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1 Metric Spaces

1 Metric Spaces

In this chapter we recall the basic notions of metric spaces and prove Baire’s Theorem
and the theorem of Arzelà-Ascoli. Throughout this lecture K will always denote either R
or C.

Definition 1.1. Let X be a set. Then a map d : X ×X → [0,∞) is called a metric on
X, if for all x, y, z ∈ X

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x) and

(iii) d(x, z) ≤ d(x, y) + d(y, z). (Triangle inequality)

(X, d) is then called a metric space, and d(x, y) is referred to as the distance between x
and y. If Y ⊂ X, then d|Y×Y is the induced metric on Y .

Notice that the non-negativity of a metric already follows from

0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y) .

Next we will give some important examples of metrics on function spaces, sequence spaces
and Kn. Also, we can define a metric on every set as the first example will show.
Beispiel 1.2.

(1) Let X be a set and let d : X ×X → [0,∞) be defined by

d(x, y) :=
{

1 x 6= y ,

0 else .

This is the so-called discrete metric. Hence, this always defines a metric.

(2) Let X be a set and define

B(X) = {f : X → K : f is bounded} .

Then
d(f, g) := sup

x∈X
|f(x)− g(x)|

is a metric on B(X), the so-called supremum metric. Let now X = [a, b] and set

C[a, b] = {f : [a, b]→ K : f is continuous} .

Then
C[a, b] ⊂ B[a, b]

and hence d induces a metric on C[a, b].

(3) For 1 ≤ p <∞, let dp : Kn ×Kn → [0,∞) be defined by

dp(x, y) :=

 n∑
j=1
|xj − yj |p

 1
p

, x = (xj)nj=1, y = (yj)nj=1 ,
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1 Metric Spaces

and let d∞ : Kn ×Kn → [0,∞) be defined by

d∞(x, y) := max
1≤j≤n

|xj − yj | .

For p = 1,∞ this is obviously a metric. Theorem 1.4 will imply that this also is the
case for 1 < p <∞.

(4) The spaces (Kn, dp) can be generalized to “infinite-dimensional sequence spaces”. For
this, for 1 ≤ p <∞, set

`p :=
{
x = (xn)n∈N : xn ∈ K,

∞∑
n=1
|xn|p <∞

}
,

and define dp : `p × `p → [0,∞) by

dp(x, y) =
( ∞∑
n=1
|xn − yn|p

) 1
p

.

This is well-defined, since by Theorem 1.4 `p is a linear space. Let further `∞ be
defined by

`∞ := {x = (xn)n∈N : (xn)n∈N is bounded}

and define d∞ : `∞ × `∞ → [0,∞) by

d∞(x, y) := sup
n∈N
|xn − yn| .

Then (`p, dp), 1 ≤ p ≤ ∞, are metric spaces, again partly proven by Theorem 1.4.

To show the triangle inequality for the `p-spaces we need another inequality, which is
important in its own right. Hölder’s inequality gives upper bounds on a series of products
in terms of products of series.

Theorem 1.3 (Hölder’s inequality). Let 1 < p < ∞, and let 1 < q < ∞ be defined by
q := p

p−1 (hence 1
p + 1

q = 1). Then, for x ∈ `p and y ∈ `q, we have

∞∑
n=1
|xnyn| ≤

( ∞∑
n=1
|xn|p

) 1
p
( ∞∑
n=1
|yn|q

) 1
q

.

(Case p = q = 2: (Cauchy-)Schwarz’ inequality)

Proof. Let c = 1
p and define ϕ : [0,∞)→ R by ϕ(t) = tc − ct. Then

ϕ′(t) = ctc−1 − c and ϕ′′(t) = c(c− 1)tc−2 .

Thus ϕ has a global maximum value in t = 1. This implies

1− c ≥ tc − ct for all t > 0 ,

hence
tc − 1 ≤ c(t− 1) . (1.1)
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Let now a, b > 0, and set t = ap

bq . Then, by (1.1), we obtain

a

b
q
p

− 1 ≤ 1
p

(
ap

bq
− 1

)
and thus

a

b
q
(

1
p
−1
) − bq ≤ 1

p
(ap − bq) .

