The spaces $L^p(I)$ for $1 \leq p < \infty$ and $p = \infty$

Definition 1. Let Ω be a set. A set Σ of subsets of Ω is called σ -algebra, if

- (i) $\emptyset \in \Sigma, \ \Omega \in \Sigma$,
- (ii) $A \in \Sigma \Rightarrow \Omega \setminus A \in \Sigma$ and
- (iii) $A_1, A_2, \ldots \in \Sigma \Rightarrow \bigcup_{i=1}^{\infty} A_i \in \Sigma.$

Example. $\{\emptyset, \Omega\}$ is the simplest σ -algebra.

Theorem 2. For any set $\mathfrak{S} \subseteq \mathcal{P}(\Omega)$ of subsets of Ω , there is a "smallest" σ -algebra Σ_0 containing \mathfrak{S} , *i.e.*

$$\exists ! \sigma\text{-algebra } \Sigma_0 : \mathfrak{S} \subseteq \Sigma_0, \quad \Sigma \text{ is } \sigma\text{-algebra } \Rightarrow \Sigma_0 \subseteq \Sigma.$$

 Σ_0 is called the σ -algebra generated by \mathfrak{S} .

Definition 3.

- (1) The σ -algebra genereted by the open sets, $\{U \subseteq \mathbb{R}^n : U \text{ is open}\}$, is called the *Borel*- σ -algebra and is denoted by $\mathfrak{B}(\mathbb{R}^n)$.
- (2) The Lebesgue-measure $\mu(A)$ of a set $A \in \mathfrak{B}(\mathbb{R}^n)$ is defined by

$$\mu(A) := |A| := \inf \left\{ \sum_{i=1}^{m} |Q_i| : A \subseteq \bigcup_{i=1}^{m} Q_i, \ Q_i \text{ cuboids} \right\},$$

where $|Q_i| = |I_i^{(1)} \times \cdots \times I_i^{(n)}| = |I_i^{(1)}| \cdots |I_i^{(n)}|, |I| = |(a, b)| = b - a.$

- (3) A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is called *measurable*, if the preimage of any open set $U \in \mathbb{R}^m$ is mearuable, i.e. $f^{-1}(U) \in \mathfrak{B}(\mathbb{R}^n)$.
- (4) A function $f: \mathbb{R}^n \to \mathbb{R}$ of the form

$$f = \sum_{i=1}^{m} c_i \, \mathbb{1}_{A_i}$$

with $A_i \in \mathfrak{B}(\mathbb{R}^n)$ is called *simple*. If $c_i \ge 0$, we set

$$\int f \mathrm{d}x = \sum_{i=1}^m c_i \mu(A_i) \,.$$

Proposition. If f, g are simple and non-negative functions, then

$$f \le g \Rightarrow \int f \mathrm{d}x \le \int g \mathrm{d}x \,.$$

(5) If $f : \mathbb{R}^n \to [0, \infty)$ is measurable, then there is a sequence (f_n) of non-negative simple functions with $f_n \nearrow f$ (pointwise). We set

$$\int f \mathrm{d}x := \sup_{n \in \mathbb{N}} \int f_n \mathrm{d}x \,.$$

(6) A function $f : \mathbb{R}^n \to \mathbb{R}$ is called *(Lebesgue-)integrable*, if

$$\int |f| \mathrm{d}x < \infty \,.$$

Then we set

$$\int f \mathrm{d}x := \int f^+ \mathrm{d}x - \int f^- \mathrm{d}x \,,$$

where $f^+ := \max\{0, f\}$ and $f^- := \min\{0, -f\}$.

(7) A function $f : \mathbb{R}^n \to \mathbb{C}$ is integrable, if $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$ are integrable.

Theorem 4. Let f, g be integrable, $\alpha, \beta \in \mathbb{K}$. Then $\alpha f + \beta g$ is integrable and

$$\int (\alpha f + \beta g) \mathrm{d}x = \alpha \int f \mathrm{d}x + \beta \int g \mathrm{d}x \,,$$

i.e. the integral is linear.

Also, the triangle inequality holds:

$$\left|\int f \mathrm{d}x\right| \leq \int |f| \mathrm{d}x \,.$$

Theorem 5 (Lebesgue). Let (f_n) be a sequence of integrable functions converging pointwise to some f. Assume there is an integrable function g, such that $|f_n| \leq g$ holds for all $n \in \mathbb{N}$. Then f is integrable and

$$\int f \mathrm{d}x = \lim_{n \to \infty} \int f_n \mathrm{d}x$$

Theorem 6 (Beppo Levi/monote convergence). Let (f_n) be a sequence of non-negative measurable functions with $f_n \nearrow f$ for some f. Then

$$\int f \mathrm{d}x = \lim_{n \to \infty} \int f_n \mathrm{d}x \,.$$

We now define an equivalence relation by

$$f \sim g :\Leftrightarrow \mu \left(\{ x \in \mathbb{R}^n : f(x) \neq g(x) \} \right) = 0$$
$$\Leftrightarrow f = g \text{ almost everywhere (a.e.).}$$

This yields equivalence classes [f].

