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1 Metric Spaces

1 Metric Spaces

In this chapter we recall the basic notions of metric spaces and prove Baire’s Theorem
and the theorem of Arzela-Ascoli. Throughout this lecture K will always denote either R
or C.

Definition 1.1. Let X be a set. Then a map d: X x X — [0,00) is called a metric on
X, ifforall z,y,z€ X

(i) d(x,y) =0 if and only if z =y,
(i) d(z,y) = d(y, =) and
(iii) d(z,2) < d(z,y) + d(y, z). (Triangle inequality)

(X, d) is then called a metric space, and d(x,y) is referred to as the distance between z
and y. If Y C X, then d|y«y is the induced metric on'Y.

Notice that the non-negativity of a metric already follows from
0=d(z,z) < dz,y) +d(y,z) = 2d(z,y).

Next we will give some important examples of metrics on function spaces, sequence spaces
and K". Also, we can define a metric on every set as the first example will show.

Beispiel 1.2.

(1) Let X be a set and let d: X x X — [0,00) be defined by

1 z#vy,
0 else.

d({E, y) = {

This is the so-called discrete metric. Hence, this always defines a metric.
(2) Let X be a set and define
B(X)={f: X - K: f is bounded} .
Then
d(f,g) = sup | f(z) — g(z)|

zeX

is a metric on B(X), the so-called supremum metric. Let now X = [a,b] and set
Cla,b) ={f: [a,b] - K : f is continuous} .

Then
Cla,b] C Bla,b]

and hence d induces a metric on C|a, b)].

(3) For 1 <p < oo, let dy: K* x K" — [0,00) be defined by

RSA

dp(x,y) = (Z ) — yjp) cx = (25)f=1s Y= (Y5)j=1,
=1
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1 Metric Spaces

and let do : K" x K™ — [0, 00) be defined by

doo (2, y) 1= miax |z; —yj|.

For p = 1, 00 this is obviously a metric. Theorem 1.4 will imply that this also is the
case for 1 < p < oco.

(4) The spaces (K", d,) can be generalized to “infinite-dimensional sequence spaces”. For

this, for 1 < p < oo, set

o
by = {x = (Tp)nen : Tn € K| Z |zn|P < oo} ,

n=1
and define d,,: £, x £, — [0,00) by

dp(xay) = (Z |z — yn|p>
n=1

This is well-defined, since by Theorem 1.4 ¢, is a linear space. Let further /o, be
defined by

loo := {2 = (Tn)neN : (Tn)nen is bounded}
and define doo: oo X oo — [0,00) by

doo(2,y) := sup |Tn — Ynl -
neN

Then (4p,dp), 1 < p < oo, are metric spaces, again partly proven by Theorem 1.4.

To show the triangle inequality for the £,-spaces we need another inequality, which is
important in its own right. Holder’s inequality gives upper bounds on a series of products
in terms of products of series.

Theorem 1.3 (Holder’s inequality). Let 1 < p < oo, and let 1 < q¢ < 0o be defined by
q:= z% (hence % + % =1). Then, for x € £, and y € {4, we have

Z |[Znyn| < (Z ’xn’p> (Z ’yn|q> :
n=1 n=1 n=1
(Case p = q = 2: (Cauchy-)Schwarz’ inequality)
Proof. Let ¢ = % and define ¢: [0,00) — R by ¢(t) =t — ct. Then
©'(t) = ct ! —cand ¢ (t) = c(c — 1)t°72.
Thus ¢ has a global maximum value in ¢ = 1. This implies

l—c>t°—ctforallt>0,

hence
t°—1<c(t—1). (1.1)
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1 Metric Spaces

Let now a,b > 0, and set ¢t = 4. Then, by (1.1), we obtain

and thus 1
a
—p < = (gP — bl
pe(3-1) D ( )
Since 1 = % + %, this implies
a? bl
ab< —+ —. (1.2)
q

We now set

as well as 7, := ¢ and y, := 9. Without loss of generality, we assume A, B > 0. By
(1.2), we obtain

S 1. _
|$nyn| < 7|xn|p+7’yn|q'
p q

Hence
[oe) 1 o0
Z’jngn‘ 721_”’17_’_ Z‘yn’q +-=1.
n=1 p n=1
And, finally
oo
n=1
which is the assertion. O

The following Minkowski’s inequality sets the ground for the triangle inequality of the
metric dp.

Theorem 1.4 (Minkowski’s inequality). For 1 <p < oo and z,y € £y,

o v [ v [ v
(Z |z + yn‘p> < (Z ‘mn‘p> + (Z ‘yn’p>
n=1 n=1 n=1

Proof. With z, := x, + y,, we first obtain
|zl = |20 + Yl - |zn|p_1 < (Jznl + |yal) |Zn|p_1 .
This implies
m m m
Z |Zn|p < Z |xn| : ’Zn|p71 + Z |yn‘ ! |Zn|p71 for all m € N.

n=1 n=1 n=1

By Theorem 1.3,

1 1 1 1
> Jal? < (Z w) ’ (Z rznr@”q)q + (Z \ynrp> ' (Z wﬂq)q
n=1 n=1 n=1 n=1 n=1
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1 Metric Spaces

Since (p — 1)q = p, we conclude that

We now consider m — oo, which we are allowed to do since the right-hand-side converges.
This proves the theorem. ]

The triangle inequality d,(u, w) < dp(u,v) + dp(v,w) for all u,v,w € ¢, for the metric d,
can now directly be concluded from Theorem 1.4 by setting x,, = u, —v, and y,, = v, —wy.

Definition 1.5. Let (X, d) be a metric space.
(1) For z € X and r > 0, the set U,(x) defined by
Up(z) :={y e X :d(z,y) <r}

is called the open ball of radius r and center x. U C X is called open, if for each
x € U there exists some ¢ > 0 such that Ug(z) C U.

(2) Aset AC X is closed, if X \ A is open. The set
K.(x)={ye X :d(z,y) <r}, ze X, r>0,
is called the closed ball of radius r and center x.

(3) If E C X, then = € E is an interior point of E, if there exists some open set U C E
with x € U. FE is then called a neighbourhood of x. The set of all interior points is
referred to as the interior of E and is denoted by FE.

(4) A point z € X is called limit point of E if U N E # () for each neighbourhood U of
2. The set of all limit points of E is the closure of E, which is denoted by E. E is
dense in X if £ = X.

The openness of a set and all properties that can be defined with reference only to open
sets are called topological. In particular, all terms just defined are topological. The open
sets in a metric space form a system of sets called topology. This terminology will be
generalized to the notion of a topological space in Chapter 6 on page 44.

Lemma 1.6. Let (X,d) be a metric space.

(i) We have
(a) 0, X are open.
(b) If Uy,...U, C X are open, then () U; is open.
i=1

(c) IfU; C X, i €I, are open, then |J U; is open.
el

Hence d defines a topology on X with Ug(z), z € X, € > 0, as basis.
(ii) We have

(a) 0, X are closed.

Functional Analysis I 4



1 Metric Spaces

(b) If A; C X, i € I, are closed, then () A; is closed.
el

(c) If Ay,..., A, C X are closed, then |J A; is closed.
=1

1=

(iii) For each x € X, r > 0, the set K,(z) is closed.
(iv) For E C X, E is the smallest closed set containing E.

(v) For EC X, E is the biggest open set contained in E.
Proof. Tutorials 0

The next definition generalizes the notion of convergence from K" (with the Euclidian
metric) to general metric spaces.

Definition 1.7. Let (X, d) be a metric space.

(i) A sequence (zp)neny C X converges to x € X if for each ¢ > 0 there exists N, € N
with d(z,, z) < ¢ for alln > N;. We then write x,, — x, asn — 0o or & = limy,,_, 0 Zp,.
The point x is called the limit of (x,,)nen-

(ii) A sequence (zp)neny C X is a Cauchy-sequence, if for each ¢ > 0 there exists some
N, € N with
d(Tp,xm) < € for all n,m > Ng.

(iii) The space (X, d) is complete, if each Cauchy-sequence in X converges.

Convergence of a sequence is a topological property. The sequence (z,)nen converges to
x, if and only if every neighborhood of z contains all but finitely many elements of the
sequence. In particular, the limit of a sequence is independent of the ordering of the
sequence’s terms. Which sequences are Cauchy-sequences does not only depend on the
open sets but also on the chosen metric (see Remark 1.11).

In general, topological properties in metric spaces can be tested by sequences. We note
that there is a characterization of closedness of a set by convergent sequences.

Lemma 1.8. Let (X,d) be a metric space.

(i) A sequence can have at most one limit.

(ii) Let E C X. Then x € E if and only if there exists a sequence (Tn)neny C E with
Tp — T asn — o0o.

(iii) If (xn)neny C X is convergent, then (xy)neny C X is a Cauchy-sequence. The converse
is not always true'. A Cauchy-sequence is convergent, if it contains a convergent sub-
sequence.

(iv) If X is complete and E C X closed, then E is complete. If E C X is complete, then
E is closed in X.

Proof. Tutorials O

The following example provides the reader with some complete metric spaces.

'For example, consider X = (0,1], z,, = %

5 Functional Analysis I



1 Metric Spaces

Beispiel 1.9.
(1) The space B(X) is complete.

Proof. Let (fn)nen be a Cauchy-sequence in B(X), and for ¢ > 0 let N, € N be such
that

d(fn, fm) < € for all n,m > N .

This implies |fn(x) — fim(2)|] < € for all x € X, n,m > N,. Hence, for all z € X,
(fn(2))nen is a Cauchy-sequence in K. Setting f(z) := ILm fn(z), we obtain
n—oo

(@) = fn(@)] = lim |fu(a) — fn()] < ¢

for all m > N¢. Hence |f(x)| < |fu(x)| + €, which implies f € B(X). Further, for
m > Ne,

d(f, fm) = sup |f(z) = fm(z)| <€,
zeX
and thus f = lim f,. O
n—oo
(2) The space C|a, b] is complete, since it is closed in Bla, b] (see lemma 1.8), the reason
being that a uniform limit of continuous functions is again continuous.

(3) The spaces (K", d,), n € N, 1 < p < 0o, are complete, since convergence in K" w.r.t.
d, is the same as convergence in K" w.r.t. the component sequences.

(4) The spaces £, 1 < p < 0o, are complete.

Proof. Let (x1)ren be a Cauchy-sequence in £y, z = (2 n)nen, and for € > 0 let
N, € N be with

|

[e.e]
dp(xp, ) = (Z |Thn — xm]”) o<k and
n=1 (13)
doo(zpy 1) = SUp |Th,n — Tip] <e¢ forall k,l > N;.
neN

Thus, for fixed n € N, (21, )ren is a Cauchy-sequence in K. Now set y,, := klim Tk
—00

and y := (yn)nen. Then y € ¢, and y = nh_)ngo T,

Indeed, consider | — oo, which implies (by 1.3)

m
D Tk — ynl” < €
n=1

for all m € N and thus

00
Z ’$k7n —ynl? <€
n=1

for all k > N, and |zg,, — yn| < € for all k > N, n € N. Hence z, —y € {p, and
thus y € ¢, and y = klim Tk- O
— 00

The following theorem of Baire only holds in complete metric spaces. It is a key ingredient
in the proofs of the fundamental theorems of functional analysis. Thus, they will only hold
under some completeness assumption.
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1 Metric Spaces

Theorem 1.10 (Baire’s Theorem). Let (X,d) be a complete metric space, and let Dy,

n € N, be open, dense subsets of X. Then also () D, is dense in X.
neN

Proof. We need to prove that for all z € X and r > 0 we have
Ur(z) N () Dn # 0.
n=1

For this, let x € X and r > 0 be arbitrary, but fixed. By induction define a sequence
(xn)neny C X and (r)neny C RT by

(a) Kpppy(Tny1) € DpNU,, (2,) and

(b) r, <1

—n"

This can be done as follows: First, set 1 = z and 1 = min{l,r}. Second, assume
that z1,...,2n,71,...,7, be already chosen (n > 1). Since D,, is open and dense, also
D, NU,, (x,) # 0 is open. Hence there exists z,,11 € X and 7,41 > 0 with

1
Usrpir (Tng1) C Dp N U, (2n) and  rpyq < 1

This implies (a) and (b), since K, ., (n+1) C U2ppiy (Tng1)-
Having constructed sequences (2, )nen and (7, )nen satisfying a) and b), we obtain

Tn € Krn CDp1nN Urnfl (xn—l) - Urnfl (.%'n_l) c---C UTm(:Um)

for all n > m. Thus d(zy,Tm) < rm < % for all n > m. This implies that (zy,)nen is a
Cauchy-sequence in X.

Now set g := li_)rn Z, (remember that X is complete). Since d(zy,zy) < 1y for all
n (o]

n > m, we obtain d(zg, ;) < rpy, for all m € N. Thus, finally,

20 € [ Krpsr@ms1) C () D N Uy, (#m) C Uy (21) N () D C Ur(2z) N () D,
m=1 m=1 m=1 m=

and the theorem is proved. O

Bemerkung 1.11.

(a) Theorem 1.10 is in general false if X is not complete. As an example choose X = Q =
{q1,92,...} and D,, = X \ {qgn}, n € N, which are open and dense. We immediately
see that however

() Dn=0.
n=1

(b) Let (X,d) be a complete, non-empty metric space and A,, C X, n € N, closed with
[ee]
X = |J A,. Then there exists at least one n € N with

n=1

A, #0.

7 Functional Analysis I
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Proof. Towards a contradiction, assume that

A, =0forallneN.

oo
Then X \ A,, are open and dense for all n € N. By Baire’s Theorem 1.10, () (X'\ 4,)

n=1

dense in X. But () (X\ A,) =X\ U A, = 0. 4 O
n=1 n=1

(c) Completeness is a property of the particular metric and not the convergence in X.

1_ %‘ and da(z,y) = |z — y|. Then

T

For example, consider X = (0,1], di(z,y) :=

we have
Tn = xin (X,dy) &z, — x in (X, ds),
but (X,d;) is complete and (X, ds) is not (see tutorials).

Definition 1.12. Let (X, d) be a metric space.

(i) Let € > 0. Then M C X is called e-net, if X = |J U¢(z). The space X is called
zeM
totally bounded, if for each ¢ > 0 there exists a finite e-net. A subset A C X is totally

bounded, if (A, d|ax4) is totally bounded.

(ii) The space X is compact, if every open cover of X (that is, a family of open sets Uj,
i € I, such that X = {J;c; U;) has a finite subcover. The metric space (A, d|ax4) is
compact if and only if every open cover of A (of open sets in X) has a finite subcover.

Compactness and total boundedness are intrinsic properties, that is a subset A C (X, d) of
some metric space is compact (totally bounded) if the metric space (A, d|4x4) is compact
(totally bounded).

It is easy to see that every compact metric space is totally bounded. The following theorem
shows that the two notions coincide for complete metric spaces. Note that this does not
imply that these two properties coincide for all subsets of a complete metric space (see
Corollary 1.15).

Theorem 1.13. Let (X,d) be a metric space. Then the following are equivalent:

(i) The space (X,d) is complete and totally bounded.
(ii) The space (X, d) is compact.
(iii) Fach sequence in X has a convergent subsequence.

Proof.  (i)=-(ii). Towards a contradiction, assume that X is not compact. Let &l be an
open cover of X which does not contain a finite subcover. By induction, we now define a
sequence (Zp)neny C X such that

(a) each neighborhood Usy-n(zy), n € N, is not covered by finitely many U C U and

(b) any neighborhoods Us-n(xy,) and Uy—(ni1)(n+1), n € N, do intersect, i.e. Uy—n(zp) N
Up—(ns1) (Tn11) # 0.
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First, for n = 1, notice that X is totally bounded. Hence X = |J Ui (y), |M| < oo, which
yeM ?

implies that there exists y;, =: 1 € X such that Ui (x1) is not covered by finitely many
2
U c Y. Second (n +— n+1), again by totally boundedness, there exists a finite M such that
X = U Uy-mi1(y). Assume z1,...,x, are chosen such that (a) and (b) are satisfied.
yeM

Towards a contradiction assume that for each y € M with Uy—(n41)(y) NUs—n (xy) # 0, the
set Uy—(n+1)(y) is covered by finitely many U € 4. Then this is also true for Uy—n(xy,). 4
Hence there exists 411 € X with Uy (nt1)(2n+1) is not covered by finitely many U € U
and Up-p,(2n) N Uyt (Tn1) # 0.

For each n € N, let 2, € Uy—n(xy,) N Uy—(nt1)(Tn+1). Then, for m > n,

m—1 m—1
d(l‘m, xn) < d($y+1a 551/) < Z (d(xlj+1, ZI/) + d(ZV, fL‘,/))
7%11 ( ) - m—1 1
—(v+1 —v —Uv
<Y (M) <2y <o

This implies that (x,)nen is a Cauchy-sequence. Since X is complete, there exists x =

lim x,.
n—oo

Now choose U € 4 with = € U and choose € > 0 such that Ug(z) C U. Then z, € Ug ()
for all n > N, hence Uy-n(z,) C U for all n > N with 27" < §. 4 to choice of Uy-n(zy).

(ii)=-(iii). Let (zn)nen be a sequence in X and set A4,, := {z, : v > n} C X. Towards a
contradiction assume that

M An=0.

neN

This implies |J (X \ 4,) = X. Since X is compact, the open cover {X \ 4, },en contains
neN
an open subcover {X \ Ay, : 1 < j < r}. Since Ap41 C Ay, hence X \ A, C X'\ Apyq, for

N :=max{n; : 1 < j <r} we have

X=JX\4, =X\Ay.
j=1

Thus Ay = 0 4, which is impossible. This proves that [\ A, # (). Choosing z € | A,,
neN neN

there exists a sequence (ng)reny C N with ngy1 > ng and d(zp,, x) < % [if ny is chosen,
then z € Ay, ,,]. This shows (iii), since (2, )ren is a convergent subsequence of (7, )nen
in X.

(iii)=(i). Each Cauchy-sequence in X contains by hypothesis a convergent susequence, is
hence itself convergent. This implies that X is complete.

Towards a contradiction, we now assume that X is not totally bounded. Then there exists
¢ > 0 such that X is not covered by finitely many U, (x), x € X. By induction, we define
a sequence (T )neny C X with

Zn ¢ Ue(zj), 1<j<n-—1.

This can be achieved in the following way: Let z1 € X be arbitrary. Then assume
Z1,...,Ty are already constructed. Since

X\ Uslay) £ 0.
j=1

9 Functional Analysis I
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n
choose z,,+1 € X \ U Ue(x;). Then, for n # m, we have
j=1

d(Tp,xm) > €.
By (iii), (zn)nen contains a convergent subsequence (xy, )ren. Let z := klirn Zp,- Then
—00
d(Zn,, ) < § for all k > ko, hence d(zy, ,7n,) < € for all k,1 > ko. 4 O

Lemma 1.14. Let (X,d) be a metric space, and let A C X be a non-empty subset.

(i) If X is totally bounded, then also A is totally bounded.

(ii) If A is totally bounded, then also A is totally bounded.

Proof.  (i). Let € > 0. By hypothesis, there exists an §-net {z1,...,} of X. Without
loss of generality, let ANU¢ (x;) # 0 if and only if 1 < j < m, m < n. Foreach 1 <j <m,
choose y; € ANUs(x;). Let y € A. Then there exists 1 < j < m with y € Ug(z;), and
hence

d(y,yj) < d(y, ;) +d(z;,y;) < €.

This implies that {y1,...,ym} is an e-net for A.

(ii). Let € > 0. By hypothesis, there exists an §-net {y1,...,yn} for A. Let & € A. Then
there exists y € A with d(z,y) < 5. Let y; be such that d(y,y;) < 5. This yields

d(z,y;) < d(z,y) + d(y,y;) < €,
hence {y1,...,yn} is an e-net for A. O

Korollar 1.15. Let (X,d) be a complete metric space, and let A C X. Then the following
are equivalent.

(i) A is compact.
(ii) A is totally bounded.

Proof. (i)=(ii). Since A is compact, by Theorem 1.13, A4 is totally bounded. By Lemma
1.14, A is totally bounded.

(ii)=-(i). Since A is totally bounded, by Lemma 1.14, A4 is totally bounded. Since X is
complete, A is also complete. Hence Theorem 1.13 implies that A is compact. ]

Definition 1.16. Let (X,d) and (X', d’) be metric spaces, and let f: X — X’.

(1) f is continuous in x € X, if for each € > 0 there exists § > 0 such that d(z,y) < §
implies d'(f(x), f(y)) < € for all y € X. If f is continuous in each z € X, f is called
continuous.

(2) f is a homeomorphism, if f is bijective and f and f~! are both continuous. f is an
isometry, if d(z,y) = d'(f(x), f(y)) for all x,y € X. If further f is bijective, f is an
isometric isomorphism. X and X’ are then called homeomorphic resp. isometric resp.
isometrically isomorphic.

(3) f is uniformly continuous, if for each € > 0 there exists 6 > 0 such that d(z,y) < ¢
implies d'(f(z), f(y)) < € for all z,y € X.

Functional Analysis I 10
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Two metric spaces being isometric is a strong notion of equivalence for metric spaces,
being homeomorphic is the properly weaker topological equivalence of metric spaces.

Lemma 1.17. Let (X,d) and (X', d') be metric spaces, and let f: X — X'.

(i) f is continous < f~1(U) is open in X for allU C X' open < f(x,) — f(x) for all
Ty — x in X.

(ii) Let X be compact and f continuous. Then f is automatically uniformly continuous.

Proof. Exercises. 0

We want to relate the relative compactness, that is the compactness of the closure, of a
set of continuous real functions to the pointwise relative compactness of these functions.
The relatively compact sets in R are the bounded sets by Heine-Borel theorem. If a set of
continuous real functions is relatively compact, we obtain pointwise relative compactness,
by continuity of C'(X) — R, f — f(z) for every x € X. However, to prove the converse a
second condition is needed: the equicontinuity of the functions.

Definition 1.18. F C C(X) is equicontinuous in x € X, if for each ¢ > 0 there exists
a neighbourhood U of z with |f(z) — f(y)| < e for all y € U and f € F. F is called
equicontinuous, if it is equicontinuous in each z € X.

Theorem 1.19 (Arzela-Ascoli). Let X be a compact metric space and F C C(X). Then
the following are equivalent.

(i) F is compact.