Since 1 = 1
p + 1

q , this implies

ab ≤ ap

p
+ bq

q
. (1.2)

We now set

A =
( ∞∑
n=1
|xn|p

) 1
p

and

B =
( ∞∑
n=1
|yn|q

) 1
q

as well as x̃n := xn
A and ỹn := yn

B . Without loss of generality, we assume A,B > 0. By
(1.2), we obtain

|x̃nỹn| ≤
1
p
|x̃n|p + 1

q
|ỹn|q .

Hence ∞∑
n=1
|x̃nỹn| ≤

1
p

∞∑
n=1
|x̃n|p + 1

q

∞∑
n=1
|ỹn|q = 1

p
+ 1
q

= 1 .

And, finally
∞∑
n=1
|xnyn| ≤ AB ,

which is the assertion.

The following Minkowski’s inequality sets the ground for the triangle inequality of the
metric dp.

Theorem 1.4 (Minkowski’s inequality). For 1 < p <∞ and x, y ∈ `p,( ∞∑
n=1
|xn + yn|p

) 1
p

≤
( ∞∑
n=1
|xn|p

) 1
p

+
( ∞∑
n=1
|yn|p

) 1
p

.

Proof. With zn := xn + yn, we first obtain

|zn|p = |xn + yn| · |zn|p−1 ≤ (|xn|+ |yn|) |zn|p−1 .

This implies
m∑
n=1
|zn|p ≤

m∑
n=1
|xn| · |zn|p−1 +

m∑
n=1
|yn| · |zn|p−1 for all m ∈ N .

By Theorem 1.3,

m∑
n=1
|zn|p ≤

(
m∑
n=1
|xn|p

) 1
p
(

m∑
n=1
|zn|(p−1)q

) 1
q

+
(

m∑
n=1
|yn|p

) 1
p
(

m∑
n=1
|zn|(p−1)q

) 1
q

.
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Since (p− 1)q = p, we conclude that
(

m∑
n=1
|zn|p

) 1
p

=
(

m∑
n=1
|zn|p

)1− 1
q

≤
(

m∑
n=1
|xn|p

) 1
p

+
(

m∑
n=1
|yn|p

) 1
p

.

We now consider m→∞, which we are allowed to do since the right-hand-side converges.
This proves the theorem.

The triangle inequality dp(u,w) ≤ dp(u, v) + dp(v, w) for all u, v, w ∈ `p for the metric dp
can now directly be concluded from Theorem 1.4 by setting xn = un−vn and yn = vn−wn.

Definition 1.5. Let (X, d) be a metric space.

(1) For x ∈ X and r > 0, the set Ur(x) defined by

Ur(x) := {y ∈ X : d(x, y) < r}

is called the open ball of radius r and center x. U ⊂ X is called open, if for each
x ∈ U there exists some ε > 0 such that Uε(x) ⊂ U .

(2) A set A ⊂ X is closed, if X \A is open. The set

Kr(x) := {y ∈ X : d(x, y) ≤ r}, x ∈ X, r > 0 ,

is called the closed ball of radius r and center x.

(3) If E ⊂ X, then x ∈ E is an interior point of E, if there exists some open set U ⊂ E
with x ∈ U . E is then called a neighbourhood of x. The set of all interior points is
referred to as the interior of E and is denoted by E̊.

(4) A point x ∈ X is called limit point of E if U ∩ E 6= ∅ for each neighbourhood U of
x. The set of all limit points of E is the closure of E, which is denoted by E. E is
dense in X if E = X.

The openness of a set and all properties that can be defined with reference only to open
sets are called topological. In particular, all terms just defined are topological. The open
sets in a metric space form a system of sets called topology. This terminology will be
generalized to the notion of a topological space in Chapter 6 on page 44.

Lemma 1.6. Let (X, d) be a metric space.

(i) We have

(a) ∅, X are open.

(b) If U1, . . . Ur ⊂ X are open, then
r⋂
i=1

Ui is open.

(c) If Ui ⊂ X, i ∈ I, are open, then
⋃
i∈I

Ui is open.

Hence d defines a topology on X with Uε(x), x ∈ X, ε > 0, as basis.

(ii) We have

(a) ∅, X are closed.
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(b) If Ai ⊂ X, i ∈ I, are closed, then
⋂
i∈I

Ai is closed.

(c) If A1, . . . , Ar ⊂ X are closed, then
r⋃
i=1

Ai is closed.

(iii) For each x ∈ X, r > 0, the set Kr(x) is closed.

(iv) For E ⊂ X, E is the smallest closed set containing E.