Definition 7. Let $1 \ge p < \infty$, $I \subseteq \mathbb{R}$ an interval. By $\mathcal{L}^p(I)$ we denote the space

$$\mathcal{L}^p(I) := \{ f \colon I \to \mathbb{K} : |f|^p \text{ is integrable} \}$$

and we define

$$||f||_p^* := \left(\int_I |f|^p \mathrm{d}x\right)^{\frac{1}{p}}.$$

Using the equivalence classes defined above, we can obtain a normed space $L^p(I)$ while $\mathcal{L}^p(I)$ is a vector space with a semi-norm. In the following we will show that $\mathcal{L}^p(I)$ is a complete vector space with semi-norm and construct the Banach space $L^p(I)$ by using the quotient space.

Lemma 8. The space $\mathcal{L}^p(I)$ is a vector space.

Proof. For $f, g \in \mathcal{L}^p(I)$ and $\alpha \in \mathbb{K}$ we obviously have $\alpha f \in \mathcal{L}^p(I)$. Also, there holds

$$\begin{split} \int_{I} |f+g|^{p} \mathrm{d}x &\leq \int_{I} \left(|f|+|g| \right)^{p} \mathrm{d}x \leq \int_{I} \left(2 \max\{|f|,|g|\} \right)^{p} \mathrm{d}x \\ &= 2^{p} \int_{I} \max\{|f|^{p},|g|^{p}\} \mathrm{d}x \leq 2^{p} \int_{I} \left(|f|^{p}+|g|^{p} \right) \mathrm{d}x < \infty \,. \end{split}$$

Definition 9. Let *E* be a vector space. A function $V: E \to [0, \infty)$ is called a *semi-norm* on *E* if

- (i) $V(\alpha x) = |\alpha|V(x)$ for all $\alpha \in \mathbb{K}, x \in E$ and
- (ii) $V(x+y) \le V(x) + V(y)$ for all $x, y \in E$.

V is called a *norm* on E if further V(x) = 0 implies x = 0.

Satz. The map $\|\cdot\|_p^*$ defines a semi-norm on $\mathcal{L}^p(I)$.

For this, we need to show the triangle inequality, as $\|\alpha f\|_p^* = |\alpha| \|f\|_p^*$ is obvious. We first prove the Hölder-inequality.

Lemma 10 (Hölder's inequality). Let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Then for all $f \in \mathcal{L}^p(I)$ and all $g \in \mathcal{L}^q(I)$ we have

$$||fg||_1^* \le ||f||_p^* ||g||_q^*$$

In particular, $fg \in \mathcal{L}^1(I)$.

Proof. The logarithm on $(0, \infty)$ is concave, in explicit

$$r\log(\sigma) + (1-r)\log(\tau) \le \log(r\sigma + (1-r)\tau)$$

for all $\sigma, \tau > 0$ and $r \in [0, 1]$. This yields

$$\sigma^r \tau^{1-r} \le r\sigma + (1-r)\tau \,.$$

We set

$$A := \left(\|f\|_p^* \right)^p = \int_I |f|^p dx \qquad B := \left(\|g\|_q^* \right)^q = \int_I |g|^q dx.$$

By $r := \frac{1}{p}$ we obtain for $x \in I$

$$\left(\frac{|f(x)|^p}{A}\right)^{\frac{1}{p}} \left(\frac{|g(x)|^q}{B}\right)^{\frac{1}{q}} \le \frac{1}{Ap}|f(x)|^p + \frac{1}{Bq}|g(x)|^q$$

and thus

$$\frac{1}{A^{1/p}B^{1/q}} \int_{I} |fg| dx \le \frac{1}{Ap} \underbrace{\int_{I} |f|^{p} dx}_{=A} + \frac{1}{Bq} \underbrace{\int_{I} |g|^{q} dx}_{=B} = 1.$$

1	
_	

Using this inequality we can now show the triangle inequality in $\mathcal{L}^p(I)$.

