FREDHOLM OPERATORS

We define Fredholm operators and head for the Atkinson's Theorem.

Definition 1. Let *E* be a Banach space and $A \in L(E)$. *A* is called a *Fredholm operator*, if

- (i) dim ker $A < \infty$,
- (ii) $A(E) = \operatorname{ran} A$ is closed in E and
- (iii) $\dim(E/\operatorname{ran} A) = \operatorname{codim} \operatorname{ran} A < \infty$.

To prove Atkinson's Theorem we need the following Lemma.

Lemma 2. Let $A \in L(E)$. Then we have that dim ker $A < \infty$ and ran A is closed if and only if each sequence (x_n) satisfying $||x_n|| \leq 1$ for all $n \in \mathbb{N}$ and $Ax_n \to 0$, $n \to \infty$, has a convergent subsequence.

Proof. " \Rightarrow ". Assume that dim ker $A < \infty$ and ran A is closed. Then

$$E = \ker A \dotplus W$$

with a complementary subspace W (for ker A). Let $(x_n) \subset E$ be a sequence with $||x_n|| \leq 1$ for all $n \in \mathbb{N}$ and $Ax_n \to 0$. Then $x_n = u_n + w_n$ with $u_n \in \ker A$ and $w_n \in W$. Let $A_0: W \to \operatorname{ran} A, A_0x := Ax$. The operator A_0 is bijective and thus boundedly invertible (i.e. it has a bounded inverse) by the Open Mapping Theorem. We have $A_0w_n = A_0x_n =$ $Ax_n \to 0$ and thus $w_n = A_0^{-1}A_0w_n \to 0$. Further,

$$||u_n|| = ||x_n - w_n|| \le 1 + ||w_n|| \le c$$

for some c > 0. Hence there exists a subsequence (u_{n_k}) and $u \in \ker A$ with $u_{n_k} \to u$ and thus $x_{n_k} \to u$.

"⇐". Conversely, assume that each sequence (x_n) satisfying $||x_n|| \leq 1$ for all $n \in \mathbb{N}$ and $Ax_n \to 0, n \to \infty$, has a convergent subsequence. Let $(x_n) \subset \ker A$ with $||x_n|| \leq 1$ for all $n \in \mathbb{N}$. Then by $Ax_n = 0 \to 0$, (x_n) contains a convergent subsequence, i.e. the closed unit ball in ker A is compact and thus dim ker $A < \infty$. Therefore, $E = \ker A + W$ as above. Consider $A_0 := A|_W$, again as above. Then $\operatorname{ran} A = \operatorname{ran} A_0$. Assume there does not exist some c > 0 such that $||A_0w|| \geq c ||w||$ for all $w \in W$. Then there is also no c > 0 such that $||A_0w|| \geq c$ for all $w \in W$ with ||w|| = 1. Hence for all $n \in \mathbb{N}$ there exists $w_n \in W$ with $||w_n|| = 1$ and $||A_0w_n|| < \frac{1}{n}$. By assumption, $w_{n_k} \to w \in W$ and therefore $A_0w_{n_k} \to A_0w$ and $A_0w = 0$. Injectivity of A_0 yields w = 0. But $1 = ||w_{n_k}|| \to ||w|| = 0$. $\frac{1}{2}$ Thus $\operatorname{ran} A_0$ is closed ¹.

Theorem 3 (Atkinson's Theorem). Let E be a Banach space and $A \subset L(E)$. Then the following are equivalent:

- (i) A is a Fredholm operator.
- (ii) There exists $B \in L(E)$ such that $\operatorname{Id} -BA$ and $\operatorname{Id} -AB$ are finite-dimensional (i.e. have a finite-dimensional range).

¹If E is a Banach space, F a normed space, $T \in L(E, F)$ and if there exists some c > 0 such that $||Ax|| \ge c||x||$ for all $x \in E$, then ran T is closed. (Exercise)

- (iii) There exists $B \in L(E)$ such that $\operatorname{Id} -BA$ and $\operatorname{Id} -AB$ are compact.
- (iv) There exist $B, C \in L(E)$ such that $\operatorname{Id} -BA$ and $\operatorname{Id} -AC$ are compact.

Proof. (i) \Rightarrow (ii). Let A be a Fredholm operator. Then

$$E = \ker A \dotplus W$$
 and $E = \operatorname{ran} A \dotplus V$

for complementary spaces V, W. Let P resp. Q be the (continuous) projection onto W resp. V. Define $A_0: W \to \operatorname{ran} A$, $A_0w := Aw$, $w \in W$. Then A_0 is boundedly invertible. Define $B := A_0^{-1}(\operatorname{Id} - Q)$. Let $x \in E$. Then there exist $u \in \ker A$ and $w \in W$ such that x = u + w. Now,

$$BAx = A_0^{-1}(\mathrm{Id} - Q)Ax = A_0^{-1}Ax = A_0^{-1}A_0w = w = Px.$$

By BA = P = Id - (Id - P) we have that Id - BA = Id - P is finite-dimensional. Moreover,

$$AB = AA_0^{-1}(\operatorname{Id} - Q) = \operatorname{Id}|_{\operatorname{ran} A}(\operatorname{Id} - Q) = \operatorname{Id} - Q$$

and thus $\operatorname{Id} - AB = Q$ is also finite-dimensional.

 $(ii) \Rightarrow (iii)$. Finite-dimensional operators are compact.

(iii) \Rightarrow (iv). Choose C = B.

 $(\mathbf{iv}) \Rightarrow (\mathbf{i})$. Let $(x_n) \subset E$, $||x_n|| \leq 1$ for all $n \in \mathbb{N}$, be a sequence with $Ax_n \to 0$. Then $BAx_n = 0$. But $BA = \mathrm{Id} - K$ for some compact operator K. Thus BA is a Fredholm Operator and (x_n) has a convergent subsequence. Now, dim ker $A < \infty$ and ran A is closed. Further, we have that $\mathrm{Id} - C^*A^* = (\mathrm{Id} - AC)^*$ is a compact operator (in $L(E^*)$). We now see that dim ker $A^* < \infty$. By

$$\ker A^* = (\operatorname{ran} A)^{\perp} \cong (E/\operatorname{ran} A)^*$$

also $\dim(E/\operatorname{ran} A)^* < \infty$ and thus $\dim(E/\operatorname{ran} A) < \infty$.