
Lp spaces

The spaces Lp(I) for 1 ≤ p <∞ and p =∞

Definition 1. Let Ω be a set. A set Σ of subsets of Ω is called σ-algebra, if

(i) ∅ ∈ Σ, Ω ∈ Σ,

(ii) A ∈ Σ⇒ Ω \A ∈ Σ and

(iii) A1, A2, . . . ∈ Σ⇒
⋃∞

i=1Ai ∈ Σ.

Example. {∅,Ω} is the simplest σ-algebra.

Theorem 2. For any set S ⊆ P(Ω) of subsets of Ω, there is a “smallest” σ-algebra Σ0
containing S, i.e.

∃!σ-algebra Σ0 : S ⊆ Σ0, Σ is σ-algebra ⇒ Σ0 ⊆ Σ .

Σ0 is called the σ-algebra generated by S.

Definition 3.

(1) The σ-algebra genereted by the open sets, {U ⊆ Rn : U is open}, is called the Borel-
σ-algebra and is denoted by B(Rn).

(2) The Lebesgue-measure µ(A) of a set A ∈ B(Rn) is defined by

µ(A) := |A| := inf
{

m∑
i=1
|Qi| : A ⊆

m⋃
i=1

Qi, Qi cuboids
}
,

where |Qi| = |I(1)
i × · · · × I(n)

i | = |I
(1)
i | · · · |I

(n)
i |, |I| = |(a, b)| = b− a.

(3) A function f : Rn → Rm is called measurable, if the preimage of any open set U ∈ Rm

is mearuable, i.e. f−1(U) ∈ B(Rn).

(4) A function f : Rn → R of the form

f =
m∑

i=1
ci 1Ai

with Ai ∈ B(Rn) is called simple. If ci ≥ 0, we set
ˆ
fdx =

m∑
i=1

ciµ(Ai) .

Proposition. If f , g are simple and non-negative functions, then

f ≤ g ⇒
ˆ
fdx ≤

ˆ
gdx .

(5) If f : Rn → [0,∞) is measurable, then there is a sequence (fn) of non-negative simple
functions with fn ↗ f (pointwise). We set

ˆ
fdx := sup

n∈N

ˆ
fndx .
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(6) A function f : Rn → R is called (Lebesgue-)integrable, if
ˆ
|f |dx <∞ .

Then we set ˆ
fdx :=

ˆ
f+dx−

ˆ
f−dx ,

where f+ := max{0, f} and f− := min{0,−f}.

(7) A function f : Rn → C is integrable, if Re(f) and Im(f) are integrable.

Theorem 4. Let f , g be integrable, α, β ∈ K. Then αf + βg is integrable and
ˆ

(αf + βg)dx = α

ˆ
fdx+ β

ˆ
gdx ,

i.e. the integral is linear.
Also, the triangle inequality holds: ∣∣∣∣ˆ fdx

∣∣∣∣ ≤ ˆ |f |dx .
Theorem 5 (Lebesgue). Let (fn) be a sequence of integrable functions converging point-
wise to some f . Assume there is an integrable function g, such that |fn| ≤ g holds for all
n ∈ N. Then f is integrable and

ˆ
fdx = lim

n→∞

ˆ
fndx .

Theorem 6 (Beppo Levi/monote convergence). Let (fn) be a sequence of non-negative
measurable functions with fn ↗ f for some f . Then

ˆ
fdx = lim

n→∞

ˆ
fndx .

We now define an equivalence relation by

f ∼ g :⇔ µ ({x ∈ Rn : f(x) 6= g(x)}) = 0
⇔ f = g almost everywhere (a.e.).

This yields equivalence classes [f ].

Definition 7. Let 1 ≥ p <∞, I ⊆ R an interval. By Lp(I) we denote the space

Lp(I) := {f : I → K : |f |p is integrable}

and we define

‖f‖∗p :=
(ˆ

I
|f |pdx

)1
p
.

Using the equivalence classes defined above, we can obtain a normed space Lp(I) while
Lp(I) is a vector space with a semi-norm. In the following we will show that Lp(I) is a
complete vector space with semi-norm and construct the Banach space Lp(I) by using the
quotient space.
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Lemma 8. The space Lp(I) is a vector space.