Lemma 11 (Minkowski's inequality). Let $1 \le p < \infty$ and $f, g \in \mathcal{L}^p(I)$. Then there holds

 $||f + g||_p^* \le ||f||_p^* + ||g||_p^*.$

Proof. For p = 1 we have

$$\int_{I} |f+g| \mathrm{d}x \leq \int_{I} (|f|+|g|) \mathrm{d}x = \int_{I} |f| \mathrm{d}x + \int_{I} |g| \mathrm{d}x$$

Now let $1 and <math>\frac{1}{p} + \frac{1}{q} = 1$. Then, by the Hölder's inequality

$$\begin{split} \left(\|f+g\|_{p}^{*}\right)^{p} &= \int_{I} |f+g|^{p} \mathrm{d}x = \int_{I} |f+g||f+g|^{p-1} \mathrm{d}x \leq \int_{I} |f||f+g|^{p-1} \mathrm{d}x + \int_{I} |g||f+g|^{p-1} \mathrm{d}x \\ &\leq \left(\int_{I} |f|^{p} \mathrm{d}x\right)^{\frac{1}{p}} \left(\int_{I} |f+g|^{(p-1)q} \mathrm{d}x\right)^{\frac{1}{q}} + \left(\int_{I} |g|^{p} \mathrm{d}x\right)^{\frac{1}{p}} \left(\int_{I} |f+g|^{(p-1)q}\right)^{\frac{1}{q}} \\ &= \left(\|f\|_{p}^{*} + \|g\|_{p}^{*}\right) \underbrace{\left(\int_{I} |f+g|^{p} \mathrm{d}x\right)^{1-\frac{1}{p}}}_{=\left(\|f+g\|_{p}^{*}\right)^{p-1}}. \end{split}$$

Remark. Note that $\|\cdot\|_p^*$ is not a norm. For this consider

$$f(x) = \begin{cases} 0 & \text{if } x \notin \mathbb{Q} \\ 1 & \text{if } x \in \mathbb{Q} \end{cases}.$$

Then $\int_{[0,1]} |f|^p dx = 0$, but $f \neq 0$.

Definition 12. Let *E* be a vector space with a semi-norm $\|\cdot\|^*$.

- (i) $(x_n) \subset E$ is called a *Cauchy sequence* if for all $\varepsilon > 0$ there exists some $N \in \mathbb{N}$ such that for all $n, m \in \mathbb{N}$ we have $||x_n x_m||^* < \varepsilon$.
- (ii) $(x_n) \subset E$ converges to $x \in E$ if for all $\varepsilon > 0$ there exists some $N \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ we have $||x_n x||^* < \varepsilon$.
- (iii) $(E, \|\cdot\|^*)$ is called *complete* if each Cauchy sequence in E converges (in E).

Lemma 13. Let E be a vector space with semi-norm $\|\cdot\|^*$. Then the following are equivalent:

- (i) $(E, \|\cdot\|^*)$ is complete.
- (ii) Each absolutely convergent series in E converges, i.e.

$$\sum_{n=1}^{\infty} x_n$$

converges if

$$\sum_{n=1}^{\infty} \|x_n\|^* < \infty$$

converges.

Proof. Exercises.

Theorem 14. $(\mathcal{L}^p(I), \|\cdot\|_p^*)$ is complete.

Proof. Let $(f_n) \subset \mathcal{L}^p(I)$ such that

$$a := \sum_{n=1}^{\infty} ||f_n||_p^* < \infty.$$

Define $g_n, \tilde{g} \colon I \to \mathbb{R} \cup \{\infty\}$ by

$$g_n(x) := \sum_{i=1}^n |f_i(x)|$$
 $\hat{g}(x) := \sum_{i=1}^\infty |f_i(x)|.$

Then $g_n \in \mathcal{L}^p(I)$ and $||g_n||_p^* \leq \sum_{i=1}^n ||f_i||_p^* \leq a$ for all $n \in \mathbb{N}$. Also by $g_n^p \nearrow \hat{g}^p$ Beppo Levi gives us

$$\int_{I} \hat{g}^{p} \mathrm{d}x = \lim_{n \to \infty} \int_{I} g_{n}^{p} \mathrm{d}x \le a^{p} < \infty \,. \tag{1}$$

Now, $N := \{x \in I : \hat{g}(x) = \infty\}$ has zero measure. Put

$$g(x) := \begin{cases} \hat{g}(x) & \text{if } x \notin N \\ 0 & \text{if } x \in N \end{cases}.$$

