some intermediate step?

[2; 1, 3, 1, 4] = 2 + 1
1+ 1

3+ 1

1+ 1
4

= 67
24 ∆ = 0

[2; 1, 3, 1] = 2 + 1
1+ 1

3+ 1
1

= 14
5 ∆ = 1

120

[2; 1, 3] = 2 + 1
1+ 1

3

= 11
4 ∆ = − 1

24

[2; 1] = 2 + 1
1 = 3 ∆ = 5

24

[2] = 2 ∆ = −19
24

Observations

difference alternates sign

absolute value of difference decreases ↑
enumerator and denominator increase ↑

83 / 218

RSA Wiener Attack

Example (cont.)

What if we stop at some intermediate step?

[2; 1, 3, 1, 4] = 2 + 1
1+ 1

3+ 1

1+ 1
4

= 67
24 ∆ = 0

[2; 1, 3, 1] = 2 + 1
1+ 1

3+ 1
1

= 14
5 ∆ = 1

120

[2; 1, 3] = 2 + 1
1+ 1

3

= 11
4 ∆ = − 1

24

[2; 1] = 2 + 1
1 = 3 ∆ = 5

24

[2] = 2 ∆ = −19
24

Observations

difference alternates sign

absolute value of difference decreases ↑
enumerator and denominator increase ↑

83 / 218

RSA Wiener Attack

Example (cont.)

What if we stop at some intermediate step?

[2; 1, 3, 1, 4] = 2 + 1
1+ 1

3+ 1

1+ 1
4

= 67
24 ∆ = 0

[2; 1, 3, 1] = 2 + 1
1+ 1

3+ 1
1

= 14
5 ∆ = 1

120

[2; 1, 3] = 2 + 1
1+ 1

3

= 11
4 ∆ = − 1

24

[2; 1] = 2 + 1
1 = 3 ∆ = 5

24

[2] = 2 ∆ = −19
24

Observations

difference alternates sign

absolute value of difference decreases ↑
enumerator and denominator increase ↑

83 / 218

RSA Wiener Attack

Example (cont.)

What if we stop at some intermediate step?

[2; 1, 3, 1, 4] = 2 + 1
1+ 1

3+ 1

1+ 1
4

= 67
24 ∆ = 0

[2; 1, 3, 1] = 2 + 1
1+ 1

3+ 1
1

= 14
5 ∆ = 1

120

[2; 1, 3] = 2 + 1
1+ 1

3

= 11
4 ∆ = − 1

24

[2; 1] = 2 + 1
1 = 3 ∆ = 5

24

[2] = 2 ∆ = −19
24

Observations

difference alternates sign

absolute value of difference decreases ↑
enumerator and denominator increase ↑

83 / 218

RSA Wiener Attack

Example (cont.)

What if we stop at some intermediate step?

[2; 1, 3, 1, 4] = 2 + 1
1+ 1

3+ 1

1+ 1
4

= 67
24 ∆ = 0

[2; 1, 3, 1] = 2 + 1
1+ 1

3+ 1
1

= 14
5 ∆ = 1

120

[2; 1, 3] = 2 + 1
1+ 1

3

= 11
4 ∆ = − 1

24

[2; 1] = 2 + 1
1 = 3 ∆ = 5

24

[2] = 2 ∆ = −19
24

Observations

difference alternates sign

absolute value of difference decreases ↑
enumerator and denominator increase ↑

83 / 218

RSA Wiener Attack

Example (cont.)

What if we stop at some intermediate step?

[2; 1, 3, 1, 4] = 2 + 1
1+ 1

3+ 1

1+ 1
4

= 67
24 ∆ = 0

[2; 1, 3, 1] = 2 + 1
1+ 1

3+ 1
1

= 14
5 ∆ = 1

120

[2; 1, 3] = 2 + 1
1+ 1

3

= 11
4 ∆ = − 1

24

[2; 1] = 2 + 1
1 = 3 ∆ = 5

24

[2] = 2 ∆ = −19
24

Observations

difference alternates sign

absolute value of difference decreases ↑
enumerator and denominator increase ↑

83 / 218

RSA Wiener Attack

Example (cont.)

What if we stop at some intermediate step?

[2; 1, 3, 1, 4] = 2 + 1
1+ 1

3+ 1

1+ 1
4

= 67
24 ∆ = 0

[2; 1, 3, 1] = 2 + 1
1+ 1

3+ 1
1

= 14
5 ∆ = 1

120

[2; 1, 3] = 2 + 1
1+ 1

3

= 11
4 ∆ = − 1

24

[2; 1] = 2 + 1
1 = 3 ∆ = 5

24

[2] = 2 ∆ = −19
24

Observations

difference alternates sign

absolute value of difference decreases ↑
enumerator and denominator increase ↑

83 / 218

RSA Wiener Attack

Continued Fractions in General

Input a
b ∈ Q, (a > b else we start with [0; . . .])

Euclid: start with r−1 = a, r0 = b
recursion: rk−1 = zk rk + rk+1

n-th convergent: [z0; z1, . . . , zn] =
pn
qn

pk = zkpk−1 + pk−2 p−1 = 1 p−2 = 0

qk = zkqk−1 + qk−2 q−1 = 0 q−2 = 1

Remark

Generalised idea also works for x ∈ R:

x0 = x zk = ⌊xk⌋ xk+1 =
1

xk − ⌊xk⌋

But we are mainly interested in Rationals and finite fractions.

84 / 218

RSA Wiener Attack

Continued Fractions in General

Input a
b ∈ Q, (a > b else we start with [0; . . .])

Euclid: start with r−1 = a, r0 = b
recursion: rk−1 = zk rk + rk+1

n-th convergent: [z0; z1, . . . , zn] =
pn
qn

pk = zkpk−1 + pk−2 p−1 = 1 p−2 = 0

qk = zkqk−1 + qk−2 q−1 = 0 q−2 = 1

Remark

Generalised idea also works for x ∈ R:

x0 = x zk = ⌊xk⌋ xk+1 =
1

xk − ⌊xk⌋

But we are mainly interested in Rationals and finite fractions.

84 / 218

RSA Wiener Attack

Continued Fractions in General

Input a
b ∈ Q, (a > b else we start with [0; . . .])

Euclid: start with r−1 = a, r0 = b
recursion: rk−1 = zk rk + rk+1

n-th convergent: [z0; z1, . . . , zn] =
pn
qn

pk = zkpk−1 + pk−2 p−1 = 1 p−2 = 0

qk = zkqk−1 + qk−2 q−1 = 0 q−2 = 1

Remark

Generalised idea also works for x ∈ R:

x0 = x zk = ⌊xk⌋ xk+1 =
1

xk − ⌊xk⌋

But we are mainly interested in Rationals and finite fractions.

84 / 218

RSA Wiener Attack

Bonus Slide

Can be infinite

x = 1 +
1

1 + 1
1+ 1

1+...

=: [1; 1, 1, 1, 1, . . .]

yields x = 1 + 1
x ,

hence x is golden ratio φ, so can be irrational

Theorem

The infinite, periodic continued fractions correspond to solutions of
quadratic equations, i.e. algebraic numbers of degree 2.

φ has n-th convergent Fn+2

Fn+1
, with Fibonacci numbers F0 = 0

φ is worst number to approximate,
as Fibonacci numbers are worst case for Euclidean Algorithm

85 / 218

RSA Wiener Attack

Bonus Slide

Can be infinite

x = 1 +
1

1 + 1
1+ 1

1+...

=: [1; 1, 1, 1, 1, . . .]

yields x = 1 + 1
x , hence x is golden ratio φ, so can be irrational

Theorem

The infinite, periodic continued fractions correspond to solutions of
quadratic equations, i.e. algebraic numbers of degree 2.

φ has n-th convergent Fn+2

Fn+1
, with Fibonacci numbers F0 = 0

φ is worst number to approximate,
as Fibonacci numbers are worst case for Euclidean Algorithm

85 / 218

RSA Wiener Attack

Bonus Slide

Can be infinite

x = 1 +
1

1 + 1
1+ 1

1+...

=: [1; 1, 1, 1, 1, . . .]

yields x = 1 + 1
x , hence x is golden ratio φ, so can be irrational

Theorem

The infinite, periodic continued fractions correspond to solutions of
quadratic equations, i.e. algebraic numbers of degree 2.

φ has n-th convergent Fn+2

Fn+1
, with Fibonacci numbers F0 = 0

φ is worst number to approximate,
as Fibonacci numbers are worst case for Euclidean Algorithm

85 / 218

RSA Wiener Attack

Bonus Slide

Can be infinite

x = 1 +
1

1 + 1
1+ 1

1+...

=: [1; 1, 1, 1, 1, . . .]

yields x = 1 + 1
x , hence x is golden ratio φ, so can be irrational

Theorem

The infinite, periodic continued fractions correspond to solutions of
quadratic equations, i.e. algebraic numbers of degree 2.

φ has n-th convergent Fn+2

Fn+1
, with Fibonacci numbers F0 = 0

φ is worst number to approximate,
as Fibonacci numbers are worst case for Euclidean Algorithm

85 / 218

RSA Wiener Attack

Properties of Continued Fractions

Improving: each step improves approximation

Alternating: even → smaller, odd → larger value

p2i
q2i

<
p2(i+1)

q2(i+1)
≤ x ≤

p2(i+1)+1

q2(i+1)+1
<

p2i+1

q2i+1

good approximation:
∣∣∣x − pi

qi

∣∣∣ < 1
q2i

best approximation: Let pi
qi

a cont.frac. of x .

If p
q is a better approximation, then q > qi .

“only” good approximation:
∣∣∣x − p

q

∣∣∣ < 1
2q2

=⇒ p
q is a cont.frac.

86 / 218

RSA Wiener Attack

Properties of Continued Fractions

Improving: each step improves approximation

Alternating: even → smaller, odd → larger value

p2i
q2i

<
p2(i+1)

q2(i+1)
≤ x ≤

p2(i+1)+1

q2(i+1)+1
<

p2i+1

q2i+1

good approximation:
∣∣∣x − pi

qi

∣∣∣ < 1
q2i

best approximation: Let pi
qi

a cont.frac. of x .

If p
q is a better approximation, then q > qi .

“only” good approximation:
∣∣∣x − p

q

∣∣∣ < 1
2q2

=⇒ p
q is a cont.frac.

86 / 218

RSA Wiener Attack

Properties of Continued Fractions

Improving: each step improves approximation

Alternating: even → smaller, odd → larger value

p2i
q2i

<
p2(i+1)

q2(i+1)
≤ x ≤

p2(i+1)+1

q2(i+1)+1
<

p2i+1

q2i+1

good approximation:
∣∣∣x − pi

qi

∣∣∣ < 1
q2i

best approximation: Let pi
qi

a cont.frac. of x .

If p
q is a better approximation, then q > qi .

“only” good approximation:
∣∣∣x − p

q

∣∣∣ < 1
2q2

=⇒ p
q is a cont.frac.

86 / 218

RSA Wiener Attack

Properties of Continued Fractions

Improving: each step improves approximation

Alternating: even → smaller, odd → larger value

p2i
q2i

<
p2(i+1)

q2(i+1)
≤ x ≤

p2(i+1)+1

q2(i+1)+1
<

p2i+1

q2i+1

good approximation:
∣∣∣x − pi

qi

∣∣∣ < 1
q2i

best approximation: Let pi
qi

a cont.frac. of x .

If p
q is a better approximation, then q > qi .

“only” good approximation:
∣∣∣x − p

q

∣∣∣ < 1
2q2

=⇒ p
q is a cont.frac.

86 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989, slightly generalised)

Assume q < p < aq, e < φ(n) and d < 1√
2(a+1)

n
1
4 . Then we can

compute d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Proof Idea.

Idea: Approximate e
n with cont.frac.

We have ed − kφ(n) = 1 for some unknown k , d , φ(n)

have φ(n) ≈ n, slightly smaller, hence e
n ≈

e
φ(n)

estimate error
∣∣ e
n −

k
d

∣∣ < . . . < 1
2d2

=⇒ k
d is a cont.frac. of e

n

compute all continued fractions ; list of log n candidates

a) check decoding: 2ed mod n
?
= 2

b) try to factor n, note we also have k , thus φ(n)

87 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989, slightly generalised)

Assume q < p < aq, e < φ(n) and d < 1√
2(a+1)

n
1
4 . Then we can

compute d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Proof Idea.

Idea: Approximate e
n with cont.frac.

We have ed − kφ(n) = 1 for some unknown k , d , φ(n)

have φ(n) ≈ n, slightly smaller, hence e
n ≈

e
φ(n)

estimate error
∣∣ e
n −

k
d

∣∣ < . . . < 1
2d2

=⇒ k
d is a cont.frac. of e

n

compute all continued fractions ; list of log n candidates

a) check decoding: 2ed mod n
?
= 2

b) try to factor n, note we also have k , thus φ(n)

87 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989, slightly generalised)

Assume q < p < aq, e < φ(n) and d < 1√
2(a+1)

n
1
4 . Then we can

compute d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Proof Idea.

Idea: Approximate e
n with cont.frac.

We have ed − kφ(n) = 1 for some unknown k , d , φ(n)

have φ(n) ≈ n, slightly smaller, hence e
n ≈

e
φ(n)

estimate error
∣∣ e
n −

k
d

∣∣ < . . . < 1
2d2

=⇒ k
d is a cont.frac. of e

n

compute all continued fractions ; list of log n candidates

a) check decoding: 2ed mod n
?
= 2

b) try to factor n, note we also have k , thus φ(n)

87 / 218

RSA Wiener Attack

Small Private Exponent d

Theorem (Wiener, 1989, slightly generalised)

Assume q < p < aq, e < φ(n) and d < 1√
2(a+1)

n
1
4 . Then we can

compute d from (n, e) in O
(
log(n)2

)
arithmetic steps.

Proof Idea.

Idea: Approximate e
n with cont.frac.

We have ed − kφ(n) = 1 for some unknown k , d , φ(n)

have φ(n) ≈ n, slightly smaller, hence e
n ≈

e
φ(n)

estimate error
∣∣ e
n −

k
d

∣∣ < . . . < 1
2d2

=⇒ k
d is a cont.frac. of e

n

compute all continued fractions ; list of log n candidates

a) check decoding: 2ed mod n
?
= 2

b) try to factor n, note we also have k , thus φ(n)

87 / 218

RSA Wiener Attack

Proof for Wiener attack.

Error from φ(n) to n:

0 < n − φ(n) = p + q − 1 < (a+ 1)q ≤ (a+ 1)
√
n

Error between fractions:∣∣∣∣en − k

d

∣∣∣∣ = ∣∣∣∣ed−kφ(n)− kn+kφ(n)

nd

∣∣∣∣
=

∣∣∣∣1− k(n − φ(n))

nd

∣∣∣∣ < (a+ 1)k
√
n

nd
=

(a+ 1)k

d
√
n

kφ(n) = ed − 1 and e < φ(n) =⇒ k < d

=⇒
∣∣∣∣en − k

d

∣∣∣∣ < a+ 1√
n
≤ a+ 1

2(a+ 1)d2
=

1

2d2

hence k
d is a continued fraction of e

n

88 / 218

RSA Wiener Attack

Proof for Wiener attack.

Error from φ(n) to n:

0 < n − φ(n) = p + q − 1 < (a+ 1)q ≤ (a+ 1)
√
n

Error between fractions:∣∣∣∣en − k

d

∣∣∣∣ = ∣∣∣∣ed−kφ(n)− kn+kφ(n)

nd

∣∣∣∣
=

∣∣∣∣1− k(n − φ(n))

nd

∣∣∣∣ < (a+ 1)k
√
n

nd
=

(a+ 1)k

d
√
n

kφ(n) = ed − 1 and e < φ(n) =⇒ k < d

=⇒
∣∣∣∣en − k

d

∣∣∣∣ < a+ 1√
n
≤ a+ 1

2(a+ 1)d2
=

1

2d2

hence k
d is a continued fraction of e

n

88 / 218

RSA Wiener Attack

Proof for Wiener attack.

Error from φ(n) to n:

0 < n − φ(n) = p + q − 1 < (a+ 1)q ≤ (a+ 1)
√
n

Error between fractions:∣∣∣∣en − k

d

∣∣∣∣ = ∣∣∣∣ed−kφ(n)− kn+kφ(n)

nd

∣∣∣∣
=

∣∣∣∣1− k(n − φ(n))

nd

∣∣∣∣ < (a+ 1)k
√
n

nd
=

(a+ 1)k

d
√
n

kφ(n) = ed − 1 and e < φ(n) =⇒ k < d

=⇒
∣∣∣∣en − k

d

∣∣∣∣ < a+ 1√
n
≤ a+ 1

2(a+ 1)d2
=

1

2d2

hence k
d is a continued fraction of e

n

88 / 218

RSA Wiener Attack

Proof for Wiener attack.

Error from φ(n) to n:

0 < n − φ(n) = p + q − 1 < (a+ 1)q ≤ (a+ 1)
√
n

Error between fractions:∣∣∣∣en − k

d

∣∣∣∣ = ∣∣∣∣ed−kφ(n)− kn+kφ(n)

nd

∣∣∣∣
=

∣∣∣∣1− k(n − φ(n))

nd

∣∣∣∣ < (a+ 1)k
√
n

nd
=

(a+ 1)k

d
√
n

kφ(n) = ed − 1 and e < φ(n) =⇒ k < d

=⇒
∣∣∣∣en − k

d

∣∣∣∣ < a+ 1√
n
≤ a+ 1

2(a+ 1)d2
=

1

2d2

hence k
d is a continued fraction of e

n

88 / 218

RSA Wiener Attack

Example (Wiener Attack)

assume given public key

n = 389033 e = 332383

calculate continued fractions

332383

389033
=

1

1 + 56650
332383

; 1

=
1

1 + 1
5+ 49133

56650

;
5

6

=
1

1 + 1
5+ 1

1+ 7517
49133

;
6

7

checking e · 7− 1 mod 6 = 0 and 2e·7 mod n = 2

hence d = 7

89 / 218

RSA Wiener Attack

Outlook on Wiener’s Attack

Extension to Wiener’s Attack

via lattice methods breakable for d < n0.292

assumed to work up to d <
√
n, but open problem

Possible Countermeasures

put e ′ = e + ∗ · φ(n), destroys assumption e < φ(n)

optimised decryption: make dp = d mod p − 1 and
dq = d mod q − 1 small-ish
can factor n in O

(
min

(√
dp,
√
dq
))

But ongoing research, so security unsure.

90 / 218

RSA Wiener Attack

Outlook on Wiener’s Attack

Extension to Wiener’s Attack

via lattice methods breakable for d < n0.292

assumed to work up to d <
√
n, but open problem

Possible Countermeasures

put e ′ = e + ∗ · φ(n), destroys assumption e < φ(n)

optimised decryption: make dp = d mod p − 1 and
dq = d mod q − 1 small-ish
can factor n in O

(
min

(√
dp,
√
dq
))

But ongoing research, so security unsure.

90 / 218

Digital Signatures

Digital Signatures

Bb
91 / 218

Digital Signatures

Digital Signatures

If electronic mail systems are to replace the existing paper
mail system for business transactions, “signing“ an electronic
message must be possible. (RSA, ’77)

Authentication: sender only has to convince recipient

Signature: recipient can also convince ”judge“

must depend both on sender and message

if not message: use old signature from other message
if not sender: recipient can forge

92 / 218

Digital Signatures

Digital Signatures

If electronic mail systems are to replace the existing paper
mail system for business transactions, “signing“ an electronic
message must be possible. (RSA, ’77)

Authentication: sender only has to convince recipient

Signature: recipient can also convince ”judge“

must depend both on sender and message

if not message: use old signature from other message
if not sender: recipient can forge

92 / 218

Digital Signatures

Desired Property

often Encryption/Decryption commute

enc (dec (m)) = dec (enc (m))

Basic Idea (RSA, ’77)

Alice sends to Bob:
s = mdA mod nA

Bob gets s, checks with Alice’s public key:

m = seA mod nA

message m, given by s can only have come from Alice? NO!

Problem

What to check the message against?

This setting is flawed!

93 / 218

Digital Signatures

Desired Property

often Encryption/Decryption commute

enc (dec (m)) = dec (enc (m))

Basic Idea (RSA, ’77)

Alice sends to Bob:
s = mdA mod nA

Bob gets s, checks with Alice’s public key:

m = seA mod nA

message m, given by s can only have come from Alice?

NO!

Problem

What to check the message against?

This setting is flawed!

93 / 218

Digital Signatures

Desired Property

often Encryption/Decryption commute

enc (dec (m)) = dec (enc (m))

Basic Idea (RSA, ’77)

Alice sends to Bob:
s = mdA mod nA

Bob gets s, checks with Alice’s public key:

m = seA mod nA

message m, given by s can only have come from Alice? NO!

Problem

What to check the message against?

This setting is flawed!

93 / 218

Digital Signatures

Desired Property

often Encryption/Decryption commute

enc (dec (m)) = dec (enc (m))

Basic Idea (RSA, ’77)

Alice sends to Bob:
s = mdA mod nA

Bob gets s, checks with Alice’s public key:

m = seA mod nA

message m, given by s can only have come from Alice? NO!

Problem

What to check the message against?

This setting is flawed!

93 / 218

Digital Signatures

Mathematical Model

Definition (Signature System)

A signature system is a quintuple (P, S ,K , sign, vrfy) where

P is the set of all plaintexts

S is the set of all signatures

K is the set of all keys

sign : P × K ; S is the signature relation
(not necessarily a map)

vrfy : P × S × K → {0, 1} is the verification function

vrfy (m, s, k) =

{
1 : s ∈ sign (m, k) i.e. possible outcome

0 : else

sign, vrfy are efficiently computable

Correctness: ∀m ∈M,∀k ∈ K . vrfy (m, sign (m, kpriv) , kpub) = 1

94 / 218

Digital Signatures

Observations

We must be able to reject messages.

Signature + message must contain redundancy.

If message derived from signature, redundancy must be in
message.

Improved Plain-RSA signature

Alice computes s := sign (m, (n, d)) = md mod n

Send (m, s) to Bob

Bob gets (m′, s ′), checks m′ = s ′e mod n. If yes, he accepts it.

How does Bob get (n, e)?

want to guard against manipulation of message

transmitted public key could have been changed

Public Key Infrastructure (PKI): topic of its own

95 / 218

Digital Signatures

Observations

We must be able to reject messages.

Signature + message must contain redundancy.

If message derived from signature, redundancy must be in
message.

Improved Plain-RSA signature

Alice computes s := sign (m, (n, d)) = md mod n

Send (m, s) to Bob

Bob gets (m′, s ′), checks m′ = s ′e mod n. If yes, he accepts it.

How does Bob get (n, e)?

want to guard against manipulation of message

transmitted public key could have been changed

Public Key Infrastructure (PKI): topic of its own

95 / 218

Digital Signatures

Observations

We must be able to reject messages.

Signature + message must contain redundancy.

If message derived from signature, redundancy must be in
message.

Improved Plain-RSA signature

Alice computes s := sign (m, (n, d)) = md mod n

Send (m, s) to Bob

Bob gets (m′, s ′), checks m′ = s ′e mod n. If yes, he accepts it.

How does Bob get (n, e)?

want to guard against manipulation of message

transmitted public key could have been changed

Public Key Infrastructure (PKI): topic of its own

95 / 218

Digital Signatures

Example

Alice’s key is (n, e, d) = (1073, 17, 593).

She want to send m = 123.

Compute s = 123593 mod 1073 = 219.

Bob gets (m, s) = (123, 219) and knows (n, e).

Bob checks 123
?
= 219e mod n

They match, so Bob accepts the message.

RSA-specific problems

Every number s < n is a valid signature for some m < n.

Plain-RSA is multiplicative: If (m1, s1) and (m2, s2) are valid
pairs, then (m1m2, s1s2) also is valid.

m1 = se1 m2 = se2 =⇒ m1m2 = (s1s2)
e

96 / 218

Digital Signatures

Example

Alice’s key is (n, e, d) = (1073, 17, 593).

She want to send m = 123.

Compute s = 123593 mod 1073 = 219.

Bob gets (m, s) = (123, 219) and knows (n, e).

Bob checks 123
?
= 219e mod n

They match, so Bob accepts the message.

RSA-specific problems

Every number s < n is a valid signature for some m < n.