(v) For E ⊂ X, E̊ is the biggest open set contained in E.

Proof. Tutorials

The next definition generalizes the notion of convergence from Kn (with the Euclidian
metric) to general metric spaces.

Definition 1.7. Let (X, d) be a metric space.

(i) A sequence (xn)n∈N ⊂ X converges to x ∈ X if for each ε > 0 there exists Nε ∈ N
with d(xn, x) < ε for all n ≥ Nε. We then write xn → x, as n→∞ or x = limn→∞ xn.
The point x is called the limit of (xn)n∈N.

(ii) A sequence (xn)n∈N ⊂ X is a Cauchy-sequence, if for each ε > 0 there exists some
Nε ∈ N with

d(xn, xm) < ε for all n,m ≥ Nε .

(iii) The space (X, d) is complete, if each Cauchy-sequence in X converges.

Convergence of a sequence is a topological property. The sequence (xn)n∈N converges to
x, if and only if every neighborhood of x contains all but finitely many elements of the
sequence. In particular, the limit of a sequence is independent of the ordering of the
sequence’s terms. Which sequences are Cauchy-sequences does not only depend on the
open sets but also on the chosen metric (see Remark 1.11).
In general, topological properties in metric spaces can be tested by sequences. We note
that there is a characterization of closedness of a set by convergent sequences.

Lemma 1.8. Let (X, d) be a metric space.

(i) A sequence can have at most one limit.

(ii) Let E ⊂ X. Then x ∈ E if and only if there exists a sequence (xn)n∈N ⊂ E with
xn → x as n→∞.

(iii) If (xn)n∈N ⊂ X is convergent, then (xn)n∈N ⊂ X is a Cauchy-sequence. The converse
is not always true1. A Cauchy-sequence is convergent, if it contains a convergent sub-
sequence.

(iv) If X is complete and E ⊂ X closed, then E is complete. If E ⊂ X is complete, then
E is closed in X.

Proof. Tutorials

The following example provides the reader with some complete metric spaces.
1For example, consider X = (0, 1], xn = 1

n
.
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Beispiel 1.9.

(1) The space B(X) is complete.

Proof. Let (fn)n∈N be a Cauchy-sequence in B(X), and for ε > 0 let Nε ∈ N be such
that

d(fn, fm) < ε for all n,m ≥ Nε .

This implies |fn(x) − fm(x)| < ε for all x ∈ X, n,m ≥ Nε. Hence, for all x ∈ X,
(fn(x))n∈N is a Cauchy-sequence in K. Setting f(x) := lim

n→∞
fn(x), we obtain

|f(x)− fm(x)| = lim
n→∞

|fn(x)− fm(x)| < ε

for all m ≥ Nε. Hence |f(x)| ≤ |fn(x)| + ε, which implies f ∈ B(X). Further, for
m ≥ Nε,

d(f, fm) = sup
x∈X
|f(x)− fm(x)| < ε ,

and thus f = lim
n→∞

fn.

(2) The space C[a, b] is complete, since it is closed in B[a, b] (see lemma 1.8), the reason
being that a uniform limit of continuous functions is again continuous.

(3) The spaces (Kn, dp), n ∈ N, 1 ≤ p ≤ ∞, are complete, since convergence in Kn w.r.t.
dp is the same as convergence in Kn w.r.t. the component sequences.

(4) The spaces `p, 1 ≤ p ≤ ∞, are complete.

Proof. Let (xk)k∈N be a Cauchy-sequence in `p, xk = (xk,n)n∈N, and for ε > 0 let
Nε ∈ N be with

dp(xk, xl) =
( ∞∑
n=1
|xk,n − xl,n|p

) 1
p

< ε and

d∞(xk, xl) = sup
n∈N
|xk,n − xl,n| < ε for all k, l > Nε .

(1.3)

Thus, for fixed n ∈ N, (xk,n)k∈N is a Cauchy-sequence in K. Now set yn := lim
k→∞

xk,n

and y := (yn)n∈N. Then y ∈ `p and y = lim
n→∞

xn.
Indeed, consider l→∞, which implies (by 1.3)

m∑
n=1
|xk,n − yn|p < εp

for all m ∈ N and thus
∞∑
n=1
|xk,n − yn|p < εp

for all k ≥ Nε and |xk,n − yn| < ε for all k ≥ Nε, n ∈ N. Hence xn − y ∈ `p, and
thus y ∈ `p and y = lim

k→∞
xk.

