LP spaces

THE SPACES LP(I) FOR 1 < p < 00 AND p = o0
Definition 1. Let Q) be a set. A set X of subsets of 2 is called o-algebra, if
(i)peX Qe
(i) AcX=0\Ae€X and
(iii) Ay, As,...€e ¥ = U2, A € 2.
Ezample. {0,Q} is the simplest o-algebra.

Theorem 2. For any set & C P(QQ) of subsets of 2, there is a “smallest” o-algebra ¥
containing G, i.e.

Jlo-algebra Yo : 6 C Xy, X is o-algebra = Xg C X.
Y s called the o-algebra generated by .

Definition 3.

(1) The o-algebra genereted by the open sets, {U C R™ : U is open}, is called the Borel-
o-algebra and is denoted by B(R™).

(2) The Lebesgue-measure u(A) of a set A € B(R™) is defined by

w(A) :=|A| := inf {i@l’ A C G Qi, Q; cuboids} )

=1 i=1
where |Qi] = [I{") x - x 1| = [IV] -+ |11, 1] = |(a,b)| = b— a.

(3) A function f: R™ — R™ is called measurable, if the preimage of any open set U € R™
is mearuable, i.e. f~1(U) € B(R").

(4) A function f: R™ — R of the form

m
f= Z ¢ La,
i=1

with A; € B(R") is called simple. If ¢; > 0, we set

Proposition. If f, g are simple and non-negative functions, then
f§g:>/fdm§/gdx.

(5) If f: R™ — [0, 00) is measurable, then there is a sequence (f,,) of non-negative simple
functions with f,,  f (pointwise). We set

] sz = s [ e
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(6) A function f: R™ — R is called (Lebesgue-)integrable, if

/[f\dx<oo.
/fda; :z/f*dx—/fdm,

where fT := max{0, f} and f~ := min{0, —f}.

Then we set

(7) A function f: R"™ — C is integrable, if Re(f) and Im(f) are integrable.

Theorem 4. Let f, g be integrable, a, B € K. Then af + B¢ is integrable and

/(ozf—l—ﬁ@dmza/fdx%—ﬁ/gdaz,

i.e. the integral is linear.

Also, the triangle inequality holds:

[ ras| < [if1a.

Theorem 5 (Lebesgue). Let (f,) be a sequence of integrable functions converging point-
wise to some f. Assume there is an integrable function g, such that |f,| < g holds for all
n € N. Then [ is integrable and

/ fdz = lim / fodz.

Theorem 6 (Beppo Levi/monote convergence). Let (f,) be a sequence of non-negative
measurable functions with f, / f for some f. Then

/ fda = lim / Fodz .

We now define an equivalence relation by

g n(fa €R: f(2) # g(@)}) = 0
).

< f = g almost everywhere (a.e

This yields equivalence classes [f].

Definition 7. Let 1 > p < oo, I C R an interval. By £P(I) we denote the space

LP(I):={f:1—K:|f|"is integrable}

5=/ \f\pdx); .

Using the equivalence classes defined above, we can obtain a normed space LP(I) while
LP(I) is a vector space with a semi-norm. In the following we will show that £P(I) is a
complete vector space with semi-norm and construct the Banach space LP(I) by using the
quotient space.

and we define
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Lemma 8. The space LP(I) is a vector space.

Proof. For f,g € LP(I) and a € K we obviously have af € LP(I). Also, there holds

/ f 4 glPda < / (7] +1gl)? dz < / (@max{|f], |g})? da
I I I
Y /I max{|f]", |g"}dw < 2° / (7P + [g?) dz < oo.

O

Definition 9. Let E be a vector space. A function V: E — [0, 00) is called a semi-norm
on E if

(i) V(ax) = |a|V(z) for all « € K, z € E and

(ii) V(x+y) < V(x)+ V(y) for all z,y € E.
V is called a norm on FE if further V(z) = 0 implies = 0.
Satz. The map |-||;, defines a semi-norm on LP(I).

For this, we need to show the triangle inequality, as [|af||; = [a||| f]; is obvious. We first
prove the Holder-inequality.