Plain-RSA is multiplicative: If (m1, s1) and (m2, s2) are valid
pairs, then (m1m2, s1s2) also is valid.

m1 = se1 m2 = se2 =⇒ m1m2 = (s1s2)
e

96 / 218

Digital Signatures

Signature Oracle Attack

Assumptions

Assume we sign with plain-RSA

want to forge signature for message m

Have access to online oracle, that signs any m′ ̸= m (or some
restricted subset)

Attack

factor m = m1 . . .mk mod n such that all mi accepted by oracle
(not necessarily prime factors)
e.g. pick some m1 < n and put m2 := m ·m−1

1 mod n

get si = md
i mod n for i = 1, . . . , k

have signature s =
∏

si for m

97 / 218

Digital Signatures

Signature Oracle Attack

Assumptions

Assume we sign with plain-RSA

want to forge signature for message m

Have access to online oracle, that signs any m′ ̸= m (or some
restricted subset)

Attack

factor m = m1 . . .mk mod n such that all mi accepted by oracle
(not necessarily prime factors)
e.g. pick some m1 < n and put m2 := m ·m−1

1 mod n

get si = md
i mod n for i = 1, . . . , k

have signature s =
∏

si for m

97 / 218

Digital Signatures

Example (Signature Oracle Attack)

public key (3084396941, 5)

want to forge signature for flag

factor flag: 5 · 499 · 688729
ask signature oracle

s1 = sign(5) s2 = sign(499) s3 = sign(688729)

send s := s1 · s2 · s3

Remark

possibly additional tricks with 0-bytes if in C

98 / 218

Digital Signatures

Attack Scenarios

What does Eve know?

No message: just public key

Signatures: Eve has some message-signature pairs (mi , si)
e.g. observing traffic

Chosen message: Eve can choose messages mi to be signed
e.g. impersonating authentication server

What is a success?

Total Break: find private key

Universal Forgeability: forge signature for every message

Selective Forgeability: forge signature for m given by Alice

Existential Forgeability: forge signature for m chosen by Eve

99 / 218

Digital Signatures

Attack Scenarios

What does Eve know?

No message: just public key

Signatures: Eve has some message-signature pairs (mi , si)
e.g. observing traffic

Chosen message: Eve can choose messages mi to be signed
e.g. impersonating authentication server

What is a success?

Total Break: find private key

Universal Forgeability: forge signature for every message

Selective Forgeability: forge signature for m given by Alice

Existential Forgeability: forge signature for m chosen by Eve

99 / 218

Digital Signatures

Goal

Strongest Security

EUF-CMA Existential Unforgeability under Chosen message Attack:

Eve may request signatures si for m1, . . . ,mk

forges signature s for some m /∈ {m1, . . . ,mk}

sEUF-CMA strong EUF-CMA

Eve may request signatures si = sign (mi)
forges pair (m, s) /∈ {(mi , si) : i = 1, . . .};
i.e. m may be among requested messages, but must forge
different valid signature

Plain RSA fails:

EUF with no message

Universal Unforgeability (UUF) under CMA

100 / 218

Digital Signatures

Goal

Strongest Security

EUF-CMA Existential Unforgeability under Chosen message Attack:

Eve may request signatures si for m1, . . . ,mk

forges signature s for some m /∈ {m1, . . . ,mk}
sEUF-CMA strong EUF-CMA

Eve may request signatures si = sign (mi)
forges pair (m, s) /∈ {(mi , si) : i = 1, . . .};
i.e. m may be among requested messages, but must forge
different valid signature

Plain RSA fails:

EUF with no message

Universal Unforgeability (UUF) under CMA

100 / 218

Digital Signatures

Goal

Strongest Security

EUF-CMA Existential Unforgeability under Chosen message Attack:

Eve may request signatures si for m1, . . . ,mk

forges signature s for some m /∈ {m1, . . . ,mk}
sEUF-CMA strong EUF-CMA

Eve may request signatures si = sign (mi)
forges pair (m, s) /∈ {(mi , si) : i = 1, . . .};
i.e. m may be among requested messages, but must forge
different valid signature

Plain RSA fails:

EUF with no message

Universal Unforgeability (UUF) under CMA

100 / 218

PKCS

Public Key Cryptography Standard

101 / 218

PKCS Encryption Standards

OAEP – Optimal Asymmetric Encryption Padding

“How to do it right.”

part of PKCS #1, version 2.2,

RFC 8017, October 2012, last update Nov. 2016

Parameters

hash function h : Byte∗ → BytehLen

recommended: SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, and SHA-512/256 (i.e. SHA-2)
SHA-3 was too fresh, unclear why not included in update

mask generation function MGF : (seed, ℓ) 7→ Byteℓ

T ← empty string
for c = 0 to ⌈ℓ/hLen⌉ − 1 do

T ← T || h(seed || c)

102 / 218

https://datatracker.ietf.org/doc/html/rfc8017

PKCS Encryption Standards

OAEP – Optimal Asymmetric Encryption Padding

“How to do it right.”

part of PKCS #1, version 2.2,

RFC 8017, October 2012, last update Nov. 2016

Parameters

hash function h : Byte∗ → BytehLen

recommended: SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, and SHA-512/256 (i.e. SHA-2)
SHA-3 was too fresh, unclear why not included in update

mask generation function MGF : (seed, ℓ) 7→ Byteℓ

T ← empty string
for c = 0 to ⌈ℓ/hLen⌉ − 1 do

T ← T || h(seed || c)

102 / 218

https://datatracker.ietf.org/doc/html/rfc8017

PKCS Encryption Standards

OAEP – Optimal Asymmetric Encryption Padding

“How to do it right.”

part of PKCS #1, version 2.2,

RFC 8017, October 2012, last update Nov. 2016

Parameters

hash function h : Byte∗ → BytehLen

recommended: SHA-224, SHA-256, SHA-384, SHA-512,
SHA-512/224, and SHA-512/256 (i.e. SHA-2)
SHA-3 was too fresh, unclear why not included in update

mask generation function MGF : (seed, ℓ) 7→ Byteℓ

T ← empty string
for c = 0 to ⌈ℓ/hLen⌉ − 1 do

T ← T || h(seed || c)

102 / 218

https://datatracker.ietf.org/doc/html/rfc8017

PKCS Encryption Standards

OAEP-Encryption

Encryption

(n, e) public RSA key

m message, ∥m∥ ≤ ∥n∥ − 2hLen− 2

L label (optional), default empty

function encrypt(m, L)
DB← h(L) || 00 . . . 0001 ||m ▷ data block
Seed← random seed of length hLen
mDB← MGF(Seed)⊕ DB ▷ masked DB
mSeed← Seed⊕MGF(mDB) ▷ masked seed
EM← 00 ||mSeed ||mDB ▷ encoded message, EM < n
return EMe mod n

Payload m: 50% - 89% of cipher, ≥ 1000 Bit

more than enough for AES key

continue with symmetric encryption

103 / 218

PKCS Encryption Standards

OAEP-Encryption

Encryption

(n, e) public RSA key

m message, ∥m∥ ≤ ∥n∥ − 2hLen− 2

L label (optional), default empty

function encrypt(m, L)
DB← h(L) || 00 . . . 0001 ||m ▷ data block
Seed← random seed of length hLen
mDB← MGF(Seed)⊕ DB ▷ masked DB
mSeed← Seed⊕MGF(mDB) ▷ masked seed
EM← 00 ||mSeed ||mDB ▷ encoded message, EM < n
return EMe mod n

Payload m: 50% - 89% of cipher, ≥ 1000 Bit

more than enough for AES key

continue with symmetric encryption

103 / 218

PKCS Encryption Standards

OAEP-Encryption

Encryption

(n, e) public RSA key

m message, ∥m∥ ≤ ∥n∥ − 2hLen− 2

L label (optional), default empty

function encrypt(m, L)
DB← h(L) || 00 . . . 0001 ||m ▷ data block
Seed← random seed of length hLen
mDB← MGF(Seed)⊕ DB ▷ masked DB
mSeed← Seed⊕MGF(mDB) ▷ masked seed
EM← 00 ||mSeed ||mDB ▷ encoded message, EM < n
return EMe mod n

Payload m: 50% - 89% of cipher, ≥ 1000 Bit

more than enough for AES key

continue with symmetric encryption

103 / 218

PKCS Encryption Standards

+----------+---------+-------+

DB = | Hash(L) | 00...01 | m |

+----------+---------+-------+

+----------+ |

| seed | |

+----------+ |

| |

|-------> MGF ---> xor

+--+ | |

|00| V |

+--+ xor <----- MGF <-----|

| | |

V V V

+--+----------+----------------------------+

EM = |00|maskedSeed| maskedDB |

+--+----------+----------------------------+

104 / 218

PKCS Signature Standards

RSASSA-PSS – Idea

Naming

SSA Signature Scheme with Appendix

PSS Probabilistic Signature Scheme

EMSA Encoding Methods for Signatures with Appendix

Sign

encode message with EMSA-PSS: EM = encode(m)

apply RSA primitive/plain-RSA: s = EMd mod n

Verify

apply RSA primitive/plain-RSA: EM = se mod n

check consistency with EMSA-PSS-VERIFY

encoding uses hash(m) instead of m

can sign arbitrarily long message (document)

105 / 218

PKCS Signature Standards

RSASSA-PSS – Idea

Naming

SSA Signature Scheme with Appendix

PSS Probabilistic Signature Scheme

EMSA Encoding Methods for Signatures with Appendix

Sign

encode message with EMSA-PSS: EM = encode(m)

apply RSA primitive/plain-RSA: s = EMd mod n

Verify

apply RSA primitive/plain-RSA: EM = se mod n

check consistency with EMSA-PSS-VERIFY

encoding uses hash(m) instead of m

can sign arbitrarily long message (document)

105 / 218

PKCS Signature Standards

RSASSA-PSS – Idea

Naming

SSA Signature Scheme with Appendix

PSS Probabilistic Signature Scheme

EMSA Encoding Methods for Signatures with Appendix

Sign

encode message with EMSA-PSS: EM = encode(m)

apply RSA primitive/plain-RSA: s = EMd mod n

Verify

apply RSA primitive/plain-RSA: EM = se mod n

check consistency with EMSA-PSS-VERIFY

encoding uses hash(m) instead of m

can sign arbitrarily long message (document)

105 / 218

PKCS Signature Standards

RSASSA-PSS – Idea

Naming

SSA Signature Scheme with Appendix

PSS Probabilistic Signature Scheme

EMSA Encoding Methods for Signatures with Appendix

Sign

encode message with EMSA-PSS: EM = encode(m)

apply RSA primitive/plain-RSA: s = EMd mod n

Verify

apply RSA primitive/plain-RSA: EM = se mod n

check consistency with EMSA-PSS-VERIFY

encoding uses hash(m) instead of m

can sign arbitrarily long message (document)

105 / 218

PKCS Signature Standards

RSASSA-PSS – Details

Arguments for Encoding

m message to be signed

h hash function

MGF mask generation function

sLen salt length (bytes), mostly hash length or 0

L desired output length, ≥ ∥h(∗)∥+ sLen + 2

Verification

m′ = 00 . . . 00 || h(m) || salt with 8 Zero-bytes

DB = 00 . . . 0001 || salt of length L− ∥h(∗)∥ − 1

mask DB with M(h(m′))

output EM = maskedDB || h(m′) || 0xbc

106 / 218

PKCS Signature Standards

RSASSA-PSS – Details

Arguments for Encoding

m message to be signed

h hash function

MGF mask generation function

sLen salt length (bytes), mostly hash length or 0

L desired output length, ≥ ∥h(∗)∥+ sLen + 2

Verification

m′ = 00 . . . 00 || h(m) || salt with 8 Zero-bytes

DB = 00 . . . 0001 || salt of length L− ∥h(∗)∥ − 1

mask DB with M(h(m′))

output EM = maskedDB || h(m′) || 0xbc

106 / 218

PKCS Signature Standards

RSASSA-PSS – Details

Arguments for encoding

m message to be signed

h hash function

M mask generation function

sLen salt length (bytes), mostly hash length or 0

L desired output length, ≥ ∥h(∗)∥+ sLen + 2

Decode

split EM by length to get the parts maskedDB′, H ′

with H ′ unmask to get DB ′

know salt length, so get salt′

construct m′ = 00 . . . 00 || h(m) || salt′

check H ′ = h(m′),

if yes (and all hardcoded bytes correct), accept

107 / 218

PKCS Signature Standards

+-----------+------+------+

m’ = | 00 ... 00 | h(m) | salt |

+-----------+------+------+

|

+-----------+------+ |

DB = | 00 ... 01 | salt | |

+-----------+------+ hash

| |

xor <----- MGF <-----|

| |

| |

| |

V V

+----------+---------------------+----+

EM = | maskedDB | h(m’) | bc |

+----------+---------------------+----+

108 / 218

PKCS Signature Standards

Comparison of Schemes

assuming an RSA modulus of ∥n∥ ∼ log n bit

OAEP/Encryption

hash of label, seed, two fixes bytes

hence ∥n∥ ≥ ∥m∥+ 2hLen + 2

maximal payload

RSASSA-PSS/Signing

L desired output length, so L = ∥n∥
one hash, one salt, two fixed bytes

only restriction ∥n∥ ≥ hLen + sLen + 2

no restriction on m, as hashed anyway

109 / 218

PKCS Signature Standards

Comparison of Schemes

assuming an RSA modulus of ∥n∥ ∼ log n bit

OAEP/Encryption

hash of label, seed, two fixes bytes

hence ∥n∥ ≥ ∥m∥+ 2hLen + 2

maximal payload

RSASSA-PSS/Signing

L desired output length, so L = ∥n∥
one hash, one salt, two fixed bytes

only restriction ∥n∥ ≥ hLen + sLen + 2

no restriction on m, as hashed anyway

109 / 218

PKCS Signature Standards

Comparison of Schemes

assuming an RSA modulus of ∥n∥ ∼ log n bit

OAEP/Encryption

hash of label, seed, two fixes bytes

hence ∥n∥ ≥ ∥m∥+ 2hLen + 2

maximal payload

RSASSA-PSS/Signing

L desired output length, so L = ∥n∥
one hash, one salt, two fixed bytes

only restriction ∥n∥ ≥ hLen + sLen + 2

no restriction on m, as hashed anyway

109 / 218

PKCS Bleichenbacher’s Attack

Why so complicated

PKCS #1 v1.5 was easier, for encryption we have

00 || 02 || random || 00 ||m0

broken 1998 by Bleichenbacher

SSL 3.0 (from ’96) → TLS 1.0 (in ’99)

we have error messages for wrong encoding → 1 bit information

acceptance depending on the three fixed bytes

shifting message gives information

if server return different errors, can also exploit this

Adaptive Chosen Cipher Attack

in total ∼ 1 million messages for practical attack

PKCS #1 v1.5 only for compatibility, should be avoided if possible.

skip details

110 / 218

PKCS Bleichenbacher’s Attack

Why so complicated

PKCS #1 v1.5 was easier, for encryption we have

00 || 02 || random || 00 ||m0

broken 1998 by Bleichenbacher

SSL 3.0 (from ’96) → TLS 1.0 (in ’99)

we have error messages for wrong encoding → 1 bit information

acceptance depending on the three fixed bytes

shifting message gives information

if server return different errors, can also exploit this

Adaptive Chosen Cipher Attack

in total ∼ 1 million messages for practical attack

PKCS #1 v1.5 only for compatibility, should be avoided if possible.

skip details

110 / 218

PKCS Bleichenbacher’s Attack

Why so complicated

PKCS #1 v1.5 was easier, for encryption we have

00 || 02 || random || 00 ||m0

broken 1998 by Bleichenbacher

SSL 3.0 (from ’96) → TLS 1.0 (in ’99)

we have error messages for wrong encoding → 1 bit information

acceptance depending on the three fixed bytes

shifting message gives information

if server return different errors, can also exploit this

Adaptive Chosen Cipher Attack

in total ∼ 1 million messages for practical attack

PKCS #1 v1.5 only for compatibility, should be avoided if possible.

skip details

110 / 218

PKCS Bleichenbacher’s Attack

Why so complicated

PKCS #1 v1.5 was easier, for encryption we have

00 || 02 || random || 00 ||m0

broken 1998 by Bleichenbacher

SSL 3.0 (from ’96) → TLS 1.0 (in ’99)

we have error messages for wrong encoding → 1 bit information

acceptance depending on the three fixed bytes

shifting message gives information

if server return different errors, can also exploit this

Adaptive Chosen Cipher Attack

in total ∼ 1 million messages for practical attack

PKCS #1 v1.5 only for compatibility, should be avoided if possible.

skip details

110 / 218

PKCS Bleichenbacher’s Attack

Bleichenbacher’s Attack – Decrypt

let B bound on m := (random || 00 ||m0)

input c , get the information whether 2B ≤ cd mod n ≤ 3B

given c0 = me mod n, find si such that c0(si)
e is accepted

Mi set of intervals, one contains m, M0 = {[2B, 3B]}
finished if M∗ = {[m,m]}, i.e. one singleton

si is conform if 2B ≤ msi mod n < 3B

assume m ∈ [a, b]

2B ≤ msi − rn ≤ 3B − 1 for some r ∈ N
a≤m≤b
=====⇒ asi − (3B − 1) ≤ rn ≤ bsi − 2B inductive bounds

some candidates for r , for each

2B + rn

si
≤ m ≤ 3B − 1 + rn

si

111 / 218

PKCS Bleichenbacher’s Attack

Bleichenbacher’s Attack – Decrypt

let B bound on m := (random || 00 ||m0)

input c , get the information whether 2B ≤ cd mod n ≤ 3B

given c0 = me mod n, find si such that c0(si)
e is accepted

Mi set of intervals, one contains m, M0 = {[2B, 3B]}
finished if M∗ = {[m,m]}, i.e. one singleton

si is conform if 2B ≤ msi mod n < 3B

assume m ∈ [a, b]

2B ≤ msi − rn ≤ 3B − 1 for some r ∈ N
a≤m≤b
=====⇒ asi − (3B − 1) ≤ rn ≤ bsi − 2B inductive bounds

some candidates for r , for each

2B + rn

si
≤ m ≤ 3B − 1 + rn

si

111 / 218

PKCS Bleichenbacher’s Attack

i = 1: smallest s1 ≥ n/(3B) s.t. conform

|Mi−1| > 1: smallest si > si−1 s.t. conform

|Mi−1| = 1: find smallest ri , then si with

ri ≥ 2
bsi−1 − 2B

n

2B + rin

b
≤ si ≤

3B + rin

a

combine both old and new bounds

Mi =

{[
max

(
a,

2B + rn

si

)
,min

(
b,

3B − 1 + rn

si

)]
: [a, b] ∈ Mi ,

asi − 3B + 1

n
≤ r ≤ bsi − 2B

n

}
probability analysis to get expected number of attempts

experiments on 1024 bit key: between 300k and 2M

allows practical attacks on SSL 3.0

112 / 218

PKCS Bleichenbacher’s Attack

i = 1: smallest s1 ≥ n/(3B) s.t. conform

|Mi−1| > 1: smallest si > si−1 s.t. conform

|Mi−1| = 1: find smallest ri , then si with

ri ≥ 2
bsi−1 − 2B

n

2B + rin

b
≤ si ≤

3B + rin

a

combine both old and new bounds

Mi =

{[
max

(
a,

2B + rn

si

)
,min

(
b,

3B − 1 + rn

si

)]
: [a, b] ∈ Mi ,

asi − 3B + 1

n
≤ r ≤ bsi − 2B

n

}

probability analysis to get expected number of attempts

experiments on 1024 bit key: between 300k and 2M

allows practical attacks on SSL 3.0

112 / 218

PKCS Bleichenbacher’s Attack

i = 1: smallest s1 ≥ n/(3B) s.t. conform

|Mi−1| > 1: smallest si > si−1 s.t. conform

|Mi−1| = 1: find smallest ri , then si with

ri ≥ 2
bsi−1 − 2B

n

2B + rin

b
≤ si ≤

3B + rin

a

combine both old and new bounds

Mi =

{[
max

(
a,

2B + rn

si

)
,min

(
b,

3B − 1 + rn

si

)]
: [a, b] ∈ Mi ,

asi − 3B + 1

n
≤ r ≤ bsi − 2B

n

}
probability analysis to get expected number of attempts

experiments on 1024 bit key: between 300k and 2M

allows practical attacks on SSL 3.0

112 / 218

Primality Tests

Primality Tests

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

Sieve of Erathosthenes – Thanks to Todd Lehmann on texoverflow

113 / 218

Primality Tests

Primality Testing

RSA needs big primes

earlier we suggested: create random number and check

chance is good (Prime Number Theorem)

but need efficient checker

Input: candidate n ∈ N
Output: True/False

Time must be polynomial in ∥n∥ ≈ log n.

exact checkers are too slow, even though polynomial ∼ ∥n∥6+ε

use probabilistic method
(chance of wrong answer ∼ chance of guessing key)

114 / 218

Primality Tests

Primality Testing

RSA needs big primes

earlier we suggested: create random number and check

chance is good (Prime Number Theorem)

but need efficient checker

Input: candidate n ∈ N
Output: True/False

Time must be polynomial in ∥n∥ ≈ log n.

exact checkers are too slow, even though polynomial ∼ ∥n∥6+ε

use probabilistic method
(chance of wrong answer ∼ chance of guessing key)

114 / 218

Primality Tests

Primality Testing

RSA needs big primes

earlier we suggested: create random number and check

chance is good (Prime Number Theorem)

but need efficient checker

Input: candidate n ∈ N
Output: True/False

Time must be polynomial in ∥n∥ ≈ log n.

exact checkers are too slow, even though polynomial ∼ ∥n∥6+ε

use probabilistic method
(chance of wrong answer ∼ chance of guessing key)

114 / 218

Primality Tests

Naive Test

Naive Test

function Prime(n)
for i = 2, . . . , ⌊

√
n⌋ do

if n mod i = 0 then
return False

return True

obviously works correctly

time O∗(
√
n) = O∗

(
2

1
2
log n
)
, i.e. exponential

(O∗ means, we leave out polynomial factors)

115 / 218

Primality Tests

Naive Test

Naive Test

function Prime(n)
for i = 2, . . . , ⌊

√
n⌋ do

if n mod i = 0 then
return False

return True

obviously works correctly

time O∗(
√
n) = O∗

(
2

1
2
log n
)
, i.e. exponential

(O∗ means, we leave out polynomial factors)

115 / 218

Primality Tests Fermat Test

Fermat Test

Lemma

If p is prime, and gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Only implication! No “if and only if”!

Fermat Test

pick some random a < n

optional: check gcd(a, n) = 1

check whether n satisfies this lemma

Example

Let n = 97, a = 68. Have an−1 mod n = 1, so n passes.

Let n = 91, a = 23 yields an−1 mod n = 1, so n passes.
But a = 19 =⇒ an−1 mod n = 64 =⇒ n is not prime.

Let n = 561, then n passes for every a, but n = 3 · 11 · 17.

116 / 218

Primality Tests Fermat Test

Fermat Test

Lemma

If p is prime, and gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Only implication! No “if and only if”!

Fermat Test

pick some random a < n

optional: check gcd(a, n) = 1

check whether n satisfies this lemma

Example

Let n = 97, a = 68. Have an−1 mod n = 1, so n passes.

Let n = 91, a = 23 yields an−1 mod n = 1, so n passes.
But a = 19 =⇒ an−1 mod n = 64 =⇒ n is not prime.

Let n = 561, then n passes for every a, but n = 3 · 11 · 17.

116 / 218

Primality Tests Fermat Test

Fermat Test

Lemma

If p is prime, and gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Only implication! No “if and only if”!

Fermat Test

pick some random a < n

optional: check gcd(a, n) = 1

check whether n satisfies this lemma

Example

Let n = 97, a = 68. Have an−1 mod n = 1, so n passes.

Let n = 91, a = 23 yields an−1 mod n = 1, so n passes.
But a = 19 =⇒ an−1 mod n = 64 =⇒ n is not prime.

Let n = 561, then n passes for every a, but n = 3 · 11 · 17.

116 / 218

Primality Tests Fermat Test

Fermat Test

Lemma

If p is prime, and gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Only implication! No “if and only if”!

Fermat Test

pick some random a < n

optional: check gcd(a, n) = 1

check whether n satisfies this lemma

Example

Let n = 97, a = 68. Have an−1 mod n = 1, so n passes.

Let n = 91, a = 23 yields an−1 mod n = 1, so n passes.