Thus,

$$g(x) = \sum_{i=1}^{\infty} |f_i(x)|$$

for $x \in N$ and hence

$$f(x) := \sum_{i=1}^{\infty} f_i(x)$$

for $x \notin N$ exists. Additionally, let f(x) := 0 for $x \in N$. We have $|f(x)| \leq g(x)$ for $x \in I$. By (1) there is $g \in \mathcal{L}^p(I)$ and $f^p \leq g^p$ and thus $f \in \mathcal{L}^p(I)$. Define

$$h_n(x) := \sum_{i=1}^{n-1} f_i(x).$$

Then

$$|h_n - f|^p = \left|\sum_{i=n}^{\infty} f_i\right|^p \le \left(\sum_{i=n}^{\infty} |f_i|\right)^p \le g^p$$

Since $|h_n - f| \to 0, n \to \infty$, we have

$$\int_{I} |h_n - f|^p \mathrm{d}x \to 0$$

which implies

$$\left\| f - \sum_{i=1}^{n} f_i \right\|_p^* \to 0$$

Thus, $(\mathcal{L}^p(I), \|\cdot\|_p^*)$ is a complete vector space. Now we construct a Banach space $L^p(I)$. **Lemma 15.** Let E be a vector space with semi-norm $\|\cdot\|^*$. Then the following holds:

- (i) $F := \{x \in E : ||x||^* = 0\}$ is a subspace of E.
- (*ii*) $||[x]|| := ||x||^*$ defines a norm on E/F.
- (iii) If $(E, \|\cdot\|^*)$ is complete, then also $(E/F, \|\cdot\|)$ is complete.

Proof. (i). For $x, y \in F$, $\lambda \in \mathbb{K}$ we have

$$\|\lambda x + y\|^* \le \|\lambda x\|^* + \|y\|^* = |\lambda| \|x\|^* + \|y\|^* = \lambda \cdot 0 + 0 = 0.$$

(ii). $\|\cdot\|$ is well-defined, since for $x, y \in E$ with $x \sim y$, i.e. $x - y \in F$, we have

$$|||x||^* - ||y||^*| \le ||x - y||^* = 0$$

and hence $||x||^* = ||y||^*$. To show the norm properties, we have that

$$\|\lambda[x]\| = \|[\lambda x]\| = \|\lambda x\|^* = |\lambda| \|x\|^* = |\lambda| \|[x]\|$$

and

$$\|[x] + [y]\| = \|[x + y]\| = \|x + y\|^* \le \|x\|^* + \|y\|^* = \|[x]\| + \|[y]\|.$$

(ii). Let $(E, \|\cdot\|^*)$ be complete and let $(x_n) \subset E$ be such that $([x_n]) \subset E/F$ be a Cauchy sequence. Since $\|[x_n] - [x_m]\| = \|x_n - x_m\|^*$, also (x_n) is a Cauchy sequence and therefore converges to some $x \in E$. We now have

$$||[x_n] - [x]|| = ||[x_n - x]|| = ||x_n - x|| \xrightarrow{n \to \infty} 0$$

and thus $([x_n])$ converges to [x].

Definition 16. Now, for $1 \le p < \infty$ we set

$$F_p(I) := \{ f \in \mathcal{L}^p(I) : \|f\|_p^* = 0 \} = \{ f \in \mathcal{L}^p(I) : f = 0 \text{ a.e.} \}$$

and finally define

$$L^p(I) := \mathcal{L}^p(I) / F_p(I) \,.$$

By the previous Lemma, $L^p(I)$ is a Banach space. Now, we consider $p = \infty$.

Definition 17. We set

 $\mathcal{L}^{\infty}(I) := \{f \colon I \to \mathbb{K} : f \text{ is measurable and } \exists N \in \mathfrak{B}(I) : \mu(N) = 0, f\big|_{I \setminus N} \text{ is bounded} \}$

and further define

$$\|f\|_{\infty}^{*} := \underset{x \in I}{\operatorname{ess\,sup}} |f(x)| = \inf_{\substack{N \in \mathfrak{B}(I) \\ \mu(N)=0}} \underset{x \in I \setminus N}{\operatorname{sup}} |f(x)| = \inf_{\substack{N \in \mathfrak{B}(I) \\ \mu(N)=0}} \left\|f\right|_{I \setminus N} \|$$

Lemma 18. $\mathcal{L}^{\infty}(I)$ is a vector space and $\|\cdot\|_{\infty}^{*}$ is a semi-norm on $\mathcal{L}^{\infty}(I)$.

Proof. Let $f, g \in \mathcal{L}^{\infty}(I)$ and $\lambda \in \mathbb{K}$. Obviously, also $\lambda f \in \mathbb{K}$. Now let $N_f, N_g \in \mathfrak{B}(I)$ with $\mu(N_f) = \mu(N_g) = 0$, such that $f|_{I \setminus N_f}$ and $g|_{I \setminus N_g}$ are bounded. Then, for $N := N_f \cup N_g$, we have $\mu(N) = 0$ and $(f+g)|_{I \setminus N}$ is bounded, thus $f + g \in \mathcal{L}^{\infty}(I)$.