(ii) F is equicontinuous and pointwise bounded.
Proof. (i)=(ii). Exercise.
(ii)=(i). For z € X we write F(z) := {f(z) : f € F}. Let F be equicontinuous and
F(z) € K bounded for all z € X. Since C(X) is complete, by Corollary 1.15 it remains

to prove that F' is totally bounded. For this, let ¢ > 0, and, for each z € X, let U, be an
open neighbourhood of z with

|f(y)—f(33)|<§forallf€Fandy€Uw.

n
Let now z1,...,x, € X be chosen such that X = |J U,, and set
i=1

)

K =] F(z;) CK.
=1

Since K is bounded, there exist Ay, ..., A, € K with
m

KcJU:(\).
j=1

Define ® to be the set of maps ¢: {1,...,n} — {1,...,m}. For p € ®, set

Fpi={f € Fs|f(@) = M| < 5 for 1 <i<n}.

11 Functional Analysis I



1 Metric Spaces

Then

F=[JF,.
ped

To see this, let f € F. Then for each 1 < i < n, there exists j € {1,...,m} such that
f(xi) € Us(X;). Hence, there exists p € ® with f(z;) € Us(Ay(;)). Hence f € Fi.

For f,g € F,and y € Uy, i € {1,...,n}, we then obtain
1f (W) =9 < [f () = F@a) + [ (@) = Aol + [Api) — (i)l + |g(i) — g(y)| <.

Thus d(f,g) < € for all f,g € F,, and hence a finite e-net for F, (and thus also for F')
exists. O

Functional Analysis I 12
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2 Normed Spaces

We define the fundamental spaces of our study, namely the normed spaces.

Definition 2.1. Let E be a linear space over K.

1. A map [|||: E — [0,00) is called a norm an E, and (E,||-||) a normed space, if for
all z,y € E, A € K the following are satifsfied:

(a) ||z|]| = 0 if and only if x = 0,
(b) [IAz[] = |A[ - [l]| and
(©) [lz +yll < ll=[l + llyll-

The space F is called a Banach space, if (E, dH-II) is complete (for the definition of
d. see Remark 2.2).

2. Two norms ||-||; and [-||, on E are equivalent if there exist o, 8 > 0 such that
allz)ly < flzll2 < Bzl
for all z € .

We remark that a normed space is a special case of a metric space and that the topology
induced by a norm is in some sense compatible with the vector space structure.

Remark 2.2. Let (E,||-||) be a normed space.

1. Letting d)(z,y) := ||z — y|| defines a metric on E.

2. Let ||-||; and [|-||, be equivalent norms on E. Then (E, |-||;) is complete if and only
if (E,||-||5) is complete.

3. For all 2,y € E there holds |||z]| — |ly||| < ||z — y|. In particular |-||: E — R is
Lipschitz-continuous.

4. The algebraic operations

+:EXE—FE, (z,y) »x+y and
2 KxE—E, ANy — Ay

are continuous since

* @ +y) = (2o +yo)ll < llz —2oll + [ly = ol and
o Az = Aozoll < Al = 2ol + [A = Aol[|zol|

5. If F C E is a subspace, so is its closure F.
We recall the concept of a quotient vector space.

Definition 2.3 (Quotient space). Let E be a linear space, F' C E a subspace. Then
defining * ~ y by x —y € F for z,y € E is an equivalence relation. The equivalence
classes are given by

o ={yeF:y—xecF}={yeFE:ycx+F}=x+F.

13 Functional Analysis I
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Thus [z]~ is an affine subspace. The quotient space E/F is defined by E/F := {x + F :
xz € E}. Via

[T]~ + [y]~ = [z + Y]~ (r+F)+y+F)=(x+y)+F and
Az]o = M)~ Mz+F)=0M\z)+ F

the space F/F becomes a linear space.

Now we combine the concepts of a normed space and quotient spaces by endowing rea-
sonable quotients of normed spaces with a natural norm.

Lemma 2.4. Let (E, ||-||) be a normed space and let F' C E be a closed subspace. Then
|z + F|| := inf{ ||z + y|| : y € F}
defines a norm on E/F. Moreover, if E is a Banach space so is E/F.

Proof. First we check the norm properties.
(i). If ||z + F|| = 0, there exists a sequence (yp)n, C F, such that

[z =yl =0,
for n — oo. Since y, € F' and the subspace F' is closed, we conclude x € F, i.e.
r+F=F=F=0+F=0.
(ii) There holds || A(z + F)|| = ||(Az) + F|| = inf{||Az + y|| : y € F'}. For A = 0 we have:
Az + F)| =0= Az + F.
For X\ # 0 we have

[A(z + F)|| = inf {||Az +y|| : y € F}
(Alinf {[lz +y[| -y € F}
= [Alllz + F|.

(iii). For z,y € E and € > 0 choose 21, z2 € F such that
lo+Fll = o+ 21 =5 and y+Fl > ly+z) - 5.
This yields
[+ F)+ (y+ Pl = (@ +9) + Fll < llz+ 21+ g+ 2l < -+ Fll + ly+ Fll +¢..

Now, let E be a Banach space. To show that also E/F is complete, let (z,, + F')nen be a
Cauchy-sequence in E/F i.e. for any € > 0 there exists N € N such that ||(z, —xm)+F| <
¢ for all n,m > N. So for all i € N we can find n;, such that ||zp,,, — zn, + F|| < 27°
In particular there exists y; € F such that |z,,,, — =, + il < 27". We may assume
n; < njy+1. Now define

21 ZIO,

Zitl ‘= Yi T 2 1>1.
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Then we have ‘
[(@n; 1 + 2zit1) — (Tn, +2)|| <27

Now we define 7; := x,,, + z;, which gives us ||9;+1 — n;|| < 27°. By this,

k-1 k-1
1k = Tl <D [ Mmirs — mmall < D 27770 <27,
i=0 i=0

which means that (7,) is a Cauchy-sequence in E and thus converges. Now we set
limy, 00 7, =: . We obtain:

[(@n + F) — (z 4+ F)|| = [[(zn — =) + F|
z,€F
< lwn, + 2 — =l = [lni — 2] = 0.
This gives us a convergent subsequence, so the Cauchy-sequence is covergent itself. O
Indeed, completeness is not only inherited by closed subspaces and quotients by closed
subspaces. As a converse, we have the following lemma.
Lemma 2.5. Let E be a normed space, F' C E a closed subspace. If F and E/F are

Banach spaces, then also E is a Banach space.

Proof. Let (z,,) C E be a Cauchy-sequence in E. Hence
[(@n + F) = (@m + )| = [[(zn = 2m) + FI| < [lzn — 2zm] -

So (zp + F), C E/F is a Cauchy-sequence in E/F. With  + F := lim,_,cc z, + F we
obtain:

inf {||zp, —x+y||l:ye F}=|(xn—2z)+ F| = 0.
This means that there exists (y,) C F' with ||z, — x + y,|| — 0. This (y,) is in fact a
Cauchy sequence:

[y = ymll = llyn + 20 — 2 — Tn + T — Y — 2 + 2
< Ny + @ — @l + 20 = 2| + Yo + T — ]| == 0.
Hence, it converges. Put y := lim,, 00 yn € F. Now
|z — @+ yl| < llzn + o — |l + |y = yall| == 0.
Thus (x,) converges to = — y. O

Using this, we show completeness of finite-dimensional spaces.

Korollar 2.6. A finite-dimensional normed space E is always a Banach space.

Proof. We prove the statement by induction over n = dim E. Let dim E = 1 and choose
x € E such that ||z| = 1. Then ¢: R — E, q(\) := Az, is isometric. So E = R and FE
is a Banach space. Assume that the claim holds for n and let dim £ = n + 1. Choose
z € E\ {0} and set F' := span{z}. Because dim F' = 1 we know that F' is complete, so
closed. There holds

dim(E/F)=dimFE —dim F =n.

By assumption we get that £/ F is complete, and by Lemma 2.5 we see that E is a Banach
space. O]
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Lemma 2.7. Let F be a closed subspace of a normed space E. Then for each x € E\ F
there exist M, M’ > 0 such that for all y € F and all A € K we have

Al < M|z +yll and |lyl| < M'|[Az +y]|.
Proof. Because of x ¢ F we have ||z + F|| # 0. We set
M:=|z+F|™" and M :=1+ M|z|.
Then for y € F' and A € K we obtain
A = Mz + Fll = M|pa + F|| < M|z + ],
and therefore also
lyll < lly + Azll + [Alllzll < lly + Azl + M|Az + yll[lz]] = [ly + Az[|(1 + M]lz]) .
This proves the lemma. O

In the finite-dimensional case, also the boundedness of linear operators is always granted.

Lemma 2.8. Let T: E — X be a linear mapping between normed spaces E and X, where
dim E < co. Then there exists ¢ > 0, such that for all x € E we have

[Tzl x < cllz]le.
Proof. We set n:=dim E. Let n =1 and choose =g € E, ||xg|| = 1. Then
E = span{xo}
and for x = Axp € F we have:
ITallx = 1T Oo)lx = N ITwollx "9 | Taollx |Awoll
T a1

Now assume that the statement holds for dim £ = n and let dim £ = n + 1. Choose an
n-dimensional subspace F' C E. Let g € E \ F. Then for each x € E there are \ € K,
y € F, such that

r=Arg+vy,

i.e. E = F 4 span{xo}. By assumption, we find ¢’ > 0, such that || Ty||x < ||y| g for all
y € F. Now, by Corollary 2.6, F' is closed and with Lemma 2.7 we obtain:

IT(Azo + y)llx < [N Tzollx +llylle < (1Txolx M + ¢! M) || Azo + y]| -
The lemma is proven. O

We arrive at the following important corollary

Corollary 2.9. The following statements hold true:

(a) Each two norms on a finite-dimensional space are equivalent.
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(b) Let E, F be normed spaces and dim E < oco. Then for every linear and bijective
mapping T: E — F there exist c,d > 0, such that

Tzl < cllzll - and |7~ y] < dllyl-

(c) Let E be a normed space with dim E < oo and A C E a subset. Then A is compact if
and only if A is bounded and closed.

Proof. (a). Consider the linear map
T: (B[ -l) = (B [llly), To =,
x € E, where ||-||; are norms on E for i = 1,2. Then Lemma 2.8 implies
[Tzly < cllzlls and  [[Tz]2 < df|z]

for some ¢,d > 0. Since Tx = x, this proves the claim.

(b). The inverse operator T~! is linear, thus Lemma 2.8 implies the claim.

(c). It is well known that the statement holds for K" with the Euclidean norm. Let
dim £ = n. Then there exists a bijective linear map 7: K" — E. By (b) there exist
c,d > 0 with ||Tz|| < c[|z]| and ||T~'y|| < d||y||. This implies that A is bounded/closed
if and only if 7-1(A) is bounded/closed in K" and A is compactif and only if 771 A is
compact, which finishes the proof. O

Finally we show that finite-dimensional normed spaces are the only locally compact ones.

Theorem 2.10. For a normed space E, the following are equivalent.

(i) We have dim E < co.
(ii) The space E is locally compact, i.e. each x € E has a compact neighborhood.

(iii) The closed ball K1(0) is compact.

Proof. (i)=-(ii). This follows from Corollary 2.9(c).
(ii)=-(iii). Let K be a compact neighborhood of 0. Then there exists 6 > 0 with Ks(0) C

T

K. But K5(0) is a closed subset of K, thus compact. Since the mapping = ¢ maps
compact sets to compact sets, (iii) follows.

(iii)=-(i). The compactness of K;(0) implies that K;(0) is totally bounded. Hence there
exists a finite %—net Y1y .-, yn of K1(0). Let F :=span(yi,...,yn). If we prove E = F, we
are done. Assume F' # E. Then there exists zg € E\F, i.e. dist(zg, F') = infycp|lzo—y|| >

0 (since F' is finite dimensional, thus closed). Let yog € F such that
llxo — yol| < 2dist(xo, F).

Define
S
r=-"2"%N_ ¢ 0.
|zo — yol|

For all y € F' we then have

&= oll = llzo = ol [z = (0 + llz0 — 3ollv) .
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Since yo + ||zo — yolly € F, this implies

HCEO — (yo + ||lzo — yoHy)H > dist(zo, F) .

Hence

1 5. . 1
|z —y|| > |lzo — yol| " dist (o, F) dist(zo, F) = 3

> 1

— 2dist(xo, F)

Thus z is not in Uj—; U1 (y;). This contradiction shows F' = E. O
2

Ezample 2.11.

(1) The metric de(f, 9) = sup,cx|f(z) — g(x)| on B(X) is induced by the norm || f||~ :=
sup,cx|f(x)|. Hence (B(X),|-||.,) is a Banach space.

(2) The spaces ¢, and L, are Banach spaces.
(3) The space (K", ||-|[,) is a closed subspace of £, thus K" is a Banach space.

(4) Let E, F be normed spaces over K. Then E x F' is a normed space (the so-called
product space) if we define the operations

Az, y) = Az, \y),
(w1,91) + (22,92) = (71 + 22,91 + ¥2)

and the norm ||(z,y)|| = max(||z||g, |y||7). If E and F are Banach spaces, sois E'x F.

Proof. Let (zpn,Yyn))nen be a Cauchy sequence in E x F. Then (z,) and (y,) are
Cauchy sequences in F and F respectively, thus they converge to, say, z € E, y € F.
But then also (zp,yn) — (z,y). O

More generally, let Ey, ..., E, be normed spaces over K with norms [-||;,..., ][,
Then Fq X --- X E, is also a normed space with norm

(@1, )l = max (lzals, - [l ]lr)  or
N\
(@1, .. 2)ll, = (ZIIMH?) :
i=1
If £4,..., E, are complete, then F; X --- x E,. as well, and vice versa. Furthermore,

convergence in 1 X --- x F, is equivalent to convergence of each component z; € E;.
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The next main objects are (continuous) linear operators between normed spaces. The
following characterisation of continuity of linear operators will be of grave importance (it
would, however, be false in the mor general setting of topological vector spaces).

Lemma 3.1. Let E, F be normed spaces over K and T: E — F be a linear operator (a
linear map). Then the following are equivalent:

(i) The operator T is continuous on E.

(ii) The operator T is continuous in one point xo € E.

(iii) The operator T is bounded, i.e. ||Tz|| < c||z| for all x € E and some ¢ > 0.

Proof. (1)=-(ii). This is trivial.
(ii)=-(iii). Let T be continuous in zg. Then there exists § > 0 such that for all z € E with
|z — 20| < & we have | Tx — Tag| < 1. Let y =51 - (zg — ), then || 7Y ‘ < 6. We obtain

|4
I (i)l =

and thus Jul H
Y
Ty|l <
jzy) < 1
(iii)=(i). Let ¢ > 0. Then ||T'(z — )| < c|lz — xo|| < € if and only if ||z — 20| < £. This
implies T'(Ke(x0)) C Ke(Txp). Thus, T is continous. O

Now, we turn the set of continuous or, equivalently, bounded operators between two
normed spaces into another normed space.

Definition 3.2. Let E, F' be normed spaces over K.
(i) We denote the set L(E, F) of bounded linear operators from E to F' by
L(E,F):={T: E— F : T is linear and bounded} .
If E = F we write L(E) instead of L(E, F').
(ii) We define the operator norm on L(E, F) by

1T := sup [Tz

z||p<1

Lemma 3.3. Let E, F, G be normed spaces over K.

(i) The space (L(E,F),|||) is a normed linear space. Also for T € L(E,F) we have

|T|| = sup ||[Tz| = sup HH HH inf{c > 0: ||Tx| < cl|lz| for allz € E}.
llell=1

(i) IfT € L(E,F) and S € L(F,G) then SoT € L(E,G) and ||SoT| < ||S||||T].
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Proof. (i). It is well-known that the space of linear maps from E to F is a linear space.
Now, for T1,T»,T € L(E, F), XA € K, and arbitrary z € E with ||z|| = 1 we have

1Ty + To)zl| < [|Toe]| + [ Tox|] < [IT0]] + [ 72]]

and
[ATz|| = [A[|Tz]| < [AT]]-

Because of x being arbitrary, we have proven that (T} + 1), \T' € L(E, F), thus L(E, F)
is a linear space. It is also clear that ||T'|| = 0 implies 7' = 0. Thus ||-|| is a norm on it.

Further,
( )H IITyH
lyll o ol

sup || Tz|| > sup || Tz|| = sup

llz]|<1 [lz]|=1 y#0
yl|
> sup WS up |7yl > sup [Tyl
v20 |yl y#0 lyll<t
ly|<1 lyll<1

This chain proves

Tx
7] = sup 7] = sup L]
2= =l
Finally, if |Tz|| < c||z|| for all x € E then for all z € E we have ||”7;5T||| < ¢ and thus

|IT|| < c. By this, ||T|| is a lower bound for {¢ > 0 : | Tz| < ¢||z|| for all z € E}. On the
other hand, we have for each x # 0

[ T]]
[T = Tz 2l < IT[[{]]] -

Thus ||T]| € {c: ||Tz|| < ¢|z| for all x € E} and ||T]| is actually the greatest lower bound
for that set, i.e.

|T|| = inf{c: [|[Tx|| < c||lz| for all z € E}}.
(ii). Exercise. O

The case F' = K will be of particular interest.

Definition 3.4. Let E be a normed space over K. Then a map ¢: E — K is called a
functional on E. The space L(FE,K) of all bounded linear functionals is called the dual
space of E and is denoted by E*.

Theorem 3.5. Let E be a normed space over K and let F' be a Banach space over K.
Then L(E,F) is a Banach space. In particular, E* is a Banach space.

Proof. Let (T},), be a Cauchy sequence in L(FE, F'). Then since
[Tn = Tonl| < [|Tn — Tl - 2]l

also (T,x), is a Cauchy sequence in F' for each z € E. Since F' is complete, we can find
Tz = lim,, o Tpx. This defines a mapping T: £ — F.

We show that T is linear: Let z,y € E and A\, u € K. Then

T()\x—{—uy):nILIgOTn(A$+My):A-nlgngoTnx+u'T}Ln;OTny:)\-T:L"—i-,u-Ty.
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We show that T is bounded: Let ¢ > 0, N, € N such that ||T,, — T}, || < € for all m,n > N,.
This implies
[Tne — Trpa|| < || T — ol ] < e[|

for all m,n > N, and = € E. Letting n — oo we obtain ||Tz — T),z| < ¢||z| for all
m > N,. Hence [Tz — Ty, z|| < ¢||z||. This implies

|1Tz]| < el + 1 Tn x| < (e + [T []) - [l

for all z € E. Thus T € L(E, F).

We show T,, — T: With ||Tx — T,z| < ¢||z| for all m > N, we obtain ||T' — T, || < e.
Hence lim,;, oo Tr, = T O

Now we show that a continuous linear operator, defined on a subspace can be continuously
extended to the closure of this subspace leaving its norm fixed.

Lemma 3.6. Let E be a normed space over K, L C E a subspace, F' a Banach space
and T: L — F a continous linear operator. Then there exists a unique S € L(L, F) with
S|, =T. We have

IS1 =171

Proof. Let z € L and let (z,,) C L be a sequence which converges to x. We observe
[Txn = Tam| < |Tl|zn — zmll .

This implies that (Tx,) is a Cauchy sequence in F. The space F' is complete — hence
(T'zy,) converges. For any other sequence (y,,) which also converges to z we have

|Tzn = Tyn|| < (IT[[lzn — ynl| -
Thus lim,, 0o Txy, = limy, oo Ty,,. We can now define
Sr = lim Tz,
n—oo

and have no concerns about well-defining issues. It follows immediately that S|, = T,
because for x € L we can just choose the constant sequence x,, := x for all n as “defining
sequence”. The linearity of S is also easily proven:

S(:U+y):JgrgoT(xn+yn)zlimn—>ooT:L'n+Tyn:S:E—l—Sy

and analogously S(Az) = ASz. Moreover, ||S|| > ||S|z]l = ||IT]|]. To prove the reverse
inequality, let 0 # 2 € L and let (z,,) be a sequence in L converging to z. Then

|52l = lim [Tz, < |T] lim || = |T]]2]

which implies that also [|S|| < ||T'||. Hence, ||S]| = ||T||, and S is bounded. It only remains
to prove the uniqueness of S. Consider another continous linear operator R with R|;, =T,
and x € L. For any sequence converging to = we have

Rr = lim Rz, = lim Tx, = Sz.
n—oo n—oo

We used the continuity of R. 0
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We draw a corollary. It follows from the uniqueness part of the lemma.

Korollar 3.7. If two bounded linear operators S,T € L(E, F'), where F is a Banach space
and E a normed space, coincide on a dense subspace of E, then they coincide on E.

Now we consider the inverse of a continuous linear operator.

Lemma 3.8. Let E, F' be normed spaces over K andT: E — F linear. Then the following
are equivalent:

(i) There exists a linear, continous inverse operator

T T(E)— E.
(ii) There exists ¢ > 0 such that c||z|| < ||Tx] .

Proof. (i)=(ii). Assume T~! exists. Its continuity gives us the existence of a v > 0 such
that

1T~ yll <~y

for all y € T(F). For an arbitrary = € E we put y = Tz to obtain
[zl < Al Tz -

Putting ¢ := % we have proven (ii).

(ii)=(i). We observe that (ii) secures the injectivity of T' (if = € ker(T'), then ||z| = 0).
Thus T~!: ran E — E exists. Now letting y = T'x in (ii) assures the existence of a ¢ > 0
with ¢|T~1y|| < ||ly|| for all y € T(E). Thus the inverse operator is continous. O

Note that, unlike in the finite-dimensional case, this inverse does not have to be bounded
automatically.

Ezxample 3.9. Consider E = C|0, 1] with [|-|| .,-norm and let

B F 0= [ 563,
with F' = {g € C1[0,1] : g(0) = 0} having |||, as a norm.
e The operator T is linear.
o The operator T is bounded, since ||Tflco < ||f]co-
e The operator T is injective, since T f = 0 implies f = 0.
o The operator T is surjective, since for g € F we have T'(¢') = g.

But: T~! is not continuous! For this, choose f,(t) = t". Then (T'f,)(t) = %ﬂt”“, but

IT T fu)lloo = 1 fnlloo = 1
and [T fulloe = -

Next we define closed operators.
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Definition 3.10 (Graph of T'). Let E, F be normed spaces, L C E a subspace and
T: L — F a linear operator.