Proof. For f, g ∈ Lp(I) and α ∈ K we obviously have αf ∈ Lp(I). Also, there holds
ˆ

I
|f + g|pdx ≤

ˆ
I

(|f |+ |g|)p dx ≤
ˆ

I
(2 max{|f |, |g|})p dx

= 2p

ˆ
I

max{|f |p, |g|p}dx ≤ 2p

ˆ
I

(|f |p + |g|p) dx <∞ .

Definition 9. Let E be a vector space. A function V : E → [0,∞) is called a semi-norm
on E if

(i) V (αx) = |α|V (x) for all α ∈ K, x ∈ E and

(ii) V (x+ y) ≤ V (x) + V (y) for all x, y ∈ E.

V is called a norm on E if further V (x) = 0 implies x = 0.

Satz. The map ‖·‖∗p defines a semi-norm on Lp(I).

For this, we need to show the triangle inequality, as ‖αf‖∗p = |α|‖f‖∗p is obvious. We first
prove the Hölder-inequality.

Lemma 10 (Hölder’s inequality). Let 1 < p <∞ and 1
p + 1

q = 1. Then for all f ∈ Lp(I)
and all g ∈ Lq(I) we have

‖fg‖∗1 ≤ ‖f‖∗p‖g‖∗q .

In particular, fg ∈ L1(I).

Proof. The logarithm on (0,∞) is concave, in explicit

r log(σ) + (1− r) log(τ) ≤ log(rσ + (1− r)τ)

for all σ, τ > 0 and r ∈ [0, 1]. This yields

σrτ1−r ≤ rσ + (1− r)τ .

We set

A :=
(
‖f‖∗p

)p
=
ˆ

I
|f |pdx B :=

(
‖g‖∗q

)q
=
ˆ

I
|g|qdx .

By r := 1
p we obtain for x ∈ I

( |f(x)|p

A

)1
p
( |g(x)|q

B

)1
q
≤ 1
Ap
|f(x)|p + 1

Bq
|g(x)|q

and thus
1

A1/pB1/q

ˆ
I
|fg|dx ≤ 1

Ap

ˆ
I
|f |pdx︸ ︷︷ ︸
=A

+ 1
Bq

ˆ
I
|g|qdx︸ ︷︷ ︸
=B

= 1 .
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Using this inequality we can now show the triangle inequality in Lp(I).

Lemma 11 (Minkowski’s inequality). Let 1 ≤ p <∞ and f, g ∈ Lp(I). Then there holds

‖f + g‖∗p ≤ ‖f‖∗p + ‖g‖∗p .

Proof. For p = 1 we haveˆ
I
|f + g|dx ≤

ˆ
I
(|f |+ |g|)dx =

ˆ
I
|f |dx+

ˆ
I
|g|dx .

Now let 1 < p <∞ and 1
p + 1

q = 1. Then, by the Hölder’s inequality(
‖f + g‖∗p

)p
=
ˆ

I
|f + g|pdx =

ˆ
I
|f + g||f + g|p−1dx ≤

ˆ
I
|f ||f + g|p−1dx+

ˆ
I
|g||f + g|p−1dx

≤
(ˆ

I
|f |pdx

)1
p
(ˆ

I
|f + g|(p−1)qdx

)1
q

+
(ˆ

I
|g|pdx

)1
p
(ˆ

I
|f + g|(p−1)q

)1
q

=
(
‖f‖∗p + ‖g‖∗p

)(ˆ
I
|f + g|pdx

)
︸ ︷︷ ︸

=(‖f+g‖∗
p)p−1

1−1
p
.

Remark. Note that ‖·‖∗p is not a norm. For this consider

f(x) =
{

0 if x /∈ Q
1 if x ∈ Q .

Then
´

[0,1]|f |
pdx = 0, but f 6= 0.

Definition 12. Let E be a vector space with a semi-norm ‖·‖∗.

(i) (xn) ⊂ E is called a Cauchy sequence if for all ε > 0 there exists some N ∈ N such
that for all n,m ∈ N we have ‖xn − xm‖∗ < ε.

(ii) (xn) ⊂ E converges to x ∈ E if for all ε > 0 there exists some N ∈ N such that for
all n ∈ N we have ‖xn − x‖∗ < ε.

(iii) (E, ‖·‖∗) is called complete if each Cauchy sequence in E converges (in E).

Lemma 13. Let E be a vector space with semi-norm ‖·‖∗. Then the following are equiv-
alent:

(i) (E, ‖·‖∗) is complete.