But a = 19 =⇒ an−1 mod n = 64 =⇒ n is not prime.

Let n = 561, then n passes for every a, but n = 3 · 11 · 17.

116 / 218

Primality Tests Fermat Test

Fermat Test

Lemma

If p is prime, and gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Only implication! No “if and only if”!

Fermat Test

pick some random a < n

optional: check gcd(a, n) = 1

check whether n satisfies this lemma

Example

Let n = 97, a = 68. Have an−1 mod n = 1, so n passes.

Let n = 91, a = 23 yields an−1 mod n = 1, so n passes.
But a = 19 =⇒ an−1 mod n = 64 =⇒ n is not prime.

Let n = 561, then n passes for every a, but n = 3 · 11 · 17.

116 / 218

Primality Tests Fermat Test

Fermat Test

Lemma

If p is prime, and gcd(a, p) = 1, then ap−1 ≡ 1 mod p.

Only implication! No “if and only if”!

Fermat Test

pick some random a < n

optional: check gcd(a, n) = 1

check whether n satisfies this lemma

Example

Let n = 97, a = 68. Have an−1 mod n = 1, so n passes.

Let n = 91, a = 23 yields an−1 mod n = 1, so n passes.
But a = 19 =⇒ an−1 mod n = 64 =⇒ n is not prime.

Let n = 561, then n passes for every a, but n = 3 · 11 · 17.
116 / 218

Primality Tests Fermat Test

Fermat Test – Analysis

quick: need O(∥n∥) arithmetic operations per run,

run t times, with different a

correct answer if n prime

may give false answer for composite number

Definition

A Carmichael number is a composite number n, that passes the
Fermat test for every base a coprime to n.

561 is smallest Carmichael number.

Lemma (Alford, Granville, Pomerance; 1994)

There are infinitely many Carmichael numbers.

Fermat test has no success guarantee > 0.

117 / 218

Primality Tests Fermat Test

Fermat Test – Analysis

quick: need O(∥n∥) arithmetic operations per run,

run t times, with different a

correct answer if n prime

may give false answer for composite number

Definition

A Carmichael number is a composite number n, that passes the
Fermat test for every base a coprime to n.

561 is smallest Carmichael number.

Lemma (Alford, Granville, Pomerance; 1994)

There are infinitely many Carmichael numbers.

Fermat test has no success guarantee > 0.

117 / 218

Primality Tests Fermat Test

Fermat Test – Analysis

quick: need O(∥n∥) arithmetic operations per run,

run t times, with different a

correct answer if n prime

may give false answer for composite number

Definition

A Carmichael number is a composite number n, that passes the
Fermat test for every base a coprime to n.

561 is smallest Carmichael number.

Lemma (Alford, Granville, Pomerance; 1994)

There are infinitely many Carmichael numbers.

Fermat test has no success guarantee > 0.

117 / 218

Primality Tests Fermat Test

Fermat Test – Analysis

quick: need O(∥n∥) arithmetic operations per run,

run t times, with different a

correct answer if n prime

may give false answer for composite number

Definition

A Carmichael number is a composite number n, that passes the
Fermat test for every base a coprime to n.

561 is smallest Carmichael number.

Lemma (Alford, Granville, Pomerance; 1994)

There are infinitely many Carmichael numbers.

Fermat test has no success guarantee > 0.

117 / 218

Primality Tests Miller-Rabin Test

Miller-Rabin Test

Developed by Artjuhov (’67), Miller (’76’), Rabin (’80).

removes problem of Carmichael numbers

Idea

if n prime, then x2 ≡ 1 mod n only has solutions x = ±1
in Fermat an−1 is an even power

taking roots, we should arrive at −1
for odd powers, we cannot compute root
(find root equivalent to factoring),
so we must stop

118 / 218

Primality Tests Miller-Rabin Test

Miller-Rabin Test

Developed by Artjuhov (’67), Miller (’76’), Rabin (’80).

removes problem of Carmichael numbers

Idea

if n prime, then x2 ≡ 1 mod n only has solutions x = ±1
in Fermat an−1 is an even power

taking roots, we should arrive at −1
for odd powers, we cannot compute root
(find root equivalent to factoring),
so we must stop

118 / 218

Primality Tests Miller-Rabin Test

Miller-Rabin Test

Miller-Rabin-Test

function Miller-Rabin(n)
pick random a < n
if gcd(a, n) ̸= 1 then return False

write n − 1 = 2s · k , for k odd
if ak ≡ 1 mod n then return True
for i = 0, . . . , s − 1 do

if (ak)2
i ≡ −1 mod n then return True

return False

If n not prime, ≤ φ(n)
4 choices of base a give false answer

run test t times, takes O(t · ∥n∥) arithmetic operations

reject n if one iteration fails

; error chance ≤
(
1
4

)t

119 / 218

Primality Tests Miller-Rabin Test

Miller-Rabin Test

Miller-Rabin-Test

function Miller-Rabin(n)
pick random a < n
if gcd(a, n) ̸= 1 then return False

write n − 1 = 2s · k , for k odd
if ak ≡ 1 mod n then return True
for i = 0, . . . , s − 1 do

if (ak)2
i ≡ −1 mod n then return True

return False

If n not prime, ≤ φ(n)
4 choices of base a give false answer

run test t times, takes O(t · ∥n∥) arithmetic operations

reject n if one iteration fails

; error chance ≤
(
1
4

)t
119 / 218

Primality Tests Miller-Rabin Test

Example Miller-Rabin

Example

Let n = 91

write n − 1 = 90 = 45 · 21

pick base a = 38

a45 ≡ 90 ≡ −1 mod 91
hence accepted (for now)

pick base a = 23

a45 mod 91 = 64 ̸= ±1(
a45
)2

mod 91 = 1
hence composite

120 / 218

Primality Tests Miller-Rabin Test

Example Miller-Rabin

Example

Let n = 91

write n − 1 = 90 = 45 · 21

pick base a = 38

a45 ≡ 90 ≡ −1 mod 91
hence accepted (for now)

pick base a = 23

a45 mod 91 = 64 ̸= ±1(
a45
)2

mod 91 = 1
hence composite

120 / 218

Primality Tests Miller-Rabin Test

Example Miller-Rabin

Example

Let n = 91

write n − 1 = 90 = 45 · 21

pick base a = 38

a45 ≡ 90 ≡ −1 mod 91
hence accepted (for now)

pick base a = 23

a45 mod 91 = 64 ̸= ±1(
a45
)2

mod 91 = 1
hence composite

120 / 218

Primality Tests Miller-Rabin Test

Prime and Prejudice (2018)

usually, testing few small numbers suffices

many implementation fix(ed?) t or bases ai

but error chance needs randomness

in crypto always consider adversarial input

Failure Chance Against Adversary

OpenSSL 1.1.1-pre6 fix t = 2 for log n ≥ 1300,
failure chance 1

16

GNU GMP bases ai depend deterministically on n,
100% failure for t ≤ 15

LibTomMath t ≤ 256, use first t primes as bases,
100% failure

121 / 218

Primality Tests Miller-Rabin Test

Prime and Prejudice (2018)

usually, testing few small numbers suffices

many implementation fix(ed?) t or bases ai

but error chance needs randomness

in crypto always consider adversarial input

Failure Chance Against Adversary

OpenSSL 1.1.1-pre6 fix t = 2 for log n ≥ 1300,
failure chance 1

16

GNU GMP bases ai depend deterministically on n,
100% failure for t ≤ 15

LibTomMath t ≤ 256, use first t primes as bases,
100% failure

121 / 218

Primality Tests Miller-Rabin Test

Creating Adversarial Input

Counting false witnesses

let S(n) be how many bases pass test for (composite) n

so far, we have upper bound S(n) ≤ φ(n)
4 for false witnesses

Can we reach this bound?

Theorem (Monier, ’80)

Assume we write

n = 2s · k + 1 =
m∏
i=1

peii

with primes pi = 2siki + 1 and k, ki odd. Then

S(n) =
(∏

gcd(k , ki)
)(2min(si)·m − 1

2m − 1
+ 1

)

122 / 218

Primality Tests Miller-Rabin Test

Creating Adversarial Input

Counting false witnesses

let S(n) be how many bases pass test for (composite) n

so far, we have upper bound S(n) ≤ φ(n)
4 for false witnesses

Can we reach this bound?

Theorem (Monier, ’80)

Assume we write

n = 2s · k + 1 =
m∏
i=1

peii

with primes pi = 2siki + 1 and k, ki odd. Then

S(n) =
(∏

gcd(k , ki)
)(2min(si)·m − 1

2m − 1
+ 1

)
122 / 218

Primality Tests Miller-Rabin Test

n = 2s · k + 1 =
∏

m
i=1p

ei
i pi = 2siki + 1

S(n) =
(∏

gcd(k , ki)
)(2min(si)·m − 1

2m − 1
+ 1

)

Corollary

Let x odd with with 2x + 1 and 4x + 1 prime. Then
n = (2x +1)(4x +1) achieves the worst error chance for Miller-Rabin.

apply formula.

p1 = 2x + 1, p2 = 4x + 1, so k1 = k2 = x , s1 = 1, s2 = 2

n = 8x2 + 6x + 1, so s = 1 and k = 4x2 + 3x

gcd(k , ki) = x , hence S(n) = 2x2 = φ(n)
4

Construction: guess x and check primality

123 / 218

Primality Tests Miller-Rabin Test

n = 2s · k + 1 =
∏

m
i=1p

ei
i pi = 2siki + 1

S(n) =
(∏

gcd(k , ki)
)(2min(si)·m − 1

2m − 1
+ 1

)

Corollary

Let x odd with with 2x + 1 and 4x + 1 prime. Then
n = (2x +1)(4x +1) achieves the worst error chance for Miller-Rabin.

apply formula.

p1 = 2x + 1, p2 = 4x + 1, so k1 = k2 = x , s1 = 1, s2 = 2

n = 8x2 + 6x + 1, so s = 1 and k = 4x2 + 3x

gcd(k , ki) = x , hence S(n) = 2x2 = φ(n)
4

Construction: guess x and check primality

123 / 218

Primality Tests Miller-Rabin Test

n = 2s · k + 1 =
∏

m
i=1p

ei
i pi = 2siki + 1

S(n) =
(∏

gcd(k , ki)
)(2min(si)·m − 1

2m − 1
+ 1

)

Corollary

Let x odd with with 2x + 1 and 4x + 1 prime. Then
n = (2x +1)(4x +1) achieves the worst error chance for Miller-Rabin.

apply formula.

p1 = 2x + 1, p2 = 4x + 1, so k1 = k2 = x , s1 = 1, s2 = 2

n = 8x2 + 6x + 1, so s = 1 and k = 4x2 + 3x

gcd(k , ki) = x , hence S(n) = 2x2 = φ(n)
4

Construction: guess x and check primality

123 / 218

Primality Tests Miller-Rabin Test

Miller-Rabin – Wrap-Up

Do’s

stick to the pseudo-code

use random bases

t rounds give 2t bit security level

Don’t’s

small number of rounds t: can efficiently create adversarial input

fixed bases: can create input with guaranteed false answer,
procedure more involved, but feasible

124 / 218

Primality Tests Miller-Rabin Test

Miller-Rabin – Wrap-Up

Do’s

stick to the pseudo-code

use random bases

t rounds give 2t bit security level

Don’t’s

small number of rounds t: can efficiently create adversarial input

fixed bases: can create input with guaranteed false answer,
procedure more involved, but feasible

124 / 218

Primality Tests AKS Primality Test

AKS Primality Test

Developed by Agrawal, Kayal, Saxena

famous paper “Primes is in P”, 2002

first provable polynomial time algorithm

Idea for AKS

Let a, n ∈ N. We have (x + a)n ≡ xn + an in Zn[x] iff n is prime.

reduce this modulo smaller polynomial

give bound on values a to check

Takes time O
(
∥n∥6+ε

)
, too much

125 / 218

Primality Tests AKS Primality Test

AKS Primality Test

Developed by Agrawal, Kayal, Saxena

famous paper “Primes is in P”, 2002

first provable polynomial time algorithm

Idea for AKS

Let a, n ∈ N. We have (x + a)n ≡ xn + an in Zn[x] iff n is prime.

reduce this modulo smaller polynomial

give bound on values a to check

Takes time O
(
∥n∥6+ε

)
, too much

125 / 218

Primality Tests AKS Primality Test

AKS Primality Test

Developed by Agrawal, Kayal, Saxena

famous paper “Primes is in P”, 2002

first provable polynomial time algorithm

Idea for AKS

Let a, n ∈ N. We have (x + a)n ≡ xn + an in Zn[x] iff n is prime.

reduce this modulo smaller polynomial

give bound on values a to check

Takes time O
(
∥n∥6+ε

)
, too much

125 / 218

Primality Tests Sieve of Erathosthenes

Sieve of Erathosthenes

not really a primality test

good method to generate all primes p ≤ n

function Erathosthenes(n)
create array ai = 1 for i ≤ n
i ← 2
while i2 ≤ n do

if ai = 1 then
for j = 2, . . . , ⌊n/i⌋ do

ai ·j ← 0
return {p : ap = 1}

on PC, for n = 230 about 6 seconds (with some optimisations)

running time O(n log log n), space O(n)
only use, if array fits into RAM!

126 / 218

Primality Tests Sieve of Erathosthenes

Sieve of Erathosthenes

not really a primality test

good method to generate all primes p ≤ n

function Erathosthenes(n)
create array ai = 1 for i ≤ n
i ← 2
while i2 ≤ n do

if ai = 1 then
for j = 2, . . . , ⌊n/i⌋ do

ai ·j ← 0
return {p : ap = 1}

on PC, for n = 230 about 6 seconds (with some optimisations)

running time O(n log log n), space O(n)
only use, if array fits into RAM!

126 / 218

Primality Tests Primality Tests – Overview

Primality Tests – Overview

Fermat: easy, fast, can have one-sided errors, fails for some numbers

Miller-Rabin: Method of choice

as fast as Fermat,
also one-sided error
repeated, independent calls: error ↘ 0
in most crypto-libraries,
but many implementations were (are?) vulnerable to
malicious input ; “Prime and Prejudice”

AKS: no error, but long running time

Erathosthenes: no test, but a method to generate all primes ≤ n
only recommended for n < RAM

127 / 218

Primality Tests Prime Generation

Prime Generation – Revisited

Optimisation

chance of primality is ∼ 1/ log n

improve factor by ruling out small primes as divisors
e.g. prime odd, better p = 6 · k ± 1, . . .

How not to do it:

RSAlib by Infineon

enumerate primes pi for i = 1, 2, . . .

put M :=
∏

i≤s pi (primorial),
for s = 39, 71, 126, 225, depending on key-size

choose random k , a and put p = kM + (65537a mod M)

p not divisible by any of the small primes

increase the chance of p to be prime

128 / 218

Primality Tests Prime Generation

Prime Generation – Revisited

Optimisation

chance of primality is ∼ 1/ log n

improve factor by ruling out small primes as divisors
e.g. prime odd, better p = 6 · k ± 1, . . .

How not to do it:

RSAlib by Infineon

enumerate primes pi for i = 1, 2, . . .

put M :=
∏

i≤s pi (primorial),
for s = 39, 71, 126, 225, depending on key-size

choose random k , a and put p = kM + (65537a mod M)

p not divisible by any of the small primes

increase the chance of p to be prime

128 / 218

Primality Tests Prime Generation

Prime Generation – Revisited

Optimisation

chance of primality is ∼ 1/ log n

improve factor by ruling out small primes as divisors
e.g. prime odd, better p = 6 · k ± 1, . . .

How not to do it:

RSAlib by Infineon

enumerate primes pi for i = 1, 2, . . .

put M :=
∏

i≤s pi (primorial),
for s = 39, 71, 126, 225, depending on key-size

choose random k , a and put p = kM + (65537a mod M)

p not divisible by any of the small primes

increase the chance of p to be prime

128 / 218

Primality Tests Prime Generation

RSAlib – First Concern

Numbers for 2048 Bit Key – 1024 Bit Prime

s = 126, so M = 2 · 3 · . . . · 701 ∼ 971 Bit

leaves only k ∼ 53 Bit

φ(M) ∼ 968 Bit, but oZ∗M (65537) ∼ 255 Bit,

i.e. 713 Bits entropy lost!

bit-size key # primes entropy bit lost

512 - 960 39 62 154
992 - 1952 71 134 338
1984 - 3936 126 255 713
3968 - 4096 225 434 1525

Calculation: separately for every prime, then lcm

but it gets worse

129 / 218

Primality Tests Prime Generation

RSAlib – First Concern

Numbers for 2048 Bit Key – 1024 Bit Prime

s = 126, so M = 2 · 3 · . . . · 701 ∼ 971 Bit

leaves only k ∼ 53 Bit

φ(M) ∼ 968 Bit, but oZ∗M (65537) ∼ 255 Bit,

i.e. 713 Bits entropy lost!

bit-size key # primes entropy bit lost

512 - 960 39 62 154
992 - 1952 71 134 338
1984 - 3936 126 255 713
3968 - 4096 225 434 1525

Calculation: separately for every prime, then lcm

but it gets worse

129 / 218

Primality Tests Prime Generation

RSAlib – First Concern

Numbers for 2048 Bit Key – 1024 Bit Prime

s = 126, so M = 2 · 3 · . . . · 701 ∼ 971 Bit

leaves only k ∼ 53 Bit

φ(M) ∼ 968 Bit, but oZ∗M (65537) ∼ 255 Bit,

i.e. 713 Bits entropy lost!

bit-size key # primes entropy bit lost

512 - 960 39 62 154
992 - 1952 71 134 338
1984 - 3936 126 255 713
3968 - 4096 225 434 1525

Calculation: separately for every prime, then lcm

but it gets worse

129 / 218

Primality Tests Prime Generation

ROCA – Return of Coppersmith Attack

Theorem (Coppersmith)

Let p =
∑

aijx
iy j ∈ Z[x , y] irreducible; X ,Y bounds for solutions.

Put W := max{|aij | · X iY j : i , j} and δ = max(degx(p), degy (p)).

Assume XY < W 2/(3δ). Then we can find integer root (x0, y0) with
|x0| < X, |y0| < Y , if it exists.

Find “small” integer roots in 2 variables.

p = kM + (65537a mod M) q = ℓM +
(
65537b mod M

)
n = pq = ∗ ·M +

(
65537a+b mod M

)
a+ b = log65537(n mod M),
easy to compute, since M has only small primes
(compute for each prime, compose with CRT)

guess a, yields b, then compute k, ℓ via Coppersmith

130 / 218

Primality Tests Prime Generation

ROCA – Return of Coppersmith Attack

Theorem (Coppersmith)

Let p =
∑

aijx
iy j ∈ Z[x , y] irreducible; X ,Y bounds for solutions.

Put W := max{|aij | · X iY j : i , j} and δ = max(degx(p), degy (p)).

Assume XY < W 2/(3δ). Then we can find integer root (x0, y0) with
|x0| < X, |y0| < Y , if it exists.

Find “small” integer roots in 2 variables.

p = kM + (65537a mod M) q = ℓM +
(
65537b mod M

)
n = pq = ∗ ·M +

(
65537a+b mod M

)

a+ b = log65537(n mod M),
easy to compute, since M has only small primes
(compute for each prime, compose with CRT)

guess a, yields b, then compute k, ℓ via Coppersmith

130 / 218

Primality Tests Prime Generation

ROCA – Return of Coppersmith Attack

Theorem (Coppersmith)

Let p =
∑

aijx
iy j ∈ Z[x , y] irreducible; X ,Y bounds for solutions.

Put W := max{|aij | · X iY j : i , j} and δ = max(degx(p), degy (p)).

Assume XY < W 2/(3δ). Then we can find integer root (x0, y0) with
|x0| < X, |y0| < Y , if it exists.

Find “small” integer roots in 2 variables.

p = kM + (65537a mod M) q = ℓM +
(
65537b mod M

)
n = pq = ∗ ·M +

(
65537a+b mod M

)
a+ b = log65537(n mod M),
easy to compute, since M has only small primes
(compute for each prime, compose with CRT)

guess a, yields b, then compute k, ℓ via Coppersmith
130 / 218

Primality Tests Prime Generation

ROCA – Application

Assume 2048 bit key ; 1024 bit prime

s = 126 M ∼ 971 bit k < 253

For some given guess of a (and b) we have

A := 65537a mod M B := 65537b mod M

p(x , y) = Mxy + Ay + Bx + (AB − n)/M

δ = 1 X = Y = 253

W = max(MXY ,AY ,BX , (AB − n)/M) = MXY

Then check XY < W 2/3, which holds (by far).
Hence, Coppersmith finds solution k, ℓ, i.e. the primes

131 / 218

Primality Tests Prime Generation

ROCA – Application

Assume 2048 bit key ; 1024 bit prime

s = 126 M ∼ 971 bit k < 253

For some given guess of a (and b) we have

A := 65537a mod M B := 65537b mod M

p(x , y) = Mxy + Ay + Bx + (AB − n)/M

δ = 1 X = Y = 253

W = max(MXY ,AY ,BX , (AB − n)/M) = MXY

Then check XY < W 2/3, which holds (by far).
Hence, Coppersmith finds solution k, ℓ, i.e. the primes

131 / 218

Primality Tests Prime Generation

ROCA – Application

Assume 2048 bit key ; 1024 bit prime

s = 126 M ∼ 971 bit k < 253

For some given guess of a (and b) we have

A := 65537a mod M B := 65537b mod M

p(x , y) = Mxy + Ay + Bx + (AB − n)/M

δ = 1 X = Y = 253

W = max(MXY ,AY ,BX , (AB − n)/M) = MXY

Then check XY < W 2/3, which holds (by far).
Hence, Coppersmith finds solution k, ℓ, i.e. the primes

131 / 218

Primality Tests Prime Generation

ROCA – Application

Assume 2048 bit key ; 1024 bit prime

s = 126 M ∼ 971 bit k < 253

For some given guess of a (and b) we have

A := 65537a mod M B := 65537b mod M

p(x , y) = Mxy + Ay + Bx + (AB − n)/M

δ = 1 X = Y = 253

W = max(MXY ,AY ,BX , (AB − n)/M) = MXY

Then check XY < W 2/3, which holds (by far).
Hence, Coppersmith finds solution k, ℓ, i.e. the primes

131 / 218

Primality Tests Prime Generation

Refining ROCA

Problem

guessing a still has ∼ 255 bits in our example ; too much

But we are far from the limit in Coppersmith.

need: XY < W 2/3 have: W = MXY

use divisor M ′ | M,
sufficient to have M ′ > X = Y
note: X ,Y increase for smaller M ′

less unknown bits for a, but more unknown bits for k , ℓ

Coppersmith takes longer, but much less attempts

for each key-length find optimal trade-off

2048 bit takes ca. 35 CPU-years, cost ∼ 1240 e (rough guess)
; feasible for private person

easily in parallel

132 / 218

Primality Tests Prime Generation

Refining ROCA

Problem

guessing a still has ∼ 255 bits in our example ; too much

But we are far from the limit in Coppersmith.

need: XY < W 2/3 have: W = MXY

use divisor M ′ | M,
sufficient to have M ′ > X = Y
note: X ,Y increase for smaller M ′

less unknown bits for a, but more unknown bits for k , ℓ

Coppersmith takes longer, but much less attempts

for each key-length find optimal trade-off

2048 bit takes ca. 35 CPU-years, cost ∼ 1240 e (rough guess)
; feasible for private person

easily in parallel

132 / 218

Primality Tests Prime Generation

Refining ROCA

Problem

guessing a still has ∼ 255 bits in our example ; too much

But we are far from the limit in Coppersmith.

need: XY < W 2/3 have: W = MXY

use divisor M ′ | M,
sufficient to have M ′ > X = Y
note: X ,Y increase for smaller M ′

less unknown bits for a, but more unknown bits for k , ℓ

Coppersmith takes longer, but much less attempts

for each key-length find optimal trade-off

2048 bit takes ca. 35 CPU-years, cost ∼ 1240 e (rough guess)
; feasible for private person

easily in parallel

132 / 218

Primality Tests Prime Generation

Refining ROCA

Problem

guessing a still has ∼ 255 bits in our example ; too much

But we are far from the limit in Coppersmith.