(i) We define the graph of T by

Gr={(z,Tx):x € L} CLxXFCEXxF.

(ii) The operator T is called closed if its graph Grp is closed in E x F.

Remark 3.11. Note that we require the graph to be closed in E x F', not in L x F. For
example, let L C E not be closed and consider the identity Id: L — E. Its graph is closed
as a subset of L x E but not as a subset of £ x F', so this operator is not closed. In
particular, closedness of T': L — F also depends on the superspace E of L.

Luckily, we have quite an easy method to check whether a given operator is closed.

Lemma 3.12. Let E, F', T and L be as above. Then the following are equivalent:

(i) The operator T is closed.

(ii) If (xn,) C L converges to x € E and (T'xy) converges toy € F, then x € L and
y="Tz.

Proof. Since
[(@n, Tan) = (,y)|| = max(|zn — |, |Tzn — yl|)

we have that if z,, — « and Tz, — y, then

lim (z,,Tzy,) = (z,y) .

n—oo

Because of G being closed, (x,y) € Gp. Thus x € L, y = Tx. Now consider a convergent
sequence (Zp,yn) — (x,y) in Gp. Because of the convergence of y,, = Tx, and (ii), it
follows that x € L and y = T'z, thus (z,y) € Gr. O

Remark 3.13. If L is closed, and T is continous, then T is closed. In particular, each
T e L(E,F) is closed.

Proof. If (zp, Txy) — (x,y), then (L closed) € L. Continuity of 7" now implies T'z,, —
Tz, thus (z,y) € Gr. O

We will now give a concrete computation of a dual space.

Theorem 3.14. Let 1 < p < co. Define q such that % + % =1, ie.

.= B 1<p<oo
oo p=1.

Moreover, fory € £, define

fyilp =K, z=(z,)— anyn.
n=1

Then f, € £, and y — [y is an isometric isomorphism. In particular £, = €.
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Proof. First of all, f, is well-defined (i.e. the series converges) because of the Hélder-
inequality:

[e.o]

> enynl < llzllpllylly -

n=1

It is evident that f, is linear. Furthermore, by the above, we have

1fy @) < [lllpllyllg -

Thus, f, is bounded. We conclude that f, € £;. We now claim that [|f,[| = [lyll;- We
already proved | fy|| < |lyllq- To prove the inverse inequality, we consider the cases p =1,
p > 1 separately.

First let p = 1: Let ¢ > 0. There exists an n € N such that

[ynl = llyllg — €

Set = ey, € 1. We obtain f,(z) = y,. Because of || z|| = 1 it follows that || f,|| > ||y|lcc—c¢.
Because of € being arbitrary, we conclude || fy|| > |lyllq-

Now let p > 1: Define x by
0 yn = 07
Tn =9 lynl?

S otherwise .
Then
[oe) oo oo
STzaP =3 [P =3 Jyal? < 00,
n=1 n=1 n=1
thus z € £),.

We now compute fy(z):

oo (@)
fy($) = Z TnlYn = Z [yn|? = HyHZ-
n=1 n=1

a(p—1)

Thus Y& — 115175 = |jy[l,, and we conclude || £, ]| > |lyll,-

[l

This proves that y — f, is isometric. For the surjectivity let f € 7 and put

Yn = f(en) .

To prove y = (yn) € {4, we again treat the two cases p = 1, p > 1 separately .
Let p = 1. We have for all n

gl = 1£en)] < I llenll = 171
Thus, [ylleo < 7]l ¥ € loo-

Let p > 1. For all m € N there holds

m

g = ynl o [ynl? |yn|?
Z‘yn| = Z flen) = f Z en | < If]l Z En|| -
n=1 n=1 Yn n=1 Yn n=1 Yn
Yn7#0 Yn#0 Yn7#0 P
We have )
m q n P
Z Y| enll = (Z |yn,p(q—1)> .
n=1 n n=1
Yn#0 Yn#0
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And thus

[

m m )
Dyl < IIf] (Z Iyn\q> :
n=1 n=1

which implies

(Z Iyn!q> <|If1-
n=1

Letting m — oo, we get |ly||; < oo, implying y € ¢,.
Finally, f = f, because for x = > x,e,,, there holds

f(x) = Z znflen) = Z TnYn = fy(z).
n=1 n=1

Thus f coincides with f,, on the dense linear subspace span(e;,)nen, hence (Lemma 3.6,
K is a Banach space) they are equal. O

Finally, we will introduce the important concept of the dual operator.

Lemma 3.15. Let E, F be normed spaces, and let T € L(E,F). Then the operator
T*: F* — E* defined by

T*o=¢oT, ¢peF”,
satisfies T* € L(F*, E*).
E

S~

%
K

Proof. Obviously, T* is linear. Further

(T )zl = lle(Tx)l| < llll[ Tl -
This proves that 7™ is bounded and ||[T*|| < ||T||. O

Definition 3.16. Let E, F be normed spaces and T' € L(E,F). Then the operator
T : F* = E* o— poT =:T"p, is called the dual operator of T.
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4 Hahn-Banach Theorem and Corollaries

In this chapter we prove one of the most important theorems of this course; the Hahn-
Banach theorem. This will ensure us that we can extend continuous linear functionals from
subspaces to the entire space, actually guaranteeing the existence of nontrivial continuous
linear functionals on normed spaces. This simple statement will lead to a few important
corollaries and several forms of separation theorems.

First, we need some terminology.

Definition 4.1.

a) Let E be a linear space. Then the algebraic dual space of E is the space of linear
maps F — K. It is denoted E’.

b) Let E be an R-vector space. Then p: E — R is a sublinear functional on E if all
x,y € E and X\ > 0 satisfy p(z +y) < p(x) + p(y) and p(Azx) = Ap(z).

On our way to the Hahn-Banach theorem, we need some lemmas. As we mentioned, our
goal is to extend a continuous linear functional from a subspace of a normed space to the
entire space, keeping some kind of bound. This will be done similarly to induction: First
we prove that we can extend functionals to a space with “one dimension more”.

Lemma 4.2. Let E be an R-vector space, F a linear subspace and xog € E\ F. Let further
L be the space generated by xg and F, i.e. L = F + Rxg, f € F' and p be a sublinear
functional on E such that

f(z) <p(x) foralxekF.

Then there exists an £ € L' such that £|p = f and £(z) < p(z) for all x € L.
Proof. Note that each element y € L has a unique representation y = x + Axg, ¢ € F,
X € R. This follows from the fact that xg is not an element of . To define ¢ € L', observe

that
Uy) = (z) + M(x0) = f(x) + M(x0) -

Thus, it is sufficient to choose ¢(x). In other words, it suffices to show the existence of a
v € R with
F(2) + Xy < plz + Azo) (4.1)

for all x € F', A € R. First, we have for z,y € F

f@)+ fy) = flz+y) < ple+y) = p((z + o) + (y — x0))
< p(z + xo) + p(y — o) -

This implies
fy) = ply —0) < p(z + z0) — f(2) (4.2)
for all x,y € F. Next, define

A:={f(z) —p(lx —x0) :x € F} and
B :={p(x+xz9) — f(z):x € F}.

By (4.2), we get sup A < inf B. Choose 7 € [sup A, inf B]. Then we have

f(z) =y <p(r—x0) and f(z)+v < p(x+ 20)
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for all z € F.. Now for A > 0 we have
flx)—Ay=2A (f()\*lx) - ’y) < Ap(A 1z — z0) = p(z — Axo),

and
F@)+ 2y =2 (FOT2) +7) <A a + 20) = p(a + Azp)

Thus, (4.1) is proven. O

Now, will use Zorn’s Lemma for some kind of “transfinite induction”. We will show the
existence of a maximal extension. To show that such a maximal extension is defined
everywhere, we apply the previous lemma, which says: If it were not, we could add yet
another dimension.

Lemma 4.3. Let E be an R-vector space, F' C E a linear subspace and p a sublinear
functional on E. Further let f € F' with f(x) < p(x) for all x € F. Then there exists
e FE with l|p = f and (x) < p(z) for all x € E.

Proof. Set

L=40: L linear subspace of E with L D F and
N " te I withl|p = fand (z) < p(z) forallz € L. [~

This is the space of all extensions of f satisfying the desired inequality. We have to prove
the existence of a pair of the form (E,¢) € L. As mentioned above, we will show that
there exists an extension which cannot be extended any further, a maximal extension. To
do this, we define a partial ordering on L:

(Llaél) g (L2,€2) = Ll C L2 A €2|L1 = El .

We know that £ # @ since (F, f) € L.
Claim: Let # be a chain in £. Then # has an upper bound in L.
This is proved with a standard argument for Zorn’s Lemma. We take all our domains of

definition, unite them and use this as the domain of definition for our upper bound. So
we set

L=|J{L: thereis ¢ € L' with (L,¢) € %}
and let 7: L — R be defined by
U(x):=L(z) ifxeLandlcL with (Ll)e. .

First, L is a linear subspace since £ is linearly ordered: if x,y € f/, there exist L, L, with
x € Ly, y € Ly such that there exist ¢, £, so that (Ly, ls), (Ly, ly) € # . Now because of
the fact that % is a chain we can without loss of generality assume that L, C L,. But
then x +y € Ly, hence x +y € L. Checking Az € L is trivial.

We show that ¢ is well-defined: Let z € L. We know by the definition of L that an
(L1,61) € A such that € Ly and ¢; € L} always exists. If (Lg,#3) € ¥ is another pair
with & € Lo, then one of the pairs is bigger with respect to the ordering (% is a chain).
Without loss of generality, (L1,¢1) < (L2,¢2). Then, because of z € L1 C Lo we have

ly(x) = l1(x).
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Now we show ¢ € L': Let x; € L;, a; € R, (Li, 0;) € 2, i = 1,2. Without loss of
generality, (L1,¢1) < (Lg,#2). Then x1 € Ly and thus ajz1 + asze € Lo. Hence, we have
g(alxl + O(Ql'g) = fg(agﬂfl + agﬂjg) = Q1 fz(ml) +O{2f2(1‘2)

——
=01(z1)
= alﬁ(xl) + Oégg(.%'g).

Finally, ¢(z) = {(z) < p(x) for some ¢ for every z.

Zorn’s Lemma now provides the existence of a maximal element (L,¢) € £ of £L. We have
to prove that L = E. Suppose the opposite, then there exists zp € E \ L. By Lemma
4.2, there exists g € (L + Raxy)" with g|p = ¢ and g(z) < p(x) for all z € (L 4+ Rxp). But
then we have (L,¢) < (L 4+ Rxg,g). This contradiction shows L = E, which proves the
lemma. O

The following is also called the analytic version of the Hahn-Banach theorem.

Theorem 4.4. Let E be a vector space over K, F a linear subspace and f € F'. Let
p: E— R be a seminorm on E, i.e. forallz,y e E, A€ K

p(z+y) < p(x) +p(y) and
p(Az) = [Alp(x).

Suppose that |f(z)| < p(x) for all x € F. Then there exists an £ € E' with l|p = f and
[0(x)| < p(x) for all x € E.

Proof. First consider K = R. Then f(z) < p(z) for all € F and p(azx) = ap(z) for all
x € E, o > 0. By Lemma 4.3, there exists some ¢ € E’ with

U = and €(z) < p(a)
for all x € E. Since also
—t(a) = (—a) < p(—2) = plx).

we have [¢(x)| < p(z). The case K = C will be discussed in the exercises. O

Finally we arrive at what the Hahn-Banach Theorem for normed spaces. It says essentially
that we may extend continuous linear functionals from (arbitrary) subspaces to all of our
space without enlarging the norm.

Theorem 4.5 (Hahn-Banach Theorem). Let E be a normed space, F' a linear subspace
of E. Then for each f € F* there exists some { € E* with

lr=f and [l =71l

Proof. Let p be defined by
px) = [[flll=]-

Then p is a seminorm - the properties are inherited from the norm properties of ||-||.
Furthermore |f(z)| < p(z) for all x € F. By Theorem 4.4, there exists ¢ € E’ with

lp=Ff and [f(z)] < p(z) = |[fll]l]l.

This proves in particular that ¢ € E* and ||¢|| < ||f||. Because of ¢|p = f, the reverse
inequality holds. Thus ||¢|| = || f]|- O
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Remark 4.6. If G is another normed space, we remark that it is in general not possible
to extend an operator T' € L(F,G) to an operator S € L(F,G) having the same norm.
One can show, however, that this can be done if G = ¢, (by applying the Hahn-Banach
Therem to each component). In the case G = ¢y, by a little more effort, it can be shown
that we can extend S € L(F,cg) to T € L(E,cp), where at least ||S|| < 2||TR. On the
other hand, let E be a Banach space, F' C E a non-closed subspace and T' € L(F, F) the
identity. Then there is no S € L(E, F) extending 7.

Now we turn to some important corollaries.

Korollar 4.7. Let E be a normed space and F' a linear subspace of E and x € E such
that
0:=inf ||z —y| >0.
Inf e =yl

Then there exists an £ € E* with
lp=0, ||l =1 and fl(x)=94.
In particular, for any x # 0 there exists an ¢ € E* with ||¢|| =1 and {(z) = ||z].
Proof. Let G = F + Kz and g: G — K be defined by g(y + Az) =M fory € F, A e K. g

is well defined, since z ¢ F implies G = F +Kz. Further g is linear, g|p = 0 and g(x) = 4.
We now claim ||g|| = 1. There holds

l9(y + M) = [Al6 = [A] inf ||z — ]|

= inf |A\z — Az|| = inf ||z + \z| < ||y + \z||.
zeF zeF

Thus ||g|| < 1. Secondly, for every &€ > 0 there exists a z, € F with § < ||ze + z|| < d +e.
It follows that
9@+ 2e) =0 > [l + 2z — €

and thus
1) I3 I3

= >1—-—2>1—-=.
otz = etz 6
Now apply Theorem 4.5 to lift g up to E*. For the in-particular part, choose F' = {0}. O

g (7 + 2 (@ + =)

As a particular case we obtain a way to represent a norm which will be of grave importance.

Korollar 4.8. Let E be a normed space. Then for each x € E we have
| z]| = sup{|£(z)| : £ € E7, [[{]| <1}.
Moreover, this supremum is attained.

Proof. Let x € E. Then S :=sup{|{(z)|: £ € E*, ||{|| <1} <|z||. By Corollary 4.7 there
exists some ¢ € E* with ||¢|| = 1 and |[¢(x)| = ||z||, hence S = ||z| and the supremum is
attained. ]

We now turn to a geometric separation problem (the solution of which will lay on the Hahn-
Banach Theorem): Given two subsets U, V of a normed space F, under which conditions
is it possible to separate them by a closed hyperplane (the kernel of a continuous linear
functional). More explicit, we ask whether it is possible to find some f € E* such that

sup Re f(z) < inf Re f(x), (4.3)
zeU zeV
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or — in the real case — just supy f(z) < infy f(x). Thinking of subsets of two- or three-
dimensional space and separating by a line or a plane, it is intuitive to restrict on convex
subsets U, V (also, they should not overlap "too much”). Thus, we adress the following
question: Let E be a normed space and U,V € E convex subsets. Under which additional
assumptions does there exist some f € E* satisfying (4.3)7

To investigate this we need the help of Minkowski functionals.

Definition 4.9. Let E be an arbitrary vector space over K and let C' C E be some subset.
Then the Minkowski functional pc: E — [0, 00] is defined by

pc(z) =inf{a >0:2z € aC}.
The set C is called absorbing if po(x) < oo for all x € E.

Lemma 4.10. Let E be a normed space and C' C E be an open, conver subset containing
0. Then

(i) The Minkowski functional pc is sublinear.

(ii) The set C' is absorbing. In fact, there exists M > 0 such that pc(x) < M||x| for all
r e k.

(iii) The set C' can be described as
C={zxeFE:pc(r)<l1}.
Proof. Homework. O

We are ready to state and prove our first separation theorem.

Theorem 4.11 (Hahn-Banach separation theorem). Let E be a normed space and U,V C
E disjoint convex subsets. If further U is open, then there exists f € E* such that

Re f(u) < Re f(v)
forallue U andv e V.

Proof. Step 1: We assume that V consists of a single point, i.e. V = {x¢} for some
xg € E. Further, we restrict to the case K = R — the proof for the complex case is done
similarly as you did for theorem 4.4 in the exercises.

We have to prove the existence of some f € E* sich that f(z) < f(xg) for all z € U.
W.lLo.g. assume 0 € U. Otherwise fix ugp € U and translate by ug: the shifted spaces
U —ug and V — uy still satisfy all of our assumptions and f(z) < f(zg) for all z € U is
equivalent to f(z —wup) < f(xp—wp) for all x € U by linearity of f. Now that we justified
the assumption 0 € U let py be the Minkowski functional of U. We shall prove

pu(xo) =inf{a>0:20 €U} > 1. (4.4)

Clearly, 2o ¢ 1-U = U as UNV = (. Thus for « € (0,1) we have 2o ¢ aU since
aU C aU+ (1 —a)U C 1-U by convexity of U. This shows (4.4).

Now let F':= span{zo} and define ¢: F — R, Axg — A. Then ¢ is obviously linear and ¢
is dominated by py, i.e. p(y) < py(y) for all y € F. To see this, note first that for A > 0
we have

e(Azo) = A < Apu(wo) = pu(Azo)
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by (4.4) while for A < 0 there holds
e(Axg) = A <0 < py(Azo) .

Now, lemma 4.3 ensures the existence of f € E’ such that f|r = ¢ and still f(z) < py(x)
for all x € E. In particular, f(xzg) = ¢(z9) = 1. By lemma 4.10 there exists M > 0 such
that py(z) < M||z| for all z € E, implying continuity of f by

£f(x) = f(£z) < pu(£z) < M|z,
thus f € E*. The claim now follows from lemma 4.10 as

f(@) < pu(x) <1 = f(xo)

for all x € U.
Step 2: Now, let V' be an arbitrary convex subset disjoint to U. Define

W:=U-V=|JU-v)
veV

which is nonempty and convex (since U and V' are nonempty and convex) and open as a
union of open sets. Applying step 1 to W and {0} yields f € E* such that f(u —v) <
fO)=0foralueU,veV, ie f(u) < f(v)foralueU,veV. O

In a second separation theorem we will separate closed sets from compact sets.

Lemma 4.12. Let (X,d) be a metric space and let A, B C X be two nonempty subsets
where A is compact and B is closed. Then

dist(4, B) := inf{d(a,b) :a € A,be B} >0.
Proof. Tutorials. O

Theorem 4.13 (Hahn-Banach strict separation theorem). Let E be a normed space,
U,V . C E nonempty, disjoint and conver subsets. Further, let U be closed and V be
compact. Then there exists f € E* and a1 < ag € R such that

Re f(u) < a1 < az < Re f(v)
forallue U andv e V.
Proof. By the previous lemma, d := dist(U,V) > 0. Let 0 < r < d and let

uelU

which is open and convex (a neighborhood of U. Furthermore, U, NV = () since for all
u+x €U, veV we have

[(u+2) —ol 2 flu— vl = [[z]| =d—r>0.
By our first separation theorem 4.11 there exists f € E* such that

Re f(u+z) < Re f(v)
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for all w4z € U, v € V. Now, let y € U1(0), hence also —y € U1(0) and £5y € U,(0).
Therefore,

Re f (u:l: ;y> =Re f(u) £ gRef(y) < Re f(v)

for all w € U, v € V and thus

mﬂw+;§%J%ﬂM§waw

As we take the supremum of the interior of the unit ball, we may rewrite this as
Re f(u) + 5| < Re f(v).
Letting € := §|| f||, we have
Re f(u) < Re f(u) + % < Re f(u) + & < Re f(v).
Now, we have proved the claim by setting

ap :=supRe f(u) and a9 := inf Re f(v).
uelU veV

O]

In the rest of this chapter we will use the Hahn-Banach Theorem to study annihilators
and reflexivity.

Definition 4.14. Let F be a normed space, M C F an arbitrary subset of £ and L C E*.
Then the annihilator of M in E* is defined by

M+ :={0 e E*:{(x)=0forall z € M}
and the annihilator of L in E is given by
L, ={ze€FE:{l(zr)=0forallle L}.

Remark 4.15. The annihilators are closed linear subspaces of E* and F, respectively. This
follows from the continuity of ¢ — ¢(z), x +— £(x).

Our first result concerns annihilators of annihilators.

Lemma 4.16. Let E be a normed space and @ # M C E. Then (M), is the closed
linear hull of M, i.e. the smallest closed linear subspace of E which contains M.

Proof. If x € M, then /(z) = 0 for all £ € M*, thus 2 € (M~*),. Hence, M C (M™),.
Now let F' be the closed linear hull of M. By Remark 4.15, F C (M*),. Assume there
exists z € (M=), \ F. Corollary 4.7 secures the existence of an £ € (M1)* with £|p =0
and £(x) # 0. Theorem 4.5 now implies the existence of an f € E* with f|1), = ¢

The functional f is in M+ because of f|r = f|p = 0 and M C F. But f(z) # 0. A
contradiction! O

Also, we are able now to characterize the dual space of a subspace and of quotient space.

Theorem 4.17. Let E be a normed space over K, and F' C E a linear subspace.
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(i) The linear operator
O: E*/F- - F*, &(f+ FY) = flr,
f € E*, is an isometric isomorphism.

(ii) If F is closed, then the linear operator
O: (E/F)" — F', (®f)(z) = f(z + F),
x € E, fe(E/F)*, is an isometric isomorphism.

Proof. (i). Consider the map T: E* — F* Tf := f|r, f € E*. We have ker T = F*.
Hence, @ is well-defined, linear, and injective. By Theorem 4.5, for each ¢ € F* there
exists some f € E* with f|r = ¢. Hence, ® is surjective. Finally, let f € E*, and choose
g € E* such that

lgll = Ifl7l and  glr = flF-

Then, we obtain

If + FHI < IIF + (9= Oll = llgll = I flpll = | @(F + F)II.

On the other hand, for all g € F'*,

|2 + F) = If1ell = 1(F + 9)lell < IIf + gl

Hence, [|®(f + F1)|| < |[f + F.
(ii). First, ®f: E - K, z — f(z + F), is linear. Since

[(@f) (@) = [f(x+ ) < [fI - Ml + FIF < 1A A=l

we have ®f € E*. If x € F, then (®f)(x) = f(F) =0, hence ®f € F+. Therefore, indeed
®: (E/F)* — F*. It is obvious that ® is linear and injective. To prove surjectivity, let
g€ Ft andlet f: E/F — K be defined by

fle+F)=g(x), z€E.