The following theorem of Baire only holds in complete metric spaces. It is a key ingredient
in the proofs of the fundamental theorems of functional analysis. Thus, they will only hold
under some completeness assumption.
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Theorem 1.10 (Baire’s Theorem). Let (X, d) be a complete metric space, and let Dn,
n ∈ N, be open, dense subsets of X. Then also

⋂
n∈N

Dn is dense in X.

Proof. We need to prove that for all x ∈ X and r > 0 we have

Ur(x) ∩
∞⋂
n=1

Dn 6= ∅ .

For this, let x ∈ X and r > 0 be arbitrary, but fixed. By induction define a sequence
(xn)n∈N ⊂ X and (rn)n∈N ⊂ R+ by

(a) Krn+1(xn+1) ⊂ Dn ∩ Urn(xn) and

(b) rn ≤ 1
n .

This can be done as follows: First, set x1 = x and r1 = min{1, r}. Second, assume
that x1, . . . , xn, r1, . . . , rn be already chosen (n ≥ 1). Since Dn is open and dense, also
Dn ∩ Urn(xn) 6= ∅ is open. Hence there exists xn+1 ∈ X and rn+1 > 0 with

U2rn+1(xn+1) ⊂ Dn ∩ Urn(xn) and rn+1 ≤
1

n+ 1 .

This implies (a) and (b), since Krn+1(xn+1) ⊂ U2rn+1(xn+1).
Having constructed sequences (xn)n∈N and (rn)n∈N satisfying a) and b), we obtain

xn ∈ Krn ⊂ Dn−1 ∩ Urn−1(xn−1) ⊂ Urn−1(xn−1) ⊂ · · · ⊂ Urm(xm)

for all n > m. Thus d(xn, xm) < rm ≤ 1
m for all n > m. This implies that (xn)n∈N is a

Cauchy-sequence in X.
Now set x0 := lim

n→∞
xn (remember that X is complete). Since d(xn, xm) ≤ rm for all

n > m, we obtain d(x0, xm) ≤ rm for all m ∈ N. Thus, finally,

x0 ∈
∞⋂
m=1

Krm+1(xm+1) ⊂
∞⋂
m=1

Dm ∩ Urm(xm) ⊂ Ur1(x1) ∩
∞⋂
m=1

Dm ⊂ Ur(x) ∩
∞⋂
m=1

Dm ,

and the theorem is proved.

Bemerkung 1.11.

(a) Theorem 1.10 is in general false ifX is not complete. As an example chooseX = Q =
{q1, q2, . . .} and Dn = X \ {qn}, n ∈ N, which are open and dense. We immediately
see that however

∞⋂
n=1

Dn = ∅ .

(b) Let (X, d) be a complete, non-empty metric space and An ⊂ X, n ∈ N, closed with
X =

∞⋃
n=1

An. Then there exists at least one n ∈ N with

Ån 6= ∅ .
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Proof. Towards a contradiction, assume that

Ån = ∅ for all n ∈ N .

Then X \An are open and dense for all n ∈ N. By Baire’s Theorem 1.10,
∞⋂
n=1

(X \An)

dense in X. But
∞⋂
n=1

(X \An) = X \
∞⋃
n=1

An = ∅.  

(c) Completeness is a property of the particular metric and not the convergence in X.
For example, consider X = (0, 1], d1(x, y) :=

∣∣∣ 1x − 1
y

∣∣∣ and d2(x, y) = |x − y|. Then
we have

xn → x in (X, d1)⇔ xn → x in (X, d2) ,

but (X, d1) is complete and (X, d2) is not (see tutorials).

Definition 1.12. Let (X, d) be a metric space.

(i) Let ε > 0. Then M ⊂ X is called ε-net, if X = ⋃
x∈M

Uε(x). The space X is called

totally bounded, if for each ε > 0 there exists a finite ε-net. A subset A ⊂ X is totally
bounded, if (A, d|A×A) is totally bounded.

(ii) The space X is compact, if every open cover of X (that is, a family of open sets Ui,
i ∈ I, such that X = ⋃

i∈I Ui) has a finite subcover. The metric space (A, d|A×A) is
compact if and only if every open cover of A (of open sets in X) has a finite subcover.