need: XY < W 2/3 have: W = MXY

use divisor M ′ | M,
sufficient to have M ′ > X = Y
note: X ,Y increase for smaller M ′

less unknown bits for a, but more unknown bits for k , ℓ

Coppersmith takes longer, but much less attempts

for each key-length find optimal trade-off

2048 bit takes ca. 35 CPU-years, cost ∼ 1240 e (rough guess)
; feasible for private person

easily in parallel

132 / 218

Primality Tests Prime Generation

Refining ROCA

Problem

guessing a still has ∼ 255 bits in our example ; too much

But we are far from the limit in Coppersmith.

need: XY < W 2/3 have: W = MXY

use divisor M ′ | M,
sufficient to have M ′ > X = Y
note: X ,Y increase for smaller M ′

less unknown bits for a, but more unknown bits for k , ℓ

Coppersmith takes longer, but much less attempts

for each key-length find optimal trade-off

2048 bit takes ca. 35 CPU-years, cost ∼ 1240 e (rough guess)
; feasible for private person

easily in parallel
132 / 218

Primality Tests Prime Generation

Fix ROCA

random number p ≤ 2B is prime with probability 1/(B ln 2)

put last bit 1, make sure 2 ∤ p
double chance of success

generalise idea for other primes:
generate p that is for sure not divisible by 2, 3, 5, 7, 11, . . . , ps

create remainders ai < pi , use CRT on

x ≡ ai mod pi for i = 1, 2, . . . , s

increasing s ; higher chance for prime, but also more time

Exercise

Analyse Effort and speedup of this idea: theory and practice
Warning: don’t have too much hope

133 / 218

Primality Tests Prime Generation

Fix ROCA

random number p ≤ 2B is prime with probability 1/(B ln 2)

put last bit 1, make sure 2 ∤ p
double chance of success

generalise idea for other primes:
generate p that is for sure not divisible by 2, 3, 5, 7, 11, . . . , ps

create remainders ai < pi , use CRT on

x ≡ ai mod pi for i = 1, 2, . . . , s

increasing s ; higher chance for prime, but also more time

Exercise

Analyse Effort and speedup of this idea: theory and practice
Warning: don’t have too much hope

133 / 218

Primality Tests Prime Generation

Fix ROCA

random number p ≤ 2B is prime with probability 1/(B ln 2)

put last bit 1, make sure 2 ∤ p
double chance of success

generalise idea for other primes:
generate p that is for sure not divisible by 2, 3, 5, 7, 11, . . . , ps

create remainders ai < pi , use CRT on

x ≡ ai mod pi for i = 1, 2, . . . , s

increasing s ; higher chance for prime, but also more time

Exercise

Analyse Effort and speedup of this idea: theory and practice
Warning: don’t have too much hope

133 / 218

Primality Tests Prime Generation

Theory

as before use primorial M :=
∏

i≤s pi

prime candidate kM + a where a is solution of CRT

thus a ∈ Z∗
M random, instead of random from ZM

increase chance by factor M/φ(M), practically ≤ 12

M

φ(M)
=
∏ pi

pi − 1
=
∏(

1 +
1

pi − 1

)
>
∑ 1

pi
∼ ln ln ps

Practice

begin primality test with trial division

anything divisible by small pi ruled out quickly

long part is Miller-Rabin on actual prime

less random bits, but barely any speed gain

; picking odd random number works well enough to find prime

134 / 218

Primality Tests Prime Generation

Theory

as before use primorial M :=
∏

i≤s pi

prime candidate kM + a where a is solution of CRT

thus a ∈ Z∗
M random, instead of random from ZM

increase chance by factor M/φ(M), practically ≤ 12

M

φ(M)
=
∏ pi

pi − 1
=
∏(

1 +
1

pi − 1

)
>
∑ 1

pi
∼ ln ln ps

Practice

begin primality test with trial division

anything divisible by small pi ruled out quickly

long part is Miller-Rabin on actual prime

less random bits, but barely any speed gain

; picking odd random number works well enough to find prime

134 / 218

Primality Tests Prime Generation

Theory

as before use primorial M :=
∏

i≤s pi

prime candidate kM + a where a is solution of CRT

thus a ∈ Z∗
M random, instead of random from ZM

increase chance by factor M/φ(M), practically ≤ 12

M

φ(M)
=
∏ pi

pi − 1
=
∏(

1 +
1

pi − 1

)
>
∑ 1

pi
∼ ln ln ps

Practice

begin primality test with trial division

anything divisible by small pi ruled out quickly

long part is Miller-Rabin on actual prime

less random bits, but barely any speed gain

; picking odd random number works well enough to find prime

134 / 218

Factoring

Factoring

n Algo

p

q

135 / 218

Factoring

The Factorisation Problem

Task

Given n ∈ N, find a non-trivial divisor d of n.

prefer decision problem; suggestions?

whether such d exists is primality testing

have to adjust decision version

Decision problem

Given n,U ∈ N, does n have a prime divisor p with p ≤ U?

Factoring is neither known to be in P nor known to be
NP-complete.

problem lies in NP ∩ coNP, hence most likely not NP-complete

prime factor p ≤ U serves as witness
factorisation with all pi > U serves as non-witness

136 / 218

Factoring

The Factorisation Problem

Task

Given n ∈ N, find a non-trivial divisor d of n.

prefer decision problem; suggestions?

whether such d exists is primality testing

have to adjust decision version

Decision problem

Given n,U ∈ N, does n have a prime divisor p with p ≤ U?

Factoring is neither known to be in P nor known to be
NP-complete.

problem lies in NP ∩ coNP, hence most likely not NP-complete

prime factor p ≤ U serves as witness
factorisation with all pi > U serves as non-witness

136 / 218

Factoring

The Factorisation Problem

Task

Given n ∈ N, find a non-trivial divisor d of n.

prefer decision problem; suggestions?

whether such d exists is primality testing

have to adjust decision version

Decision problem

Given n,U ∈ N, does n have a prime divisor p with p ≤ U?

Factoring is neither known to be in P nor known to be
NP-complete.

problem lies in NP ∩ coNP, hence most likely not NP-complete

prime factor p ≤ U serves as witness
factorisation with all pi > U serves as non-witness

136 / 218

Factoring

The Factorisation Problem

Task

Given n ∈ N, find a non-trivial divisor d of n.

prefer decision problem; suggestions?

whether such d exists is primality testing

have to adjust decision version

Decision problem

Given n,U ∈ N, does n have a prime divisor p with p ≤ U?

Factoring is neither known to be in P nor known to be
NP-complete.

problem lies in NP ∩ coNP, hence most likely not NP-complete

prime factor p ≤ U serves as witness
factorisation with all pi > U serves as non-witness

136 / 218

Factoring Fermat Factorisation

Fermat Factorisation

Method

Let n = pq. If p, q (not necessarily prime) are close, we can factor n.

Key Observation

n = pq =

(
p + q

2

)2

−
(
p − q

2

)2

Pseudocode

m← ⌈
√
n ⌉

for i ∈ N do
∆i =

√
(m + i)2 − n

if ∆i ∈ N then
return p ← m + i −∆i

137 / 218

Factoring Fermat Factorisation

Fermat Factorisation

Method

Let n = pq. If p, q (not necessarily prime) are close, we can factor n.

Key Observation

n = pq =

(
p + q

2

)2

−
(
p − q

2

)2

Pseudocode

m← ⌈
√
n ⌉

for i ∈ N do
∆i =

√
(m + i)2 − n

if ∆i ∈ N then
return p ← m + i −∆i

137 / 218

Factoring Fermat Factorisation

Fermat Factorisation

Method

Let n = pq. If p, q (not necessarily prime) are close, we can factor n.

Key Observation

n = pq =

(
p + q

2

)2

−
(
p − q

2

)2

Pseudocode

m← ⌈
√
n ⌉

for i ∈ N do
∆i =

√
(m + i)2 − n

if ∆i ∈ N then
return p ← m + i −∆i

137 / 218

Factoring Fermat Factorisation

Fermat Factorisation – Analysis

∆i =
√

(⌈
√
n ⌉+ i)2 − n

n = pq =

(
p + q

2

)2

−
(
p − q

2

)2

wlog p > q, then ∆i =
p−q
2 in the end

reach this when m + i = p+q
2 ,

i.e.

i ≈ p + q

2
−
√
n =

(√
p −√q

)2
+ 2
√
pq

2
−
√
n

=

(√
p −√q

)2
2

=

(√
p −√q

)2 · √q2
2q

=

(√
n − q

)2
2q

in total: works well if p, q nearly same in upper half

138 / 218

Factoring Fermat Factorisation

Fermat Factorisation – Analysis

∆i =
√

(⌈
√
n ⌉+ i)2 − n

n = pq =

(
p + q

2

)2

−
(
p − q

2

)2

wlog p > q, then ∆i =
p−q
2 in the end

reach this when m + i = p+q
2 , i.e.

i ≈ p + q

2
−
√
n =

(√
p −√q

)2
+ 2
√
pq

2
−
√
n

=

(√
p −√q

)2
2

=

(√
p −√q

)2 · √q2
2q

=

(√
n − q

)2
2q

in total: works well if p, q nearly same in upper half

138 / 218

Factoring Fermat Factorisation

Fermat Factorisation – Analysis

∆i =
√

(⌈
√
n ⌉+ i)2 − n

n = pq =

(
p + q

2

)2

−
(
p − q

2

)2

wlog p > q, then ∆i =
p−q
2 in the end

reach this when m + i = p+q
2 , i.e.

i ≈ p + q

2
−
√
n =

(√
p −√q

)2
+ 2
√
pq

2
−
√
n

=

(√
p −√q

)2
2

=

(√
p −√q

)2 · √q2
2q

=

(√
n − q

)2
2q

in total: works well if p, q nearly same in upper half

138 / 218

Factoring Fermat Factorisation

Fermat Factorisation – Example

Example

Let n = 583, thus m = 25

i = 0 ∆2
i = 2 · 3 · 7

i = 1 ∆2
i = 3 · 31

i = 2 ∆2
i = 2 · 73

i = 3 ∆2
i = 3 · 67

i = 4 ∆2
i = 2 · 3 · 43

i = 5 ∆2
i = 317

i = 6 ∆2
i = 2 · 33 · 7

i = 7 ∆2
i = 32 · 72

∆7 = 21 ; p = 25 + 7− 21 = 11 and q = 25 + 7 + 21 = 53

139 / 218

Factoring Fermat Factorisation

Fermat Factorisation – Example

Example

Let n = 583, thus m = 25

i = 0 ∆2
i = 2 · 3 · 7

i = 1 ∆2
i = 3 · 31

i = 2 ∆2
i = 2 · 73

i = 3 ∆2
i = 3 · 67

i = 4 ∆2
i = 2 · 3 · 43

i = 5 ∆2
i = 317

i = 6 ∆2
i = 2 · 33 · 7

i = 7 ∆2
i = 32 · 72

∆7 = 21 ; p = 25 + 7− 21 = 11 and q = 25 + 7 + 21 = 53

139 / 218

Factoring Quadratic Sieve

Quadratic Sieve

Idea

construct a2 ≡ b2 mod n from steps of Fermat-factorisation
i.e. a2 − b2 = k · n instead of a2 − b2 = n

take them as collection of congruences

combine some, to get squares on both sides

gcd(a± b, n) divisor with probability ≥ 1
2

details, “why” it works, too complicated for this lecture
but “how” is okay

good for up to 100 decimal digits

used for RSA-129 (from 1977), solved in 1994

running time

O ∗
(
exp

(√
log n · log log n

))

140 / 218

Factoring Quadratic Sieve

Quadratic Sieve

Idea

construct a2 ≡ b2 mod n from steps of Fermat-factorisation
i.e. a2 − b2 = k · n instead of a2 − b2 = n

take them as collection of congruences

combine some, to get squares on both sides

gcd(a± b, n) divisor with probability ≥ 1
2

details, “why” it works, too complicated for this lecture
but “how” is okay

good for up to 100 decimal digits

used for RSA-129 (from 1977), solved in 1994

running time

O ∗
(
exp

(√
log n · log log n

))

140 / 218

Factoring Quadratic Sieve

Quadratic Sieve

Idea

construct a2 ≡ b2 mod n from steps of Fermat-factorisation
i.e. a2 − b2 = k · n instead of a2 − b2 = n

take them as collection of congruences

combine some, to get squares on both sides

gcd(a± b, n) divisor with probability ≥ 1
2

details, “why” it works, too complicated for this lecture
but “how” is okay

good for up to 100 decimal digits

used for RSA-129 (from 1977), solved in 1994

running time

O ∗
(
exp

(√
log n · log log n

))
140 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Example

Example

Let n = 583 = 11 · 53, use Fermat

i = 0 m + i = 25 ∆2
i = 2 · 3 · 7

i = 6 m + i = 31 ∆2
i = 2 · 33 · 7

in Fermat factorisation, we have

∆2
i = (m + i)2 − n

combine i = 0 and i = 6 to get square

(25 · 31)2 ≡ (2 · 32 · 7)2 mod 583

obtain gcd(25 · 31− 2 · 9 · 7, 583) = 11

141 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Example

Example

Let n = 583 = 11 · 53, use Fermat

i = 0 m + i = 25 ∆2
i = 2 · 3 · 7

i = 6 m + i = 31 ∆2
i = 2 · 33 · 7

in Fermat factorisation, we have

∆2
i = (m + i)2 − n

combine i = 0 and i = 6 to get square

(25 · 31)2 ≡ (2 · 32 · 7)2 mod 583

obtain gcd(25 · 31− 2 · 9 · 7, 583) = 11

141 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Example

Example

Let n = 583 = 11 · 53, use Fermat

i = 0 m + i = 25 ∆2
i = 2 · 3 · 7

i = 6 m + i = 31 ∆2
i = 2 · 33 · 7

in Fermat factorisation, we have

∆2
i = (m + i)2 − n

combine i = 0 and i = 6 to get square

(25 · 31)2 ≡ (2 · 32 · 7)2 mod 583

obtain gcd(25 · 31− 2 · 9 · 7, 583) = 11

141 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Example

Example

Let n = 583 = 11 · 53, use Fermat

i = 0 m + i = 25 ∆2
i = 2 · 3 · 7

i = 6 m + i = 31 ∆2
i = 2 · 33 · 7

in Fermat factorisation, we have

∆2
i = (m + i)2 − n

combine i = 0 and i = 6 to get square

(25 · 31)2 ≡ (2 · 32 · 7)2 mod 583

obtain gcd(25 · 31− 2 · 9 · 7, 583) = 11

141 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Digging Deeper

Big Question

How do we know which values to combine?

compute new step, and try with every previous step
quadratic in number of steps

but we may also combine 3 or more
; exponential number of steps

Solution: factor into small primes

more general approach

try to factor the ∆i into small primes

regard exponent modulo 2 (square or not)

solve linear equation system modulo 2 to find combination

142 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Digging Deeper

Big Question

How do we know which values to combine?

compute new step, and try with every previous step
quadratic in number of steps

but we may also combine 3 or more
; exponential number of steps

Solution: factor into small primes

more general approach

try to factor the ∆i into small primes

regard exponent modulo 2 (square or not)

solve linear equation system modulo 2 to find combination

142 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Digging Deeper

Big Question

How do we know which values to combine?

compute new step, and try with every previous step
quadratic in number of steps

but we may also combine 3 or more
; exponential number of steps

Solution: factor into small primes

more general approach

try to factor the ∆i into small primes

regard exponent modulo 2 (square or not)

solve linear equation system modulo 2 to find combination

142 / 218

Factoring Quadratic Sieve

Quadratic Sieve – Digging Deeper

Big Question

How do we know which values to combine?

compute new step, and try with every previous step
quadratic in number of steps

but we may also combine 3 or more
; exponential number of steps

Solution: factor into small primes

more general approach

try to factor the ∆i into small primes

regard exponent modulo 2 (square or not)

solve linear equation system modulo 2 to find combination

142 / 218

Factoring pk -smooth Numbers

Factoring Through pk-smooth Numbers

Let pk be the k-th prime.

Definition

An integer is pk -smooth, if all its prime divisors are ≤ pk .

use Sieve of Erathosthenes!

Idea (Morrison & Brillhart ’75; Dixon ’81)

search for numbers a such that (a2 mod n) is pk -smooth

construct x , y with x2 ≡ y2 mod n

construct some number that has a common divisor with n (with
some probability)

Idea also used by Schnorr in his recent (failed) attempt at factoring.
Instead of the first k primes, we may use any set of fixed primes.

143 / 218

Factoring pk -smooth Numbers

Factoring Through pk-smooth Numbers

Let pk be the k-th prime.

Definition

An integer is pk -smooth, if all its prime divisors are ≤ pk .

use Sieve of Erathosthenes!

Idea (Morrison & Brillhart ’75; Dixon ’81)

search for numbers a such that (a2 mod n) is pk -smooth

construct x , y with x2 ≡ y2 mod n

construct some number that has a common divisor with n (with
some probability)

Idea also used by Schnorr in his recent (failed) attempt at factoring.
Instead of the first k primes, we may use any set of fixed primes.

143 / 218

Factoring pk -smooth Numbers

Factoring Through pk-smooth Numbers

Let pk be the k-th prime.

Definition

An integer is pk -smooth, if all its prime divisors are ≤ pk .

use Sieve of Erathosthenes!

Idea (Morrison & Brillhart ’75; Dixon ’81)

search for numbers a such that (a2 mod n) is pk -smooth

construct x , y with x2 ≡ y2 mod n

construct some number that has a common divisor with n (with
some probability)

Idea also used by Schnorr in his recent (failed) attempt at factoring.
Instead of the first k primes, we may use any set of fixed primes.

143 / 218

Factoring pk -smooth Numbers

assume we have k + 1 such numbers a0, . . . , ak with

(a2j mod n) =
k∏

i=1

p
dij
i

define the matrix D ∈ {0, 1}(k+1)×k via Dij := dij mod 2.
regard it as row vectors

non-trivial solution t ·D = 0 mod 2 t ∈ {0, 1}k+1

note: 1
2tD is thus integer. put

x :=
∏

j :tj=1

aj y :=
k∏

i=1

p
1
2

∑k
j=0 tjdij

i

have x2 ≡ y2 mod n (mult. the entries with tj = 1)

50% chance: x ≡ y mod p and x ≡ −y mod q (or vice versa)

get p, q from gcd(x + y , n) or gcd(x − y , n)

144 / 218

Factoring pk -smooth Numbers

assume we have k + 1 such numbers a0, . . . , ak with

(a2j mod n) =
k∏

i=1

p
dij
i

define the matrix D ∈ {0, 1}(k+1)×k via Dij := dij mod 2.
regard it as row vectors

non-trivial solution t ·D = 0 mod 2 t ∈ {0, 1}k+1

note: 1
2tD is thus integer. put

x :=
∏

j :tj=1

aj y :=
k∏

i=1

p
1
2

∑k
j=0 tjdij

i

have x2 ≡ y2 mod n (mult. the entries with tj = 1)

50% chance: x ≡ y mod p and x ≡ −y mod q (or vice versa)

get p, q from gcd(x + y , n) or gcd(x − y , n)

144 / 218

Factoring pk -smooth Numbers

assume we have k + 1 such numbers a0, . . . , ak with

(a2j mod n) =
k∏

i=1

p
dij
i

define the matrix D ∈ {0, 1}(k+1)×k via Dij := dij mod 2.
regard it as row vectors

non-trivial solution t ·D = 0 mod 2 t ∈ {0, 1}k+1

note: 1
2tD is thus integer. put

x :=
∏

j :tj=1

aj y :=
k∏

i=1

p
1
2

∑k
j=0 tjdij

i

have x2 ≡ y2 mod n (mult. the entries with tj = 1)

50% chance: x ≡ y mod p and x ≡ −y mod q (or vice versa)

get p, q from gcd(x + y , n) or gcd(x − y , n)

144 / 218

Factoring pk -smooth Numbers

Quadratic Sieve – Algorithm

put m = ⌈
√
n⌉, empty matrix D

for j = 0, 1, . . . try to factor

(m + j)2 − n =
∏

p
dij
i · remainder

if remainder = 1:
store m + j and append d∗,j mod 2 to matrix D

do Gaussian elimination on a copy D ′

break if D ′ has zero-row

construct x2 ≡ y2 mod n as above

p := gcd(x ± y , n), if p ∈ {1, n}, try again

145 / 218

Factoring pk -smooth Numbers

Quadratic Sieve – Algorithm

put m = ⌈
√
n⌉, empty matrix D

for j = 0, 1, . . . try to factor

(m + j)2 − n =
∏

p
dij
i · remainder

if remainder = 1:
store m + j and append d∗,j mod 2 to matrix D
do Gaussian elimination on a copy D ′

break if D ′ has zero-row

construct x2 ≡ y2 mod n as above

p := gcd(x ± y , n), if p ∈ {1, n}, try again

145 / 218

Factoring pk -smooth Numbers

Example (Back to the Quadratic Sieve)

Let n = 583, and factor base S = {2, 3, 5, 7}

i 2 3 5 7 remainder store

0 1 1 0 1 1 ✓
1 0 1 0 0 31
2 1 0 0 0 73
3 0 1 0 0 67
4 1 1 0 0 43
5 0 0 0 0 317
6 1 1 0 1 1 ✓

already have matrix of lower rank ; break

D =

(
1 1 0 1
1 1 0 1

)

146 / 218

Factoring pk -smooth Numbers

Example (Back to the Quadratic Sieve)

Let n = 583, and factor base S = {2, 3, 5, 7}

i 2 3 5 7 remainder store

0 1 1 0 1 1 ✓
1 0 1 0 0 31
2 1 0 0 0 73
3 0 1 0 0 67
4 1 1 0 0 43
5 0 0 0 0 317
6 1 1 0 1 1 ✓

already have matrix of lower rank ; break

D =

(
1 1 0 1
1 1 0 1

)

146 / 218

Factoring pk -smooth Numbers

Example (Back to the Quadratic Sieve, cont.)

try to factor (m + i)2 − n by factors from S

if fully factors, add exponents to matrix D
stop if non-trivial kernel (rank lower than rows)

end with matrix

D =

(
1 1 0 1
1 1 0 1

)
steps =

(
0
6

)
element (1, 1) from kernel tells us, which steps to combine

hence, we get

(25 · 31)2 ≡ (2 · 32 · 7)2 mod 583

147 / 218

Factoring pk -smooth Numbers

Example (Back to the Quadratic Sieve, cont.)

try to factor (m + i)2 − n by factors from S

if fully factors, add exponents to matrix D
stop if non-trivial kernel (rank lower than rows)

end with matrix

D =

(
1 1 0 1
1 1 0 1

)
steps =

(
0
6

)
element (1, 1) from kernel tells us, which steps to combine

hence, we get

(25 · 31)2 ≡ (2 · 32 · 7)2 mod 583

147 / 218

Factoring pk -smooth Numbers

Example (Back to the Quadratic Sieve, cont.)

try to factor (m + i)2 − n by factors from S

if fully factors, add exponents to matrix D
stop if non-trivial kernel (rank lower than rows)

end with matrix

D =

(
1 1 0 1
1 1 0 1

)
steps =

(
0
6

)
element (1, 1) from kernel tells us, which steps to combine

hence, we get

(25 · 31)2 ≡ (2 · 32 · 7)2 mod 583

147 / 218

Factoring General Factorisation

General Factorisation

Rough Steps

primality test

Check, whether n is (prime-)power

Assume n has two different divisors

look for any non-trivial factor

recursively yields prime factorisation

Check Power

test, whether xe = n has solution for e = 2, . . . , log n

bisection with upper bound 2⌈∥n∥/e⌉

each at most 1
e log n bisection steps

in each step, ≤ log n mult. of size ∥n∥
; time polynomial in ∥n∥

148 / 218

Factoring General Factorisation

General Factorisation

Rough Steps

primality test

Check, whether n is (prime-)power

Assume n has two different divisors

look for any non-trivial factor

recursively yields prime factorisation

Check Power

test, whether xe = n has solution for e = 2, . . . , log n

bisection with upper bound 2⌈∥n∥/e⌉

each at most 1
e log n bisection steps

in each step, ≤ log n mult. of size ∥n∥
; time polynomial in ∥n∥

148 / 218

Factoring General Factorisation

General Factorisation

Rough Steps

primality test

Check, whether n is (prime-)power

Assume n has two different divisors

look for any non-trivial factor

recursively yields prime factorisation

Check Power

test, whether xe = n has solution for e = 2, . . . , log n

bisection with upper bound 2⌈∥n∥/e⌉

each at most 1
e log n bisection steps

in each step, ≤ log n mult. of size ∥n∥

; time polynomial in ∥n∥

148 / 218

Factoring General Factorisation

General Factorisation

Rough Steps

primality test

Check, whether n is (prime-)power

Assume n has two different divisors

look for any non-trivial factor

recursively yields prime factorisation

Check Power

test, whether xe = n has solution for e = 2, . . . , log n

bisection with upper bound 2⌈∥n∥/e⌉

each at most 1
e log n bisection steps

in each step, ≤ log n mult. of size ∥n∥
; time polynomial in ∥n∥

148 / 218

Factoring General Factorisation

Factoring – Overview

Trial division only for small numbers, ≤ 264

checking power is feasible

≤ 10100 quadratic sieve

beyond: Number Field Sieve, time roughly O∗(exp(c 3
√
log n))

Implementations

SymPy (slows down quickly)

YAFU: quadratic Sieve

cypari: number field sieve, easy from Python

cado-nfs: fastest(?) number field sieve

149 / 218

Factoring General Factorisation

Factoring – Overview

Trial division only for small numbers, ≤ 264

checking power is feasible

≤ 10100 quadratic sieve

beyond: Number Field Sieve, time roughly O∗(exp(c 3
√
log n))

Implementations

SymPy (slows down quickly)

YAFU: quadratic Sieve

cypari: number field sieve, easy from Python

cado-nfs: fastest(?) number field sieve

149 / 218

Group Based Cryptography

Group Based Cryptography

g

A B

shared

∗a

∗a

∗b

∗b

Alice Bob

150 / 218

Group Based Cryptography

Reminder Groups

What is a group?

set with a single operation

have neutral element and inverse

we use G = ⟨g⟩ = {gn : n ∈ N}, finite
our groups are commutative

Example

just think of G = Z∗
p = {1, . . . , p − 1} with mult.

for some prime p

neutral element 1, modular inverse

Lemma

There always is some g ∈ Z∗
p with ⟨g⟩ = Z∗

p.