The functional f is is well-defined since F' C ker g. Moreover, f is linear, and for all x € F,
y € F we have

[flz+ ) =lg@)| =gz +y)| < gl - lz+yl,
which implies f € (E/F)*. In addition, ® f = g, and surjectivity is proved.
It remains to show that @ is isometric. For this, note that [(®f)(x)| < ||f|| - ||z, z € E,
implies ||®f|| < ||f]| for all f € (E/F)*. On the other hand, for each ¢ > 0 there exists

z € F with
|[z+Fll=1 and [f(z+F)>|f]—e¢.

Since 1 = ||z + F|| = infyep ||z + y||, there exists y € F with ||z +y|| < 1+ €. This implies

gl%g < 1 and hence
o) (22| < e P, W=
1+¢ 1+e¢ — 1+4¢
Thus ||®f] > A= " which yields ||®f]| > || f||- This proves that ® is isometric. O

1+¢
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We observe that one may naturally identify elements of a normed space with elements of
its second dual space.

Lemma 4.18. Let E be a normed space over K. For x € E let &: E* — K be defined by
2(l) =4(z), L € E*. Then Ag: E — (E*)*, Apx = &, is an isometric linear operator.

Proof. The operator Ag is linear, and for x € E we have
sup{|2()| : £ € E7, |[]| = 1} = sup{[é(z)] : £ € £, [|¢] = 1} = |||,

where the last equality follows from Corollary 4.7. This proves that indeed & € (E*)* and
that ||Apz| = ||Z| = ||z|| for all x € E. O

If we can identify a normed space with all of its bidual in this way (!), the space will be
called reflexive.

Definition 4.19. Let E be a normed space over K, and let Ag be defined as above. Then
Ag is called canonical map or canonical embedding of E in E** := (E*)*. The space F is
called reflexive, if Ap is surjective. The space E** is the bi-dual of E, and Ag(FE) is the
completion of E.

Remark 4.20. Only Banach spaces can be reflexive. The class of reflexive spaces is a highly
important class of Banach spaces. Intriguingly, there exist non-reflexive Banach spaces,
which are isometrically isomorphic to their bi-dual (like the James space). Moreover,
notice that finite-dimensional spaces are always reflexive because of dim E** = dim F.

We relate reflexivity of a space to reflexivity of subspaces, quotient spaces and dual spaces.
Theorem 4.21. Let E be a normed space over K.
(i) If E is reflexive and F C E a closed linear subspace, then F is also reflexive.
(ii) If E is a Banach space, then E is reflexive if and only if E* is reflexive.
Proof. (i). We have to show that for each ¢ € F** there exists some y € F' with

14
f(y) for all f € F*. For this, let ¢ € F** and let ¢: E* — K be defined by 1 (¢) := ¢
¢ € E*. Since

(f) =
(€|F)7

[ (O < Nloll - 1]zl < Nl - 111l
we have 1 € E™*. The space E being reflexive then implies that there exists y € E with
P(0) = L(y) for all £ € E*. Next, towards a contradiction, assume that y ¢ F'. Then there
exists some ¢ € E* with £(y) # 0 and ¢|r = 0. Hence, 0 # {(y) = ¥(¢) = ¢o({|r) = 0,
which is a contradiction. Finally, for f € F* there exists some ¢ € E* with ¢|p = f, hence

p(f) = ¢llr) =) = ly) = f(y)-
This shows that F' is reflexive.
(ii). Let E be reflexive. We need to show that for each u € E*** there exists some f € E*
with u(p) = ¢(f) for all ¢ € E**. For this, let u € E***, and set f(z) := u(z), x € E.

Then f € E*. Next, let ¢ € E**. Since there hence exists some x € E with £ = ¢, we
obtain

u(p) = u(@) = f(z) = 2(f) = o(f).-
Therefore, E* is reflexive.

For the converse, let E* be reflexive. Then, by the above, E** is reflexive. By (i), also
Agp(E) = Ag(E) is reflexive. The claim now follows from the fact that E and Ag(F) are
(isometrically) isomorphic (see Exercise Sheet 6, Exercise 1(ii)). O

Functional Analysis I 34



4 Hahn-Banach Theorem and Corollaries

Theorem 4.22. Let E be a Banach space and F C E a closed linear subspace. Then the
following are equivalent:

(i) E is reflexive.
(ii) F and E/F are reflexive.

Proof. (i)=-(ii). By (i) and Theorem 4.21(i), also F' is reflexive. By Theorem 4.21(ii), E*
is reflexive, hence F* is reflexive. By Theorem 4.17(ii), F'* is isometrically isomorphic
to (E/F)* which is therefore also reflexive. By Theorem 4.21(ii), this finally implies that
E/F is reflexive.

(ii)=(i). Let ¢ € E**. We will again use the isometric isomorphism
®: (E/F)* — Ft c E*, (du)(z) = u(z + F),

u € (E/F)*, x € E from Theorem 4.17. Then we can define ¢» € (E/F)* by ¢(u) =
o(Pu) for u € (E/F)*. Since E/F is reflexive, there exists some x € E with z + F = 1,
i.e.

p(Pu) = P(u) = (x4 F)(u) = u(z + F) = (Pu)(z) = 2(Pu),
u € (E/F)*. Hence, (¢ — 2)|pL = 0.
To utilize the reflexivity of F', we next define a suitable p € F**. For each f € F*, choose
some g € E* with g|p = f and ||g|| = ||f||. Then define p(f) := (¢ — &)(g). This is a

proper definition since for two extensions g,h € E* of f we have (¢ — h)|r = 0 and thus
g —h € F-. A similar argument shows that p is linear. Moreover,

PO <l =21 - llgll = lle = 2[ - 11l -

Thus, p € F**. As F is reflexive, there exists some y € F with p(f) = f(y) for all f € F*.
Now, we conclude that for all g € E* we have

9(9) = 9(y) = (9lr)(y) = p(glr) = (¢ — ) (h)

with some h € E* satisfying h|r = g|r and ||h| = ||g|r||. Hence, h — g € F* and thus

9(g) = (¢ — 2)(g) for all g € E*. Equivalently, p =&+ 9§ = x +y € Ag(FE), which shows
that F is reflexive. O

The next result is just another nice consequence of the Hahn-Banach Theorem.

Theorem 4.23. Let E and F be normed spaces, E # {0}. If L(E, F) is complete, then
sois F.

Proof. First, choose xy € E with ||zg|| = 1. Then there exists some f € E* with f(zg) =
lzoll = 1 = ||fll.- Next, let (yn)nen C F be a Cauchy sequence, and define 7,,: E —
F by Tz = f(@)yn, 7 € B. Since [Tuzll < |Fllellgnll = lgnllz] for = € B, we
have T,, € L(E, F). Further, ||T,x — Tzl = |f(2)||lyn — Umll < l|yn — yml|||z| implies
T =Tl < [|Yyn—yml|- Hence (T,)nen is a Cauchy sequence in L(E, F') and thus converges
to some T' € L(E, F). This implies y, = T,xog — Txg as n — 00, i.e. (Yn)nen converges
in F. U
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5 The Open Mapping, Closed Graph and Banach-Steinhaus
Theorem

In this section we will prove three theorems which are of fundamental importance in
operator theory — the field in functional analysis which deals with linear operators on and
between Banach spaces. These are the open mapping theorem, the closed graph theorem
and the Banach-Steinhaus theorem.

Starting with the open mapping theorem, we will need some lemmas.
Lemma 5.1. Let E be a normed space, F' a Banach space and T € L(E,F) surjective.
Then K1(0p) C T(K,(0g)) for some r > 0.

o
Proof. Since T is surjective, F' = |J T(K,(0g)). As F is complete, there exists some

n=1

(TKn(05)))” #0

by Remark 1.11 on page 7. Therefore, there exist yg € F and s > 0 with

m € N with

Ks(yo) C T(Km(Op)) =: A.
Now take y € Ks(0r). Then ||(yv + yo) — yol| < s and ||(yo — v) — yol| < s. Hence,
ytye Kq(y) C A.

If z1,20,2 € A, then —z, 3(21 4+ 22) € A. This implies y = 3((y + v0) — (vo — ¥)) € A.
Thus,
KS(OF) C T(Km(OE)) .

Hence, we conclude

1
K1(0F) = gKS(OF) C 3 T(Kn(0p)) = T(K=(0g)) .
The lemma is proved with r = m/s. O

Lemma 5.2. Let E be a Banach space, F' a normed space and T' € L(E,F). Suppose
further that there exists r > 0 with

Then
K1(0F) C T(K2(0R))

and T is surjective.

Proof. Let y € K1(0p). By induction, we define a sequence (y,)neny C T(K,(0g)) with
n

5]

for all n € N. By hypothesis, there exists y1 € T(K,(0g)) with ||y — y1]| < 3. Assume
that y1, ...,y are constructed, i.e.

on <y _ i 22’:) € Ki(0r) C T(K,(0g)).
k=1
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Then there exists yp+1 € T(K,(0g)) with

n+1

This shows that such a sequence exists.

<

[\DM—A

For each n € N, let x, € K,.(0g) be such that T(z,) = y,. Since |[27F 1z, || < 27F+1p

the sequence

n
k—1
k=1 2 neN

is a Cauchy-sequence in E. And as F is complete, we can define
o= D e

We have

: lzxll r
th_mz of—1 = Z of—1 =2r.

k=1

Tk
ol = lim HZ e

Thus x € K5-(0g). As the operator T is continuous,

] n $ n
T”JZJLH&OT<22/«1>ZI&ZQ 7

k=1

and therefore y € T(K2,(0g)). This shows K;1(0r) C T(K2-(0g)).
It remains to show that T is surjective. For this, let y € F, y # 0. We have
K1(0F) C T(E). Therefore there exists © € E with Tz = ” 7- Hence T(|lyl|z) =

Y
ol ©
0

We arrive at the Open Mapping Theorem. First, we should say what we mean by an open

map.

Definition 5.3. Let E, F' be normed spaces. An operator T' € L(E, F) is called open, if

T(U) is open in F for each open U C E.

As we have seen in the exercises, any open operator between normed spaces is surjective.
The Open Mapping Theorem is the converse of this statement for operators between

Banach spaces.

Theorem 5.4 (Open Mapping Theorem). For Banach spaces E, F, any surjective oper-

ator T € L(E, F) is open.

Proof. For an open set U C E and x € U there exists ¢t > 0 with K(x) C U. Then

K(0)=Ki((z)—z={y—z:ye Ky (z)} CU —x.
From Lemma 5.1 it follows that there exists some r > 0 with
Kl(OF) C T(KT(OE)) .

Lemma 5.2 implies
Kl(OF) C T(KQT(OE)) .
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Moreover, we have
K1 (0p) = 5:K1(0r) C 3-T(K2(0p)) = T(Ki(0p)) C T(U) — T
and hence
KQ%(T.%'):KZ%(OF)—FTJ}CT(U).
Thus, T'(U) ist open. O

The importance of this theorem may become clearer when we emphasize that it implies
the continuity of inverse operators between Banach spaces.

Corollary 5.5.
(i) Let E, F be Banach spaces and T € L(E, F) bijective. Then T~ is continuous.

(ii) If |-l and |||, are Banach space norms on E and if ||z|1 < c||z||2 for allz € E
and some ¢ > 0, then ||-||; and |||, are equivalent.

Proof. (i). By Theorem 5.4, T is open. Equivalently, T(U) = (T‘l)_1 (U) is open for
each open U C E, which is the continuity of 7.
(ii). Set T'=1d, consider T': (E,||-||1) — (E,]|-||2) and apply the first statement. O

Recall Example 3.9, where we saw a bijective operator with unbounded inverse. There,
the space F' was not complete, so if F is a Banach space, F' only a normed space, and
T: E — F bijective, T € L(E, F) does not imply that T~ is continuous.

Our next fundamental theorem will be the closed graph theorem, giving a criterion for

continuity.

Theorem 5.6 (Closed Graph Theorem). Let E, F' be Banach spaces and T: E — F be a
closed linear operator. Then T is bounded.

Proof. The product space F x F' is a Banach space and the operator T is closed, hence
the graph G is closed in F x F' and thus a Banach space. Now define S: Gy — E by
S(x,Tz) = x. This operator S is linear, bijective and continuous:

15(z, Tx)|| = ||lz|| < max{||z|, [[Tx|} = ||(z, Tz)]|.
By Corollary 5.5, S™!: E — G7 is continuous, meaning
ITz| < (2, T2)ll = 1S~ (@) < IS7H] fl«|
for all z € E. O
Remark 5.7. While we used the Open Mapping Theorem to prove the Closed Graph
Theorem, we could also use the latter to prove the first. Indeed, if £ and F are Banach
spaces and T' € L(E, F) is surjective, let us first assume that T is also injective. Then, 71
is a closed operator, since T' is. But the Closed Graph Theorem now implies continuity

of T~ i.e. openness of T. If T is not injective, we may factorize T as T = T - ®, where
®: F — E/kerT is the natural projection and T': E/ker T' — F' is now injective.

E/kerT

By the first step, T is open and since ® is open (Exercises), also T = T® is open.
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The following theorem gives a characterization of operators with closed range and is an-
other one of the central theorems of functional analysis.

Theorem 5.8 (Closed Range Theorem). Let X and Y be Banach spaces and let T €
L(X,Y). Then the following are equivalent:

(i

) The space ranT is closed.
(ii) We have ranT = (kerT™) | .
)

)

(iii) The space ranT™ is closed.

(iv) We have ran T* = (ker T')™".

Proof. (i)<(ii). There holds ranT = (ker T*), (c.f. Exercise).

(i)=(iv). Let ranT be closed. Let z* € ran T*. Then there exists y* € Y* with T*y* = x*.
Hence, for x € ker T' we have

a(x) = (T*y")(z) = y"(Tx) = y*(0) = 0,

in explicit ker T’ C ker z* and thus z*|, .. = 0 and therefore z* € (ker T)t, ie. ranT* C
(ker T)*. To show the converse inclusion, let 2* € (ker T')*. Define

f: X/kerT - K, fl[z]:=2"(z) T: X/kerT —ranT, T]x] = Tx.

f and T are well-defined, bounded and T is bijective. Corollary 5.5 implies that 71 is
bounded. Define 2* := foT~! € (ranT)*. Let y* € Y* be a Hahn Banach extension of
z*. For x € X we have

(T*y*)(x) = y*(Tw) = 2*(Ta) = f(T7'Tzx) = fl2] = a*(x)

and thus, z* = T*y* € ran T™.
(iv)=-(iii). Obvious.
To show that (iii) implies (i) we define the sets

Ry = {y €Y : thereis z € X with [jy — Tz|| < &[jy|| and |z| < NHyH}

First claim: Let M C Y be a subspace such that ranT C M C Ry for some N € N. Then
ranT = M.

Proof: Let y € M. Then there exists z; € X such that ||y — Tz1|| < |jy[| and [|21] <
N|y|l. Now, y —Txy € M +ranT = M C Ry. Thus, there exists xo € X such that

ly — Tar — Tas|||| < 3lly — Tl < %yl

and ||za|| < Nl|jy — Tz1|| < &¥|ly||. Proceeding like this, we obtain a sequence (x,) C X
with

ly = Tay = = Ty < grllyll and [z ]| < 5[yl
Setting w, = > j_;x, we have that (u,) is a Cauchy sequence and thus there exists

u € X with u,, — u. Therefore Tu,, — T'u but also Tu, =Tx; +---+ Tz, — y. Hence,
y=TuecranT.

This proves the first claim.
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Second claim: If M C Y is a subspace such that M ¢ Ry for all N € N. Then for each
n € N there exists y, € M with |y, = 1 such that for all z € X we have ||y, — Tz| > 3
or ||z|| > n.

Proof: For all n € N there exists v, € M, v, ¢ R,, (thus v, # 0). We put y,, := Hz—ZH Let
x € X. Then ||v, — T(||vp]|z)]| > %an” or ||||vnllz]] > nl||v.||. Hence ||y, — Tx|| > % oder
This proves the second claim.

Third claim: If ranT ¢ Ry for each N € N, then ran T* is not closed.

Proof: Consider X x Y with the norm

Gz )l = Nl + -

Then (X x Y, ||-||;) is a Banach space and graphT' is a closed subspace of X x Y. For
n € N define
Vi = {(%x,Tm) tx € X} = graph(nT) .

V,, is a closed subspace of X xY . By the second claim, there exists a sequence (y,) C ranT
with ||y, | = 1 such that for all 2 € X there holds ||y, — Tz|| > % or ||z > n. Hence

10, 90) = (G, T2)lly = (=32, 9 = T2)|l1 = Izl + Iy — Tzl > 3

and thus (0, y,,) has a positive distance to V;,. By Hahn-Banach there exists 2 € (X xY)*
with ||z%|| = 1 such that
23 (0,yn) = 1 and 2|, =0.
Now, forn € Nand y € Y we set v (y) := 2;:(0,y). Then y} € Y* and dist(y;:, ker T7) > 1,
because
(W =y )(Wn) = yn(yn) = 2,(0,4n) = 1

for all y* € ker T*, since ranT = (ker T*) . For x € X and n € N we now have

(T*yn) (@) = |y (T2)| = |2(0, Ta)| = |25 (52, T

n

)GVn - (%xa 0))

Hence, T*y} — 0 in X*. Now define the operator
A: Y/ kerT*" — ranT*, Aly*| :=T"y".

A is bounded and bijective and if further ran7* is closed, A~! is bounded by the Open
Mapping Theorem 5.4. We have Afy] = T*y} — 0 and ||[y}]|| = dist(y},ker T%) > 1.
Applying A~! yields [y%] — 0, thus ran T* cannot be closed.

This proves the third claim.

Finally, we can show that (iii) implies (i): Assume, ran 7™ is closed. Then by the third
claim, we have ranT C R, for some n € N. This implies ranT C ranT C R,, (for some
n € N). By the first claim, we have ranT =ranT. O

We now tackle the Banach-Steinhaus theorem. This name is frequently given to the
following Uniform Boundedness Principle but will here be reserved for another theorem.
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Theorem 5.9 (Uniform Boundedness Principle). Let E be a Banach space, F' a normed
space and let T C L(E,F). Let T be pointwise bounded, i.e., for each x € E there exists
M, < oo such that ||[Tz| < My for all T € T. Then T is bounded, i.e., there exists some
M < oo such that |T|| < M for allT € T.

Proof. For n € N let

E,={zeE:|Tz]|<nforallTeT}.

o0
By hypothesis, £ = |J E,. Let = lim z; with x; € E, for fixed n. Since ||Tz;|| < n

n=1 j—o0
for all j we have

[Tx]| = lim |[Tz;| <n.
J—00

Thus = € F,, and hence F, is closed. By Remark 1.11 on page 7 on Baire’s Theorem,
there exists some ng € N with

Eny #0.
Hence, K,(x) C Ey, for some x € E,;, r > 0. Let y € E with |Jy|| < r. Then y+ 2z €
K,(z) =z + K,(0). This implies
ITyll = 1T (y + =) = Ta|| < [ T(y + 2)|| + | T2 < 2ng (5.1)

for all T'e€ T. Now let y € E, y # 0 arbitrary. Then
r

= (£2)] <
[yl [yl

where the inequality follows from (5.1). This implies ||Ty| < 2:f—OHyH and thus ||T]| <
20, .

T

Remark 5.10. It is possible to prove the Uniform Boundedness Principle without using
Baire’s Theorem (instead using a “gliding hump argument”). One may find the outline of
such a proof as an Exercise in An Introduction to Banach Space Theory by Megginson.

Ezxample 5.11. In general, Theorem 5.9 does not hold, if F is not a Banach space. Consider
E =cy :={x = (n)nen € loo : T, = 0 for almost all n € N} C A,

the space F' being the field K and 7 being the sequence (fy), where f,(z) = nx, for
x € E. We see that T is pointwise bounded, since x,, = 0 from some n > N on, but
|| frnll =n for n € N.

We obtain a first consequence of the above theorem.

Corollary 5.12. Let E be a Banach space, F' a normed space and T,, € L(E, F'). Suppose
that (T2 )nen s convergent in F for every x € E. Then define T: E — F by

Tx:= lim T,x.
n—oo
Then T € L(E,F), (|T||)nen is bounded, and

1T} < Tim inf [[75,]].

41 Functional Analysis I



5 The Open Mapping, Closed Graph and Banach-Steinhaus Theorem

Proof. By definition, T' obviously is linear and (||7;,z||)nen is bounded. By Theorem 5.9,
|T.|| < M for all n € N. Hence, for all z € E

|72 = lim |Tuz] < M.

This shows that T' € L(E, F). Let (||T},||)xen be a convergent subsequence of (||, ||)nen-
Then

T2l = lim [Tl < ] lim T,

Thus
Hj || < klim ||1nk”’
—00

and hence
|7 < tim inf | 7
n—oo

The next lemma is a reformulation of Lemma 3.6.

Lemma 5.13. Let E be a normed space and F a Banach space. Let Ey be a dense linear
subspace of E, and Ty € L(Ey, F'). Then there exists a unique T € L(E, F') with

T|gy =To and |T] = |Tol -
We finally arrive at the Banach-Steinhaus theorem.
Theorem 5.14 (Banach-Steinhaus Theorem).

(i) Let E be a Banach space and F a normed space. Further, let T,, € L(E,F), n € N.
If (T)nen is pointwise convergent to some T: E— F which is linear, then

sup || 75| < oo.
neN

(ii) Let E be a normed space and F a Banach space. Further, let T,, € L(E,F), n € N.
If

(a) sup ||T,|| < oo and
neN

(b) there exists a dense linear subspace Eg of E such that (T,,x)nen is convergent in
F for each x € Ey,

then there exists some T € L(E, F) with Tx = lim, oo Tpx for all x € E.

