
Fredholm operators

Fredholm Operators

We define Fredholm operators and head for the Atkinson’s Theorem.

Definition 1. Let E be a Banach space and A ∈ L(E). A is called a Fredholm operator,
if

(i) dim ker A <∞,

(ii) A(E) = ran A is closed in E and

(iii) dim(E/ ran A) = codim ran A <∞.

To prove Atkinson’s Theorem we need the following Lemma.

Lemma 2. Let A ∈ L(E). Then we have that dim ker A < ∞ and ran A is closed if and
only if each sequence (xn) satisfying ‖xn‖ ≤ 1 for all n ∈ N and Axn → 0, n→∞, has a
convergent subsequence.

Proof. “⇒”. Assume that dim ker A <∞ and ran A is closed. Then

E = ker A u W

with a complementary subspace W (for ker A). Let (xn) ⊂ E be a sequence with ‖xn‖ ≤ 1
for all n ∈ N and Axn → 0. Then xn = un + wn with un ∈ ker A and wn ∈ W . Let
A0 : W → ran A, A0x := Ax. The operator A0 is bijective and thus boundedly invertible
(i.e. it has a bounded inverse) by the Open Mapping Theorem. We have A0wn = A0xn =
Axn → 0 and thus wn = A−1

0 A0wn → 0. Further,

‖un‖ = ‖xn − wn‖ ≤ 1 + ‖wn‖ ≤ c

for some c > 0. Hence there exists a subsequence (unk
) and u ∈ ker A with unk

→ u and
thus xnk

→ u.
“⇐”. Conversely, assume that each sequence (xn) satisfying ‖xn‖ ≤ 1 for all n ∈ N and
Axn → 0, n→∞, has a convergent subsequence. Let (xn) ⊂ ker A with ‖xn‖ ≤ 1 for all
n ∈ N. Then by Axn = 0 → 0, (xn) contains a convergent subsequence, i.e. the closed
unit ball in ker A is compact and thus dim ker A <∞. Therefore, E = ker AuW as above.
Consider A0 := A|W , again as above. Then ran A = ran A0. Assume there does not exist
some c > 0 such that ‖A0w‖ ≥ c‖w‖ for all w ∈W . Then there is also no c > 0 such that
‖A0w‖ ≥ c for all w ∈ W with ‖w‖ = 1. Hence for all n ∈ N there exists wn ∈ W with
‖wn‖ = 1 and ‖A0wn‖ < 1

n . By assumption, wnk
→ w ∈ W and therefore A0wnk

→ A0w
and A0w = 0. Injectivity of A0 yields w = 0. But 1 = ‖wnk

‖ → ‖w‖ = 0.  Thus ran A0
is closed 1.

Theorem 3 (Atkinson’s Theorem). Let E be a Banach space and A ⊂ L(E). Then the
following are equivalent:

(i) A is a Fredholm operator.

(ii) There exists B ∈ L(E) such that Id−BA and Id−AB are finite-dimensional (i.e.
have a finite-dimensional range).

1If E is a Banach space, F a normed space, T ∈ L(E, F ) and if there exists some c > 0 such that
‖Ax‖ ≥ c‖x‖ for all x ∈ E, then ran T is closed. (Exercise)
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(iii) There exists B ∈ L(E) such that Id−BA and Id−AB are compact.

(iv) There exist B, C ∈ L(E) such that Id−BA and Id−AC are compact.

Proof. (i)⇒(ii). Let A be a Fredholm operator. Then

E = ker A u W and E = ran A u V

for complementary spaces V , W . Let P resp. Q be the (continuous) projection onto W
resp. V . Define A0 : W → ran A, A0w := Aw, w ∈ W . Then A0 is boundedly invertible.
Define B := A−1

0 (Id−Q). Let x ∈ E. Then there exist u ∈ ker A and w ∈ W such that
x = u + w. Now,

BAx = A−1
0 (Id−Q)Ax = A−1

0 Ax = A−1
0 A0w = w = Px .

By BA = P = Id−(Id−P ) we have that Id−BA = Id−P is finite-dimensional. Moreover,

AB = AA−1
0 (Id−Q) = Id |ran A(Id−Q) = Id−Q

and thus Id−AB = Q is also finite-dimensional.
(ii)⇒(iii). Finite-dimensional operators are compact.
(iii)⇒(iv). Choose C = B.
(iv)⇒(i). Let (xn) ⊂ E, ‖xn‖ ≤ 1 for all n ∈ N, be a sequence with Axn → 0. Then
BAxn = 0. But BA = Id−K for some compact operator K. Thus BA is a Fredholm
Operator and (xn) has a convergent subsequence. Now, dim ker A < ∞ and ran A is
closed. Further, we have that Id−C∗A∗ = (Id−AC)∗ is a compact operator (in L(E∗)).
We now see that dim ker A∗ <∞. By

ker A∗ = (ran A)⊥ ∼= (E/ ran A)∗

also dim(E/ ran A)∗ <∞ and thus dim(E/ ran A) <∞.
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