151 / 218

Group Based Cryptography

Reminder Groups

What is a group?

set with a single operation

have neutral element and inverse

we use G = ⟨g⟩ = {gn : n ∈ N}, finite
our groups are commutative

Example

just think of G = Z∗
p = {1, . . . , p − 1} with mult.

for some prime p

neutral element 1, modular inverse

Lemma

There always is some g ∈ Z∗
p with ⟨g⟩ = Z∗

p.

151 / 218

Group Based Cryptography

Motivation

RSA works in Zn for n = pq

mathematical problem is e-th root modulo n

now we regard systems that work in arbitrary groups
but regard cyclic subgroup ⟨g⟩ ≤ G for some g ∈ G

the underlying problem is the discrete logarithm problem (DLP):

given g , g x ∈ G , find x ∈ N.

framework for cryptosystem, until we decide which group
comparable to abstract classes in programming

keywords: Diffie-Hellman, Elliptic Curves, DSA, ElGamal

Exercise

If we can solve the DLP in Zn, we can also factor n.

152 / 218

Group Based Cryptography

Motivation

RSA works in Zn for n = pq

mathematical problem is e-th root modulo n

now we regard systems that work in arbitrary groups
but regard cyclic subgroup ⟨g⟩ ≤ G for some g ∈ G

the underlying problem is the discrete logarithm problem (DLP):

given g , g x ∈ G , find x ∈ N.

framework for cryptosystem, until we decide which group
comparable to abstract classes in programming

keywords: Diffie-Hellman, Elliptic Curves, DSA, ElGamal

Exercise

If we can solve the DLP in Zn, we can also factor n.

152 / 218

Group Based Cryptography

Motivation

RSA works in Zn for n = pq

mathematical problem is e-th root modulo n

now we regard systems that work in arbitrary groups
but regard cyclic subgroup ⟨g⟩ ≤ G for some g ∈ G

the underlying problem is the discrete logarithm problem (DLP):

given g , g x ∈ G , find x ∈ N.

framework for cryptosystem, until we decide which group
comparable to abstract classes in programming

keywords: Diffie-Hellman, Elliptic Curves, DSA, ElGamal

Exercise

If we can solve the DLP in Zn, we can also factor n.

152 / 218

Group Based Cryptography

Motivation

RSA works in Zn for n = pq

mathematical problem is e-th root modulo n

now we regard systems that work in arbitrary groups
but regard cyclic subgroup ⟨g⟩ ≤ G for some g ∈ G

the underlying problem is the discrete logarithm problem (DLP):

given g , g x ∈ G , find x ∈ N.

framework for cryptosystem, until we decide which group
comparable to abstract classes in programming

keywords: Diffie-Hellman, Elliptic Curves, DSA, ElGamal

Exercise

If we can solve the DLP in Zn, we can also factor n.

152 / 218

Group Based Cryptography

Diffie-Hellman Key-Exchange (1976)

Overview

first published idea of public key cryptography

no crypto-system, but key exchange

we do not encode messages (yet), but get a common key
then e.g. continue with symm. encryption

also solves problem from symmetric encryption

Method

Alice chooses a < o (g), computes A = ga, sends A to Bob

Bob chooses b < o (g), computes B = gb, sends B to Alice

Alice computes key K = Ba

Bob computed key K = Ab

works, because (ga)b = gab = gba = (gb)a

153 / 218

Group Based Cryptography

Diffie-Hellman Key-Exchange (1976)

Overview

first published idea of public key cryptography

no crypto-system, but key exchange

we do not encode messages (yet), but get a common key
then e.g. continue with symm. encryption

also solves problem from symmetric encryption

Method

Alice chooses a < o (g), computes A = ga, sends A to Bob

Bob chooses b < o (g), computes B = gb, sends B to Alice

Alice computes key K = Ba

Bob computed key K = Ab

works, because (ga)b = gab = gba = (gb)a

153 / 218

Group Based Cryptography

Diffie-Hellman Key-Exchange – Example

Common, public agreement

put p = 22721

computation in Z∗
p

generator g = 3

Alice:

choose a = 18883

yields A := ga = 14581

send A to Bob

compute KA := Ba = 5997

Bob:

choose b = 5456

yields B := gb = 16742

send B to Alice

compute KB := Ab = 5997

common secret K = 5997

154 / 218

Group Based Cryptography

Diffie-Hellman Key-Exchange – Example

Common, public agreement

put p = 22721

computation in Z∗
p

generator g = 3

Alice:

choose a = 18883

yields A := ga = 14581

send A to Bob

compute KA := Ba = 5997

Bob:

choose b = 5456

yields B := gb = 16742

send B to Alice

compute KB := Ab = 5997

common secret K = 5997

154 / 218

Group Based Cryptography

Diffie-Hellman Key-Exchange – Example

Common, public agreement

put p = 22721

computation in Z∗
p

generator g = 3

Alice:

choose a = 18883

yields A := ga = 14581

send A to Bob

compute KA := Ba = 5997

Bob:

choose b = 5456

yields B := gb = 16742

send B to Alice

compute KB := Ab = 5997

common secret K = 5997

154 / 218

Group Based Cryptography

ElGamal (1985)

Key Generation

secret key: choose random a < o (g)

public key: A = ga

Usage

Encrypt: m message to be encrypted
choose random b < o (g),
send (B, c) =

(
gb,m · Ab

)
Decrypt: get (B, c), compute m = c · (Ba)−1

in fact just “asynchronous” Diffie-Hellman,

use secret from handshake as mask

155 / 218

Group Based Cryptography

ElGamal (1985)

Key Generation

secret key: choose random a < o (g)

public key: A = ga

Usage

Encrypt: m message to be encrypted
choose random b < o (g),
send (B, c) =

(
gb,m · Ab

)
Decrypt: get (B, c), compute m = c · (Ba)−1

in fact just “asynchronous” Diffie-Hellman,

use secret from handshake as mask

155 / 218

Group Based Cryptography

ElGamal (1985)

Key Generation

secret key: choose random a < o (g)

public key: A = ga

Usage

Encrypt: m message to be encrypted
choose random b < o (g),
send (B, c) =

(
gb,m · Ab

)
Decrypt: get (B, c), compute m = c · (Ba)−1

in fact just “asynchronous” Diffie-Hellman,

use secret from handshake as mask

155 / 218

Group Based Cryptography

Example

as before Z∗
p with p = 22721, g = 3

Alice chooses a = 18883,
public key A = ga = 14581

Bob now want to send message m = 102

Bob chooses b = 5456,
hence B = gb = 16742

masked message c = mAb = 20948

full cipher (B, c)

Alice decrypts:

original message via (Ba)−1 · c = 102

156 / 218

Group Based Cryptography

Example

as before Z∗
p with p = 22721, g = 3

Alice chooses a = 18883,
public key A = ga = 14581

Bob now want to send message m = 102

Bob chooses b = 5456,
hence B = gb = 16742

masked message c = mAb = 20948

full cipher (B, c)

Alice decrypts:

original message via (Ba)−1 · c = 102

156 / 218

Group Based Cryptography

Example

as before Z∗
p with p = 22721, g = 3

Alice chooses a = 18883,
public key A = ga = 14581

Bob now want to send message m = 102

Bob chooses b = 5456,
hence B = gb = 16742

masked message c = mAb = 20948

full cipher (B, c)

Alice decrypts:

original message via (Ba)−1 · c = 102

156 / 218

Group Based Cryptography

Diffie-Hellman from Eve’s view

Alice Bob

Eve

Public Knowledge: g ,G = ⟨g⟩

157 / 218

Group Based Cryptography

Diffie-Hellman from Eve’s view

Alice Bob

Eve

Public Knowledge: g ,G = ⟨g⟩

a ga
ga

157 / 218

Group Based Cryptography

Diffie-Hellman from Eve’s view

Alice Bob

Eve

Public Knowledge: g ,G = ⟨g⟩

a ga
ga

bgb
gb

157 / 218

Group Based Cryptography

Diffie-Hellman from Eve’s view

Alice Bob

Eve

Public Knowledge: g ,G = ⟨g⟩

a ga
ga

bgb
gb

Individual Knowledge

K = (gb)a

a, ga, gb

K = (ga)b

b, ga, gb

ga, gb

157 / 218

Group Based Cryptography

Attack Scenarios on Diffie-Hellman

Discrete Logarithm (DLP): given g , g x , find x
find secret key

Computational DH (CDH): given g , ga, gb, find gab

find session key

Decisional DH (DDH): given g , ga, gb, h, decide gab = h
decide, which cipher belongs to message
recognise session key

Trivially have hierarchy

DDH ≤p CDH ≤p DLP

Attacks on DLP

Generic Attacks

Attacks that exploit properties of the group

158 / 218

Group Based Cryptography

Attack Scenarios on Diffie-Hellman

Discrete Logarithm (DLP): given g , g x , find x
find secret key

Computational DH (CDH): given g , ga, gb, find gab

find session key

Decisional DH (DDH): given g , ga, gb, h, decide gab = h
decide, which cipher belongs to message
recognise session key

Trivially have hierarchy

DDH ≤p CDH ≤p DLP

Attacks on DLP

Generic Attacks

Attacks that exploit properties of the group

158 / 218

Group Based Cryptography

Attack Scenarios on Diffie-Hellman

Discrete Logarithm (DLP): given g , g x , find x
find secret key

Computational DH (CDH): given g , ga, gb, find gab

find session key

Decisional DH (DDH): given g , ga, gb, h, decide gab = h
decide, which cipher belongs to message
recognise session key

Trivially have hierarchy

DDH ≤p CDH ≤p DLP

Attacks on DLP

Generic Attacks

Attacks that exploit properties of the group

158 / 218

Group Based Cryptography Generic Attacks on DLP

Brute-Force

Brute-Force attack on DLP

Input:
g – generator of group
y = g x for unknown x

Output: x – discrete log
function DLP(g,y)

for x = 0 to n do
if g x = y then

return x

Analysis

Let n = o(g)

Time: O(n) worst-case and expected

Space: O(1) numbers/group elements
which are technically of size O(log n) each

159 / 218

Group Based Cryptography Generic Attacks on DLP

Brute-Force

Brute-Force attack on DLP

Input:
g – generator of group
y = g x for unknown x

Output: x – discrete log
function DLP(g,y)

for x = 0 to n do
if g x = y then

return x

Analysis

Let n = o(g)

Time: O(n) worst-case and expected

Space: O(1) numbers/group elements
which are technically of size O(log n) each

159 / 218

Group Based Cryptography Generic Attacks on DLP

Shanks Baby-Step-Giant-Step – Picture

g x

store all giant steps

can forget past baby steps

some giant step will land in first (grey) block
(but don’t know which)

some baby step will give a match

160 / 218

Group Based Cryptography Generic Attacks on DLP

Shanks Baby-Step-Giant-Step – Picture

g x

i = 1i = 2... i = 5

giant steps

store all giant steps

can forget past baby steps

some giant step will land in first (grey) block
(but don’t know which)

some baby step will give a match

160 / 218

Group Based Cryptography Generic Attacks on DLP

Shanks Baby-Step-Giant-Step – Picture

g x

i = 1i = 2... i = 5

giant steps

baby steps

store all giant steps

can forget past baby steps

some giant step will land in first (grey) block
(but don’t know which)

some baby step will give a match

160 / 218

Group Based Cryptography Generic Attacks on DLP

Shanks Baby-Step-Giant-Step – Picture

g x

i = 1i = 2... i = 5

giant steps

baby steps

found match → Stop

store all giant steps

can forget past baby steps

some giant step will land in first (grey) block
(but don’t know which)

some baby step will give a match

160 / 218

Group Based Cryptography Generic Attacks on DLP

Shanks Baby-Step-Giant-Step – Picture

g x

i = 1i = 2... i = 5

giant steps

baby steps

found match → Stop

store all giant steps

can forget past baby steps

some giant step will land in first (grey) block
(but don’t know which)

some baby step will give a match

160 / 218

Group Based Cryptography Generic Attacks on DLP

Baby-Step-Giant-Step – Formal

Solve DLP: given g , g x find x

Let n = o (g), pick giant-step size k

secret x has unique representation x = ki + j with j < k

Meet-in-the-middle:

List all (g x) · g−ki for 0 ≤ i ≤
⌊
n
k

⌋
for g j check whether in list
if match g j = g x · g−ki , we found x = ki + j

k ≈
√
n yields time and space O(

√
n)

always choose k ≥
√
n, keep space n

k low

compute powers via single steps, to improve speed

compute once s =
(
gk
)−1

,
then always “multiply” s in first loop

always “multiply” g in second loop

161 / 218

Group Based Cryptography Generic Attacks on DLP

Baby-Step-Giant-Step – Formal

Solve DLP: given g , g x find x

Let n = o (g), pick giant-step size k

secret x has unique representation x = ki + j with j < k

Meet-in-the-middle:

List all (g x) · g−ki for 0 ≤ i ≤
⌊
n
k

⌋
for g j check whether in list
if match g j = g x · g−ki , we found x = ki + j

k ≈
√
n yields time and space O(

√
n)

always choose k ≥
√
n, keep space n

k low

compute powers via single steps, to improve speed

compute once s =
(
gk
)−1

,
then always “multiply” s in first loop

always “multiply” g in second loop

161 / 218

Group Based Cryptography Generic Attacks on DLP

Baby-Step-Giant-Step – Formal

Solve DLP: given g , g x find x

Let n = o (g), pick giant-step size k

secret x has unique representation x = ki + j with j < k

Meet-in-the-middle:

List all (g x) · g−ki for 0 ≤ i ≤
⌊
n
k

⌋
for g j check whether in list
if match g j = g x · g−ki , we found x = ki + j

k ≈
√
n yields time and space O(

√
n)

always choose k ≥
√
n, keep space n

k low

compute powers via single steps, to improve speed

compute once s =
(
gk
)−1

,
then always “multiply” s in first loop

always “multiply” g in second loop

161 / 218

Group Based Cryptography Generic Attacks on DLP

Baby-Step-Giant-Step – Formal

Solve DLP: given g , g x find x

Let n = o (g), pick giant-step size k

secret x has unique representation x = ki + j with j < k

Meet-in-the-middle:

List all (g x) · g−ki for 0 ≤ i ≤
⌊
n
k

⌋
for g j check whether in list
if match g j = g x · g−ki , we found x = ki + j

k ≈
√
n yields time and space O(

√
n)

always choose k ≥
√
n, keep space n

k low

compute powers via single steps, to improve speed

compute once s =
(
gk
)−1

,
then always “multiply” s in first loop

always “multiply” g in second loop

161 / 218

Group Based Cryptography Generic Attacks on DLP

Pohlig-Hellman Algorithm

Overview

improve computation if factorisation of n = o (g) is known

solve problem for subgroups of prime power size

compose with CRT

Let p be largest prime divisor of n, running time

O (poly(∥n∥) · √p)

essential part of ROCA (see earlier)

Protection

ensure n has large prime divisor

“safe prime” p: select p such that p−1
2 also is prime,

if G = Z∗
p, then n = p − 1, ensured n = 2 · p′,

Pohlig-Hellman does not help

162 / 218

Group Based Cryptography Generic Attacks on DLP

Pohlig-Hellman Algorithm

Overview

improve computation if factorisation of n = o (g) is known

solve problem for subgroups of prime power size

compose with CRT

Let p be largest prime divisor of n, running time

O (poly(∥n∥) · √p)

essential part of ROCA (see earlier)

Protection

ensure n has large prime divisor

“safe prime” p: select p such that p−1
2 also is prime,

if G = Z∗
p, then n = p − 1, ensured n = 2 · p′,

Pohlig-Hellman does not help

162 / 218

Group Based Cryptography Generic Attacks on DLP

Breaking Prime Powers (Hensel Lifting)

assume |G | = n = pe and y = g x

write x =
∑

i<e xip
i in base p, then find “digits”

put h = gpe−1
, of order p (note hp = gpe = 1)

in each iteration eliminate all but one xi

first iteration

yp
e−1

=
(
g x0+x1p+...+xe−1pe−1

)pe−1

= g x0pe−1+pe ·∗ = hx0

find x0 = logh

(
yp

e−1
)
, e.g. via Shanks in O(√p)

continue for i = 1, . . . , e − 1(
y · g−(x0+...+xi−1p

i−1)
)pe−i−1

= g xip
e−1+pe ·∗ = hxi

163 / 218

Group Based Cryptography Generic Attacks on DLP

Breaking Prime Powers (Hensel Lifting)

assume |G | = n = pe and y = g x

write x =
∑

i<e xip
i in base p, then find “digits”

put h = gpe−1
, of order p (note hp = gpe = 1)

in each iteration eliminate all but one xi

first iteration

yp
e−1

=
(
g x0+x1p+...+xe−1pe−1

)pe−1

= g x0pe−1+pe ·∗ = hx0

find x0 = logh

(
yp

e−1
)
, e.g. via Shanks in O(√p)

continue for i = 1, . . . , e − 1(
y · g−(x0+...+xi−1p

i−1)
)pe−i−1

= g xip
e−1+pe ·∗ = hxi

163 / 218

Group Based Cryptography Generic Attacks on DLP

Breaking Prime Powers (Hensel Lifting)

assume |G | = n = pe and y = g x

write x =
∑

i<e xip
i in base p, then find “digits”

put h = gpe−1
, of order p (note hp = gpe = 1)

in each iteration eliminate all but one xi

first iteration

yp
e−1

=
(
g x0+x1p+...+xe−1pe−1

)pe−1

= g x0pe−1+pe ·∗ = hx0

find x0 = logh

(
yp

e−1
)
, e.g. via Shanks in O(√p)

continue for i = 1, . . . , e − 1(
y · g−(x0+...+xi−1p

i−1)
)pe−i−1

= g xip
e−1+pe ·∗ = hxi

163 / 218

Group Based Cryptography Generic Attacks on DLP

Composing Solution

Assume we have factorisation

n = |G | = pe11 · . . . · p
eℓ
ℓ

cancel out all components but i-th

ni := n/peii gi := gni yi := yni

compute xi = loggi (yi) as before,
easy as group has order peii
via CRT solve the system

x ≡ xi mod peii for i = 1, . . . , ℓ

running time O
(∑

i ei (log n +
√
pi)
)
group operations

note:
∑

ei ≤ log n

164 / 218

Group Based Cryptography Generic Attacks on DLP

Composing Solution

Assume we have factorisation

n = |G | = pe11 · . . . · p
eℓ
ℓ

cancel out all components but i-th

ni := n/peii gi := gni yi := yni

compute xi = loggi (yi) as before,
easy as group has order peii

via CRT solve the system

x ≡ xi mod peii for i = 1, . . . , ℓ

running time O
(∑

i ei (log n +
√
pi)
)
group operations

note:
∑

ei ≤ log n

164 / 218

Group Based Cryptography Generic Attacks on DLP

Composing Solution

Assume we have factorisation

n = |G | = pe11 · . . . · p
eℓ
ℓ

cancel out all components but i-th

ni := n/peii gi := gni yi := yni

compute xi = loggi (yi) as before,
easy as group has order peii
via CRT solve the system

x ≡ xi mod peii for i = 1, . . . , ℓ

running time O
(∑

i ei (log n +
√
pi)
)
group operations

note:
∑

ei ≤ log n

164 / 218

Group Based Cryptography Generic Attacks on DLP

Composing Solution

Assume we have factorisation

n = |G | = pe11 · . . . · p
eℓ
ℓ

cancel out all components but i-th

ni := n/peii gi := gni yi := yni

compute xi = loggi (yi) as before,
easy as group has order peii
via CRT solve the system

x ≡ xi mod peii for i = 1, . . . , ℓ

running time O
(∑

i ei (log n +
√
pi)
)
group operations

note:
∑

ei ≤ log n

164 / 218

Group Based Cryptography Generic Attacks on DLP

Return of ROCA

Recall – Return of Coppersmith

primorial M =
∏

pi product of first primes

given 65537a+b mod M, find a+ b

work in Z∗
M

in fact just the subgroup generated by 65537

group size is φ(M) =
∏s

i (pi − 1)

each factor small < ps , so only small prime factors
can actually factor each factor by trial division

=⇒ Pohlig-Hellman works

165 / 218

Group Based Cryptography Generic Attacks on DLP

Return of ROCA

Recall – Return of Coppersmith

primorial M =
∏

pi product of first primes

given 65537a+b mod M, find a+ b

work in Z∗
M

in fact just the subgroup generated by 65537

group size is φ(M) =
∏s

i (pi − 1)

each factor small < ps , so only small prime factors
can actually factor each factor by trial division

=⇒ Pohlig-Hellman works

165 / 218

Group Based Cryptography Generic Attacks on DLP

Overview Generic Attacks for DLP

In group G = ⟨g⟩ of size n, given g , g x find x

Presented Methods

Shanks: meet-in-the-middle, space and time O(
√
n)

Pohlig-Hellman: faster, if factorisation of n known
let p largest prime factor of n:
time O(poly(∥n∥) · √p)

Other Methods

Pollard’s Rho algorithm: probabilistic,
avoids large storage, time O(

√
n)

Pollard’s Lambda/kangaroo algorithm: probabilistic,
if restricted to interval of size w , time O(

√
w)

166 / 218

Group Based Cryptography Generic Attacks on DLP

Overview Generic Attacks for DLP

In group G = ⟨g⟩ of size n, given g , g x find x

Presented Methods

Shanks: meet-in-the-middle, space and time O(
√
n)

Pohlig-Hellman: faster, if factorisation of n known
let p largest prime factor of n:
time O(poly(∥n∥) · √p)

Other Methods

Pollard’s Rho algorithm: probabilistic,
avoids large storage, time O(

√
n)

Pollard’s Lambda/kangaroo algorithm: probabilistic,
if restricted to interval of size w , time O(

√
w)

166 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Different Groups

Diffie-Hellman handshake is a template

Common Examples of (Finite) Groups

additive group (Zn,+)

multiplicative group (Z∗
n, ·)

symmetric group Sn (permutations)

invertible matrices GL(n, pk) =
{
M ∈ GF(pk)n×n : detM ̸= 0

}
Do not yield significant cryptographic advantage over RSA.

Elliptic Curves

regard some curve in dimension 2

define an “addition” for the points of that curve

; new kind of group (actually since end of 19th cent.)

make everything discrete and finite

167 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Different Groups

Diffie-Hellman handshake is a template

Common Examples of (Finite) Groups

additive group (Zn,+)

multiplicative group (Z∗
n, ·)

symmetric group Sn (permutations)

invertible matrices GL(n, pk) =
{
M ∈ GF(pk)n×n : detM ̸= 0

}

Do not yield significant cryptographic advantage over RSA.