Proof. (i). This is Corollary 5.12

(ii). For each y € Ey set Toy := lim, o Tpy, which exists by (iib). The operator Tj is
linear and, by (iia),

[Tyl = Jim, |1 Tuyl < sup | Tull o] < oo

Functional Analysis I 42



5 The Open Mapping, Closed Graph and Banach-Steinhaus Theorem

Hence Ty € L(Ey, F'). By Lemma 5.13, there exists some T' € L(E, F) with T|g, = Tp.
Let z € E, and ¢ > 0. Then let y € Ey with |Jz — y|| < e and choose N € N such that
Ty — Toy|| < e for all n > N, which is possible by (iib). Then for all n > N,

[Tz = Tzl < |[Tox = Tayl| + || Tay — Toyl| + [ Toy — Tz
<[ Tul o=yl <e <[I7llly—al

[Tallllz = yll + & + (1Tl ly — 2|
e(ITnll + 1+ 117711

e((sup Il +1-+ 171 ).
neN

—_———
<oo by (iia)

VANVA

IN

This implies T,z — Tz as n — oc. O

Also, the Uniform Boundedness Principle gives rise to a criterion for a subset of a normed
space to be bounded.

Theorem 5.15. Let E be a normed space and M C E. Then the following conditions are
equivalent:

(i) The set M is bounded.
(ii) For each f € E* the set f(M) C K is bounded”.

Remark 5.16 (Geometric interpretation of Theorem 5.15). Suppose that for every closed
hyperplane H in E (kernel of some f € E*) there exists some ¢ with M lying between
H +cand H —c. Then M is already contained in a ball.

Proof. (i)=-(ii). This follows from ||z|| < ¢ implying || f(z)| < c||f|| for all z € M.
(ii)=(i). Consider the set

M={2:f— f(z): 2 € M} C L(E*K) = E**.

Since M (f) = f(M), M is pointwise bounded by (ii). By Theorem 5.9, M is bounded.
Since the embedding is isometric, also M is bounded. O

This gives rise to a criterion for continuity of operators.

Corollary 5.17. Let E, F' be normed spaces and T: E — F be linear. Then T is contin-
wous if and only if foT € E* for all f € F*.

Proof. The operator T is bounded if and only if T'(K;(0)) is bounded in F. By Theorem
5.15 this is equivalent to f(T'(K;(0))) being bounded for all f € F™*, which means foT €
E* for all f € F*. O

2One also says that M is weakly bounded
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6 Weak Convergence and Weak Topology

We have already seen that the closed unit ball of an infinite-dimensional normed space
is not compact. Wishing to extract convergent subsequences under certain conditions,
we weaken the notion of continuity. This will lead us to weak convergence and the weak
topology.

Let us outline the concept of weak convergence. The key idea is to reduce the question
of convergence in a normed space to a scalar problem by applying any continuous linear
functional. As a motivation, remember convergence in K" was characterized by compo-
nentwise convergence. From our point of view, sending a vector to one of its components
defines a continuous linear functional and these functionals in fact span the whole dual
space of K". Now, weak convergence will be a natural generalization.

Definition 6.1. Let E be a normed space. Then (x,)neny C E is weakly convergent to

x €k, if
f(zy) — f(x) for all f e E*.

Then z is called the weak limit of (z,,), and we write x, — .

Remark 6.2.

(a) Convergence implies weak convergence, i.e. if (x,)peny C F converges to z € E
(w.r.t. the norm), then (z,) is also weakly convergent to x. To see this, observe
[f(@n) = f(@)| = | f(2n — @) < |[flll2n — ]| = 0 as n — oo

(b) The weak limit of a weak convergent sequence is unique, i.e. if (z,,)neny C F is weakly
convergent to both x € F and y € F, then x = y: Since (2, )nen converges weakly
to x and y, it follows that f(x) = f(y) and thus f(x —y) = 0 for all f € E*. Hence
x =1y (see Corollary 4.8).

(¢) If (xp)nen C E and (yn)nen C E are weakly convergent sequences with z,, ~» = and
Yn — y, then (2, + Mn)nen, A € K, is weakly convergent to 2 + A\y. Thus, the
linear operations on F are compatible with weak convergence. For this, note that

f(xn + )‘yn) = f(xn) + /\f(yn) - f((l)) + )‘f(y) = f(x + )‘y)'
(d) The converse of (a) is in general not true:

1
Ezample: Let E = C|0, 1], endowed with the Ly-norm || f]|2 := (f01|f(t)|2 dt) 2 Tor
fn(t) = sin(nt) we have

1
. 1 1 1

so (fy) is not convergent to 0. But f,, — 0 as n — oo.

(e) It can be shown that for sequences in ¢1 convergence is the same as weak convergence
which is sometimes called Schur’s property. (Proof uses Remark 3.13/Lemma 3.15.)

Another point of view is that weak convergence is just “pointwise convergence on any
element of the dual space”. This becomes more natural in the following definition.

Definition 6.3. Let E be a normed space. Then (f,)nen C E* is weak*-convergent to
f e E* if
fu(x) = f(z) for all x € E.

We write f, v, f.
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Remark 6.4. Remark 6.2 (a), (b), (c¢) holds similarly.
We will now apply the Banach-Steinhaus Theorem to these new concepts.

Theorem 6.5. The following statements hold true:

(i) Let E be a normed space, (xn)nen C E, x € E. Then the following conditions are
equivalent:

(a) T, > .
(b) We have:
(I) supljzn|| < o0
neN

(IT) There exists a dense subspace D C E* such that

f(zn) = f(x)
forall f € D.
(ii) Let E be a Banach space, (fn)neny C E*, f € E*. Then the following conditions are
equivalent:
(a) fo [
(b) We have:

(1) sup||fnll < oo
neN

(II) There exists a dense subspace D C E such that

fo(@) = f(2)
forallx € D.

Proof. (i).(a)=(b). Since (z,) converges weakly to z, we have f(x,) — f(z) as n — c©
for all f € E*. This implies (II). Moreover, {f(z,) : n € N} C K is bounded for each
f € E*. By Theorem 5.15, also {z,, : n € N} is bounded, i.e. (I) is true.

(b)=(a). For this, consider the canonical embedding of E in E**. Then, by (II), &,(f) —
2(f) for all f € D and ||Z,] = ||zn||. By the Banach-Steinhaus Theorem (applied to
(Zn)nen, T € L(E*,K) and using (I)) we obtain #,(f) — Z(f) as n — oo for all f € E*
and thus f(z,) — f(z) for all f € E*.

(ii). This is Banach-Steinhaus Theorem (Theorem 5.14). O

We arrive at a first theorem ensuring the existence of (weak®-)convergent subsequences
under certain conditions.

Theorem 6.6. Let E be a normed space, which is separable (i.e. there exists a countable
dense subset). Then every bounded sequence in E* contains a weak®-convergent subse-
quence.

Proof. Let {x1,x2,x3,...} be a dense countable subset of E and let (f,)neny C E* be a
sequence in E* with || f,|| < C for alln € N, C' € K fixed. First, we have that the sequence

(fn(@1))nen CK
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is bounded, hence there exists a convergent subsequence

(fr1(x1))neny C K.

Also (fn1(22))nen C K is bounded, hence has a convergent subsequence (fy2(22))nen C
K. We continue this way and select the diagonal sqeuence

gn ‘= fn,na neN,

of (fn)nen. By construction, (gn(zm))nen is convergent for any m € N. By the Banach-
Steinhaus theorem, we know that (g )nen is pointwise convergent to some g € E*. Thus

g g. 0
Ezample 6.7. The separability of F is neccessary condition in Theorem 6.6. In general,
without separability, Theorem 6.6 is not true. For this, consider F = l, £ = (Zn)neN
and define the sequence (f,) by fn(x) = zp, n € N. Then || f,|| = 1 for all n € N, which
implies boundedness. Let (fy, )ken be a subsequence of (fy)nen. Then, for z = (z,), € E
defined by
|1 n=mngand k is even

" 0 otherwise
we have that
1 kiseven

0 otherwise.

fnk(J:) = {

Hence fp, (x) is not convergent and (f,,) has no weak*-convergent subsequence.

After having discussed weak and weak™ convergence, we will introduce corresponding
topologies, the weak and weak® topologies. The weak topology of an infinite dimensional
space and the weak™ topology on the dual of an infinite-dimensional Banach space will not
be metrizable, i.e. we cannot define them by giving a metric. Instead, we will need the
notions of general topology, using the language of open sets to define a topology. Let us
mention the most basic definitions.

Definition 6.8 (An excursion to topology). Let X be a nonempty set

(i) A topology T on X is a family of subsets of X with the following properties:

(T1) The empty set and X are contained in 7, i.e. ), X € T.

(T2) If v C T, then Uge, S €T.

(Tg) If S1,...,5, € T, then m;:1 SeT.

The pair (X, T) is then called a topological space. The sets in T are called open and
the sets X \ U, U € T, are called closed.

A subset B C 7T is called a basis for T, if each U € T can be written as the union of
elements of B.

Remark: If (X,d) is a metric space, then the set of open subsets (w.r.t. d) is a
topology on X, the topology induced by d. The set of open balls U (z) is a basis for
T.

(ii) A family & C 7 is an open covering of X, if X C Uycy. The space X is compact, if
every open covering contains a finite subcover.

Functional Analysis I 46



6 Weak Convergence and Weak Topology

(iii) Let X, Y be topological spaces. Then f: X — Y is continuous, if f~1(U) is open in
X for every open set U C Y. If f is bijective and f, f~! are continuous, f is called
a homeomorphism.

Remark: A continuous function f: X — Y maps compact sets to compact sets.

Proof. Let K C X be compact and i an open covering of f(K). Then, by continuity

of f,
FH) ={f(U): U ey}

is an open covering of the compact set K, hence there exists a finite subcover
Y th),...,f~Y(Uy,). Thus, Uy, ...,U, is a finite subcover of il. O

Lemma 6.9. Let (X,T) be a topological space, v C T, and B the set of all finite intersec-
tions of sets in . Assume furthermore that B is a basis for T. Then, if each open cover
U C vy of X contains a finite subcover, X is compact.

Proof. First, towards a contradiction, assume that there exists a cover g C T of X
without a finite subcover. Define

Q:={UCT:4D 4y and U does not contain a finite subcover} .

Then  # (), since $y € Q. Also, Q is partially ordered by inclusion “C”.

Claim 1. € satisfies the hypothesis of Zorn’s Lemma.
Proof. Let K be a chain in ) and set

ﬂ::U{ﬂ:ﬂeK}.

If {{ contains a finite subcover, then there exist $; € K, U; € $4;, i = 1,...,r, with

Since K is a chain, there exists {;, € K with &; C &;,, 7 =1,...,r. Thus i, contains the
finite subcover {U;};_,, which is a contradiction. Therefore, {l does not contain a finite

subcover, which implies { € Q. Claim 1 is proved.

By Zorn’s Lemma there exists a maximal element M € Q (i.e. no element in 2 is larger
than M (contains M)).

Claim 2. f A BeT, A¢ M, B¢ M, then ANB ¢ M.

Proof. Since A ¢ M and M is maximal, it follows that M U{A} contains a finite subcover
{A,My,...,M,}. Similarly M U {B} contains a finite subcover {B, M7,..., M/ }. This
implies {A N B, M,...,M,,Mj,...,M] } is a finite subcover of M U {A N B} of X,
therefore AN B ¢ M. By induction, A;,..., A, ¢ M and thus ([_; 4; ¢ M.

Claim 3. We have
U wvm= | M.
MeM MeynM

Proof. Let x € M € M. Then there exist S1,...,S, € v, such that

.
:ceﬂSiCM.
=1
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Since the existence of a finite subcover of M U {S; N...N S,} implies the existence of a
finite subcover of M U {M} = M, we have that MU {S1N...NS,} € Q. Because of M
beeing the maximal element of © and claim 2, there exists some ¢ € {1,...,r} such that
S; € M, hence x € S; € M N~. This proves Claim 3.

Since M covers X, claim 3 implies that M N~ is another cover of X which has, by hypoth-
esis of the lemma, a finite subcover. Hence M has a finite subcover, which contradicts
M e Q. O

Lemma 6.10. Let X # () and let v be a set of subsets of X, i.e. v C P(X). By L denote
the set consisting of all finite intersections of sets in vy, the empty set and X itself. Let T

be the set which consists of all unions of sets in L. Then T is a topology on X, and L is
a basis for T.

Proof. Tutorials. O

Definition 6.11. Let X # () and v C P(X). Then the topology defined in Lemma 6.10
is denoted by T (vy). If (X,7) is a topological space, a set v C P(X) is called a subbasis
for T,if T =T ().

Lemma 6.12. The intersection of arbitrarily many topologies on a set X is again a
topology on X. For a set v C P(X) we have

T(vy) = ﬂ{’T : T is a topology on X with v C T} .

That is, T (vy) is the smallest topology containing ~y.

Proof. Exercise. 0

Definition 6.13. Let X be a set, I an index set, let be (X;,7;) topological spaces and
fi: X = X;, i € I. The weak topology with respect to the mappings f; is defined as T (v),
where

v = {f[l(V):VE'E, 2'6]} .
This is just the “coarsest” (smallest) topology on X under which all f; are continuous.
Lemma 6.14. Let X, I, X;, T; and f; be as above. Fori € I let v; be a subbasis of T;.
Then the weak topology T with respect to the f; is given by T (vy), where

v = {f{l(V) Ven,ie I} )
Moreover, T is the smallest topology on X with respect to which all f; are continuous. In
particular, each f; is (X, T)-(X;, T;)-continuous.
Proof. The second claim is almost immediate from Lemma 6.12. The first is exercise. [

Definition 6.15. Let E be a normed space over K. The weak topology on E is defined as
the weak topology on E with respect to the mappings f: F — K, f € E*. It is denoted
by o(E, E*). The weak* topology on E* is the weak topology on E* with respect to the
mappings Z: E* — K, where Z(f) = f(x), z € E, f € E*. Tt is denoted by o(E*, E).

Remark 6.16. We have
o(E*,E) C o(E*,E*).

This follows from the fact that each & is an element of E** and hence o(E*, E**)-
continuous.
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Lemma 6.17. Let E be a normed space. Then a subbasis for of the weak topology o(E, E*)
on E is given by the sets {z € E : |f(x)—a| < e}, where f € E*, a € K and ¢ > 0. For the
weak”-topology o(E*, E) on E*, a subbasis is given by the sets {f € E* : |f(x) — a| < €},
where t € B, a € K and ¢ > 0.

Proof. This is a consequence of Lemma 6.14. According to this Lemma, a subbasis is
given by sets of the form f~1(U.(a)), where f € E*, a € K and ¢ > 0, since U¢(a), a € K,
€ > 0 form a basis of the standard topology on K. Now

FHU) ={z € B |f(zx) —a| <e}.
The second claim is proven by a similar argument. O

Definition 6.18. Let I be an index set and let (X;,7;),7 € I, be topological spaces.
Denote by X = [[;c; X; the cartesian product of the X;. Let further p; be the canonical
projection from X onto Xj, i.e. pj((«;)ier) = ;. Then the weak topology with respect to
the p; is called the product topology on X.

The next theorem actually is, again, a statement from topology, but is often counted as a
functional analytic one.

Theorem 6.19 (Tychonoff). Let I be an index set and let (X;,T;) be topological spaces.
Denote the product topology on X = [[;c; X by T. Then (X, T) is compact if and only if
each (X;,T;) is.

Proof. First, let (X, T) be compact. We know that each p; is continous. Therefore X; =
pi(X) is compact for all i € I.

For the converse, assume that each (X, 7;) is compact. By definition, v := {p; (V;) : Vi €
Ti,i € I} is a subbasis for 7. Suppose that (X, 7T) is not compact. Then, by Lemma 6.9
there exists W C = which is a cover of X but does not contain a finite subcover. For i € I
put

Wi ={VieTi:p;*(V;) € W}.
The family W; is then not a cover of X, since otherwise there would exist V; 1,...,V; , € W;
with X; = Up_; Vix (since (X;,T;) is compact). This would imply X = p; }(X;) =
Ur—1 pi_l(Vi’k), which would be a contradiction. For i € I, pick z; € X; \ Uy,ew, Vi and
ew

set © 1= (x;);er € X. Since W is a cover of X, there exists V' € W such that =z € V.
By the inclusion W C ~ there exist ¢ € I and V; € 7; such that V = pi_l(Vi). Now,
V; € W; by the definition of W;. But from p;(z) = x; ¢ V;, we conclude x ¢ V', which is a
contradiction. O

In the following, By for a normed space X will denote the closed unit ball K7(0x) C X.

Theorem 6.20 (Alaoglu). Let E be a normed space and let M C E* be bounded as well as
closed in o(E*, E). Then M is o(E*, E)-compact. In particular, Bg« is o(E*, E)-compact.

Proof. Put ¢ := sup{||f|| : f € M} and for x € F let A, := {z € K: |z|] < ¢||z||}. By
Theorem 6.19, A = [[,cp Az, endowed with the product topology 74, is compact (4, C K
is bounded and closed, thus compact). Define the mapping

p: M — A, o(f) = (f(2))eeE -
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Indeed, ¢ is well-defined because of |f(z)| < | fllllz]l < ¢|z| implying f(x) € A,. Evi-
dently, f is injective as ¢(f) = ¢(g) means f(z) = g(x) for all x € E, thus f = g. In fact,
¢ is a homeomorphism between M and ¢(M). The surjectivity is clear. To prove that ¢
is continous, we first conclude from Lemma 6.14 and 6.17 that the collection of sets of the
form

Via,z,e) ={g € E" : [g(x) —a| <&},
a €K,z € FE,e>0,is asubbasis for o(E*, E) and the sets

W(CL,JZ,E) = {(Zy)yeE : ‘ZJJ - a’ < 5}7
acK, reFE, >0, form a subbasis for T4. We have

o(V(a,z,e) N M) = W(a,z,e) Np(M). (6.1)

Together with the injectivity of ¢, this implies that both ¢ and ¢! are continuous®.

We will now prove that ¢(M) is closed in A. We will use that x € A if and only if UNA # ()
for all open neighborhoods U of z (this is a tutorial exercise). Let a = (az)zep € (M)
and define the functional

fE—=>K, z—a;.

To show that f is linear, let € > 0 be arbitrary and let x,y € E, A, u € K. Then the set
W= W(CLI, €z, 5) N W(a’yv Y, E) nw (a>\:v+lty7 Az + Hy, 8)

is a Ta-open neighbourhood of a (a is in all the sets by definition and finite intersections
of open sets are open). Therefore, there exists g € M such that ¢(g) € W. Hence, we
have

laretpuy — 9(AT + py)| + [Ag(z) — Aag| + [ug(y) — pay)|
e+ |Ale + |ule.

’aA:BJruy — (Maz + May)‘ <
<

Since ¢ was chosen arbitrarily, we conclude that ax;i,y = Aaz + pay, which is linearity.
Moreover, we have |f(z)| = |az| < c||z|| for all x € E, thus f is bounded. Now let
U € o(E*, E) be a neighborhood of f. Then there exist ay,...,a, € Kand z1,...,z, € E
and ¢ > 0 such that f € N;_; V(ak, zk, €) C U. This is because the sets of that form form
a basis of o(E*, E). This implies |as, — ai| = |f(xr) — ax| < € for all k and thus

n
a€ ﬂ W(ag, xp, €) .
k=1

Since a € ¢(M), it follows that
n
ﬂ (ag,zr,e) # 0.

From (6.1) it is seen that also M N;—; V(ak, zk, €) is nonempty. As M is o(E*, E)-closed,
we conclude that f € M (any neighborhood U of f has non-empty intersection with M,
thus f € M = M.) This means a = ¢(f) € (M) and thus ¢(M) is closed. Since A is
compact, ¢(M) as a closed subset is also. As ¢ is a homeomorphism from M to ¢(M),
the set M is compact in o(E*, E).

30ne easily proves that f: X — Y is continous if for a subbasis v, f (V) is open in X for all V €
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Now we prove that Bpgs« is compact. It is sufficient to prove that it is weak*-closed, or
equivalently, that

{feE :lfl > 1}

is open. Let f € E* have norm larger than 1. Then there exists € E with [|z| = 1 with
|f(z)] > 1. And since

V(f(z),z,|f(x)] — 1) N Bg- =0

the claim is proven. ]

Lemma 6.21. Let E be a normed space, p € B, f1,..., fn € E*, and defineh: E — R

by )
h(z) = ;!ﬂﬂ) — fil=)*.
Then :
ot rle) =0
Proof. (missing) 0

Corollary 6.22. Let E be a normed space. Then BE is o(E**, E*)-dense in Bp«s.
Proof. For ¢ € Bg+ define (for ¢ > 0, fi,..., f, € E¥)

Z/{(gD,fl,...,fn,E) = {wEE** . ‘w(fz)—(p(fzﬂ <£f0ri:1,...,n} .

Then the sets U(p, f1,..., fn, €) are a basis for the neighborhoods of ¢ in o(E**, E*). By
Lemma 6.21,there exists an z € Bg, such that

lo(fi) — 2(fi)] < \/hle) < ¢
fori=1,...,n. Hence & € U(p, f1,..., fn,€). (and & € EE) O
Theorem 6.23. Let E¥ be a normed space. Then the following are equivalent:
(i) The space E is reflexive.
(ii) The unit ball By is o(E, E*)-compact.
Proof. (i)=-(ii). First, we have
AU, fi s fa€) = EQUE, f1,-. ., fn,€).

We have:
Ag: (E,0(E,E")) — (E™,0(E™, E"))

is continuous and a homeomorphism. By Theorem 6.20, Bg«« is o(E**, E*)-compact. By
(i) Bg = Az (Bg) is o(E, E*)-compact.

(ii)=-(i). (ii) implies that By is o(E**, E*)-compact, hence Bp is closed. By Corollary
6.22, Bg is o(E**, E*)-dense in Bg««. This implies that

Bp = B

and thus £ = E**, which is (i). O
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7 Hilbert Spaces and Riesz Representation Theorem

Definition 7.1. Let E be a linear space over K. A Hermitian form on E is a map
(-,): ExE =K

satisfying

(a) the homogeneity relation (Ax,y) = A(z,y) in its first argument,

(b) the additivity relation (x + 2’,y) = (z,y) + (2/,y) in its first argument and

(c) the hermiticity relation (x,y) = (y,x)
for all z,2",y € E, A € K. The Hermitian form (-,-) is called positive semidefinite, if
(z,2) >0

for all z € E. If further (z,x) = 0 < x =0, (-,-) is called positive definite. A scalar
product (inner product) is a positive definite Hermitian form. If (-,-) is positive definite,
then (E,(-,-)) is called an inner product space (space with a scalar product).