Compactness and total boundedness are intrinsic properties, that is a subset A ⊂ (X, d) of
some metric space is compact (totally bounded) if the metric space (A, d|A×A) is compact
(totally bounded).
It is easy to see that every compact metric space is totally bounded. The following theorem
shows that the two notions coincide for complete metric spaces. Note that this does not
imply that these two properties coincide for all subsets of a complete metric space (see
Corollary 1.15).

Theorem 1.13. Let (X, d) be a metric space. Then the following are equivalent:

(i) The space (X, d) is complete and totally bounded.

(ii) The space (X, d) is compact.

(iii) Each sequence in X has a convergent subsequence.

Proof. (i)⇒(ii). Towards a contradiction, assume that X is not compact. Let U be an
open cover of X which does not contain a finite subcover. By induction, we now define a
sequence (xn)n∈N ⊂ X such that

(a) each neighborhood U2−n(xn), n ∈ N, is not covered by finitely many U ⊂ U and

(b) any neighborhoods U2−n(xn) and U2−(n+1)(xn+1), n ∈ N, do intersect, i. e. U2−n(xn)∩
U2−(n+1)(xn+1) 6= ∅.
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First, for n = 1, notice that X is totally bounded. Hence X = ⋃
y∈M

U 1
2
(y), |M | <∞, which

implies that there exists yi0 =: x1 ∈ X such that U 1
2
(x1) is not covered by finitely many

U ⊂ U. Second (n 7→ n+1), again by totally boundedness, there exists a finiteM such that
X = ⋃

y∈M
U2−(n+1)(y). Assume x1, . . . , xn are chosen such that (a) and (b) are satisfied.

Towards a contradiction assume that for each y ∈M with U2−(n+1)(y)∩U2−n(xn) 6= ∅, the
set U2−(n+1)(y) is covered by finitely many U ∈ U. Then this is also true for U2−n(xn).  
Hence there exists xn+1 ∈ X with U2−(n+1)(xn+1) is not covered by finitely many U ∈ U
and U2−n(xn) ∩ U2−(n+1)(xn+1) 6= ∅.
For each n ∈ N, let zn ∈ U2−n(xn) ∩ U2−(n+1)(xn+1). Then, for m > n,

d(xm, xn) ≤
m−1∑
ν=n

d(xν+1, xν) ≤
m−1∑
ν=n

(d(xν+1, zν) + d(zν , xν))

≤
m−1∑
ν=n

(
2−(ν+1) + 2−ν

)
≤ 2

m−1∑
ν=n

2−ν ≤ 1
2n−2 .

This implies that (xn)n∈N is a Cauchy-sequence. Since X is complete, there exists x =
lim
n→∞

xn.
Now choose U ∈ U with x ∈ U and choose ε > 0 such that Uε(x) ⊂ U . Then xn ∈ U ε

2
(x)

for all n ≥ N , hence U2−n(xn) ⊂ U for all n ≥ N with 2−n < ε
2 .  to choice of U2−n(xn).

(ii)⇒(iii). Let (xn)n∈N be a sequence in X and set An := {xν : ν > n} ⊂ X. Towards a
contradiction assume that ⋂

n∈N
An = ∅ .

This implies ⋃
n∈N

(X \An) = X. Since X is compact, the open cover {X \An}n∈N contains

an open subcover {X \Anj : 1 ≤ j ≤ r}. Since An+1 ⊂ An, hence X \An ⊂ X \An+1, for
N := max{nj : 1 ≤ j ≤ r} we have

X =
r⋃
j=1

X \Anj = X \AN .

Thus AN = ∅  , which is impossible. This proves that ⋂
n∈N

An 6= ∅. Choosing x ∈
⋂
n∈N

An,

there exists a sequence (nk)k∈N ⊂ N with nk+1 > nk and d(xnk
, x) ≤ 1

k [if nk is chosen,
then x ∈ Ank+1 ]. This shows (iii), since (xnk

)k∈N is a convergent subsequence of (xn)n∈N
in X.
(iii)⇒(i). Each Cauchy-sequence in X contains by hypothesis a convergent susequence, is
hence itself convergent. This implies that X is complete.
Towards a contradiction, we now assume that X is not totally bounded. Then there exists
ε > 0 such that X is not covered by finitely many Uε(x), x ∈ X. By induction, we define
a sequence (xn)n∈N ⊂ X with

xn /∈ Uε(xj), 1 ≤ j ≤ n− 1 .