Elliptic Curves

regard some curve in dimension 2

define an “addition” for the points of that curve

; new kind of group (actually since end of 19th cent.)

make everything discrete and finite

167 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Different Groups

Diffie-Hellman handshake is a template

Common Examples of (Finite) Groups

additive group (Zn,+)

multiplicative group (Z∗
n, ·)

symmetric group Sn (permutations)

invertible matrices GL(n, pk) =
{
M ∈ GF(pk)n×n : detM ̸= 0

}
Do not yield significant cryptographic advantage over RSA.

Elliptic Curves

regard some curve in dimension 2

define an “addition” for the points of that curve

; new kind of group (actually since end of 19th cent.)

make everything discrete and finite

167 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Additive Groups

Additive Group (Zn,+)

group exponent is just multiple

y := g x = g + . . .+ g︸ ︷︷ ︸
x-times

= x · g

trivial to break: logg (y) = y · g−1 mod n

actually have isomorphism φ : ⟨g⟩ ∼= (Zo(g),+),

with φ(g) = 1, in general φ(gk) = k
no matter which choice of g and G

translate from any group into (Zn,+)?

but finding isomorphism is the DLP

168 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Additive Groups

Additive Group (Zn,+)

group exponent is just multiple

y := g x = g + . . .+ g︸ ︷︷ ︸
x-times

= x · g

trivial to break: logg (y) = y · g−1 mod n

actually have isomorphism φ : ⟨g⟩ ∼= (Zo(g),+),

with φ(g) = 1, in general φ(gk) = k
no matter which choice of g and G

translate from any group into (Zn,+)?

but finding isomorphism is the DLP

168 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Additive Groups

Additive Group (Zn,+)

group exponent is just multiple

y := g x = g + . . .+ g︸ ︷︷ ︸
x-times

= x · g

trivial to break: logg (y) = y · g−1 mod n

actually have isomorphism φ : ⟨g⟩ ∼= (Zo(g),+),

with φ(g) = 1, in general φ(gk) = k
no matter which choice of g and G

translate from any group into (Zn,+)?

but finding isomorphism is the DLP

168 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Symmetric Group Sn

breakable (bit like Pohlig-Hellman): regard cycles!

g = c1 ◦ c2 ◦ . . . ◦ ck

disjoint cycles independent: g x = cx1 ◦ . . . ◦ cxk

for each cycle, count base steps from first to second element

log(1,5,3,2,4) ((1, 2, 5, 4, 3)) =̂ (1 7→ 5 7→ 3 7→ 2) ; 3

let ℓi be cycle lengths, then have x mod ℓi for all i

compose with (generalised) CRT modulo the lcm

result is bounded by

o (g) ≤ ℓ1 · . . . · ℓk
AM-GM
≤

(
ℓ1 + . . .+ ℓk

k

)k

=
(n
k

)k
≤ en/e

bit size ∥o (g)∥ ∈ O(n), for input size O(n log n)

169 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Symmetric Group Sn

breakable (bit like Pohlig-Hellman): regard cycles!

g = c1 ◦ c2 ◦ . . . ◦ ck

disjoint cycles independent: g x = cx1 ◦ . . . ◦ cxk
for each cycle, count base steps from first to second element

log(1,5,3,2,4) ((1, 2, 5, 4, 3)) =̂ (1 7→ 5 7→ 3 7→ 2) ; 3

let ℓi be cycle lengths, then have x mod ℓi for all i

compose with (generalised) CRT modulo the lcm

result is bounded by

o (g) ≤ ℓ1 · . . . · ℓk
AM-GM
≤

(
ℓ1 + . . .+ ℓk

k

)k

=
(n
k

)k
≤ en/e

bit size ∥o (g)∥ ∈ O(n), for input size O(n log n)

169 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Symmetric Group Sn

breakable (bit like Pohlig-Hellman): regard cycles!

g = c1 ◦ c2 ◦ . . . ◦ ck

disjoint cycles independent: g x = cx1 ◦ . . . ◦ cxk
for each cycle, count base steps from first to second element

log(1,5,3,2,4) ((1, 2, 5, 4, 3)) =̂ (1 7→ 5 7→ 3 7→ 2) ; 3

let ℓi be cycle lengths, then have x mod ℓi for all i

compose with (generalised) CRT modulo the lcm

result is bounded by

o (g) ≤ ℓ1 · . . . · ℓk
AM-GM
≤

(
ℓ1 + . . .+ ℓk

k

)k

=
(n
k

)k
≤ en/e

bit size ∥o (g)∥ ∈ O(n), for input size O(n log n)

169 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Symmetric Group Sn

breakable (bit like Pohlig-Hellman): regard cycles!

g = c1 ◦ c2 ◦ . . . ◦ ck

disjoint cycles independent: g x = cx1 ◦ . . . ◦ cxk
for each cycle, count base steps from first to second element

log(1,5,3,2,4) ((1, 2, 5, 4, 3)) =̂ (1 7→ 5 7→ 3 7→ 2) ; 3

let ℓi be cycle lengths, then have x mod ℓi for all i

compose with (generalised) CRT modulo the lcm

result is bounded by

o (g) ≤ ℓ1 · . . . · ℓk
AM-GM
≤

(
ℓ1 + . . .+ ℓk

k

)k

=
(n
k

)k
≤ en/e

bit size ∥o (g)∥ ∈ O(n), for input size O(n log n)

169 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Symmetric Group Sn – Example

Example (DLP in Sn)

take base element

g = (1, 7)(2, 6, 8)(3, 5, 4, 9, 10)

we are given Alice’s public value

ga = (1, 7)(2, 8, 6)(3, 4, 10, 5, 9)

yields system

a ≡ 1 mod 2 a ≡ 2 mod 3 a ≡ 2 mod 5

with solution a = 17

170 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Symmetric Group Sn – Example

Example (DLP in Sn)

take base element

g = (1, 7)(2, 6, 8)(3, 5, 4, 9, 10)

we are given Alice’s public value

ga = (1, 7)(2, 8, 6)(3, 4, 10, 5, 9)

yields system

a ≡ 1 mod 2 a ≡ 2 mod 3 a ≡ 2 mod 5

with solution a = 17

170 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Symmetric Group Sn – Example

Example (DLP in Sn)

take base element

g = (1, 7)(2, 6, 8)(3, 5, 4, 9, 10)

we are given Alice’s public value

ga = (1, 7)(2, 8, 6)(3, 4, 10, 5, 9)

yields system

a ≡ 1 mod 2 a ≡ 2 mod 3 a ≡ 2 mod 5

with solution a = 17

170 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Invertible Matrices

General Linear Group

GL(n, pk) =
{
M ∈ GF(pk)n×n : detM ̸= 0

}
GF(q) field with q elements (not Zq if q is proper prime power)

Theorem (Menezes, Wu, 1997)

We can transfer the DLP in GL(n, pk) to the DLP in GF(pkn).

transfer t group with pnk − 1 elements

attack that one like Zp

computation with matrices more expensive

=⇒ matrix has no advantage over GF(pnk)

171 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Invertible Matrices

General Linear Group

GL(n, pk) =
{
M ∈ GF(pk)n×n : detM ̸= 0

}
GF(q) field with q elements (not Zq if q is proper prime power)

Theorem (Menezes, Wu, 1997)

We can transfer the DLP in GL(n, pk) to the DLP in GF(pkn).

transfer t group with pnk − 1 elements

attack that one like Zp

computation with matrices more expensive

=⇒ matrix has no advantage over GF(pnk)

171 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

Invertible Matrices

General Linear Group

GL(n, pk) =
{
M ∈ GF(pk)n×n : detM ̸= 0

}
GF(q) field with q elements (not Zq if q is proper prime power)

Theorem (Menezes, Wu, 1997)

We can transfer the DLP in GL(n, pk) to the DLP in GF(pkn).

transfer t group with pnk − 1 elements

attack that one like Zp

computation with matrices more expensive

=⇒ matrix has no advantage over GF(pnk)

171 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Zp

Task: given g , n = o(g), y = g x mod p, find x

Attack by Index Calculus

pick up ideas from quadratic sieve

let p1, . . . , pk be primes that can be written as pi = g∗ mod p

find powers g r with

g r · y ≡ pe11 . . . pekk mod p

enough of them give linear equation system

logg y ≡ −r + e1 logg p1 + . . .+ ek loggpk mod n

variables logg y and the logg pi ; solve

running time like factoring

172 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Zp

Task: given g , n = o(g), y = g x mod p, find x

Attack by Index Calculus

pick up ideas from quadratic sieve

let p1, . . . , pk be primes that can be written as pi = g∗ mod p

find powers g r with

g r · y ≡ pe11 . . . pekk mod p

enough of them give linear equation system

logg y ≡ −r + e1 logg p1 + . . .+ ek loggpk mod n

variables logg y and the logg pi ; solve

running time like factoring

172 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Zp

Task: given g , n = o(g), y = g x mod p, find x

Attack by Index Calculus

pick up ideas from quadratic sieve

let p1, . . . , pk be primes that can be written as pi = g∗ mod p

find powers g r with

g r · y ≡ pe11 . . . pekk mod p

enough of them give linear equation system

logg y ≡ −r + e1 logg p1 + . . .+ ek loggpk mod n

variables logg y and the logg pi ; solve

running time like factoring

172 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Zp

Setup

prime n such that p = 2n + 1 is prime (Sophie-Germain prime)

work in Zp, has order φ(p) = p − 1 = 2n

pick random g ̸= 1 until gn = 1 (chance ≈ 1
2)

then G = ⟨g⟩ has n elements

best protection against Pohlig-Hellman

same bit size as RSA for given security level

Alice/Bob have two large exponentiations per handshake

; no advantage over RSA in that aspect
(though better for “perfect forward secrecy”)

173 / 218

Group Based Cryptography DLP in Chosen Examples of Groups

DLP in Zp

Setup

prime n such that p = 2n + 1 is prime (Sophie-Germain prime)

work in Zp, has order φ(p) = p − 1 = 2n

pick random g ̸= 1 until gn = 1 (chance ≈ 1
2)

then G = ⟨g⟩ has n elements

best protection against Pohlig-Hellman

same bit size as RSA for given security level

Alice/Bob have two large exponentiations per handshake

; no advantage over RSA in that aspect
(though better for “perfect forward secrecy”)

173 / 218

Group Based Cryptography Elliptic Curves

Elliptic Curves

Definition

let K be a finite field, 2 ̸= 0 ̸= 3; e.g. K = Zp

let a, b ∈ K be parameters with 4a3 + 27b2 ̸= 0 (discriminant),
needed to avoid degenerate case (curve behaves nicely)

then the elliptic curve over K (in Weierstrass form) is

E (K) :=
{
(x , y) ∈ K 2 : y2 = x3 + ax + b

}
∪ {∞}

Remark

often used in projective coordinates, i.e. in K 3

no inversion in addition ; speed-up

alternative form: Montgomery curve
different formulas for addition

174 / 218

Group Based Cryptography Elliptic Curves

Elliptic Curves

Definition

let K be a finite field, 2 ̸= 0 ̸= 3; e.g. K = Zp

let a, b ∈ K be parameters with 4a3 + 27b2 ̸= 0 (discriminant),
needed to avoid degenerate case (curve behaves nicely)

then the elliptic curve over K (in Weierstrass form) is

E (K) :=
{
(x , y) ∈ K 2 : y2 = x3 + ax + b

}
∪ {∞}

Remark

often used in projective coordinates, i.e. in K 3

no inversion in addition ; speed-up

alternative form: Montgomery curve
different formulas for addition

174 / 218

Group Based Cryptography Elliptic Curves

Elliptic Curves as Group

x

y y2 = x3 − x + 1

175 / 218

Group Based Cryptography Elliptic Curves

Elliptic Curves as Group

x

y y2 = x3 − x + 1

P
Q

175 / 218

Group Based Cryptography Elliptic Curves

Elliptic Curves as Group

x

y y2 = x3 − x + 1

P
Q

−R

175 / 218

Group Based Cryptography Elliptic Curves

Elliptic Curves as Group

x

y y2 = x3 − x + 1

P
Q

−R

R

175 / 218

Group Based Cryptography Elliptic Curves

Elliptic Curves as Group

x

y y2 = x3 − x + 1

P
Q

−R

R

Point “Addition”: R = P · Q
draw line through P and Q

get third intersection with
curve ; R−1

(ensured by discriminant)

mirror on x-axis
Case R = P · P:

use tangent instead

Case Px = Qx , Py ̸= Qy :

R =∞

175 / 218

Group Based Cryptography Elliptic Curves

Formulas for point addition

Neutral element: P · ∞ = P for all P

Inverse: Px = Qx but Py = −Qy , then P · Q =∞
General case: R = P · Q

λ =


Qy−Py

Qx−Px
: P ̸= Q

3P2
x+a

2Py
: P = Q

Rx = λ2 − Px − Qx

Ry = λ(Px − Rx)− Py

formulas work in every field (as long as 2 ̸= 0 ̸= 3)

in fact, they even work for points not on the curve

176 / 218

Group Based Cryptography Elliptic Curves

Formulas for point addition

Neutral element: P · ∞ = P for all P

Inverse: Px = Qx but Py = −Qy , then P · Q =∞
General case: R = P · Q

λ =


Qy−Py

Qx−Px
: P ̸= Q

3P2
x+a

2Py
: P = Q

Rx = λ2 − Px − Qx

Ry = λ(Px − Rx)− Py

formulas work in every field (as long as 2 ̸= 0 ̸= 3)

in fact, they even work for points not on the curve

176 / 218

Group Based Cryptography Elliptic Curves

Faulty Curve Injection

get Alice’s secret key in ElGamal

Condition

Chosen Cipher Attack

Alice does not check whether B ∈ E

work in curve y2 = x3 + ax + b

computations don’t use b

works for P,Q /∈ E

Idea

Eve sends X /∈ E instead of B ∈ E

can extract Alice’s secret exponent

177 / 218

Group Based Cryptography Elliptic Curves

Faulty Curve Injection

get Alice’s secret key in ElGamal

Condition

Chosen Cipher Attack

Alice does not check whether B ∈ E

work in curve y2 = x3 + ax + b

computations don’t use b

works for P,Q /∈ E

Idea

Eve sends X /∈ E instead of B ∈ E

can extract Alice’s secret exponent

177 / 218

Group Based Cryptography Elliptic Curves

Faulty Curve Injection

get Alice’s secret key in ElGamal

Condition

Chosen Cipher Attack

Alice does not check whether B ∈ E

work in curve y2 = x3 + ax + b

computations don’t use b

works for P,Q /∈ E

Idea

Eve sends X /∈ E instead of B ∈ E

can extract Alice’s secret exponent

177 / 218

Group Based Cryptography Elliptic Curves

Faulty Curve Injection – Attack

Attack: given A = ga, find a

Eve picks random point B ′ ∈ K 2

gives point on new curve E ′ : y2 = x3 + ax + b′

try until order o (B ′) has only small prime divisors
chance is good enough, offline search

send (B ′−1,∞) (recall: ∞ is neutral element)
usually would send (B, c) = (gb,m · Ab)

decryption: m =∞ · (B ′−1)−a = B ′a

usually would be m = c · B−a

use Pohlig-Hellman to compute a

Remark

could have used real message

since we know c,m, we always get B ′a

178 / 218

Group Based Cryptography Elliptic Curves

Faulty Curve Injection – Attack

Attack: given A = ga, find a

Eve picks random point B ′ ∈ K 2

gives point on new curve E ′ : y2 = x3 + ax + b′

try until order o (B ′) has only small prime divisors
chance is good enough, offline search

send (B ′−1,∞) (recall: ∞ is neutral element)
usually would send (B, c) = (gb,m · Ab)

decryption: m =∞ · (B ′−1)−a = B ′a

usually would be m = c · B−a

use Pohlig-Hellman to compute a

Remark

could have used real message

since we know c,m, we always get B ′a

178 / 218

Group Based Cryptography Elliptic Curves

Faulty Curve Injection – Attack

Attack: given A = ga, find a

Eve picks random point B ′ ∈ K 2

gives point on new curve E ′ : y2 = x3 + ax + b′

try until order o (B ′) has only small prime divisors
chance is good enough, offline search

send (B ′−1,∞) (recall: ∞ is neutral element)
usually would send (B, c) = (gb,m · Ab)

decryption: m =∞ · (B ′−1)−a = B ′a

usually would be m = c · B−a

use Pohlig-Hellman to compute a

Remark

could have used real message

since we know c,m, we always get B ′a

178 / 218

Group Based Cryptography Elliptic Curves

Open Questions

Question

How do we get an elliptic curve?

Which base element do we pick?

What is the group size?

Where can we optimise?

Constructing an Elliptic Curve

choose random prime p of chosen bit size, work in Zp

choose random a, b ∈ Zp ; defines curve

compute size of group, want prime order

then find generator g

Do once ; just pick some standard curve

179 / 218

Group Based Cryptography Elliptic Curves

Open Questions

Question

How do we get an elliptic curve?

Which base element do we pick?

What is the group size?

Where can we optimise?

Constructing an Elliptic Curve

choose random prime p of chosen bit size, work in Zp

choose random a, b ∈ Zp ; defines curve

compute size of group, want prime order

then find generator g

Do once ; just pick some standard curve

179 / 218

Group Based Cryptography Elliptic Curves

Open Questions

Question

How do we get an elliptic curve?

Which base element do we pick?

What is the group size?

Where can we optimise?

Constructing an Elliptic Curve

choose random prime p of chosen bit size, work in Zp

choose random a, b ∈ Zp ; defines curve

compute size of group, want prime order

then find generator g

Do once ; just pick some standard curve

179 / 218

Group Based Cryptography Elliptic Curves

Counting Points

Theorem (Hasse, 1933)

Let K = Zp. For the size |E | of the curve, we have the bound

||E | − (p + 1)| ≤ 2
√
p

Counting Points

let M(k) denote complexity of multiplication in k digits

Baby-Step-Giant-Step: O(4
√
p) group operations

Schoof: time O
(
∥p∥2M(∥p∥3)/ log ∥p∥

)
≈ O

(
∥p∥5

)
Schoof-Elkies-Atkin: time O

(
∥p∥2M(∥p∥2)/ log ∥p∥

)
≈ O

(
∥p∥4

)
significant improvement: p

1
4 ; poly(log p)

slow, but feasible

180 / 218

Group Based Cryptography Elliptic Curves

Counting Points

Theorem (Hasse, 1933)

Let K = Zp. For the size |E | of the curve, we have the bound

||E | − (p + 1)| ≤ 2
√
p

Counting Points

let M(k) denote complexity of multiplication in k digits

Baby-Step-Giant-Step: O(4
√
p) group operations

Schoof: time O
(
∥p∥2M(∥p∥3)/ log ∥p∥

)
≈ O

(
∥p∥5

)
Schoof-Elkies-Atkin: time O

(
∥p∥2M(∥p∥2)/ log ∥p∥

)
≈ O

(
∥p∥4

)
significant improvement: p

1
4 ; poly(log p)

slow, but feasible

180 / 218

Group Based Cryptography Elliptic Curves

Ideas Behind Methods

Baby-Step-Giant-Step

|E | lies in interval
[
p + 1± 2

√
p
]
of size 4

√
p

pick random P ∈ E : pick random x , until x3 + ax + b is square
(50% chance), compute y as root

if only single k in interval with Pk =∞, then |E | = k

else try new P, chance sufficiently good

reduce time via meet-in-the-middle

Schoof (with a lot of Galois theory)

find |E | mod qi for some primes qi

until
∏

qi > 4
√
p

then |E | is CRT solution in interval p + 1± 2
√
p

181 / 218

Group Based Cryptography Elliptic Curves

Ideas Behind Methods

Baby-Step-Giant-Step

|E | lies in interval
[
p + 1± 2

√
p
]
of size 4

√
p

pick random P ∈ E : pick random x , until x3 + ax + b is square
(50% chance), compute y as root

if only single k in interval with Pk =∞, then |E | = k

else try new P, chance sufficiently good

reduce time via meet-in-the-middle

Schoof (with a lot of Galois theory)

find |E | mod qi for some primes qi

until
∏

qi > 4
√
p

then |E | is CRT solution in interval p + 1± 2
√
p

181 / 218

Group Based Cryptography Elliptic Curves

Find Base Element

Design Goal

subgroup ⟨g⟩ = G ≤ E of prime order |G | = p with ∥p∥ ≈ ∥n∥

computational effort grows with n

want high security level (large p) with low effort (small n)

Method

create elliptic curve E

compute size n := |E |
trial division by the first few primes

if remainder p not prime, start again

Algebra: for prime p | n, there is g with o (g) = p
actually p − 1 many

try random g , chance ≈ p/n

182 / 218

Group Based Cryptography Elliptic Curves

Find Base Element

Design Goal

subgroup ⟨g⟩ = G ≤ E of prime order |G | = p with ∥p∥ ≈ ∥n∥

computational effort grows with n

want high security level (large p) with low effort (small n)

Method

create elliptic curve E

compute size n := |E |
trial division by the first few primes

if remainder p not prime, start again

Algebra: for prime p | n, there is g with o (g) = p
actually p − 1 many

try random g , chance ≈ p/n

182 / 218

Group Based Cryptography Elliptic Curves

Find Base Element

Design Goal

subgroup ⟨g⟩ = G ≤ E of prime order |G | = p with ∥p∥ ≈ ∥n∥

computational effort grows with n

want high security level (large p) with low effort (small n)

Method

create elliptic curve E

compute size n := |E |
trial division by the first few primes

if remainder p not prime, start again

Algebra: for prime p | n, there is g with o (g) = p
actually p − 1 many

try random g , chance ≈ p/n

182 / 218

Group Based Cryptography Elliptic Curves

Computational Effort in Key Generation

Construct Group

group generation involves

point counting, O∗
(
∥p∥4

)
feasible, but may need several attempts ; long time

factoring: only trial division ; fast

find generator: good chance ; fast

Key Observation

Alice and Bob use the same curve

same curve for everyone

expensive computations have to be done only once

Individual Part

create random number r < p, compute g r ; easy

183 / 218

Group Based Cryptography Elliptic Curves

Computational Effort in Key Generation

Construct Group

group generation involves

point counting, O∗
(
∥p∥4

)
feasible, but may need several attempts ; long time

factoring: only trial division ; fast

find generator: good chance ; fast

Key Observation

Alice and Bob use the same curve

same curve for everyone

expensive computations have to be done only once

Individual Part

create random number r < p, compute g r ; easy

183 / 218

Group Based Cryptography Elliptic Curves

Computational Effort in Key Generation

Construct Group

group generation involves

point counting, O∗
(
∥p∥4

)
feasible, but may need several attempts ; long time

factoring: only trial division ; fast

find generator: good chance ; fast

Key Observation

Alice and Bob use the same curve

same curve for everyone

expensive computations have to be done only once

Individual Part

create random number r < p, compute g r ; easy

183 / 218

Group Based Cryptography Elliptic Curves

Optimisation in ECDH

Speed Up Computations

frequently have to compute Pk

use square-and-multiply (double-and-add),
O(log k) operations
negation cheap: also use subtraction
k = ∗0, 1, 1, . . . , 1, 1, 0∗ becomes ∗1, 0, . . . , 0,−1, 0∗
some doubling + 1 subtraction
worst case: 3

2k ops. (instead of 2k)

Side Channel Attacks

varying time leaks information

mostly aim for constant time

even at the prize of longer time

184 / 218

Group Based Cryptography Elliptic Curves

Optimisation in ECDH

Speed Up Computations

frequently have to compute Pk

use square-and-multiply (double-and-add),
O(log k) operations
negation cheap: also use subtraction
k = ∗0, 1, 1, . . . , 1, 1, 0∗ becomes ∗1, 0, . . . , 0,−1, 0∗
some doubling + 1 subtraction
worst case: 3

2k ops. (instead of 2k)

Side Channel Attacks

varying time leaks information

mostly aim for constant time

even at the prize of longer time

184 / 218

Group Based Cryptography Elliptic Curves

Other Insecure Special Cases

Standard curves are also tested against other attacks.

Multiplicative Transfer

let ℓ = o (g) with gcd(ℓ, p) = 1, k minimal with ℓ | pk − 1

can transfer DLP to
(
GF(pk)∗, ·

)
, subexponential solutions

Additive Transfer

anomalous curve: |E | = p

can transfer DLP to (Zp,+), easy to solve

and some others. . .