Also, we obviously have

$$\lambda f \|_{\infty}^* = |\lambda| \|f\|_{\infty}^*.$$

Now let $N \in \mathfrak{B}(I)$ with $\mu(N) = 0$. We have

$$||f+g||_{\infty}^* \leq \sup_{x \in I \setminus N} |(f+g)(x)| \leq \sup_{x \in I \setminus N} |f(x)| + \sup_{x \in I \setminus N_1} |g(x)|.$$

Taking the supremum over all $N \in \mathfrak{B}(I)$ with $\mu(N) = 0$ yields the claim.

Lemma 19. For each $\mathcal{L}^{\infty}(I)$ there exists $N \in \mathfrak{B}(I)$ with $\mu(N) = 0$ such that

$$\|f\|_{\infty}^{*} = \left\|f\right|_{I \setminus N} \right\|_{\infty}$$

Proof. For each $n \in \mathbb{N}$ there exists $N_n \in \mathfrak{B}(I)$ with $\mu(N_n) = 0$ such that

$$\|f\|_{\infty}^* + \frac{1}{n} \ge \left\|f\right|_{I \setminus N_n} \right\|_{\infty} \,.$$

Set

$$N := \bigcup_{i=1}^{\infty} N_i \, .$$

Then $N \in \mathfrak{B}(I)$, $\mu(N) = 0$ and

$$\|f\|_{\infty}^* \le \left\|f\right|_{I \setminus N}\right\|_{\infty} \le \left\|f\right|_{I \setminus N_n}\right\|_{\infty} \le \|f\|_{\infty}^* + \frac{1}{n}$$

Letting $n \to \infty$, the claim is proven.

Theorem 20. $(\mathcal{L}^{\infty}(I), \|\cdot\|_{\infty}^{*})$ is complete.

Proof. Let (f_n) be a Cauchy sequence in $(\mathcal{L}^{\infty}(I), \|\cdot\|_{\infty}^*)$. By the above Lemma there exists $N_{n,m} \in \mathfrak{B}(I)$ with $\mu(N_{n,m})$ such that

$$||f_n - f_m||_{\infty}^* = ||(f_n - f_m)|_{I \setminus N_{n,m}}||_{\infty}.$$

Define

$$N := \bigcup_{n,m \in \mathbb{N}} N_{n,m} \in \mathfrak{B}(I) \,.$$

Then $\mu(N) = 0$ and

$$\left\| (f_n - f_m) \right|_{I \setminus N} \right\|_{\infty} \le \left\| (f_n - f_m) \right|_{I \setminus N_{n,m}} \right\|_{\infty}$$

for all $n, m \in \mathbb{N}$. Hence $(f_n|_{I \setminus N})$ is a Cauchy sequence in the space of bounded functions $B(I \setminus N)$. Therefore there exists some $f \in B(I \setminus N)$ with

$$\left\| (f_n - f) \right|_{I \setminus N} \right\|_{\infty} \xrightarrow{n \to \infty} 0.$$

By setting f(x) = 0 on $N, f: I \to \mathbb{K}$ is measurable and bounded, thus $f \in \mathcal{L}^{\infty}(I)$ and

$$\|f_n - f\|_{\infty}^* \le \left\| (f_n - f) \right|_{I \setminus N} \right\|_{\infty} \xrightarrow{n \to \infty} 0$$

Now, with

$$F_{\infty}(I) := \{ f \in \mathcal{L}^{\infty}(I) : \|f\|_{\infty}^* = 0 \}$$

we obtain the Banach space

$$L^{\infty}(I) := \mathcal{L}^{\infty}(I) / F_{\infty}(I) \,.$$

Theorem 21 (Hölder inequality). Let $1 \le p, q \le \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$ $(p = 1 \Rightarrow q = \infty)$. Then for all $f \in L^p(I)$, $g \in L^q(I)$ we have $fg \in L^1(I)$ and

$$\|fg\|_1 \le \|f\|_p \|g\|_q.$$

Proof. We only deal with $p = \infty$. Let $f \in L^{\infty}(I)$, $g \in L^{1}(I)$ and let N be as in Lemma 19. There holds

$$\int_{I} |fg| \mathrm{d}x = \int_{I \setminus N} |f| |g| \mathrm{d}x \le \int_{I \setminus N} \|f\|_{\infty} |g| \mathrm{d}x = \|f\|_{\infty} \int_{I} |g| \mathrm{d}x = \|f\|_{\infty} \|g\|_{1} \,.$$