This can be achieved in the following way: Let x1 ∈ X be arbitrary. Then assume
x1, . . . , xn are already constructed. Since

X \
n⋃
j=1

Uε(xj) 6= ∅ ,

9 Functional Analysis I



1 Metric Spaces

choose xn+1 ∈ X \
n⋃
j=1

Uε(xj). Then, for n 6= m, we have

d(xn, xm) ≥ ε .

By (iii), (xn)n∈N contains a convergent subsequence (xnk
)k∈N. Let x := lim

k→∞
xnk

. Then
d(xnk

, x) < ε
2 for all k > k0, hence d(xnk

, xnl
) < ε for all k, l > k0.  

Lemma 1.14. Let (X, d) be a metric space, and let A ⊂ X be a non-empty subset.

(i) If X is totally bounded, then also A is totally bounded.

(ii) If A is totally bounded, then also A is totally bounded.

Proof. (i). Let ε > 0. By hypothesis, there exists an ε
2 -net {x1, . . . xn} of X. Without

loss of generality, let A∩U ε
2
(xj) 6= ∅ if and only if 1 ≤ j ≤ m, m ≤ n. For each 1 ≤ j ≤ m,

choose yj ∈ A ∩ U ε
2
(xj). Let y ∈ A. Then there exists 1 ≤ j ≤ m with y ∈ U ε

2
(xj), and

hence

d(y, yj) ≤ d(y, xj) + d(xj , yj) < ε .

This implies that {y1, . . . , ym} is an ε-net for A.
(ii). Let ε > 0. By hypothesis, there exists an ε

2 -net {y1, . . . , yn} for A. Let x ∈ A. Then
there exists y ∈ A with d(x, y) < ε

2 . Let yj be such that d(y, yj) < ε
2 . This yields

d(x, yj) ≤ d(x, y) + d(y, yj) < ε ,

hence {y1, . . . , yn} is an ε-net for A.

Korollar 1.15. Let (X, d) be a complete metric space, and let A ⊂ X. Then the following
are equivalent.

(i) A is compact.

(ii) A is totally bounded.

Proof. (i)⇒(ii). Since A is compact, by Theorem 1.13, A is totally bounded. By Lemma
1.14, A is totally bounded.
(ii)⇒(i). Since A is totally bounded, by Lemma 1.14, A is totally bounded. Since X is
complete, A is also complete. Hence Theorem 1.13 implies that A is compact.

Definition 1.16. Let (X, d) and (X ′, d′) be metric spaces, and let f : X → X ′.

(1) f is continuous in x ∈ X, if for each ε > 0 there exists δ > 0 such that d(x, y) < δ
implies d′(f(x), f(y)) < ε for all y ∈ X. If f is continuous in each x ∈ X, f is called
continuous.

(2) f is a homeomorphism, if f is bijective and f and f−1 are both continuous. f is an
isometry, if d(x, y) = d′(f(x), f(y)) for all x, y ∈ X. If further f is bijective, f is an
isometric isomorphism. X and X ′ are then called homeomorphic resp. isometric resp.
isometrically isomorphic.

(3) f is uniformly continuous, if for each ε > 0 there exists δ > 0 such that d(x, y) < δ
implies d′(f(x), f(y)) < ε for all x, y ∈ X.
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Two metric spaces being isometric is a strong notion of equivalence for metric spaces,
being homeomorphic is the properly weaker topological equivalence of metric spaces.

Lemma 1.17. Let (X, d) and (X ′, d′) be metric spaces, and let f : X → X ′.

(i) f is continous ⇔ f−1(U) is open in X for all U ⊂ X ′ open ⇔ f(xn)→ f(x) for all
xn → x in X.

(ii) Let X be compact and f continuous. Then f is automatically uniformly continuous.

Proof. Exercises.

We want to relate the relative compactness, that is the compactness of the closure, of a
set of continuous real functions to the pointwise relative compactness of these functions.
The relatively compact sets in R are the bounded sets by Heine-Borel theorem. If a set of
continuous real functions is relatively compact, we obtain pointwise relative compactness,
by continuity of C(X)→ R, f 7→ f(x) for every x ∈ X. However, to prove the converse a
second condition is needed: the equicontinuity of the functions.