Lemma 10 (Holder’s inequality). Let 1 < p < oo and % + % = 1. Then for all f € LP(I)
and all g € LYI) we have
IfgllT < 71519l -

In particular, fg € LY(I).
Proof. The logarithm on (0, 00) is concave, in explicit
rlog(o) + (1 —r)log(r) <log(ro + (1 —r)T)
for all o,7 > 0 and r € [0, 1]. This yields
o' <ro+ (1—mr)T

We set

A= (I71) /\f\pdx — (llgl) /rg\qu

By r:= ]% we obtain for z €

('ﬂj)"’); ('9<;)'q); < S F@P + i@

1 1 1
- de < — Pde +— Ide =1.
—_—— ——

=A =B

and thus
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Using this inequality we can now show the triangle inequality in £P([I).

Lemma 11 (Minkowski’s inequality). Let 1 < p < oo and f,g € LP(I). Then there holds
1+ gl < ILfIl5 +1lgllp -

Proof. For p =1 we have

J17-+9le <[5+ lohde = [ 171z + [lgla,

Now let 1 < p < co and }D + % = 1. Then, by the Hélder’s inequality

(ILF +gll5)" = /Ilf +glPde = /I\f +ollf + gl da < /Ilfllf +glPde + /I\g\lf +glP~da

1

< (furas)” (fir+aoaa) "+ ( [abas)” ( f17+ ao-be)’

_1
= (Wt + ol (15 + aaz) "
/A

=(If+glz)" ™"

Remark. Note that ||-||7 is not a norm. For this consider
0 ifzdQ
fl@) =9, .
1 ifze@.
Then f[og}’f‘pdw =0, but f #0.
Definition 12. Let E be a vector space with a semi-norm ||-||*.

(i) (xn) C E is called a Cauchy sequence if for all € > 0 there exists some N € N such
that for all n,m € N we have ||z, — zn||* < €.

(ii) (zn) C E converges to x € E if for all ¢ > 0 there exists some N € N such that for
all n € N we have ||z, — z||* < e.

(iii) (B, |||I*) is called complete if each Cauchy sequence in E converges (in E).

Lemma 13. Let E be a vector space with semi-norm ||-||*. Then the following are equiv-
alent:

(i) (E,||-|[*) is complete.

(ii) Each absolutely convergent series in E converges, i.e.
o0
> Tn
n=1
converges if

oo
D llaall* < oo
n=1

CONVETGES.
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Proof. Exercises. O

Theorem 14. (LP(I), ||||;) is complete.

Proof. Let (fn) C LP(I) such that

o0
a:= ZanH; < 00.

n=1

Define g,,g: I - RU{oo} by
gn(x) := Y| fi(x)| 9(x) =Y | fil=)].
i=1 i=1

Then g, € LP(I) and ||gn|l5 < D0y fill5 < a for all n € N. Also by gf  §” Beppo Levi
gives us

/Igpdx = nli_}rgo/lgﬁdm <al < o0. (1)

Now, N :={x € I : §(x) = oo} has zero measure. Put

~a(x) ife ¢ N
g(x)'_{o ifreN.

Thus, .
g(z) = lefi(w)l
for x € N and hence _OO
fz) = z;fi(l’)
for © ¢ N exists. Additionally, let f(z) := 0 for x € N. We have |f(x)| < g(z) for x € I.
By (1) there is g € £LP(I) and f? < g” and thus f € L£P(I). Define

n—1
hp(x) := Z fi(x).
i=1

Then
|hn — fIP =

>,

p [e's) p
< (Z’fi’) <g".
Since |hy, — f| = 0, n — oo, we have
/|hn—f|pdx -0
I

which implies

Hf -> fi
=1

*
— 0.
p

Thus, (LP(I),]-]l;) is a complete vector space.

Now we construct a Banach space LP(I).
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Lemma 15. Let E be a vector space with semi-norm ||-||*. Then the following holds:
(i) F:={x € E:|z|* =0} is a subspace of E.

(i) ||[x]|| := ||=||* defines a norm on E/F.

(iii) If (E, ||-||*) is complete, then also (E/F,||-||) is complete.