Lemma 7.2 (Cauchy-Schwarz Inequality). Let E be a K-vector space and let (-,-) be a
positive semidefinite Hermitian form on E. Then

[z, y)* < (2, 2)(y, )

forall z,y € E. If (-,-) is positive definite, then equality holds if and only if x and y are
linearly dependent.

Proof. For the sake of brevity, we write ||z| := \/{x,z) for x € E. As will be seen in the
next lemma, this is a norm if (-, ) is positive definite. By sesqui-linearity and hermiticity
of (-,-) we have for z,y € E:

2
[Pz = @, o[ = Il - 2Re (llyl%2, (2, )y) + (@, 1) Plly]?
= llylI*ll21 = I, ) > = Iyl (9]l = 1, 5)I7) -

This proves the Cauchy-Schwarz inequality and also that equality in it, in the positive
definite case, implies that x and y are linearly dependent. Finally, it is clear that |(z, y)|?> =
llz||?||y||? if  and y are linearly dependent. O

Lemma 7.3. Let (-,-) be a scalar product on E. Then
] = \/(z, )
defines a norm on E, and the map
(z,y) = (z,y), ExE—=K

1S continuous.
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Proof. By positive definiteness ||z|| = 0 is equivalent to z = 0. Also

Irall = /O Ax) = /AR (e, 2) = A2

By Lemma 7.2,

|z +ylI> = (z +y, 2+ y) = (z,2) + 2Re(z, y) + (v,y) < (z,2) + 2|{z,9)| + (y,y)
< lz)® + 2llz [yl + lylI* = (] + y])? -

Thus, ||-|| is a norm. For continuity we observe that

[{z,y) = (zo, yo)| < [{x = 2o, y)| + [(xo, y — wo)l < [l = zoll[lyll + llzolllly — woll
< [lz = zolllly = woll + llz — ol llyoll + lzollly — woll -

This is small, if both ||z — z¢|| and ||y — yo|| are small. O

Definition 7.4. Let (H,(-,-)) be an inner product space. If the normed space (H, ||-||)
with ||z| = /(z,z) is complete, then H is called Hilbert space.

Lemma 7.5. Let (E,||-||) be a normed space. Then the following are equivalent:
(i) There exists a scalar product (-,-) on E such that
]| =/ (2, )
forall x € E.
(i) For ||-||, the parallelogram identity
lz +ylI? + llz = ylI* = 2ll=]|* + 2lly]”
holds for all x,y € E.

Proof. (i) = (ii). This is an easy calculation.
(ii) = (i). First, assume K = C. Let us show that

(,9) =1 (o + ol — o — ol +ille + i) — ille — iy]]?) |

z,y € E, defines an inner product. First, (x,y) = (y,x) is immediate. Second, to prove
that (x + 2/, y) = (z,y) + (', y), we have to show that

lz + 2"+ yl* = llz + 2" =yl + iz + 2" + iy - il|lz + 2" — iy|?
equals
lz+yl1* = llz = ylI* +ille+iy|* — illz —ayl* + |2’ +y|* = o’ — y|* +illa’ +ay|* il 2"~ iy]*.
By (ii), we have for z € F

|z + 2"+ 2| = %Hx—i—x’—l—zHQ + %Hx—i—x’—l—zHQ

= |l + 21 + 1211 = glle + 2 = &[> + |2’ + 2| + 2] = glla’ + = — «]*.
Choose z = y and z = —y and substract. Then

lz + 2" +yl* = llz + 2" = y* = llz + y > + 2" + y > = (= = yI* + 2" = y[*).
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Next, choose z = iy and z = —iy and substract. This proves

(z+a'y) = (z,y) + (@' y).

Third, show that
(Az,y) = Mz, y) (7.1)

for all A € C, z,y € E. We already proved that (mz,y) = m(x,y) forallm e N, z,y € E.
Since obviously (—x,y) = —(z,y), this also holds for m € Z. For m,n € Z, n # 0, this
implies

<7Z:vy> = %(x,y%

A= Az, y) — ANz, y)

and thus

We know that

is continuous (since ||| is continuous) and zero on Q, hence on all R. Also (ix,y) = i(x,y)
follows by definition of (-,-), so that (7.1) is proved.

For K = R we define 1
N 2 o 2
() =5 (Il + P = llz = y]?) -

Then, similar arguments as above show that (-,-) is an inner product inducing the norm

1l O
Remark 7.6. Let (E,(-,-)) be an inner product space and Ag: E — E** the canonical
embedding of E into E**. Endow E with ||-|| = y/(-,:). The completion of (E,|-||) is
given by

H = Ap(E) C B*.

As Ap is isometric, the parallelogram identity also holds for Ag(FE). Since the norm on
E** is continuous, this identity also holds for H. On Ag(F) we set

(@, 9) = (z,y),

xz,y € E. By continuity, this inner product on Ag(FE) can be extended to H, so that
(H,(-,-)) is a Hilbert space, the so-called Hilbert space completion of E.

Lemma 7.7. Let H be a Hilbert space, K C H, K # (), convezx and closed in H. Then
there exrists a unique x € K with

inf = .
inf {1yl = o]

n—o0

Proof. Set d := infyck ||y|| and let (z,) C K with ||z,|| —— d. We show that (z,) is s

Cauchy-sequence: Since K is convex, we have %(xn + x,) € K for all m,n € N. Thus,

|xn + xm || > 2d. (7.2)
By the parallelogram identity we have

0 < flzn = 2ml® = 2(lzal® + llzm]|?) = llzn + 2m ] < 2(J2nll? + [l2m]?) — 44>, (7.3)
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For each ¢ > 0, there exists N, with [|z,[|* < d* + £ for all n > N,. By (7.3) we have
0 < o — zm|* <2(2d% + £) —4d*> = ¢

for all n,m > N. Hence (z,) is a Cauchy sequence. Let z := lim;,_,oc ©,,. Then z € K
since K is closed, and

2l = lim Jlzn ]| = d.
It remains to prove uniqueness: For this let 2,y € K with ||z| = ||y[| = d. Since 3(z+y) €
K by convexity, it follows that
1 2 z||? y|I? 1 2 2 2 xz —yl?
2 < |1 _ofl* L/ | RO |
<56+ <H2 ) -|se-u| =5+4-|%
This implies z = y. O

Definition 7.8. Let H be an inner product space. Then z,y € H are called orthogonal
(x Ly)if

(z,y) =0.
For M C H we define by

M+ :={yeH: (y,z)=0forall ze M}
the orthogonal complement of M.
Lemma 7.9. Let ‘H be an inner product space, M C H. Then
Mn M+ = {0},
and M~ is a closed linear subspace of H.

Proof. The first part follows directly from definition 7.8. The second part follows from
the properties of the inner product (-, ). O

Let M and N be subspaces of an inner product space with M NN = {0}. Then the sum
M + N is direct which we express by writing M + N. If, in addition, M L N, then we
write M @ N for the orthogonal direct sum. By Lemma 7.9, M + M+ = M & M*.

Lemma 7.10. Let M be a closed subspace of the Hilbert space H. Then
H=Me&M".
Proof. Let x € ‘H and set
K={zx—y:yeM}=ax—-M.
In particular K is closed. Since for y1,y2 € M
Az —y) + (1 =N@—1p)=2— Ay + (1 - Ny €K,
the set K is convex. By 7.7 there exists a unique x2 € K with

= inf .
2]l = inf ly|
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By definition of K, xo = x — x1 for some x1 € M. Hence, x = x1 4+ x3, and we are done if
we can show that zo € M. For this, let y € M \ {0} be arbitrary. Then

lz2l* < || 22 — Xy |I? (7.4)
———
eK—M=K
for all A € K. Choose A = <<Z2;/y>>. By (7.4)
(@ow) 1 o2 — L2
0.< [lo2 = gty — o) = -5 < 0.
This implies (x2,y) = 0, so x5 € M. O

Theorem 7.11 (Riesz Representation Theorem). Let H be a Hilbert space. Fory € H
define
fy: = K, fy(z) = (z,y).
Then fy € H* and || fy[l = [ly]-
Conversely, for each f € H* there exists a unique y € H such that

f:fy-

Finally, the Riesz map
y = fy 9 H — 7_[* 9

is conjugate linear, that is, fy, + fys = fyrty. and fry = Afy.

Proof. By definition of an inner product, f, is linear and y — f, is conjugate linear. By
Cauchy-Schwarz (Lemma 7.2), we have

[fy(@)] = [z, 9)] < llz(l[[y]

and thus ||fy|| < |ly||. Further,

Fy @)= () = llyll* = lyllllyl

and hence || f, || = ||yl

Now, let f € H*, f # 0, be arbitrary. We have to find y € H such that f(z) = (z,y) for
all z € H. For this, denote by N the kernel of f and find 2’ € H with f(2') = 1. Since
N is closed and H is complete, we can decompose 2’ as z + z with x € N and z € N+
(Lemma 7.10). Then

1= f(z) = f(2) + f(2) = f(2).

For arbitrary x € H we now have x — f(x)z € N and thus
f@) = (f@)z [21722) = (@ = f@)2) + F@)2 21 722) = (=, 121 22) = (z,0),

where y = ||z]|22. O

Remark 7.12. Note that the first claim in Theorem 7.11 also holds if H is merely an inner
product space. If the Riesz map ‘H — H*, y — f, is surjective, then H is a Hilbert space.

Proof. By assumption, y — f, is a surjective isometry from H to H*. The space H* is
complete, thus H is as well. ]
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Theorem 7.13. Let H be a Hilbert space and for f € H* let yy € H be defined by
f(x) = (x,yy) for all x € H. Then H* is a Hilbert space with inner product

(f9)m = (yg, ys)-
Proof. For f # 0 we have y; # 0 and thus
(£,1) = (ys.y5) > 0.

Further,
(fs9) = Wo,ur) = (s, vg) = (9, f)
and
(fi+ f2,9) = W Ypr+12) = W Yo + Ypa)
= Wg: Y1) + g ¥pa) = (f1.9) + (f2.9)
and

(ML 9) = (Wg ung) = (Yg: Ayp)
= Myg, yr) = [, 9)-

For f € H* we now have

(f. )y =(rur) = lysl> = IfI*  (Riesz map is an isometry).

Thus (-, )y« really induces the dual norm. Also, H* is complete. O

Corollary 7.14. Hilbert spaces are reflexive.

Proof. Let ¢ € H** be arbitrary. There is a unique f, € H* with

for all f € H*. Using the same notation as above,

U1, (F) = fyyr,) = Wraryp) = (f, fo) = o(f).
Thus g7, = ¢. O

Corollary 7.15. Let H be a Hilbert space and L C H a linear subspace, g € L*. Then
there is a unique f € H* with

fle =g and |[f]] = llg]-

Proof. Apart from uniqueness this follows from Hahn-Banach, Theorem 4.5 on page 28.
But there is a direct proof: Define g: L — K by continuously extending g. Then ||g|| = ||g]|-
So without loss of generality, L is closed, hence a Hilbert space.

By Riesz, there exists a y € L with g(z) = (z,y) for all € L, and ||g|| = ||y||. Define
f: M =Kz (z,y). Then f[r =g and ||f[| = [[yll = llg]-

To prove uniqueness, let f € H* with f'|, = g and ||f'|| = ||g||. By Riesz f'(z) = (z,v')
for some y' € H with [|y/|| = || f/||. Since f'|L =g, 0= (x,y —y) for all z € L. This means
y —y € Lt and thus ¢y = y + z with 2z € L. Then we have

LF1% = Mly'112 = lly + 217 = llyll* + 1217 = llgll* + l1=11%,

and hence z =0=y =9y = f=f'. O
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Theorem 7.16. Let H be a Hilbert space. If A € L(H) and ¢(z,y) = (Az,y) for
x,y € H, then ¢ is a sesquilinear form on H, i.e. linear in x and conjugate linear in y.
Further,

P, Y
sup EED]_ (7.5)
g0 llzllyll
Conversely for a sesquilinear form o with
sup @yl _
zy#0 |1z ll|y]

there exists a unique A € L(H) with ¢(z,y) = (Az,y) and (7.5).

Proof. Given some operator A € L(H), ¢ defined by ¢(z,y) := (Az,y) is sesquilinear.
Now,

A A
||A” = sup || $|| — su ||fA33H — SupHxH—l sup |< $7y>|
x40 ||| 0 ]| x#£0 y#0 llyll
A
R [ N O]
zyz0 2Nyl zyzo llzllyl]

Conversely, let ¢ by a sesquilinear form with M := sup, 4 % < 00. Then define

fo(y) = p(z,y).

fz is linear and bounded:

[f2 ()] = lo(z, y)| < M|yl

Thus, f, € H*. By Riesz, there is a unique z, € H with f.(y) = ¢(z,y) = (y, 2z,) and
Il 2|l = l|zz||- Define
AH—>H, =~ 2.

The map = — f, is conjugate linear as well as f, — z,, therefore their composition = — z,
is linear. Also,

e(x,y) = fo(y) = (¥, 22) = (22,y) = (Az,y),
which in particular implies

1Az||* = oz, Az) < M|z|||Az]l,

and thus ||Az| < M||z|| for all x € H. Hence, A € L(H), and ||A|| = M follows from the
first part.

For the uniqueness part, let B € L(H) with ¢(z,y) = (Bz,y). Then ((A— B)z,y) =0
for all x,y € H. In particular, with y := (A — B)x we conclude that (A — B)x = 0 for all
x € ‘H and therefore A = B. O

Remark 7.17. Let I be an index set and ¢3(I) the set of maps z: I — K with z(¢) # 0 for
only countably many ¢ and
Z\x(z)]Q < 0.

el
Then
<$,y> :Zx(z)y(z), xay€£2(1)7
el
defines an inner product on ¢5(I), and (¢2(I),(-,-)) is a Hilbert space. For I = N this is
the usual /5 defined in chapter 1. In this case, the Riesz Representation Theorem coincides
with Theorem 3.14 on page 23 (stating that £, = £7) for p = ¢ = 2.
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8 Orthogonality and Bases

Definition 8.1. Let E be a normed space, {z; : i € [} C E and x € E. Then the set
{z; :i € I} is called summable to x if for every ¢ > 0 there exists some finite I, C I such
that for all finite J C I with I, C J we have

S

icJ

<e.

Obviously, {x; : i € I'} can only be summable to at most one x € E. We write

T :ZZE:J%.

el
We call {x; : i € I} summable, if it is summable to some x € E.
Remark 8.2. If {x;};cr and {y; }icsr are summable, so are {\z;}ier and {z; +y; : i € I}.

There holds
ZE:4X$i==4Xj£:J%
el el

Z$i+yi22$i+zyi-

i€l i€l i€l

as well as

Lemma 8.3. Let E be a Banach space and {z;}icr C E. Then we have

(i) The set {x;}icr is summable to some x € E if and only if for every ¢ > 0 there exists
some finite I. C I such that for all finite J C I with I. N J = () we have

S

i€

< €.

(ii) The set {x;}icr is summable to x if and only if there exists a countable set J C I
with x; =0 Vi € I\ J and for any bijection N — J, k +— i}, we have

n
A, > i =
k=1

or, if J is finite, x =} ;5 T;.
Proof. (i). Let {x;}ic; be summable to = € E. For every ¢ > 0, let I, C I be finite such
that
D_ai
1€l
Let J C I be finite with J N I, = (). Then we obtain

in Z xi—in Z Ti—

icJ 1€ JUl i€l i€ JUl

< % for all finite L D I .

< +

E T, — T

i€l

B < £ +}£
JNI.=0 2 2’

where in the last step we used the fact that J U I; and I are both finite supersets of I.

Conversely, let for n € N the set J, C I be finite such that for each finite J C I with
J 0 Jy =0 we have ||Y;c; 2]| < L. Then

(yn) = (Ziejlumujn xi)neN
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is a Cauchy sequence since for m > n we have

1
< =
n

> o

ZEUZ; Jk\UZ:1 Ik

|Ym — ynll =

because Up; Ji\ Uk~ Jk is finite and disjoint from J,,. Let y = limy oo yn. For € > 0,
let n € N be such that ||y — y,|| < § and ||} ;e i]| < § for all finite sets L C I with
LN J, =0. We then have with I, := J;_; Ji for L D I,

Hy—zﬂvz SHy—Z!Ei Z T

i€l icl; i€L\I.

_|_

£
<lly =yl + 5.

since (L \ I¢) N Jp, = (0. This means that y = >,c; ;.
(ii). Let {z;}ier be summable to z. By (i), for n € N we can choose a finite J,, C I with

13 5y @3]l < L for all finite J C I with J N J, = 0.
The set {i : z; # 0} is contained in J,ecy Jn. To prove this, let i ¢ (J,cn Jn and take
J ={i}. Then J N J, =0 for all n € N. This implies

>

Vn € N.

= [l <

1
n

Thus, z; = 0 and {z; : x; # 0} is contained in a countable set, and hence is countable.
Let N = U,en Jns k — ik be a bijection (if |J,,cn Jn is infinite). Then

n
T = nh_}rr;o Z T, -
k=1
This can be seen as follows: For ¢ > 0, let I C I be finite with Hx —Yjes xJH < ¢ for all
finite supersets J of I.. Then choose N € N with
I.n{iel:x;#0} C{ay, :k=1,...,N}.

This is possible due to the bijectivity of k +— ¢;. The injectivity and the above now implies
that for every m < N, we have

< €.

m
xr = Z Lig,
k=1

Conversely, assume that {x; : i € I} is not summable to . Then there exists an ¢ > 0
such that for every finite I’ C I, there is some finite I” D I’ with

P Y

iel”

> €.

If J ={ie€ I,z; # 0} is not countable, we are done. Furthermore, J cannot be finite,
otherwise {x;}ic; would be summable to 3¢ ; z;.

Let N — J, | — j; be a bijection. Set I} = {j1} and I] some superset of Ij, say
Il = {i1,...in, }, with

> €.

ni
T T,
k=1
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Then set I = I{ U {j,} where r is minimally chosen with j, ¢ I{. Furthermore let
I =10 U{ins1,. . in,} with

> €.

na
T Ty
k=1

Continue this process inductively.

Then k +— i is a bijection (we have never chosen some i twice and k — iy is surjective
due to k € I})) and for all m € N

> €

Nm
T— ) @
k=1

thus >0 zi, — . O

Korollar 8.4. Let a; >0, i € I. Then {a; :i € I} is summable if and only if
S :zsup{Zai 2 J CIﬁnite} < 0.
ieJ
In this case, {a; : i € I} is summable to S.

Proof. If {a; : i € I} is summable, then S < oo follows directly from Lemma 8.3(ii).
Conversely, assume that S < oo and let ¢ > 0. Then there exists a finite I, C I such that

S—Zai<£.

i€l

Hence, the same holds with I, replaced by any finite J D I.. This shows that {a; : 7 € I'}
is summable to S. [

Remark 8.5. Let H be an inner product space and let {z;};c; be summable in H. Then

forally e H
<7>Zx27yzz<7>xl7y

il el

Proof. Let J C I be finite and ||z — >=;c; ;|| < €. Then for every y € H we have

DI

jeJ

<llylle-

oy = 3 ] < ol

jeJ
This proves the claim. O

Lemma 8.6. Let H be a Hilbert space and {x;}icr a family of pairwise orthogonal elements
in H. Then the following are equivalent:

(i) The set {z;}icr is summable in H.

(ii) The set {||lz;||*}icr is summable in R.

Moreover |Yic; #il|* = Sicsll@il|2. In particular, summability is not equivalent to absolute
convergence in infinite dimensions.
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Proof. (i)=(ii). For ¢ > 0, let I be finite satisfying

>

JjeJ

< ¢ for all finite J with JN I, = 0.

For z,y € H with z L y we have (“Pythagoras”)
l]* + [lyl* = ll= + yII*-

2
Hence 31,2 = HZ]EJ x]H < €2 for all finite J with J N I, = 0 - this is (ii).

(ii)=(i). If {||lzs]|*}ics is summable in R, then for all ¢ > 0 there exists a finite I, C I,
such that for every finite J with J NI, = 0,

2
ozl =D Nl <e.

jeJ jeJ

Thus, {z;}ics is summable in H. d

Definition 8.7. Let H be a an inner product space and M C H. The set M is called an
orthonormal system (ONS) if

xly VYVe#yeM and |z||=1 Vee M.

An orthonormal system M in H is called complete, mazximal or an orthonormal basis
(ONB) if for all orthonormal systems N with M C N we have M = N.

Remark 8.8. An orthonormal system M C H is complete if and only if M+ = {0}.

Proof. Let M be complete and let y € M*. If y # 0, then N := M U {y/||y||} is an ONS
with M C N. Therefore, y = 0 follows.

Conversely, assume that M+ = {0}, and let N D M be an ONS. Suppose there exists
y € N\ M. Then (y,x) =0 for all x € M. Hence, y = 0 follows. But ||y|| =1 as N is an
ONS. This implies M = N. O

Theorem 8.9. Let H be an inner product space and {x;};cr be an orthonormal system.

Then there hold

(i) the Bessel inequality

> M) <l

el
for all x € H.

(ii) and the Parseval identity, 7. e.
> Mz, zi)? = |2
el
holds if and only if
x = Z(:n, Ti)T; .

el
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Proof. (i). For all finite J C I, we have

2
0<|x— Z<l‘,l’l>l‘z
icT
=zl =D (w wa)(m,2) = Y (w,m) (@, w) + D (w2 (@, 25) (w3, 25)
ieJ i€J i,JE€J
= [lz|* = > _|(z, @) |-
icT

This implies that ;o ;|(z, 2;)|? exists and satisfies the Bessel inequality for all z € H.

(ii). From
2

= llzll* = D K, 2i)f?

icJ

x — Z(w,azﬁmz

ieJ
for all finite J C I, we obtain that

lz]I* =D @, za)

i€l

is equivalent to: For all ¢ > 0, finite I C I and finite J D I we have

lz]|* = > Iz, z:)* < e.

iceJ

This is again equivalent to: For all ¢ > 0, finite I C I and finite J D I; we have

2
T — Z(x,xz)xz <e.
ieJ
And this is equivalent to the summability to z of {(z,z;)z; : i € I}. O

Definition 8.10. The orthogonal sum H of Hilbert spaces H;, ¢ € I, denoted by
H = @ Hi7
el
is defined as the set of all
x = (vi)ier € [ M

iel
with the property that >,/ lz:||? exists (i.e., {||a;]|? : i € I} is summable).