(ii) Each absolutely convergent series in E converges, i.e.
∞∑

n=1
xn

converges if
∞∑

n=1
‖xn‖∗ <∞

converges.
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Proof. Exercises.

Theorem 14. (Lp(I), ‖·‖∗p) is complete.

Proof. Let (fn) ⊂ Lp(I) such that

a :=
∞∑

n=1
‖fn‖∗p <∞ .

Define gn, g̃ : I → R ∪ {∞} by

gn(x) :=
n∑

i=1
|fi(x)| ĝ(x) :=

∞∑
i=1
|fi(x)| .

Then gn ∈ Lp(I) and ‖gn‖∗p ≤
∑n

i=1‖fi‖∗p ≤ a for all n ∈ N. Also by gp
n ↗ ĝp Beppo Levi

gives us ˆ
I
ĝpdx = lim

n→∞

ˆ
I
gp

ndx ≤ ap <∞ . (1)

Now, N := {x ∈ I : ĝ(x) =∞} has zero measure. Put

g(x) :=
{
ĝ(x) if x /∈ N
0 if x ∈ N .

Thus,

g(x) =
∞∑

i=1
|fi(x)|

for x ∈ N and hence
f(x) :=

∞∑
i=1

fi(x)

for x /∈ N exists. Additionally, let f(x) := 0 for x ∈ N . We have |f(x)| ≤ g(x) for x ∈ I.
By (1) there is g ∈ Lp(I) and fp ≤ gp and thus f ∈ Lp(I). Define

hn(x) :=
n−1∑
i=1

fi(x) .

Then

|hn − f |p =
∣∣∣∣∣
∞∑

i=n

fi

∣∣∣∣∣
p

≤
( ∞∑

i=n

|fi|
)p

≤ gp .

Since |hn − f | → 0, n→∞, we have
ˆ

I
|hn − f |pdx→ 0

which implies ∥∥∥∥∥f −
n∑

i=1
fi

∥∥∥∥∥
∗

p

→ 0 .

Thus, (Lp(I), ‖·‖∗p) is a complete vector space.
Now we construct a Banach space Lp(I).

Functional Analysis 1 5



Lp spaces

Lemma 15. Let E be a vector space with semi-norm ‖·‖∗. Then the following holds:

(i) F := {x ∈ E : ‖x‖∗ = 0} is a subspace of E.

(ii) ‖[x]‖ := ‖x‖∗ defines a norm on E/F .

(iii) If (E, ‖·‖∗) is complete, then also (E/F, ‖·‖) is complete.

Proof. (i). For x, y ∈ F , λ ∈ K we have

‖λx+ y‖∗ ≤ ‖λx‖∗ + ‖y‖∗ = |λ|‖x‖∗ + ‖y‖∗ = λ · 0 + 0 = 0 .

(ii). ‖·‖ is well-defined, since for x, y ∈ E with x ∼ y, i.e. x− y ∈ F , we have∣∣∣‖x‖∗ − ‖y‖∗∣∣∣ ≤ ‖x− y‖∗ = 0

and hence ‖x‖∗ = ‖y‖∗. To show the norm properties, we have that

‖λ[x]‖ = ‖[λx]‖ = ‖λx‖∗ = |λ|‖x‖∗ = |λ|‖[x]‖

and
‖[x] + [y]‖ = ‖[x+ y]‖ = ‖x+ y‖∗ ≤ ‖x‖∗ + ‖y‖∗ = ‖[x]‖+ ‖[y]‖ .

(ii). Let (E, ‖·‖∗) be complete and let (xn) ⊂ E be such that ([xn]) ⊂ E/F be a Cauchy
sequence. Since ‖[xn]− [xm]‖ = ‖xn−xm‖∗, also (xn) is a Cauchy sequence and therefore
converges to some x ∈ E. We now have

‖[xn]− [x]‖ = ‖[xn − x]‖ = ‖xn − x‖
n→∞−−−→ 0

and thus ([xn]) converges to [x].

Definition 16. Now, for 1 ≤ p <∞ we set

Fp(I) := {f ∈ Lp(I) : ‖f‖∗p = 0} = {f ∈ Lp(I) : f = 0 a.e.}

and finally define
Lp(I) := Lp(I)/Fp(I) .

By the previous Lemma, Lp(I) is a Banach space.
Now, we consider p =∞.