Final Take-Away

Just use a given curve, maybe not from NIST.

185 / 218

Group Based Cryptography Elliptic Curves

Other Insecure Special Cases

Standard curves are also tested against other attacks.

Multiplicative Transfer

let ℓ = o (g) with gcd(ℓ, p) = 1, k minimal with ℓ | pk − 1

can transfer DLP to
(
GF(pk)∗, ·

)
, subexponential solutions

Additive Transfer

anomalous curve: |E | = p

can transfer DLP to (Zp,+), easy to solve

and some others. . .

Final Take-Away

Just use a given curve, maybe not from NIST.

185 / 218

Group Based Cryptography Elliptic Curves

Other Insecure Special Cases

Standard curves are also tested against other attacks.

Multiplicative Transfer

let ℓ = o (g) with gcd(ℓ, p) = 1, k minimal with ℓ | pk − 1

can transfer DLP to
(
GF(pk)∗, ·

)
, subexponential solutions

Additive Transfer

anomalous curve: |E | = p

can transfer DLP to (Zp,+), easy to solve

and some others. . .

Final Take-Away

Just use a given curve, maybe not from NIST.

185 / 218

Group Based Cryptography Elliptic Curves

Other Insecure Special Cases

Standard curves are also tested against other attacks.

Multiplicative Transfer

let ℓ = o (g) with gcd(ℓ, p) = 1, k minimal with ℓ | pk − 1

can transfer DLP to
(
GF(pk)∗, ·

)
, subexponential solutions

Additive Transfer

anomalous curve: |E | = p

can transfer DLP to (Zp,+), easy to solve

and some others. . .

Final Take-Away

Just use a given curve, maybe not from NIST.

185 / 218

Group Based Cryptography Elliptic Curves

Encryption with Elliptic Curves – Overview

Encryption

choose one of the standard curves

all in every standard library ; no effort
even implementing them on your own is dangerous

Alice and Bob perform DH handshake

create one random number
perform two group exponentiations
check that result lies on curve

use ElGamal or continue with AES

But what about signatures?

186 / 218

Group Based Cryptography Elliptic Curves

Encryption with Elliptic Curves – Overview

Encryption

choose one of the standard curves

all in every standard library ; no effort
even implementing them on your own is dangerous

Alice and Bob perform DH handshake

create one random number
perform two group exponentiations
check that result lies on curve

use ElGamal or continue with AES

But what about signatures?

186 / 218

Group Based Cryptography Elliptic Curves

Encryption with Elliptic Curves – Overview

Encryption

choose one of the standard curves

all in every standard library ; no effort
even implementing them on your own is dangerous

Alice and Bob perform DH handshake

create one random number
perform two group exponentiations
check that result lies on curve

use ElGamal or continue with AES

But what about signatures?

186 / 218

Group Based Cryptography ECDSA

ECDSA – Elliptic Curve Digital Signature Algorithm

Setting

subgroup ⟨g⟩ of prime size n in an elliptic curve

a < n – secret key

A = ga – public key

hash – some hash function, e.g. SHA

msg – message to be signed

Signature (ignoring edge cases)

random k < n, compute (x , y) = gk

r = x mod n

s = k−1(hash(msg) + r · a) mod n

signature (r , s)

187 / 218

Group Based Cryptography ECDSA

ECDSA – Elliptic Curve Digital Signature Algorithm

Setting

subgroup ⟨g⟩ of prime size n in an elliptic curve

a < n – secret key

A = ga – public key

hash – some hash function, e.g. SHA

msg – message to be signed

Signature (ignoring edge cases)

random k < n, compute (x , y) = gk

r = x mod n

s = k−1(hash(msg) + r · a) mod n

signature (r , s)

187 / 218

Group Based Cryptography ECDSA

(x , y) = gk and r = x mod n

s = k−1(hash(msg) + r · a) mod n

Verification

receive signature (r , s) and message msg

compute u = hash(msg) · s−1 mod n and v = rs−1 mod n

compute (x ′, y ′) = gu · Av in the curve

accept if r ≡ x ′ mod n

Correctness

plugging in the supposed values:

(x ′, y ′) = gu · Av

=
(
ghash(msg) · g ra

)s−1

= gk = (x , y)

188 / 218

Group Based Cryptography ECDSA

(x , y) = gk and r = x mod n

s = k−1(hash(msg) + r · a) mod n

Verification

receive signature (r , s) and message msg

compute u = hash(msg) · s−1 mod n and v = rs−1 mod n

compute (x ′, y ′) = gu · Av in the curve

accept if r ≡ x ′ mod n

Correctness

plugging in the supposed values:

(x ′, y ′) = gu · Av

=
(
ghash(msg) · g ra

)s−1

= gk = (x , y)

188 / 218

Group Based Cryptography ECDSA

(x , y) = gk and r = x mod n

s = k−1(hash(msg) + r · a) mod n

Verification

receive signature (r , s) and message msg

compute u = hash(msg) · s−1 mod n and v = rs−1 mod n

compute (x ′, y ′) = gu · Av in the curve

accept if r ≡ x ′ mod n

Correctness

plugging in the supposed values:

(x ′, y ′) = gu · Av

=
(
ghash(msg) · g ra

)s−1

= gk = (x , y)

188 / 218

Group Based Cryptography ECDSA

Psychic Paper

(x , y) = gk and r = x mod n

s = k−1(hash(msg) + r · a) mod n

Why edge cases are important

above pseudo code is vulnerable

some implementations say 0−1 mod n = 0

also ∞ not treated correctly, but as with zero

then signature (0, 0) always accepted

discovered in the wild in April 2022, in Java 15 to 18

unintended vuln at NullConCTF Goa 2022

Fun Fact

vuln named after psychic paper in Doctor Who

189 / 218

Group Based Cryptography ECDSA

Psychic Paper

(x , y) = gk and r = x mod n

s = k−1(hash(msg) + r · a) mod n

Why edge cases are important

above pseudo code is vulnerable

some implementations say 0−1 mod n = 0

also ∞ not treated correctly, but as with zero

then signature (0, 0) always accepted

discovered in the wild in April 2022, in Java 15 to 18

unintended vuln at NullConCTF Goa 2022

Fun Fact

vuln named after psychic paper in Doctor Who

189 / 218

Group Based Cryptography ECDSA

Psychic Paper

(x , y) = gk and r = x mod n

s = k−1(hash(msg) + r · a) mod n

Why edge cases are important

above pseudo code is vulnerable

some implementations say 0−1 mod n = 0

also ∞ not treated correctly, but as with zero

then signature (0, 0) always accepted

discovered in the wild in April 2022, in Java 15 to 18

unintended vuln at NullConCTF Goa 2022

Fun Fact

vuln named after psychic paper in Doctor Who

189 / 218

Group Based Cryptography ECDSA

Sony’s failure with the PS3

fixed value k (instead of random)

for two messages m,m′ get signatures (r , s) and (r , s ′)

s − s ′ = k−1(hash(m) + ra− hash(m′)− ra)

=⇒ k =
hash(m)− hash(m′)

s − s ′

also get secret key a = (sk − hash(m))r−1 mod n

Countermesaure Without Randomness – RFC 6979

generate k from msg and a
iterated use of HMAC (hash, concatenate, xor)

k still is unique for every message

190 / 218

Group Based Cryptography ECDSA

Sony’s failure with the PS3

fixed value k (instead of random)

for two messages m,m′ get signatures (r , s) and (r , s ′)

s − s ′ = k−1(hash(m) + ra− hash(m′)− ra)

=⇒ k =
hash(m)− hash(m′)

s − s ′

also get secret key a = (sk − hash(m))r−1 mod n

Countermesaure Without Randomness – RFC 6979

generate k from msg and a
iterated use of HMAC (hash, concatenate, xor)

k still is unique for every message

190 / 218

Group Based Cryptography ECDSA

Sony’s failure with the PS3

fixed value k (instead of random)

for two messages m,m′ get signatures (r , s) and (r , s ′)

s − s ′ = k−1(hash(m) + ra− hash(m′)− ra)

=⇒ k =
hash(m)− hash(m′)

s − s ′

also get secret key a = (sk − hash(m))r−1 mod n

Countermesaure Without Randomness – RFC 6979

generate k from msg and a
iterated use of HMAC (hash, concatenate, xor)

k still is unique for every message

190 / 218

Group Based Cryptography ECDSA

ECDSA – Overview

Overview

public key is ga, hence also based on DLP

signature is pair of numbers

Lesson Learned

even large corporations/libraries fail

edge cases are important in adversarial setting

follow the pseudo code

191 / 218

Group Based Cryptography ECDSA

ECDSA – Overview

Overview

public key is ga, hence also based on DLP

signature is pair of numbers

Lesson Learned

even large corporations/libraries fail

edge cases are important in adversarial setting

follow the pseudo code

191 / 218

Post Quantum Cryptography

Post Quantum Cryptography

What to do, if Eve has a quantum computer and I don’t.

192 / 218

Post Quantum Cryptography

Current Situation

When Quantum Computers Arrive

quantum computers can solve factoring and DLP

both RSA and every DH scheme get broken

Remark

Even with quantum computers, we do not know how to solve
NP-hard problems or break AES.

New Crypto Schemes

base crypto scheme on NP-hard problem, hard on average

most common candidates:

lattice problems
multivariate polynomials
problems from coding theory

193 / 218

Post Quantum Cryptography

Current Situation

When Quantum Computers Arrive

quantum computers can solve factoring and DLP

both RSA and every DH scheme get broken

Remark

Even with quantum computers, we do not know how to solve
NP-hard problems or break AES.

New Crypto Schemes

base crypto scheme on NP-hard problem, hard on average

most common candidates:

lattice problems
multivariate polynomials
problems from coding theory

193 / 218

Post Quantum Cryptography

Current Situation

When Quantum Computers Arrive

quantum computers can solve factoring and DLP

both RSA and every DH scheme get broken

Remark

Even with quantum computers, we do not know how to solve
NP-hard problems or break AES.

New Crypto Schemes

base crypto scheme on NP-hard problem, hard on average

most common candidates:

lattice problems
multivariate polynomials
problems from coding theory

193 / 218

Post Quantum Cryptography Lattices

Lattice

Definition

Given a base of vectors B = {v1, . . . , vn}, their lattice is

L(B) = spanZ(B) = BZn =

{
n∑

i=1

aivi : ai ∈ Z

}

for simplicity vi ∈ Zn

Properties

bases A,B create same lattice if A = UB for some U ∈ Zn×n

with detU = ±1 (U is unimodular)

isomorphism L ∼= Zn for every lattice
but isomorphism destroys angles and distances

194 / 218

Post Quantum Cryptography Lattices

Lattice

Definition

Given a base of vectors B = {v1, . . . , vn}, their lattice is

L(B) = spanZ(B) = BZn =

{
n∑

i=1

aivi : ai ∈ Z

}

for simplicity vi ∈ Zn

Properties

bases A,B create same lattice if A = UB for some U ∈ Zn×n

with detU = ±1 (U is unimodular)

isomorphism L ∼= Zn for every lattice
but isomorphism destroys angles and distances

194 / 218

Post Quantum Cryptography Lattices

Lattice Problems

Shortest Vector Problem (SVP)

given L, find a vector v ∈ L \ {0} with ∥v∥ minimal

Closest Vector Problem (CVP)

given L and u ∈ Zn, find a vector v ∈ L, with ∥u − v∥ minimal

Shortest Base Problem (SBP)

given B, find base B ′ = {v ′1, . . . , v ′n} with BZn = B ′Zn such
that

∏
∥v ′i ∥ minimal

Hardness

SVP NP-hard under randomised reduction

CVP is NP-complete

short base makes SVP and CVP significantly easier

195 / 218

Post Quantum Cryptography Lattices

Lattice Problems

Shortest Vector Problem (SVP)

given L, find a vector v ∈ L \ {0} with ∥v∥ minimal

Closest Vector Problem (CVP)

given L and u ∈ Zn, find a vector v ∈ L, with ∥u − v∥ minimal

Shortest Base Problem (SBP)

given B, find base B ′ = {v ′1, . . . , v ′n} with BZn = B ′Zn such
that

∏
∥v ′i ∥ minimal

Hardness

SVP NP-hard under randomised reduction

CVP is NP-complete

short base makes SVP and CVP significantly easier

195 / 218

Post Quantum Cryptography Lattices

Lattice Problems

Shortest Vector Problem (SVP)

given L, find a vector v ∈ L \ {0} with ∥v∥ minimal

Closest Vector Problem (CVP)

given L and u ∈ Zn, find a vector v ∈ L, with ∥u − v∥ minimal

Shortest Base Problem (SBP)

given B, find base B ′ = {v ′1, . . . , v ′n} with BZn = B ′Zn such
that

∏
∥v ′i ∥ minimal

Hardness

SVP NP-hard under randomised reduction

CVP is NP-complete

short base makes SVP and CVP significantly easier

195 / 218

Post Quantum Cryptography Lattices

Lattice Problems

Shortest Vector Problem (SVP)

given L, find a vector v ∈ L \ {0} with ∥v∥ minimal

Closest Vector Problem (CVP)

given L and u ∈ Zn, find a vector v ∈ L, with ∥u − v∥ minimal

Shortest Base Problem (SBP)

given B, find base B ′ = {v ′1, . . . , v ′n} with BZn = B ′Zn such
that

∏
∥v ′i ∥ minimal

Hardness

SVP NP-hard under randomised reduction

CVP is NP-complete

short base makes SVP and CVP significantly easier

195 / 218

Post Quantum Cryptography Lattices

Lattices

b1

b2

b1 + b2

fundamental bag

base vectors

196 / 218

Post Quantum Cryptography Lattices

Lattices

b1

b2

v = 2b1 − b2

shortest vector

target vector

closest vector

196 / 218

Post Quantum Cryptography Lattices

Lattices

b′1
b′2

better base
nearly rectangular

196 / 218

Post Quantum Cryptography Lattices

Heuristic Solutions

CVP – Babai’s Roundoff

lattice L = L(B)

given u ∈ Zn, find closest v ∈ L

solve linear equation system Bx = u in Q

round entries of x to get v ∈ L via v = B · round(x)

B =

(
6 10
7 12

)
u =

(
3.8
4.1

)
=⇒ x =

(
2.3
−1

)
returns v = (2, 2), but closest point is (4, 4)

SBP/SVP — LLL Algorithm

LLL algorithm gives reduced lattice

shortest base vector can differ from optimum by exponential
factor

197 / 218

Post Quantum Cryptography Lattices

Heuristic Solutions

CVP – Babai’s Roundoff

lattice L = L(B)

given u ∈ Zn, find closest v ∈ L

solve linear equation system Bx = u in Q

round entries of x to get v ∈ L via v = B · round(x)

B =

(
6 10
7 12

)
u =

(
3.8
4.1

)
=⇒ x =

(
2.3
−1

)
returns v = (2, 2), but closest point is (4, 4)

SBP/SVP — LLL Algorithm

LLL algorithm gives reduced lattice

shortest base vector can differ from optimum by exponential
factor

197 / 218

Post Quantum Cryptography Lattices

Heuristic Solutions

CVP – Babai’s Roundoff

lattice L = L(B)

given u ∈ Zn, find closest v ∈ L

solve linear equation system Bx = u in Q

round entries of x to get v ∈ L via v = B · round(x)

B =

(
6 10
7 12

)
u =

(
3.8
4.1

)
=⇒ x =

(
2.3
−1

)
returns v = (2, 2), but closest point is (4, 4)

SBP/SVP — LLL Algorithm

LLL algorithm gives reduced lattice

shortest base vector can differ from optimum by exponential
factor

197 / 218

Post Quantum Cryptography Lattices

From Lattices to Cryptography

Tasks

math problem → crypto scheme/key exchange

Zn is unbounded

want something finite
what changes if we add some modp?

how to create “always hard instances”?

actual parameters?

What can go wrong?

current research

198 / 218

Post Quantum Cryptography Lattices

From Lattices to Cryptography

Tasks

math problem → crypto scheme/key exchange

Zn is unbounded

want something finite
what changes if we add some modp?

how to create “always hard instances”?

actual parameters?

What can go wrong?

current research

198 / 218

Post Quantum Cryptography NTRU

NTRU – (n-th Degree Truncated Polynomial Ring)

Overview

proposed in 1997, relatively mature

feasible key size, still unbroken, NIST post-quantum candidate

Parameters

n ∈ Z, computation in R = Z[x]/(xn − 1),
i.e. integer polynomials with xn = 1

coprime numbers p, q; standard p = 3, q = 2∗

sets Lf ,Lg ,Lr ,Lm ⊆ Z[x] of polynomials with “small”
coefficients, usually coeff.s {−1, 0, 1}

Warning

Not all parameter sets work!

notion of “correct” parameters, details later

199 / 218

Post Quantum Cryptography NTRU

NTRU – (n-th Degree Truncated Polynomial Ring)

Overview

proposed in 1997, relatively mature

feasible key size, still unbroken, NIST post-quantum candidate

Parameters

n ∈ Z, computation in R = Z[x]/(xn − 1),
i.e. integer polynomials with xn = 1

coprime numbers p, q; standard p = 3, q = 2∗

sets Lf ,Lg ,Lr ,Lm ⊆ Z[x] of polynomials with “small”
coefficients, usually coeff.s {−1, 0, 1}

Warning

Not all parameter sets work!

notion of “correct” parameters, details later

199 / 218

Post Quantum Cryptography NTRU

NTRU – (n-th Degree Truncated Polynomial Ring)

Overview

proposed in 1997, relatively mature

feasible key size, still unbroken, NIST post-quantum candidate

Parameters

n ∈ Z, computation in R = Z[x]/(xn − 1),
i.e. integer polynomials with xn = 1

coprime numbers p, q; standard p = 3, q = 2∗

sets Lf ,Lg ,Lr ,Lm ⊆ Z[x] of polynomials with “small”
coefficients, usually coeff.s {−1, 0, 1}

Warning

Not all parameter sets work!

notion of “correct” parameters, details later

199 / 218

Post Quantum Cryptography NTRU

NTRU – (n-th Degree Truncated Polynomial Ring)

Overview

proposed in 1997, relatively mature

feasible key size, still unbroken, NIST post-quantum candidate

Parameters

n ∈ Z, computation in R = Z[x]/(xn − 1),
i.e. integer polynomials with xn = 1

coprime numbers p, q; standard p = 3, q = 2∗

sets Lf ,Lg ,Lr ,Lm ⊆ Z[x] of polynomials with “small”
coefficients, usually coeff.s {−1, 0, 1}

Warning

Not all parameter sets work!

notion of “correct” parameters, details later

199 / 218

Post Quantum Cryptography NTRU

see modulo as Zp = {⌊−p/2⌋, . . . , 0, . . . , ⌊p/2⌋}

Key Generation

pick random f , g ∈ R with small coefficients, f ∈ Lf , g ∈ Lg
let fq = f −1 mod q and fp = f −1 mod p
solve linear equation systems; fail ; new f

public key: h := p · fq · g mod q

secret key: f , fp (g , fq not needed any more)

Encryption

encode message as polynomial with small coefficients, m ∈ Lm
pick random r ∈ R with small coefficients, r ∈ Lr
cipher c = r · h +m mod q

Decryption

a = f · c mod q

m = fp · a mod p

200 / 218

Post Quantum Cryptography NTRU

see modulo as Zp = {⌊−p/2⌋, . . . , 0, . . . , ⌊p/2⌋}

Key Generation

pick random f , g ∈ R with small coefficients, f ∈ Lf , g ∈ Lg
let fq = f −1 mod q and fp = f −1 mod p
solve linear equation systems; fail ; new f

public key: h := p · fq · g mod q

secret key: f , fp (g , fq not needed any more)

Encryption

encode message as polynomial with small coefficients, m ∈ Lm
pick random r ∈ R with small coefficients, r ∈ Lr
cipher c = r · h +m mod q

Decryption

a = f · c mod q

m = fp · a mod p

200 / 218

Post Quantum Cryptography NTRU

see modulo as Zp = {⌊−p/2⌋, . . . , 0, . . . , ⌊p/2⌋}

Key Generation

pick random f , g ∈ R with small coefficients, f ∈ Lf , g ∈ Lg
let fq = f −1 mod q and fp = f −1 mod p
solve linear equation systems; fail ; new f

public key: h := p · fq · g mod q

secret key: f , fp (g , fq not needed any more)

Encryption

encode message as polynomial with small coefficients, m ∈ Lm
pick random r ∈ R with small coefficients, r ∈ Lr
cipher c = r · h +m mod q

Decryption

a = f · c mod q

m = fp · a mod p

200 / 218

Post Quantum Cryptography NTRU

see modulo as Zp = {⌊−p/2⌋, . . . , 0, . . . , ⌊p/2⌋}

Key Generation

pick random f , g ∈ R with small coefficients, f ∈ Lf , g ∈ Lg
let fq = f −1 mod q and fp = f −1 mod p
solve linear equation systems; fail ; new f

public key: h := p · fq · g mod q

secret key: f , fp (g , fq not needed any more)

Encryption

encode message as polynomial with small coefficients, m ∈ Lm
pick random r ∈ R with small coefficients, r ∈ Lr
cipher c = r · h +m mod q

Decryption

a = f · c mod q

m = fp · a mod p

200 / 218

Post Quantum Cryptography NTRU

Why/When NTRU works?

In decryption

a = f · c mod q = f (rh +m) mod q = f (rpfqg +m) mod q

= p · r · g + f ·m mod q

all polynomials of small coefficients

want that modq does not do anything, then

fp · a mod p = p · ∗+ fp · f ·m mod p = m mod p = m

assume coefficients of f , g , r ,m in {−1, 0, 1},
then for coefficients ai of a (via product formula) have

|ai | ≤ pn + n = n(p + 1)
!
<

q

2

hence q > 2n(p + 1) is a “correct” choice

201 / 218

Post Quantum Cryptography NTRU

Why/When NTRU works?

In decryption

a = f · c mod q = f (rh +m) mod q = f (rpfqg +m) mod q

= p · r · g + f ·m mod q

all polynomials of small coefficients

want that modq does not do anything, then

fp · a mod p = p · ∗+ fp · f ·m mod p = m mod p = m

assume coefficients of f , g , r ,m in {−1, 0, 1},
then for coefficients ai of a (via product formula) have

|ai | ≤ pn + n = n(p + 1)
!
<

q

2

hence q > 2n(p + 1) is a “correct” choice

201 / 218

Post Quantum Cryptography NTRU

Why/When NTRU works?

In decryption

a = f · c mod q = f (rh +m) mod q = f (rpfqg +m) mod q

= p · r · g + f ·m mod q

all polynomials of small coefficients

want that modq does not do anything, then

fp · a mod p = p · ∗+ fp · f ·m mod p = m mod p = m

assume coefficients of f , g , r ,m in {−1, 0, 1},
then for coefficients ai of a (via product formula) have

|ai | ≤ pn + n = n(p + 1)
!
<

q

2

hence q > 2n(p + 1) is a “correct” choice

201 / 218

Post Quantum Cryptography NTRU

Why/When NTRU works?

In decryption

a = f · c mod q = f (rh +m) mod q = f (rpfqg +m) mod q

= p · r · g + f ·m mod q

all polynomials of small coefficients

want that modq does not do anything, then

fp · a mod p = p · ∗+ fp · f ·m mod p = m mod p = m

assume coefficients of f , g , r ,m in {−1, 0, 1},
then for coefficients ai of a (via product formula) have

|ai | ≤ pn + n = n(p + 1)
!
<

q

2

hence q > 2n(p + 1) is a “correct” choice

201 / 218

Post Quantum Cryptography NTRU

NTRU and Lattices

Calculation mod xn − 1 allows for special translation.

Translate polynomials into lattices

polynomial = vector of its coefficients, also as matrix

v =
n−1∑
k=0

vkx
k ∼=

v0
v1
...

 ∼=


v0 vn−1 . . . v1
v1 v0 . . . v2

. . .

vn−1 vn−2 . . . v0



adding polynomials = adding vectors = adding matrices

multiplication of polynomials f , g :

Matrix(f) · Vector(g) = Vector(f · g)

Hence, we are in the realm of lattices.

202 / 218

Post Quantum Cryptography NTRU

NTRU and Lattices

Calculation mod xn − 1 allows for special translation.

Translate polynomials into lattices

polynomial = vector of its coefficients, also as matrix

v =
n−1∑
k=0

vkx
k ∼=

v0
v1
...