Remark 8.11. The orthogonal sum H = @z’e 1 H; is a linear space, since for any elements
(x4)ier, (Yi)ier € H we have

D M+ will® < D llaal® + 2D s, ya)l + Y _llyil?

icl icl icl icl
< Dollwill® 23l lyll + D llyall?
icl icl icl
1/2 1/2
<D llwil® +2 <ZHMII2> <lein|2> + > [l
icl il il il

Also (-, ), defined by
()i (wi)i) = D (@i, i),
el
is an inner product on H.
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Lemma 8.12. Let H;, i € I, be Hilbert spaces.

(i) The space H = Djc; Hi is a Hilbert space.

(ii) We can interpret each H; as a subspace of H, i.e. there is an isometric isomorphism
from H; to some subspace of H.

Proof. (i). Let (zp,)n C H be a Cauchy-sequence in H, x,, = (zp)i, and let € > 0. Then
there exists an N, € N with

20 = 2ml® = [[(#n,i)i — (@ma)il> < e ¥n > Ne.
Then we obtain for all 7 € I

20 = Tmil® <D N2y — Tmgll* = [(@n); — (@my);lI° < e
jel

Hence (xy,;)y is a Cauchy-sequence in #H;. Now, let
x; = lim @ ;.
n—o0o
For each finite J C I and n > N, we have

Z‘|wn,z - wzHQ = ngnoozuwn,z - wm,iHQ <e
e e

and thus

(Z H%‘H2> " < <Z\Iwn,i —wi|!2> " + <Z||wn,i

iceJ ieJ ieJ

1/2
2) = et/ + |zl -

This shows that both {||x,,;—2;]|? : 4 € I'} and {||z;]|? : 4 € I} are summable (see Corollary
8.4) and

ZHxn,z - -TZHQ <e¢ Vn,m> N;.

i€l
Hence, z := (z;); € H and ||z, — x| — 0 as n — oc.

(ii). Let ¢ € I and consider the map
Hi = H, y— (SUj)je[ with Tj = 6Z]y
This map is linear and isometric. O

Theorem 8.13. For an orthonormal system {x; : i € I} in a Hilbert space H, the following
conditions are equivalent:

(i) The system {z; :i € I} is complete.
(ii) The space span{x; : i € I} is dense in H.

(iii) If H; := spanwx;, i € I, then @z‘el H; is isometrically isomorphic to H by

(Nizi)ier — Y Niti -
iel
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(iv) For all x € H,

x = Z<CL‘, TV -

el

(v) Forallx,y € H,
(z,y) = Z<iﬂa$i><$i,y> :

el
Proof. (i)=-(ii). Define L := span{z; : i € I'}. Then, by Lemma 7.10,
H=LoL".

But L+ C {z;:i € I}* = {0} by Remark 8.8. Hence L = H.
(ii)=(iii). Let F be the linear subspace of all (\z;)ies € Dies Hi with A; # 0 for an at
most finite number of indices ¢ € I. Since

il

2
= > Al zg) =D I = [(Aizier |,

i,jel iel

the linear map

el
is isometric. Since F' is dense in @ie 1 Hi (by definition of F'), there exists a unique
extension of £ to

o: DH; > H,

el
which is linear and isometric, too. By (ii), also L is dense in H and o(P,c; H;) € H
is complete, hence closed. Thus, (P(@iel H;) = H. It remains to prove that for all

x = (\iz;); € @161 ‘H;, we have
o(x) = Nii,

icl

ie. {Njz; : i € I} is summable to ¢(z). For this, let € > 0. Then there exists a finite

I, C I with
ZMZP = ZH)‘P%HQ < €.
il i¢l

For a finite subset J D I, J C I, define

Nx; 1€ J,
Yi = .
0 otherwise.

We have
lz—yll> =D I <e.
i¢J

This implies that
2

e > (@) — pw)|? = wa) -3 A
veJ

(iii)=-(iv). By (iii), each element x € H can be uniquely written as

el
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Thus
<$,£13j> = <Z )\ixi,xj> = )\j.
el

(iv)=(v). By (iv),

<x,y) = <Z<w,a}i>1‘i,z<y,1‘j>1’j> - Z<$7wi><xi7y> :

iel jel icl
(v)=(@i). Let € {x; : i € I}*. Then, by (v),
lz)|* =D [z, :)|* = 0.
il
Now, (i) follows from Remark 8.8. O

Theorem 8.14. Every Hilbert space H # {0} possesses an orthogonal basis, and all
orthogonal bases have the same cardinalitity.

Proof. Let v be the family of all orthonormal systems in H. First, observe that v # 0,
since there exists some x € H, x # 0, with ||z|| = 1. Now we order 7 by inclusion. Let K
be a chain in v and set

T=JSs

Serx
Let x1, 29 € T, x1 # xo (if this is not possible, we have T € ). Then z; € S1, x3 € Sy for
some S1,.59 € K. Without loss of generality S; C S, hence x1, x5 € So. Hence

<$1, $2> = 0.
This shows that also T' € . By Zorn’s lemma, there exists a maximal ONS in -, which

is, by definition, an orthonormal basis.
For the second claim, let B and C' be orthonormal bases of H. For each x € B define

Co = {y € C: (a,y) £0}.
By Theorem 8.13,

=Y (x,y)y,

yeC

hence, C; is at most countable. By Theorem 8.13, for each y € C there exists an x, € B
with
<xy7 y> 7é 0.

Now set
M :={(z,y): z € B,y € C,},

and consider the map
y = (zy,y), C — M.

This map is injective, hence
C] < |M].

If | B| = oo, then
C| < [M] < |B|-Xo = |BJ"

By symmetry, both cardinalities are the same. O

4N is the cardinality of N.
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Definition 8.15. Let H be a Hilbert space over K. Then the dimension of H (dim H) is
the cardinality of some (and hence of each) orthonormal basis of H.

Theorem 8.16. Let H1, Ho # {0} be Hilbert spaces over K. Then the following conditions
are equivalent.

(i) The equation dimH; = dim Hy holds.

(ii) The spaces Hi and Ha are isometrically isomorphic.

Proof. (i)=(ii). Let {x;: i € I} and {y;: i € I} be orthonormal bases of H; and Ha,
respectively. Then the map

p: M1 — Ha, Y Nimi = > Aitii, (Ai)i € La(D),
icl icl
fulfills the desired properties.

(ii)=(i). Let B be an orthonormal basis of H; and ¢ : H; — Ha a surjective isometry.
Then ¢(B) = {¢(x) : € B} is an ONS in Hy. If y € p(B)*, then ¢~1(y) € B+ which
implies ¢ ~!(y) = 0 and thus y = 0. Hence, ¢(B) is an orthonormal basis of Hs which has
the same cardinality as B. d

Corollary 8.17. Let H be a Hilbert space, and I an index set of an orthonormal basis of
H. Then H is isometrically isomorphic to ¢*(I).

Proof. Note that the unit vectors e; = (8;;)ies form an orthonormal basis for £2(I). The
claim now follows from Theorem &.16. O

Theorem 8.18 (Schmidt Orthogonalization Method). Let H be an inner product space,
and let {x1,xa,...} be a linearly independent set in H. Then define {y1,y2,...} by

y1 = ||lz1]| "o
n

Tn+1 — Z<$n+17 Yi)Yi
i=1

nzl: yp41 =

—1 n
: (xn-‘rl - Z(%H:Z/D%)

=1

Then {y1,y2,...} is an ONS and
span{yi,...,yx} = span{zy,...,xx} Vk€N.
Proof. For each n € N, we prove that {y1,...,y,} is an ONS and

span{yi,...,yn}t = span{zy,...,zy}.

Nothing is to prove for n = 1. Assume that the claim holds for n. First of all, we
have zp11 — Yor 1 {Tn+1,¥i)yi # 0, since span{yi,...,y,} = span{z1,...,x,} and the set
{z1,..., 241} is linearly independent. ||y,+1|| =1 and for all k =1,...,n we have

n -1 n

(Yns1:Uk) = |Tnt1 — D _(Tnst, va)yi|| <<$n+1 = {@n41, yz>y¢,yk>>
=1 =1
n -1 n
= [[Tn+1 — Z<$n+1>yi>yi (Tnt1, Yk) — Z<xn+1a Yi) (Yis Y)
i=1 i=1 —

=0k

=0.

67 Functional Analysis I



8 Orthogonality and Bases

We know that span{xi,...,z,} = span{yi,...,yn}. By definition of y,1, it then follows
that also span{xi,...,Zn11} = span{y1,...,Yn+1}- d

Theorem 8.19. Let ‘H be a Hilbert space. Then the following conditions are equivalent.

(i) The space H possesses an at most countable orthonormal basis.

(ii) The space H is separable (i.e. there exists a dense countable subset of H ).

Proof. (ii)=(i). Let D = {x1,x9,...} be a dense countable subset of H. By induction,
we delete from (z,)nen each x,, which is contained in span{zi,...,z,_1}. This creates a
subsequence (zp, )xen which is now linearly independent.

Also by construction
span{xi,xa, ...} = span{z,,, Tn,,...} =: L.

Apply Schmidt (Theorem 8.18) to generate an ONS {y1,y2 ...} with

span{y1,y2,...} = L.

Since D C L, also L is dense in H. By Theorem 8.13, {y1, 2, ...} is an orthonormal basis
of H.

(i)=(ii). Let {y1,¥o2,...} be a countable orthonormal basis of H. Set M = Q, if K = R,
and M =Q+i-Q, if K= C. Then define D := {37, \iyi: \i € M,n € N}. Since M is
countable, also D is countable. Let x € H and ¢ > 0. By Theorem 8.13, there exist n € N
and p; € K with

£
< £

n
T — Z HiYi
i=1

For each p; there exists A\; € M with [\; — ;| < 5. This gives

n n
=Y Ay T =Y payi
i—1 i=1

Hence, D is dense in H. O

n

> (ki = Aoy

i=1

< + <e.
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Definition 9.1. Let E and F' be normed spaces. A linear operator T: F — F' is called
compact, if for all bounded sets B C E the set T'(B) is compact. The set of all compact
operators from E to F' is denoted by K(E, F'). If E = F, then usually the notion K(E) is
used instead of K(E, E).

Lemma 9.2. Let £ and F be normed spaces. Then:
(i) K(E,F) € L(E, F),
(ii) For an operator T: E — F' the following are equivalent:

(a) T is compact.

(b) T(K1(0)) is compact.

(¢) If (xn) C E is bounded, (Txy,) C F contains a convergent subsequence.

Proof. (i). Let T € KC(E, F). Then T(K1(0)) is compact. Thus, T(K71(0)) = {Tz : ||z| <
1} is bounded. Therefore, sup{||7Tz|| : ||z|| < 1} < oo which shows that T' € L(E, F).

(ii). The implication (a)=-(b) is obvious.
(b)=(a). Let B C E be bounded. Then there exists r > 0 such that B C rK;(0). Now,

T(B) C T(rky(0)) =rT(K1(0)).

Hence, the closed set T'(B) is contained in the compact set rT(K;(0)) and is therefore
itself compact.

(a)&(c). It is well-known, that a metric space X is compact if and only if each sequence
in X contains a convergent subsequence, see Theorem 1.13. This implies (a)<(c). O

Lemma 9.3. Let E, F and G be normed spaces. Then:
(i) K(E,F) is a linear subspace of L(E, F).

(ii) For S € L(F,G) and T € L(E,F) we have ST € K(E,G), if S € K(F,G) or
TeK(E,F).

Proof. (i). Let S,T € K(E,F), o, € K and let (x,) C E be bounded. Then (Sz,)
contains a convergent subsequence (Szp,). Since (x,,) is bounded, (T'z,,) contains a
convergent subsequence (T xnkj). Thus (aSmnkj + BTxnkj) converges.

(ii). Let (x,) € E be bounded. If T is compact, then (7T'z,) contains a convergent
subsequence (T'zy, ). Thus (STzy,,) converges. If S is compact, then (STz,) contains a
convergent subsequence, since (T'x,) is bounded. O

Lemma 9.4. Let E be a normed space and let F be a Banach space. Then K(E,F) is
closed in L(E,F).

Proof. Let T € IC(E, F). For any ¢ > 0 there exists an operator S € K(E, F') such that

S —T| < §. Now, we use that S(/1(0)) is compact. Hence, the set S(K7(0)) is totally
bounded. By Lemma 1.14 on page 10, S(K;(0)) is totally bounded. Therefore there
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exist x1,...,7, € K1(0) such that S(K1(0)) C Ui, K¢/3(Sz;) holds. If z € K;(0), then
Sz € K¢/3(S;) for some j. Hence

[Tz = Taj|| < IT = S|ll=ll + 1Sz = Sajl| + |5 = T[]l <.

Therefore, Tx € K¢(Tw;) and T(K1(0)) € Uj—; Ke(Tz;). Thus T(K1(0)) is totally
bounded, and by Corollary 1.15 on page 10 its closure is compact. O

Ezample 9.5. (1) The identity operator Id: F — E, x +— x is compact if and only if E is
finite-dimensional (by Theorem 2.10 on page 17).

(2) The zero-operator is compact.

(3) An operator T' € L(E,F) is called finite-dimensional if dimT(E) < oco. A finite-
dimensional operator is compact.

Proof. Let (z,,)n, € E be bounded. Then (Tx,), is a bounded sequence in the finite-
dimensional space T'(F) and hence contains a convergent subsequence. O

(4) By Lemma 9.4, also each limit of finite-dimensional operators T,, € L(FE, F') is compact,
if F'is a Banach space. The converse does not hold in Banach spaces, i.e. a compact
operator is not always the limit of finite-dimensional operators (Enflo 1973), but in
Theorem 9.7 we will show that it holds in Hilbert spaces.

(5) Let E = (Cla,b]
K: E— Eby

o), let & [a, b] x [a, b] — K be continuous, and define an operator

b
(K f)(s) ::/ k(s,t)f(t)dt, feE.

Then K is compact.

Proof. By Arzela-Ascoli we need to prove that for each bounded B C E, K(B) is
equicontinuous and pointwise bounded. For this, observe that

[(EF) ()] < (0= a)|[ flloollFloo -

This shows that K (B) is pointwise bounded. Since k is uniformly continuous, for ¢ > 0
there exists a § > 0 such that for ¢ € [a,b] and |s1—s2| < § we have |k(s1,t)—k(s2,t)| <
€. Thus,

b
(K f)(s1) = (K f)(s2)] é/ [F(s1,t) = k(s2,)[[f(#)]dt < (b — a)e]| flloo

if |s; — sa| < d. Therefore, and since B is bounded, K (B) is equicontinuous. O

Definition 9.6. Let H be a Hilbert space and £ C H a closed subspace. Then H = L&LL.
If 2 =u+v withw € £, v e L', then set Prx := u. The operator Py: H — H is then
well-defined, linear and bounded. It is called the orthogonal projection onto L. Moreover,
we have that ker Pz = £+, P2 = Pg and || P¢|| = 1 if £ # {0}. More generally, an operator
P:H — H with P? = P is called a projection.

Theorem 9.7. Let E be a normed space, H a Hilbert space and T € KC(E,H). Then there
exist finite-dimensional operators T,, € L(E,H) with ||T — T,| — 0.
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Proof. Compactness of T'(K1(0)) implies that T'(K(0)) is totally bounded. Thus, for each
n € N there exist x,1,...,2Zny, in K1(0) such that T(K1(0)) C Ui Ky /p(Tn,). Put
Ly :=span{Tx,;:i=1,...,r,} and P, := Pg,. Then dim £,, < r,. In particular, £,
is closed in H. Now, let n € N. Then for each z € K1(0), Tx € Ky, (Twy,;) for some i.
Thus for x € K;(0)

Tz — PTx|| < ||Tx — Txpnsl| + [|[T2n — PoTan || + | PnTan: — PTx||
< T2 = Tl + | Tan; — Tall < 2,

hence ||T'— P,T|| — 0 as n — oo, i.e. the finite-dimensional operators P,T" converge to
T. O

Theorem 9.8. Let E, F be normed spaces, T € L(E,F). Also let T*: F* — E*,
(T*f)(x) = f(Tx) be the dual operator. Then the following holds:

(i) If T is compact, then also T* is compact.

(ii) If T* is compact and F is a Banach space, then T is compact.

Proof. (i). Let (fn)n € F* be bounded. By Lemma 9.2 it is sufficient to prove that (T* f,,)n
contains a convergent subsequence. Y := T'(K;(0)) is compact in F. Now, consider

F:={faly :neN}CCY).
Setting C' := sup,, || fu||, we first observe that
o |fn(v)] < C|lyll, hence F is pointwise bounded.
o |fu(y1) — fu(y2)| < Cllyr — y2| , i.e F is equicontinous.

Hence, by Arzela-Ascoli F C (C(Y), || - |l) is compact. This implies that there exists a
convergent subsequence (fp, |y)r. Hence for all € > 0 there exists N € N with

[y = fulylloe <& VEIZN. (9.1)

This yields
1T fre = T f || = sup [ (Tx) = fr (Tx)| < &

ll=|=1
for all k,0 > N. Thus (T* fny)x is a Cauchy-sequence in E*, and hence converges.

(ii). Since T™ is compact, by (i) also T** is compact. It is easily seen that ApT = T**Af.
Hence,

Ap(T(K1(0p))) = T (Ap(K1(0g))) € T*(K1(0g)) ,

which is a compact subset of F**. Therefore, Arp(T(K1(0g))) is compact. Since F' is a
Banach space, also T'(K;(0g)) is compact. By Lemma 9.2, T' is compact. O

Definition 9.9. Let E be a linear space, I, G linear subspaces, such that £ = F+G
(direct sum). Then G is called a complementary subspace to F in E.

Bemerkung 9.10. Let E be a Banachspace and let F,G C FE be closed linear subspaces
such that £ = F' 4+ G. Then the mapping P: E — F, x +y+ x, where x € F', y € G, is
a continuous projection.
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Proof. Tt is clear that P is a projection, i.e. P? = P. To see that it is continuous, by the
Closed Graph Theorem we only need to prove that P is closed. For this, let (x,), C F
and (yn)n C G such that z, + v, — v and =, = P(x,, + yn) = x asn — co. Then z € F
since F' is closed, and y, — u — x =: y. Since also G is closed, we have y € G and thus
u=x+y € F+ G. Therefore, Pu = z, which we had to prove. O

Lemma 9.11. Let E be a normed space, F' o closed linear subspace, such that dim F' < oo
or dim F/F < oo, then there exists a closed complementary subspace to F in E.

Proof. Assume that dim E/F < co. Let x1,...,x, € E be such that {z1 + F,..., 2, + F}
is a basis of E/F. Then G := span{z1,...,z,} C E is closed, since dimG < oo. Let us
show that £ = FF+ G and FNG = {0}. For z € E we have v + F = > " ; \i(x; + F)
with some A1,..., A\, € K. Put g:=>7" 1 \izy € G and f :=x —g. Then z = f + g and
f+F=(x+F)—(9+F) =0, and hence f € F. This shows E=F +G. If z € FNG,
then . = > | Niwy sincez € Gand 0 =z + F = > \i(z; + F) since z € F. As the
x; + F are linearly independent, we conclude that A\ = ... = A, = 0 and thus z = 0.

Assume now that dim F' < co. Let {x1,...,z,} be a basis of F. Now let fi,..., f, € F*
such that

filw;) =6 Vi,je{l,...,n}.

This defines a basis of F* (the so-called dual basis). By Hahn-Banach, there exist
l1,...,0, € E* such that ¢;|p = f;. Now let P: E — E be defined by

Px = ij(:c)azj .
j=1

In particular, P is linear and continous and P|p = Id|p, since P(zy) = xp. Further,
P? = P since

Pz = Zﬁj(m)P% = ij(a:)xj = Pz.
j=1 j=1
Define G := ker P. Then G is closed, GN F' = {0}, and E = F 4+ G, since v = Px + (z —
Px). O

Theorem 9.12. Let E be a Banach space, and K: E — E a compact operator. Set
T:=1d-K € L(FE), Then

(i) dim(kerT") < oo,
(ii) T(E) is closed in E and

(iii) dim(E/T(E)) < co.

Proof. (i). Since
Id ’kerT = K|kerT 5
Id |ker 7 is compact. Hence, ker 7" must be finite-dimensional.

(ii). Set FF = kerT. Since dim F' < oo, there exists a closed complementary subspace G
to F'. Now we consider

S:G—-T(E), Sr:=Tz,zedq.
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S is continuous and bijective. In particular, S(G) = T(E). Let (yn)n C T(E), yp — y as
n — oo. Then y, = x, — Kx,, where z,, = S~'y, € G, n € N. We have to prove that
yeT(E).

Suppose that (x,), has no bounded subsequence. Then ||z,| — co. Put u, := e € G
n € N. Then u, — Ku, = ”Z—“ — 0 as n — o0o. As (uyp), is bounded, there exists

nl

a subsequence (up;); such that Ku,, — v as j — oo for some v € E. But then also
up; — v, implying v € G and also Ku,; — Kv. Consequently, Sv = v — Kv = 0 and
lv]| = limy [|un, || = 1, contradicting the fact that S is injective.
Hence, (), has a bounded subsequence (zy,;); such that Kz, — v as j — oo for some
v € E. This implies z,,; = Sz, + Kz, = y +v as j — oo and thus y = lim; Sx,,; =
S(y+v)eSG)=T(E).
(iii). Since T'(F) is closed, by Theorem 4.17 we know that
(E/T(E))* is isometrically isomorphic to T(E)™* .
Note that T(E)* = ker T*:
T(E)Y: ={f e E*: f(Tz) =0V € E}
={feFE":(T"f)x=0Vz € E}
={feFE" :T"f=0}.
Since K* is compact by Theorem 9.8, and T* = Id —K*, by (i) we obtain
dim(ker T*) < oo
Hence, we can conclude that
dim(E/T(E))" < oo,
which implies (iii). O
Definition 9.13. An operator T' € L(FE) which satisfies (i) - (iii) in Theorem 9.12 is called
Fredholm operator. Further, the integer

ind(7T) := dim(ker T') — dim(E/T(E))
is called the index of the Fredholm operator T'. F(FE) shall denote the set of all Fredholm
operators on E, hence Id —K(E) C F(E).

