Exercise 1

Some more mathematical background
a) Compute $7^{-1} \bmod 11$ by hand.
b) Given two numbers a, b of n bit each. What is the worst case number of arithmetic operations of the (Extended) Euclidean Algorithm? Which input yields this worst case?
c) Why do we need a, n coprime to compute the modular inverse $a^{-1} \bmod n$? E.g. what happens for $\operatorname{gcd}(15,39)$?

Exercise 2

Given a set of modular equations

$$
a_{i} \equiv x \quad \bmod n_{i} \quad i=1, \ldots, k
$$

the solution to the Chinese remainder theorem can be computed via

$$
\begin{array}{rlr}
b_{i} & :=\prod_{j \neq i} n_{j} & i=1, \ldots, k \\
b_{i}^{\prime} & :=b_{i}^{-1} \bmod n_{i} & i=1, \ldots, k \\
x & :=\sum_{i=1}^{k} a_{i} b_{i} b_{i}^{\prime} \bmod \prod_{j} n_{j} &
\end{array}
$$

a) Show that the above method is correct.
b) Implement both solutions for the Chinese Remainder Theorem.

Input: List of moduli $\left[n_{1}, \ldots, n_{k}\right]$ and list of remainders $\left[a_{1}, \ldots, a_{k}\right.$, ; or list of pairs $\left[\left(a_{1}, n_{1}\right), \ldots,\left(a_{k}, n_{k}\right)\right]$
Output: solution x, (and $\prod n_{i}$)
c) Compare their theoretical and practical running time.
d) We demanded coprime n_{i}.

- What happens if this is not the case?
- Why was this not mentioned in the lecture?

Exercise 3

Write a function to compute $\varphi(n)$
a) via the definition
b) via factorisation

Up to which size (roughly) can you compute this within a few seconds?
In IPython, you can get the time of a function call via
\%time foo(bar)
or if you want to run multiple iterations
\%timeit foo(bar)

