
Henning Seidler Public Key Cryptography, Example Sheet 1 Page 1

Exercise 1

Some more mathematical background

a) Compute 7−1 mod 11 by hand.

b) Given two numbers a, b of n bit each. What is the worst case number of arithmetic operations
of the (Extended) Euclidean Algorithm? Which input yields this worst case?

c) Why do we need a, n coprime to compute the modular inverse a−1 mod n? E.g. what happens
for gcd(15, 39)?

Exercise 2

Given a set of modular equations

ai ≡ x mod ni i = 1, . . . , k

the solution to the Chinese remainder theorem can be computed via

bi :=
∏
j 6=i

nj i = 1, . . . , k

b′i := b−1i mod ni i = 1, . . . , k

x :=
k∑

i=1

aibib
′
i mod

∏
j

nj

a) Show that the above method is correct.

b) Implement both solutions for the Chinese Remainder Theorem.

Input: List of moduli [n1, . . . , nk] and list of remainders [a1, . . . , ak, ]; or
list of pairs [(a1, n1), . . . , (ak, nk)]

Output: solution x, (and
∏

ni)

c) Compare their theoretical and practical running time.

d) We demanded coprime ni.

• What happens if this is not the case?

• Why was this not mentioned in the lecture?

Exercise 3

Write a function to compute ϕ(n)

a) via the definition

b) via factorisation

Up to which size (roughly) can you compute this within a few seconds?
In IPython, you can get the time of a function call via

%time foo(bar)

or if you want to run multiple iterations

%timeit foo(bar)