Lemma 9.14. Let E and F be Banach spaces and let T € L(E,F) be bijective. Let
T~! € L(F, E) be the inverse of T and S € L(E, F) be such that

IS =Tl < IT~HI7,
then S is also invertible.
Proof. We first write
S=TId-T"1(T - 29)),
and set
Q=TYT-29).
For c:= | T — S||||T~!|| < 1 we obtain

n

>, @

k=m+1

n

Y, TTHT-95)"

k=m+1

A\
\
N
O
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Thus the geometric series >3, Q¥ is convergent in L(E). Finally,

ZQkT lg — hm ZQ (Id—Q) = nli_>rgo(1d_Qn+1):Id,

k=0
and also

SY QT =3 T(1d-Q)Q'T™ =T (Z(Id —Q)Q’“) Tl =1d.
k=0 k=0 k=0
This shows that S is invertible with S~! = 3202, QT L. O

Bemerkung 9.15. If E is a Banach space and T' € L(FE) with ||T']| < 1, then Lemma 9.14
implies that Id —T1 is invertible, and it follows from the above proof that the inverse of
Id —T is given by

(Id—T)~ Z T,
This series is called the Neumann series.
Theorem 9.16. Let E be a Banach space. Then F(E) is open in L(E) and the map
Tw—indT, F(E)—=Z

15 continuous.

Proof. to be added O

Bemerkung 9.17. Note that Theorem 9.16 implies that each set
Fi(E) ={T € F(E) :indT = k}

is open in L(E). Since these sets are mutually disjoint, it follows that the index is constant
on each connected component of F(E). The set of invertible operators is a (proper) subset
of the open set Fo(F) and is itself open. This follows from Lemma 9.14. Note furthermore
that F(E) = Fo(FE) if E is finite-dimensional.

Corollary 9.18. Let E be a Banach space and K € K(E). Then ind(Id —K) = 0.

Proof. By Theorem 9.16 the map
R—FE)—Z, t—Id—tK~ ind(ld—tK).
is continuous which implies

ind(Id —K) = ind(Id) =

Corollary 9.19. Let E be a Banach space and K € KC(FE). Define T :=1d —K. Then
dim(ker T") = dim(ker 7).

Proof. By Theorem 9.8, K* is compact. Also,
ker T* = T(E)* and T(E)' = (E/T(E))*.
By Corollary 9.18, ind(7) = 0, and we have
dim (ker(T™)) = dim(T(E)*) = dim((E/T(E))*) = dim(E/T(E)) = dim(ker T
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Definition 10.1. Let E be a normed space over K and T' € L(E).

(1) A € Kis an eigenvalue of T, if ker(AId —T") # {0}. The elements of ker(AId —T") \ {0}
are called eigenvectors of T associated with A\. Then

E\):={x€ E:Tx = Az}
is called the eigenspace of T' with respect to A.

(2) A € K is called a spectral value of T', if AId —T" does not possess an inverse in L(E).
The set of all spectral values is called the spectrum of T and is denoted by o(T"). The
complement p(T") := K\ o(T) is called the resolvent set of T. The elements of p(T")
are called regular values of T'.

Remark 10.2. (i) If X is an eigenvalue of T', then it is also a spectral value of 7. If
dim E < oo, then also each spectral value is an eigenvalue (since, if A € o(7T'), then
A1d —T is not bijective, hence not injective, thus A is an eigenvalue.).

(ii) Let E be a Banach space. Then (AId —T')~! exists if and only if A\Id —T is bijective.
This is a direct consequence of the open mapping theorem.

(iii) If dimE = oo and T' € K(E), then 0 € o(T) since 0 € p(T) implies that T is
invertible, hence open. Then T'(K(0)) is a compact neighborhood of 0 in E.

Lemma 10.3. o(7T) is closed, and for every X\ € o(T) we have
(Al < ||
Proof. Let A\g € pT" and let A € K be such that
[(ATd =T) = (A 1d =T)|| = [A = Ao| < [|(Ao1d =T) 7|

Lemma 9.14 implies that A\Id —7" is (boundedly) invertible, thus A € pT. This argument
shows that pT is open, thus o(7") is closed.

Now let A € K be such that |A| > ||T]|. Then
JMd=T) = 1] = 17| < [A = |\ )~
Again, Lemma 9.14 implies that AId —T" is invertible, hence \ € pT'. O
Lemma 10.4. Let E be a Banach space and T € L(E).
(i) I (A>T, then
1 o= T —1 1
Ad-T)"" = ;W and  [(Ad=T)"" | < (Al = 1T1H "
(ii) If T is invertible and S € L(E) with
IT = 8| < el

for some € € (0,1), then [|[T71 — S~ < (T2 — T
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Proof. (i). It suffices to prove that for A = %T we have

(Id—A)"' =3 A
n=0

We know that ||A|| < 1. Hence
oo
Z |AI" < o0
n=0
Therefore, By, := > -, A" converges to some B € L(E) as m — co. We have
(Id —A)B,, =1d —A™" = B,,(Id—A) .
Since ||A™!|| — 0 as m — oo, we can let m tend to infinity and obtain
(Id—A)B=1d = B(Id—A).
This proves the first part. We also have

> 1
1(1d =A)7H < YA = -
nZ::O 1 — [ 4]

Multiplication with |A| yields the second claim.

(ii). This is proved similarly as Lemma 9.14.

O]

Theorem 10.5 (Gelfand-Mazur, 1941). Let E be a Banach space over C and T € L(E).

Then o(T) # 0.
Proof. Let f € L(E)* and define
o pT = C, o) = f ((Ad=T)7"), A€ p(T).
For A\, \o € pT" we have
PN = (o) = f (AT =T)"" = (A Td=T) ")
= (o =N (A d=T)"' (Ao Td=T)7").
By Lemma 10.4, the inverse is continous. Therefore

. (A) —(Xo)
1 TN/ O TNV
Mo A= Ao

= —f((Qo1d=1)72).

Hence ¢ is holomorphic on p(T).

Towards a contradiction, assume o(7T") = (). Then ¢ is holomorphic on C — in other words,

it is an entire function. Moreover, limjy . ¢(A) = 0 by Lemma 10.4(i).

Liouville’s

Theorem (from complex analysis) implies that ¢ is constant, and hence zero. Since this

is true for any f € L(E)*, Corollary 4.8 implies (A\Id —T)~! = 0 for each A € p(T). A

contradiction.

Theorem 10.6 (Formula for the spectral radius, Gelfand 1941). Let E be a Banach space

over C and T € L(E). Then

sup |\ = lim [|T"].
Aeo(T)

O
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The left hand side of the above equation is called the spectral radius of T'.

Proof. Let A € o(T). From

T —\"1d = (T — AId) Y AR Irmh = <Z Ale"k> (T — \1d)
k=1 k=1

it is seen that A” € o(T™). Lemma 10.3 now implies |[A|” < ||T™]|. Thus, if 7(7") denotes
the spectral radius,
1
r(T) < liminf||T"||= .
n—oo

Next we consider
o) = f ((A1d=T)71)

for some f € L(E)* and A € p(T). We know by the proof of Theorem 10.5 that ¢ is
holomorphic on {A € C : |A\| > r(T")}. As seen from methods in complex analysis, ¢ is

given by the Laurent series
[e.e]

p(\) =D e f(TT).

n=0

We conclude that this series converges for all |\| > r(T"). In particular,

sup\f&Tnn)] <oo VA >r(T),feL(E)".
n

By Theorem 5.15, for each A € C with |\| > r(T") there exists some M) > 0 such that

|

This implies that limsupn_moHT”H% < |A| for all A € C with |A| > 7(T"). Hence

<M, YneN.

lim sup||T"||* < r(T).
n—0o0

Finally, 7(T) = limp_eo|| T = 0

Lemma 10.7. Let E be a normed space and T € L(E). Further, let F' and G be closed
subspaces of E with ' C G, F # G, and

(1d—T)G C F.
Then there exists some a € G with ||a| =1 and
|Ta—Tz|| >3 Vax€PF.
Proof. Choose b € G\F. Consider

a = dist(b, F') = inf ||z — b||.
zcF

a > 0, since F is closed. This implies that there exists a y € F such that [|b — y| < 2a.

Define b
-y
a:=—"— € @G.
16—yl
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Then a has norm 1 and for arbitrary z € F, we have
1 @ 1
lo = all = gl 2llb =yl + 5 -b] > o= = §.
€F
Finally, for each x € F

|Tx —Tal| = ||z — (Id =T)z + (Id =T)a —al| >

cFr

1
3

O]

Lemma 10.8. Let E be a linear space, T: E — E a linear operator and M be a set of
etgenvectors of T such that any two elements in M are eigenvectors to different eigenval-
ues. Then M is linearly independent, i.e. each finite subset of M is linearly independent.

Proof. Let M,, be the collection of all subsets of M with n elements. We show the claim
via induction over n. Clearly, each set in M; is linearly independent. Assume now that
the claim is proven for n — 1 and let z1,...2, € M, Tx; = Njz;. Then >  ajx; = 0
implies

n n n
Z ai)\ixi = Z OJZ'T.IZZ' =T <Z aixi> =0.
i=1 i=1 i=1
We also have >°1" | a;A\p,z; = 0. This implies
0= ()\1 — )\n)xl + -+ Oénfl()\nfl — )\n)xnfl.
By induction hyphothesis the vectors z1,...,x,_1 are linearly independent. Hence
Oéi()\i—)\n) =0 Vi= 1,...,n—1.

Since the A; are mutually distinct, this yields o; = 0 for ¢ = 1,...,n — 1. Finally,
ay, = 0. L]

Theorem 10.9. Let E be a normed space and K: E — E a compact operator. Then the
set M of eigenvalues of K is at most countable and can only accumulate to 0.

Proof. 1t suffices to prove that for each § > 0, the set
Ms:={ueM:|u >d}

is finite. Towards a contradiction, assume that Mj is infinite for some § > 0, i.e. there
exist pn, € My, n € N, with py, # pim, m # n. Now, let 0 # x,, € E with

Kz, = ppx,

for all n € N. Next define
F, = span{z1,...,z,}.

By Lemma 10.8, the x,, are linearly independent, hence

F, C Foyt.
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Ify=>m",ax; €F,, then

-

s
Il
—

n n n
(K = pnId)y =) iKmi — pin D 04 = Y QifliTi — fn Y 45
=1 =1 =1

ai(p; — pn)x; € Fq,

I

s
Il
i

thus
(Id == K)Fy C Fy.

For each n € N, F), is closed, hence by Theorem 10.7 (inductively) there exists a sequence
(yn)nEN C E with

Yn € Fp, |lynll = 1 and | Kyn — Kyl > &|pn| Ym > n,n € N.

This implies
| Kyn — Kym| > 36 Ym>n,neN.

Thus (Kyn)nen cannot contain a convergent subsequence although (y,)nen is bounded
which contradicts the compactness of K. O

Theorem 10.10. Let E be a Banach space and let K: E — E be compact.

(i) If 0 # X € o(K), then X is an eigenvalue.
(ii) The eigenspace E(X), X\ # 0, is finite-dimensional.
(iii) o(K) is at most countable and can only accumulate to 0.

Proof. (i). By Corollary 9.18,
ind(Id — 1K) = 0.

Therefore, Id —%K (and thus also AId —K) is injective if and only if it is surjective.
(ii). Id —1 K is a Fredholm operator, hence

dim(ker(Id — 1 K)) < oo.

Since E(A) = ker(Id —3 K), we conclude dim(E())) < oc.
(iii). This follows from Theorem 10.9 and (i). O
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11 Spectral Theory for Compact Operators
Let H be a Hilbert space, T' € L(H) and ¢: H x H — K defined by

pl,y) = (2, Ty) .
Then ¢ is a sesquilinear form, and we have

sup lo(x,y)]

< |7 < 0.
zy0 [|Zll[lyll

By Theorem 7.16 on page 58 there exists a unique operator T* € L(H) with

Tz, y) = o(z,9) -
This implies (z, Ty) = (T*z,y) and (Tx,y) = (z,T*y) for all z,y € H.

Definition 11.1. Let H be a Hilbert space and T' € L(H). Then T* from the above
discussion is called the adjoint operator to T'. If T'=T%*, T is called self-adjoint.

Remark 11.2. Let j: H — H* be the conjugate linear map y — fy (Riesz map). Further
let '€ L(H), T* be the associated dual operator (“Banach space adjoint”) and let 7% be
the (Hilbert space) adjoint. Then

Remark 11.3. Let H be a finite-dimensional inner product space and T: H — H be self-
adjoint. Linear algebra gives us the existence of an orthonormal basis {u1,...,u,} of H
which consists of eigenvectors of T' (Tw; = \jui, i = 1,...,n). For & = > (z,u;)u; € H,
we have

Tr = Z Ailx, ui)u; .
i=1

We now aim for a corresponding result for compact self-adjoint operators on a Hilbert
space.

Lemma 11.4. If T € L(H) is self-adjoint, then the eigenvalues of T' are real. Also, the
etgenspaces corresponding to two different eigenvalues are orthogonal.

Proof. Let X be an eigenvalue of T'. Then for an eigenvector x to A we have
Mlzl* = Mz, ) = (T, z) = (2, Tz) = Mz, ) = Az

and hence \ = \.
Now let A # p be two eigenvalues of T'. For z € E(\), y € E(u), z,y # 0, we have

A =)z, y) = M, y) — plz,y) = (Tx,y) — (2, Ty) = 0.
This proves (x,y) = 0. O
Lemma 11.5. Let T € L(H) and a > 0 with
Tz, z)| < a|z|? forallzeH.

Then the following holds:
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(1) (Tz,y) + (Ty, x)| < 2a|z[lllyl| for all z,y € H.
(ii) If further K = C, then
[Tz, y)| + Ty, )| < 2az]l]y]
forall x,y € H.
Proof. (i). First of all, we observe that with
(T(x+y)z+y —(T(x—y)z -y =2(Tz,y) + (Ty,z))
we obtain by the parallelogram identity
2Tz, y) + (Ty, )| < allz +y) + o — yl*) = 2a(z]|* + [ly[*)

1

for all x,y € ‘H. By substituting by ¢~z and y by cy, we have

(T, y) + (Ty, o) < a(c™?|lz]* + ly]*) -

[(Tz,y) + (Ty, )| < 2az(|[y]l -

Now, choose ¢ by

for y # 0. This yields

(ii). Substituting = by ez, t € R, and multiplying (i) with 1 = |e¥|, s € R, gives
(T ("), y) + & (Ty, e"x)| < 2allz|l[|y]| .

Thus
|el(s+t) (Tx,y) + el(s=t) (Ty, z)| < 2allz|[||y]l -

For suitable u,v € R such that
e(Ta,y) = [(Tz,y)| and "(Ty,z) =[(Ty, )]

(u—v) such that w = s+t and v = s — t. Then

NO|—=

choose s = (u+v) and t =

(Tz,y)| + [(Ty, )| < 22|yl
for all x,y € H. O

Corollary 11.6. Let ‘H be a Hilbert space and T € L(H). Then
1T} = sup{[{Tz, y)| - [lz]| = [yl = 1} = inf{c > 0: (T, y)| < cllz|[lyl Va,y € H}.
If T is self-adjoint, then

IT|| = sup{[(Tw,z)| : [lz]| = 1} = inf{a > 0: [(Tz,z)| < allz]?}.
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Proof. First, we have that

sup sup [(Tz,y)| = sup ||frz|| = sup [Tz =|[T],
lel=1 lylI=1 lell=1 =1

since the Riesz map is an isometry. With |(Tz,y)| < c||z|||ly|| and thus

(T )] <.

we also obtain that

sup{[(T'z, y)| : ||z]| = llyll = 1} = inf{e > 0 : [(Tz, y)| < cll||[ly[l} -

Now, let T' be self-adjoint. We only need to prove ||T|| = o := sup{|(T'z,z)| : [|z| = 1}.
Then the rest follows similarly as above. Obviously,

a < sup{{(Tz,y)| : l=] = [lyll = 1} = T

Moreover, since |(Tz, )| < al|z||? for all x € H, by Lemma 11.5 we have for x,y € H with
]l = [lyll = 1:

T T if K =R
(Tx,y)| = %](Tx,y)+<x7Ty>’ S%{K z,y) + (Ty,z)| i .

(Tz,y)| + [(Ty,z)| fK=C —
This proves | T = sup{[(Tz,y)| : lz|| = |ly]| = 1} < . [

Lemma 11.7. Let H be a Hilbert space and K: H — H be a compact and self-adjoint
operator. Then | K| or —||K]|| is an eigenvalue of K.

Proof. First, observe that

(Kz,z) = (z,Kz) = (Kz,x)

for all z € H, hence (Kz,z) € R. By Corollary 11.6, there exists a sequence (x,), C H
such that
lzn]l =1 and  lim |[(Kz,,x,)| = || K]
n—oo

It is no restriction to assume K # 0 and that the real sequence ((Kxy,, z,))n is convergent.
Set

c:= lim (Kxy,, zy) .
n—oo

Then |¢| = ||K||. Since K is compact and (z), is bounded, we can furthermore assume
that (Kxy), is convergent. Next,

0 < ||Kzn — cxn|)?® = | Kxp|]? + |lcan|® — 2¢(Kzpn, ) < |K|)? + ¢ — 2¢(Kxy, 1)
= 2| K||? = 2¢ (K, ) — 2||K]|]? — 22 = 0.
N————

—cC

Hence, ||Kzy, — cxy|| — 0, n — oo. Since (Kzp)y is convergent and ¢ # 0, also (zy,),, is
convergent. Set

r= lim x,.
n—0o0

We have ||z|| = 1 and

Ka:—cw:nli_%o(Kwn—cxn) =0.

Thus, c € {—| K|, || K|} is an eigenvalue of K. O
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Theorem 11.8 (Spectral Theorem for compact self-adjoint operators). Let H be a Hilbert
space, and let 0 #= K: H — H be a compact self-adjoint operator. Then there exist se-
quences (An)n C R and (x,), C H (either finite or infinite sequences) such that

(i) the numbers A\, are ordered by |[A1| > |Aa| > -+, Ay # 0, and limy_00 Ay = 0 (if
(An)n is infinite),

(ii) the sequence (xy)n forms an orthonormal system in H and Kx, = A2y,
(iii) if X # 0 is an eigenvalue of K, then \ appears in (\,)n ezactly dim E(X) times and
(iv) for each x € H,

Kz = Z AT, T )T,

Proof. By Lemma 11.7, K has an eigenvalue A; with |[A;| = ||K]| and A\; € R. Let x; be
an eigenvector associated to A\; with ||z;|| = 1. Now set

Hi = span{z;}.
Since x € Hi implies that
(Kz,x1) = (x, Kx1) = (x, \1z1) =0,

we have
K(Hy) CHi .
The restriction K|, : Hi — Hi is still a compact self-adjoint operator.
1

Case K|Hf_ =0. Let x =y +2,y € Hy, 2 € H{. Then

Kr=Ky+ Kz=K((y,z1)r1) = (y, 21) Kx1 = M (Y, 21)21 = M (2, 71)271 .

Case K\HIL # 0. By applying Lemma 11.7 to K|H1L, there exists some Ay € R with

[Ao| = [|K ||| < [IK| = |Aaf-
Let 2o € Hi be an eigenvector to Ay with ||z|2 = 1, i.e. Kz = Ao, and set
Ho = span{xy, za}.

Hs is a two-dimensional, closed subspace of H. As before we obtain that K |H2L cHy — Hy
is compact and self-adjoint.

Case K‘HQL =0. Let x =y + 2,y € Ho, 2 € Hy. Then

Kz = Ky+ Kz = K({(y,z1)z1 + (y, 22)22)
= M (Y, 1)@1 + A2 (Y, T2) 2
=)\ <l‘, $1>.7}1 + )\2(1’, 33‘2>$2 .

Case K|Hé_ # 0. Continue this process.

Cask 1 If at some point, K| =0, then

Km:Z)w-(x,mi)xi Ve e H. (11.1)
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In this case, (i), (ii) and (iv) are satisfied. It remains to show (iii). For this, let A\ # 0 be
an eigenvalue of K and x € F()). Then

Moreover, equation (11.1) shows that K(#H) = span{x1,...,z,}. Hence, by (ii) and since
z=A"'Kx € K(H), we also have

This implies that (z,z;) = 0 for each 7 with A # \;. Thus
E(\) =span{z; : \; = \}.

This shows that A appears dim F(\) = n) times in (\;) ;.
CASE 2 Now assume that the process does not stop. This yields sequences (\,,) and (z,)
with ||z,| =1, Kz, = A\yx, and x, L x,, for n # m. Now, (ii) is satisfied. For (i) assume
that

|An| >0 >0

for infinitely many n € N. This implies
K2y — Kam|” = | Kza|® 4 | Kzm|* = Ap + Az, > 267,

But this contradicts the compactness of K (no convergent subsequence).

For (iv) define L = span{w, : n € N}. Then, for z € L+, we have
(Kz,xp) = (x, Kxy) = Mz, 20) =0,
thus K(L+) C L*. Now let x € Lt. Then, as z € H, for each n,

(Kz,2)] < [ Klpe|| 212 = Ansallz]2 = 0, n = oo,

By Corollary 11.6, (Kx,z) = 0 for all 2 € L+ implies
K|;. =0.
For each z € H we write t =y + 2, y € L, 2 € L*. Then
Kr=Ky+ Kz=Ky=K <Z<y7$i>$i) =Y Ny, zi)mi = > Ailw, @)@
neN neN neN
(iii) can be shown exactly as in the first case. O

Remark 11.9. (1) The orthonormal system (), is an orthonormal basis of (ker K)* =
K(H), and if Py is the orthogonal projection of H onto ker K, then

x = Pyr + Z(w,xn>xn, T EH.
n

(2) Extending (xy,), by an orthonormal basis of ker K yields an orthonormal basis of H,
which consists of eigenvectors of K. Hence H is the direct sum of eigenspaces.
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(3) For each eigenvalue A # 0, let Py be the orthogonal projection onto E(X). Then by
Theorem 11.8,
K= Y AP.
Ao (K)
This is the spectral decomposition of K.
(4) Kz, xz € H, is completely determined by the eigenvalues and eigenvectors of K.
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