Proof. (i). For z,y € F, A € K we have

1Az +yl™ < [Az]]* + [ly[I” = [Alllz[I" + " = A-0+0=0.

(ii). [|-]|] is well-defined, since for z,y € E with  ~ y, i.e. z —y € F, we have
[l = Iyll*| < lle = yl* =0
and hence ||z||* = ||ly[|*. To show the norm properties, we have that
AL F = =]l = [[Az (" = IAl=]]* = [l [2]]
and
] + Wl = Nz + ylll = llz +ylI" < llel™ + lylI* = [l + [Tyl -

(ii). Let (E,||-||*) be complete and let (x,) C E be such that ([x,]) C E/F be a Cauchy
sequence. Since ||[zy] — [zm]]] = |2n — zm[|*, also (z5,) is a Cauchy sequence and therefore
converges to some ¢ € E. We now have

llzn] = 2]l = |20 — 2]| = e — 2] == 0
and thus ([z,]) converges to [z]. O

Definition 16. Now, for 1 < p < oo we set

Fp(I) :=A{f € L2(I) : |[fll, = 0} ={f € £°(1) : f = 0 a.e.}

and finally define
(1) = £2(D)/Fy(1).

By the previous Lemma, LP(I) is a Banach space.

Now, we consider p = oo.

Definition 17. We set
LX) :={f: I —K: fis measurable and IN € B(I) : u(N) = 0,f|I\N is bounded}

and further define

o= = inf = inf )
Il = essomplf ) = inf | swp 17 = inf [ 7o
u(N)=0 w(N)=0

Lemma 18. £%(I) is a vector space and ||-||5, is a semi-norm on L>(I).
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Proof. Let f,g € L2(I) and X € K. Obviously, also Af € K. Now let N¢, N, € B([) with
p(Ny¢) = u(Ng) = 0, such that f][\Nf and g]I\N are bounded. Then, for N := Ny U Ny,
g

we have pu(N) =0 and (f +g)‘I\N is bounded, thus f + g € L>(I).

Also, we obviously have
A5 = A5 -
Now let N € B(I) with p(N) =0. We have

If +9l% < sup |[(f +9)(@)[ < sup [f(z)|+ sup [g(x)].
z€I\N z€I\N xel\Ny

Taking the supremum over all N € B(/) with u(N) = 0 yields the claim. O

Lemma 19. For each L>*(I) there exists N € B(I) with ;(N) = 0 such that
T Vi

Proof. For each n € N there exists N,, € B([) with u(N,) = 0 such that

1712+ = > [,

Set - )
N:=]JN.
i=1
Then N € B(I), u(N) =0 and
115 < |l < (1w,

Letting n — oo, the claim is proven. ]

1
<+

Theorem 20. (L¥(I),||||%,) is complete.

Proof. Let (f,) be a Cauchy sequence in (£L*°(I), ||-||%,). By the above Lemma there exists
Ny € B(I) with pu(Np ) such that

» Hoo

Define

Then p(N) =0 and

H(fn - fm)|[\NHoo = H(f” o fm)‘I\Nn,mH

(e}

for all n,m € N. Hence ( fnl n N) is a Cauchy sequence in the space of bounded functions
B(I'\ N). Therefore there exists some f € B(I'\ N) with

n—oo

| = Dlia|, 0.

By setting f(z) =0 on N, f: I — K is measurable and bounded, thus f € £°°(I) and

1o = £l < [|(Fn = D], == 0
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Now, with
FooI) :=A{f € £2(I) - | fII% = 0}

we obtain the Banach space
L°(I) :=L>(I)/Foo (1) .

Theorem 21 (Holder inequality). Let 1 < p,q < oo such that %—I—% =1p=1=qg=x).
Then for all f € LP(I), g € LY(I) we have fg € L*(I) and

1Fgll < [ fllpllgllq -

Proof. We only deal with p = co. Let f € L°°(I), g € L'(I) and let N be as in Lemma
19. There holds

/I folde = /I lia < /I | Mleloldz = 17 /l lgldz = | loellgll -
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