 ∼=


v0 vn−1 . . . v1
v1 v0 . . . v2

. . .

vn−1 vn−2 . . . v0


adding polynomials = adding vectors = adding matrices

multiplication of polynomials f , g :

Matrix(f) · Vector(g) = Vector(f · g)

Hence, we are in the realm of lattices.

202 / 218

Post Quantum Cryptography NTRU

NTRU and Lattices

Calculation mod xn − 1 allows for special translation.

Translate polynomials into lattices

polynomial = vector of its coefficients, also as matrix

v =
n−1∑
k=0

vkx
k ∼=

v0
v1
...

 ∼=


v0 vn−1 . . . v1
v1 v0 . . . v2

. . .

vn−1 vn−2 . . . v0


adding polynomials = adding vectors = adding matrices

multiplication of polynomials f , g :

Matrix(f) · Vector(g) = Vector(f · g)

Hence, we are in the realm of lattices.

202 / 218

Post Quantum Cryptography NTRU

NTRU and Lattice Problems

Break Key

f , g only have small entries

(f , g) ∈ L
((

In 0
p−1h qIn

))
⊆ Z2n

f , g ∈ {−1, 0, 1}n, so we look for short vectors ; SVP

Find Message

r ,m only have small entries

(r , c −m) ∈ L
((

In 0
h qIn

))
⊆ Z2n

r ,m ∈ {−1, 0, 1}n, so we look for a vector close to (0, c) ; CVP

203 / 218

Post Quantum Cryptography NTRU

NTRU and Lattice Problems

Break Key

f , g only have small entries

(f , g) ∈ L
((

In 0
p−1h qIn

))
⊆ Z2n

f , g ∈ {−1, 0, 1}n, so we look for short vectors ; SVP

Find Message

r ,m only have small entries

(r , c −m) ∈ L
((

In 0
h qIn

))
⊆ Z2n

r ,m ∈ {−1, 0, 1}n, so we look for a vector close to (0, c) ; CVP

203 / 218

Post Quantum Cryptography NTRU

NTRU – Improvements

Selecting Polynomials

additionally restrict polynomials,

T ternary polynomial, coefficients {−1, 0, 1},
degree ≤ n − 2
T (d): additionally d

2 coeff.s 1, d
2 coeff.s −1, else 0

let f , r ∈ T and g ,m ∈ T (q/8− 2) with p = 3, then

|ai | ≤ p · (q/8− 2) + q/8− 2 = q/2− 8 <
q

2

NTRU-HPS – Recommended Values

n = 501 and q = 2048

n = 677 and q = 2048

n = 821 and q = 4096

good speed with high security, keys and cipher 900-1600 byte

204 / 218

Post Quantum Cryptography NTRU

NTRU – Improvements

Selecting Polynomials

additionally restrict polynomials,

T ternary polynomial, coefficients {−1, 0, 1},
degree ≤ n − 2
T (d): additionally d

2 coeff.s 1, d
2 coeff.s −1, else 0

let f , r ∈ T and g ,m ∈ T (q/8− 2) with p = 3, then

|ai | ≤ p · (q/8− 2) + q/8− 2 = q/2− 8 <
q

2

NTRU-HPS – Recommended Values

n = 501 and q = 2048

n = 677 and q = 2048

n = 821 and q = 4096

good speed with high security, keys and cipher 900-1600 byte

204 / 218

Post Quantum Cryptography NTRU

NTRU – Summary

basic form: public key cryptosystem (i.e. en-/decrypt)

submitted version generates session keys

based on other mathematical problem

shortest vector: break key
closest vector: find message

believed to be quantum resistant

faster than RSA/ECDH

public keys larger than RSA

only recently greater focus ; less researched

skip multivariate crypto

205 / 218

Post Quantum Cryptography Multivariate Cryptography

Multivariate Cryptography

Problem MQ – Multivariate Quadratic

Given: finite field K , polynomials fi ∈ K [x1, . . . , xn] of degree 2

Task: find x ∈ Kn with fi (x) = 0 for all i

Hardness

can encode SAT, easiest for K = Z2, via x ∧ y = x · y and
x ∨ y = x + y − xy and auxiliary variables =⇒ NP-hard

Example

take formula φ = (x1 ∧ x2 ∧ ¬x3) ∨ (¬x2 ∧ x3)
to find satisfying assignment, solve system

y1 = x1 · x2 y2 = y1 · (1− x3)

y3 = (1− x2) · x3 1 = y2 + y3 − y2 · y3

206 / 218

Post Quantum Cryptography Multivariate Cryptography

Multivariate Cryptography

Problem MQ – Multivariate Quadratic

Given: finite field K , polynomials fi ∈ K [x1, . . . , xn] of degree 2

Task: find x ∈ Kn with fi (x) = 0 for all i

Hardness

can encode SAT, easiest for K = Z2, via x ∧ y = x · y and
x ∨ y = x + y − xy and auxiliary variables =⇒ NP-hard

Example

take formula φ = (x1 ∧ x2 ∧ ¬x3) ∨ (¬x2 ∧ x3)
to find satisfying assignment, solve system

y1 = x1 · x2 y2 = y1 · (1− x3)

y3 = (1− x2) · x3 1 = y2 + y3 − y2 · y3

206 / 218

Post Quantum Cryptography Multivariate Cryptography

Multivariate Cryptography

Problem MQ – Multivariate Quadratic

Given: finite field K , polynomials fi ∈ K [x1, . . . , xn] of degree 2

Task: find x ∈ Kn with fi (x) = 0 for all i

Hardness

can encode SAT, easiest for K = Z2, via x ∧ y = x · y and
x ∨ y = x + y − xy and auxiliary variables =⇒ NP-hard

Example

take formula φ = (x1 ∧ x2 ∧ ¬x3) ∨ (¬x2 ∧ x3)
to find satisfying assignment, solve system

y1 = x1 · x2 y2 = y1 · (1− x3)

y3 = (1− x2) · x3 1 = y2 + y3 − y2 · y3

206 / 218

Post Quantum Cryptography Multivariate Cryptography

Turning MQ into Cryptography

Basic Idea

additional secret information allows to solve hard problem

Reformulation

finding root equivalent to

Given: yi ∈ K , fi ∈ K [x1, . . . , xn]

Task: find x ∈ Kn with yi = fi (x) for all i
translate into cryptography

Keys: P = (f1, . . . , fm) – public key, P−1 – secret key

Encryption: y – cipher, x – message

Signing y – message, x – signature

207 / 218

Post Quantum Cryptography Multivariate Cryptography

Turning MQ into Cryptography

Basic Idea

additional secret information allows to solve hard problem

Reformulation

finding root equivalent to

Given: yi ∈ K , fi ∈ K [x1, . . . , xn]

Task: find x ∈ Kn with yi = fi (x) for all i

translate into cryptography

Keys: P = (f1, . . . , fm) – public key, P−1 – secret key

Encryption: y – cipher, x – message

Signing y – message, x – signature

207 / 218

Post Quantum Cryptography Multivariate Cryptography

Turning MQ into Cryptography

Basic Idea

additional secret information allows to solve hard problem

Reformulation

finding root equivalent to

Given: yi ∈ K , fi ∈ K [x1, . . . , xn]

Task: find x ∈ Kn with yi = fi (x) for all i
translate into cryptography

Keys: P = (f1, . . . , fm) – public key, P−1 – secret key

Encryption: y – cipher, x – message

Signing y – message, x – signature

207 / 218

Post Quantum Cryptography Multivariate Cryptography

Key Generation

pick easily “invertible” polynomial system F

pick two invertible affine (linear + shift) maps S ,T

public key P = T ◦ F ◦ S (meaning x → T → F → S ; P(x))

secret key S ,F ,T , owner can compute

P−1 = S−1 ◦ F−1 ◦ T−1

Signatures

Sign: message m, signature s = P−1(m)

Verify: check m = P(s)

Encryption – several schemes outdated/broken!

Encrypt: message m, cipher c = P(m)

Decrypt: retrieve m = P−1(c)

208 / 218

Post Quantum Cryptography Multivariate Cryptography

Key Generation

pick easily “invertible” polynomial system F

pick two invertible affine (linear + shift) maps S ,T

public key P = T ◦ F ◦ S (meaning x → T → F → S ; P(x))

secret key S ,F ,T , owner can compute

P−1 = S−1 ◦ F−1 ◦ T−1

Signatures

Sign: message m, signature s = P−1(m)

Verify: check m = P(s)

Encryption – several schemes outdated/broken!

Encrypt: message m, cipher c = P(m)

Decrypt: retrieve m = P−1(c)

208 / 218

Post Quantum Cryptography Multivariate Cryptography

Key Generation

pick easily “invertible” polynomial system F

pick two invertible affine (linear + shift) maps S ,T

public key P = T ◦ F ◦ S (meaning x → T → F → S ; P(x))

secret key S ,F ,T , owner can compute

P−1 = S−1 ◦ F−1 ◦ T−1

Signatures

Sign: message m, signature s = P−1(m)

Verify: check m = P(s)

Encryption – several schemes outdated/broken!

Encrypt: message m, cipher c = P(m)

Decrypt: retrieve m = P−1(c)

208 / 218

Post Quantum Cryptography Multivariate Cryptography

Multivariate Signatures

Key Observation

Signature just has to be some valid preimage under P.

New Idea – Oil and Vinegar to construct F

use Km T−−→ Km F−−→ Kn S−−→ Kn

have n “oil” variables x and v “vinegar” variables a, m = n + v

never mix (multiply) oil with oil, then structure

yi =
∑
j ,k

γijkxjak +
∑
j ,k

λijkajak +
∑
j

ξijxj +
∑
j

ξ′ijaj + δi

fix random values for vinegar aj

solve linear equation system to get xj

yields preimage (x , a) for y = (y1, . . . , yn)

209 / 218

Post Quantum Cryptography Multivariate Cryptography

Multivariate Signatures

Key Observation

Signature just has to be some valid preimage under P.

New Idea – Oil and Vinegar to construct F

use Km T−−→ Km F−−→ Kn S−−→ Kn

have n “oil” variables x and v “vinegar” variables a, m = n + v

never mix (multiply) oil with oil, then structure

yi =
∑
j ,k

γijkxjak +
∑
j ,k

λijkajak +
∑
j

ξijxj +
∑
j

ξ′ijaj + δi

fix random values for vinegar aj

solve linear equation system to get xj

yields preimage (x , a) for y = (y1, . . . , yn)

209 / 218

Post Quantum Cryptography Multivariate Cryptography

Multivariate Signatures

Key Observation

Signature just has to be some valid preimage under P.

New Idea – Oil and Vinegar to construct F

use Km T−−→ Km F−−→ Kn S−−→ Kn

have n “oil” variables x and v “vinegar” variables a, m = n + v

never mix (multiply) oil with oil, then structure

yi =
∑
j ,k

γijkxjak +
∑
j ,k

λijkajak +
∑
j

ξijxj +
∑
j

ξ′ijaj + δi

fix random values for vinegar aj

solve linear equation system to get xj

yields preimage (x , a) for y = (y1, . . . , yn)

209 / 218

Post Quantum Cryptography Multivariate Cryptography

Multivariate Signatures

Key Observation

Signature just has to be some valid preimage under P.

New Idea – Oil and Vinegar to construct F

use Km T−−→ Km F−−→ Kn S−−→ Kn

have n “oil” variables x and v “vinegar” variables a, m = n + v

never mix (multiply) oil with oil, then structure

yi =
∑
j ,k

γijkxjak +
∑
j ,k

λijkajak +
∑
j

ξijxj +
∑
j

ξ′ijaj + δi

fix random values for vinegar aj

solve linear equation system to get xj

yields preimage (x , a) for y = (y1, . . . , yn)

209 / 218

Post Quantum Cryptography Multivariate Cryptography

Selecting Parameters

Broken Cases

initially n = v (balanced), broken by Kipnis and Shamir in 1998
also works for v ≈ n

for v ≥ n2 and charK = 2, finding solution is feasible

Unbalanced Oil and Vinegar (UOV)

choose v ≥ 2n

parameters γ, λ, ξ, ξ′, δ for F randomly

T ∈ Km → Km affine, random, chance to be invertible

|GLm(q)|
qm·m =

m−1∏
k=0

(
1− qk−m

)
m→∞−−−−→ 28.8 . . .% for q = 2

similar chance for S and for computing xj for random aj

problem: key size O(m3 log q)

210 / 218

Post Quantum Cryptography Multivariate Cryptography

Selecting Parameters

Broken Cases

initially n = v (balanced), broken by Kipnis and Shamir in 1998
also works for v ≈ n

for v ≥ n2 and charK = 2, finding solution is feasible

Unbalanced Oil and Vinegar (UOV)

choose v ≥ 2n

parameters γ, λ, ξ, ξ′, δ for F randomly

T ∈ Km → Km affine, random,

chance to be invertible

|GLm(q)|
qm·m =

m−1∏
k=0

(
1− qk−m

)
m→∞−−−−→ 28.8 . . .% for q = 2

similar chance for S and for computing xj for random aj

problem: key size O(m3 log q)

210 / 218

Post Quantum Cryptography Multivariate Cryptography

Selecting Parameters

Broken Cases

initially n = v (balanced), broken by Kipnis and Shamir in 1998
also works for v ≈ n

for v ≥ n2 and charK = 2, finding solution is feasible

Unbalanced Oil and Vinegar (UOV)

choose v ≥ 2n

parameters γ, λ, ξ, ξ′, δ for F randomly

T ∈ Km → Km affine, random, chance to be invertible

|GLm(q)|
qm·m =

m−1∏
k=0

(
1− qk−m

)
m→∞−−−−→ 28.8 . . .% for q = 2

similar chance for S and for computing xj for random aj

problem: key size O(m3 log q)

210 / 218

Post Quantum Cryptography Multivariate Cryptography

Selecting Parameters

Broken Cases

initially n = v (balanced), broken by Kipnis and Shamir in 1998
also works for v ≈ n

for v ≥ n2 and charK = 2, finding solution is feasible

Unbalanced Oil and Vinegar (UOV)

choose v ≥ 2n

parameters γ, λ, ξ, ξ′, δ for F randomly

T ∈ Km → Km affine, random, chance to be invertible

|GLm(q)|
qm·m =

m−1∏
k=0

(
1− qk−m

)
m→∞−−−−→ 28.8 . . .% for q = 2

similar chance for S and for computing xj for random aj

problem: key size O(m3 log q)

210 / 218

Post Quantum Cryptography Multivariate Cryptography

Example Scheme – Rainbow

Rainbow

Finalist in NIST competition for post-quantum signature

uses multivariante quadratic polynomials

map F has cascading structure, instead of 1 lin.eq.sys. solve
several smaller ones, block-diagonal structure

in highest security:

1.38 MB private key
1.89 MB public key
212 B signature
sign/verify extremely fast, key generation moderate

variant: 60 B private key, 523 kB public key,
but sign/verify much longer (more than x100)

recently broken

211 / 218

Post Quantum Cryptography Multivariate Cryptography

Example Scheme – Rainbow

Rainbow

Finalist in NIST competition for post-quantum signature

uses multivariante quadratic polynomials

map F has cascading structure, instead of 1 lin.eq.sys. solve
several smaller ones, block-diagonal structure

in highest security:

1.38 MB private key
1.89 MB public key
212 B signature
sign/verify extremely fast, key generation moderate

variant: 60 B private key, 523 kB public key,
but sign/verify much longer (more than x100)

recently broken

211 / 218

Post Quantum Cryptography Multivariate Cryptography

Example Scheme – Rainbow

Rainbow

Finalist in NIST competition for post-quantum signature

uses multivariante quadratic polynomials

map F has cascading structure, instead of 1 lin.eq.sys. solve
several smaller ones, block-diagonal structure

in highest security:

1.38 MB private key
1.89 MB public key
212 B signature
sign/verify extremely fast, key generation moderate

variant: 60 B private key, 523 kB public key,
but sign/verify much longer (more than x100)

recently broken

211 / 218

Post Quantum Cryptography Multivariate Cryptography

Example Scheme – Rainbow

Rainbow

Finalist in NIST competition for post-quantum signature

uses multivariante quadratic polynomials

map F has cascading structure, instead of 1 lin.eq.sys. solve
several smaller ones, block-diagonal structure

in highest security:

1.38 MB private key
1.89 MB public key
212 B signature
sign/verify extremely fast, key generation moderate

variant: 60 B private key, 523 kB public key,
but sign/verify much longer (more than x100)

recently broken

211 / 218

Post Quantum Cryptography Further Post-Quantum

Further Post-Quantum Candidates

open competition by NIST

3rd round finished in 2022

key exchange (KEM: key encapsulation method)

lattice: NTRU, Kyber, Saber
code: Classic McEliece

signatures

lattice: Dilithium, Falcon
MQ: Rainbow

some alternative candidates (in part of other classes)
worse in: security/ time/ communication size

trade-off between sizes of public key, secret key, signature/cipher
but also time and power consumption

212 / 218

Post Quantum Cryptography Further Post-Quantum

Further Post-Quantum Candidates

open competition by NIST

3rd round finished in 2022

key exchange (KEM: key encapsulation method)

lattice: NTRU, Kyber, Saber
code: Classic McEliece

signatures

lattice: Dilithium, Falcon
MQ: Rainbow

some alternative candidates (in part of other classes)
worse in: security/ time/ communication size

trade-off between sizes of public key, secret key, signature/cipher
but also time and power consumption

212 / 218

Post Quantum Cryptography Further Post-Quantum

Further Post-Quantum Candidates

open competition by NIST

3rd round finished in 2022

key exchange (KEM: key encapsulation method)

lattice: NTRU, Kyber, Saber
code: Classic McEliece

signatures

lattice: Dilithium, Falcon
MQ: Rainbow

some alternative candidates (in part of other classes)
worse in: security/ time/ communication size

trade-off between sizes of public key, secret key, signature/cipher
but also time and power consumption

212 / 218

Outlook

Security Enhancements

What is lacking?

many crypto primitives focus on OW-CPA

preferred security IND-CCA2

PKCS#1 already does that, but RSA-specific

general transformation of weaker scheme into IND-CCA2

Solution – Fujisaki-Okamoto-Transformation

generic transformation

essentially a hybrid system (PKC + AES)

need hash and symmetric encryption

transform OW-CPA into IND-CCA2

213 / 218

Outlook

Security Enhancements

What is lacking?

many crypto primitives focus on OW-CPA

preferred security IND-CCA2

PKCS#1 already does that, but RSA-specific

general transformation of weaker scheme into IND-CCA2

Solution – Fujisaki-Okamoto-Transformation

generic transformation

essentially a hybrid system (PKC + AES)

need hash and symmetric encryption

transform OW-CPA into IND-CCA2

213 / 218

Outlook

Perfect Forward Secrecy

Scenario

attacker captures your traffic over some time

at later point gets access to private key

Definition (Perfect Forward Secrecy)

compromise of long-term keys does not compromise past session keys

Method

each session DH-handshake, forgotten afterwards

long term key for signatures

sign your part of handshake, to avoid man-in-the-middle

TLS 1.3 does this (TLS ≤1.2: optionally), Signal-protocol as well

214 / 218

Outlook

Perfect Forward Secrecy

Scenario

attacker captures your traffic over some time

at later point gets access to private key

Definition (Perfect Forward Secrecy)

compromise of long-term keys does not compromise past session keys

Method

each session DH-handshake, forgotten afterwards

long term key for signatures

sign your part of handshake, to avoid man-in-the-middle

TLS 1.3 does this (TLS ≤1.2: optionally), Signal-protocol as well

214 / 218

Outlook

Perfect Forward Secrecy

Scenario

attacker captures your traffic over some time

at later point gets access to private key

Definition (Perfect Forward Secrecy)

compromise of long-term keys does not compromise past session keys

Method

each session DH-handshake, forgotten afterwards

long term key for signatures

sign your part of handshake, to avoid man-in-the-middle

TLS 1.3 does this (TLS ≤1.2: optionally), Signal-protocol as well

214 / 218

Outlook

Perfect Forward Secrecy

Scenario

attacker captures your traffic over some time

at later point gets access to private key

Definition (Perfect Forward Secrecy)

compromise of long-term keys does not compromise past session keys

Method

each session DH-handshake, forgotten afterwards

long term key for signatures

sign your part of handshake, to avoid man-in-the-middle

TLS 1.3 does this (TLS ≤1.2: optionally), Signal-protocol as well

214 / 218

Outlook

Outlook

Some topics we left out:

Secret sharing

split one secret across n people

secret can be recovered if ≥ k people pair up

e.g. via polynomial interpolation

Public Key Infrastructure

If Eve controls network, how to avoid man-in-the-middle?

How does Bob know, Alice’s key was not changed?

part of “Grundlagen der Rechnersicherheit”

Zero Knowledge Proofs

Alice shows, she knows secret, without revealing secret

215 / 218

Outlook

Outlook

Some topics we left out:

Secret sharing

split one secret across n people

secret can be recovered if ≥ k people pair up

e.g. via polynomial interpolation

Public Key Infrastructure

If Eve controls network, how to avoid man-in-the-middle?

How does Bob know, Alice’s key was not changed?

part of “Grundlagen der Rechnersicherheit”

Zero Knowledge Proofs

Alice shows, she knows secret, without revealing secret

215 / 218

Outlook

Outlook

Some topics we left out:

Secret sharing

split one secret across n people

secret can be recovered if ≥ k people pair up

e.g. via polynomial interpolation

Public Key Infrastructure

If Eve controls network, how to avoid man-in-the-middle?

How does Bob know, Alice’s key was not changed?

part of “Grundlagen der Rechnersicherheit”

Zero Knowledge Proofs

Alice shows, she knows secret, without revealing secret

215 / 218

Outlook

Outlook

Some topics we left out:

Secret sharing

split one secret across n people

secret can be recovered if ≥ k people pair up

e.g. via polynomial interpolation

Public Key Infrastructure

If Eve controls network, how to avoid man-in-the-middle?

How does Bob know, Alice’s key was not changed?

part of “Grundlagen der Rechnersicherheit”

Zero Knowledge Proofs

Alice shows, she knows secret, without revealing secret

215 / 218

Outlook

Larger Practical Use Cases

Signal-Protocol

double ratchet method

handling asynchronous communications and group chats

SSH

authentication via public key (RFC 4252)

get random token, have to sign

Telegram

own protocol

Generally, field with lot of ongoing research. . .

216 / 218

Outlook

Larger Practical Use Cases

Signal-Protocol

double ratchet method

handling asynchronous communications and group chats

SSH

authentication via public key (RFC 4252)

get random token, have to sign

Telegram

own protocol

Generally, field with lot of ongoing research. . .

216 / 218

Outlook

Larger Practical Use Cases

Signal-Protocol

double ratchet method

handling asynchronous communications and group chats

SSH

authentication via public key (RFC 4252)

get random token, have to sign

Telegram

own protocol

Generally, field with lot of ongoing research. . .

216 / 218

Outlook

Larger Practical Use Cases

Signal-Protocol

double ratchet method

handling asynchronous communications and group chats

SSH

authentication via public key (RFC 4252)

get random token, have to sign

Telegram

own protocol

Generally, field with lot of ongoing research. . .

216 / 218

Outlook

The End . . .

Happy Hacking!

I hope you had fun.
Maybe see you at some CTF ;)

217 / 218

	Introduction
	Cryptography
	Abstract Concepts
	History
	Mathematical Background
	Basic Algorithms
	Number Theory

	RSA
	How does it work?
	Security of RSA
	Small Public Exponent e – Simple Cases
	Coppersmith
	Håstad Broadcast
	Polynomials
	Franklin-Reiter-Related-Message-Attack
	Coppersmith Short Pad
	Very Small Message m
	Common Modulus
	Wiener Attack

	Digital Signatures
	PKCS
	Encryption Standards
	Signature Standards
	Bleichenbacher's Attack

	Primality Tests
	Fermat Test
	Miller-Rabin Test
	AKS Primality Test
	Sieve of Erathosthenes
	Primality Tests – Overview
	Prime Generation

	Factoring
	Fermat Factorisation
	Quadratic Sieve
	pk-smooth Numbers
	General Factorisation

	Group Based Cryptography
	Generic Attacks on DLP
	DLP in Chosen Examples of Groups
	Elliptic Curves
	ECDSA

	Post Quantum Cryptography
	Lattices
	NTRU
	Multivariate Cryptography
	Further Post-Quantum

	Outlook