Definition 17. We set

L∞(I) := {f : I → K : f is measurable and ∃N ∈ B(I) : µ(N) = 0, f
∣∣
I\N is bounded}

and further define

‖f‖∗∞ := ess sup
x∈I

|f(x)| = inf
N∈B(I)
µ(N)=0

sup
x∈I\N

|f(x)| = inf
N∈B(I)
µ(N)=0

∥∥∥f ∣∣
I\N

∥∥∥ .
Lemma 18. L∞(I) is a vector space and ‖·‖∗∞ is a semi-norm on L∞(I).
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Proof. Let f, g ∈ L∞(I) and λ ∈ K. Obviously, also λf ∈ K. Now let Nf , Ng ∈ B(I) with
µ(Nf ) = µ(Ng) = 0, such that f

∣∣
I\Nf

and g
∣∣
I\Ng

are bounded. Then, for N := Nf ∪Ng,
we have µ(N) = 0 and (f + g)

∣∣
I\N is bounded, thus f + g ∈ L∞(I).

Also, we obviously have
‖λf‖∗∞ = |λ|‖f‖∗∞ .

Now let N ∈ B(I) with µ(N) = 0. We have

‖f + g‖∗∞ ≤ sup
x∈I\N

|(f + g)(x)| ≤ sup
x∈I\N

|f(x)|+ sup
x∈I\N1

|g(x)| .

Taking the supremum over all N ∈ B(I) with µ(N) = 0 yields the claim.

Lemma 19. For each L∞(I) there exists N ∈ B(I) with µ(N) = 0 such that

‖f‖∗∞ =
∥∥∥f ∣∣

I\N

∥∥∥
∞
.

Proof. For each n ∈ N there exists Nn ∈ B(I) with µ(Nn) = 0 such that

‖f‖∗∞ + 1
n
≥
∥∥∥f ∣∣

I\Nn

∥∥∥
∞
.

Set
N :=

∞⋃
i=1

Ni .

Then N ∈ B(I), µ(N) = 0 and

‖f‖∗∞ ≤
∥∥∥f ∣∣

I\N

∥∥∥
∞
≤
∥∥∥f ∣∣

I\Nn

∥∥∥
∞
≤ ‖f‖∗∞ + 1

n .

Letting n→∞, the claim is proven.

Theorem 20. (L∞(I), ‖·‖∗∞) is complete.

Proof. Let (fn) be a Cauchy sequence in (L∞(I), ‖·‖∗∞). By the above Lemma there exists
Nn,m ∈ B(I) with µ(Nn,m) such that

‖fn − fm‖∗∞ =
∥∥∥(fn − fm)

∣∣
I\Nn,m

∥∥∥
∞
.

Define
N :=

⋃
n,m∈N

Nn,m ∈ B(I) .

Then µ(N) = 0 and ∥∥∥(fn − fm)
∣∣
I\N

∥∥∥
∞
≤
∥∥∥(fn − fm)

∣∣
I\Nn,m

∥∥∥
∞

for all n,m ∈ N. Hence
(
fn

∣∣
I\N

)
is a Cauchy sequence in the space of bounded functions

B(I \N). Therefore there exists some f ∈ B(I \N) with∥∥∥(fn − f)
∣∣
I\N

∥∥∥
∞

n→∞−−−→ 0 .

By setting f(x) = 0 on N , f : I → K is measurable and bounded, thus f ∈ L∞(I) and

‖fn − f‖∗∞ ≤
∥∥∥(fn − f)

∣∣
I\N

∥∥∥
∞

n→∞−−−→ 0 .
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Now, with
F∞(I) := {f ∈ L∞(I) : ‖f‖∗∞ = 0}

we obtain the Banach space

L∞(I) := L∞(I)/F∞(I) .

Theorem 21 (Hölder inequality). Let 1 ≤ p, q ≤ ∞ such that 1
p + 1

q = 1 (p = 1⇒ q =∞).
Then for all f ∈ Lp(I), g ∈ Lq(I) we have fg ∈ L1(I) and

‖fg‖1 ≤ ‖f‖p‖g‖q .

Proof. We only deal with p = ∞. Let f ∈ L∞(I), g ∈ L1(I) and let N be as in Lemma
19. There holdsˆ

I
|fg|dx =

ˆ
I\N
|f ||g|dx ≤

ˆ
I\N
‖f‖∞|g|dx = ‖f‖∞

ˆ
I
|g|dx = ‖f‖∞‖g‖1 .
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