Definition 1.18. F ⊂ C(X) is equicontinuous in x ∈ X, if for each ε > 0 there exists
a neighbourhood U of x with |f(x) − f(y)| < ε for all y ∈ U and f ∈ F . F is called
equicontinuous, if it is equicontinuous in each x ∈ X.

Theorem 1.19 (Arzelà-Ascoli). Let X be a compact metric space and F ⊂ C(X). Then
the following are equivalent.

(i) F is compact.

(ii) F is equicontinuous and pointwise bounded.

Proof. (i)⇒(ii). Exercise.
(ii)⇒(i). For x ∈ X we write F (x) := {f(x) : f ∈ F}. Let F be equicontinuous and
F (x) ∈ K bounded for all x ∈ X. Since C(X) is complete, by Corollary 1.15 it remains
to prove that F is totally bounded. For this, let ε > 0, and, for each x ∈ X, let Ux be an
open neighbourhood of x with

|f(y)− f(x)| < ε

4 for all f ∈ F and y ∈ Ux .

Let now x1, . . . , xn ∈ X be chosen such that X =
n⋃
i=1

Uxi and set

K :=
n⋃
i=1

F (xi) ⊂ K .

Since K is bounded, there exist λ1, . . . , λm ∈ K with

K ⊂
m⋃
j=1

U ε
4
(λj) .

Define Φ to be the set of maps ϕ : {1, . . . , n} → {1, . . . ,m}. For ϕ ∈ Φ, set

Fϕ := {f ∈ F : |f(xi)− λϕ(i)| <
ε

4 for 1 ≤ i ≤ n} .
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Then
F =

⋃
ϕ∈Φ

Fϕ .

To see this, let f ∈ F . Then for each 1 ≤ i ≤ n, there exists j ∈ {1, . . . ,m} such that
f(xi) ∈ U ε

4
(λj). Hence, there exists ϕ ∈ Φ with f(xi) ∈ U ε

4
(λϕ(i)). Hence f ∈ Fϕ.

For f, g ∈ Fϕ and y ∈ Uxi , i ∈ {1, . . . , n}, we then obtain

|f(y)− g(y)| ≤ |f(y)− f(xi)|+ |f(xi)− λϕ(i)|+ |λϕ(i) − g(xi)|+ |g(xi)− g(y)| < ε .

Thus d(f, g) < ε for all f, g ∈ Fϕ, and hence a finite ε-net for Fϕ (and thus also for F )
exists.

Functional Analysis I 12
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We define the fundamental spaces of our study, namely the normed spaces.

Definition 2.1. Let E be a linear space over K.

1. A map ‖·‖ : E → [0,∞) is called a norm an E, and (E, ‖·‖) a normed space, if for
all x, y ∈ E, λ ∈ K the following are satifsfied:

(a) ‖x‖ = 0 if and only if x = 0,
(b) ‖λx‖ = |λ| · ‖x‖ and
(c) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The space E is called a Banach space, if
(
E, d‖·‖

)
is complete (for the definition of

d‖·‖ see Remark 2.2).

2. Two norms ‖·‖1 and ‖·‖2 on E are equivalent if there exist α, β > 0 such that

α‖x‖1 ≤ ‖x‖2 ≤ β‖x‖1

for all x ∈ E.

We remark that a normed space is a special case of a metric space and that the topology
induced by a norm is in some sense compatible with the vector space structure.
Remark 2.2. Let (E, ‖·‖) be a normed space.

1. Letting d‖·‖(x, y) := ‖x− y‖ defines a metric on E.

2. Let ‖·‖1 and ‖·‖2 be equivalent norms on E. Then (E, ‖·‖1) is complete if and only
if (E, ‖·‖2) is complete.

3. For all x, y ∈ E there holds
∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x − y‖. In particular ‖·‖ : E → R is

Lipschitz-continuous.

4. The algebraic operations

+: E × E 7→ E , (x, y) 7→ x+ y and
· : K× E 7→ E , (λ, y) 7→ λ · y

are continuous since

• ‖(x+ y)− (x0 + y0)‖ ≤ ‖x− x0‖+ ‖y − y0‖ and
• ‖λx− λ0x0‖ ≤ |λ|‖x− x0‖+ |λ− λ0|‖x0‖.

5. If F ⊂ E is a subspace, so is its closure F .

We recall the concept of a quotient vector space.

Definition 2.3 (Quotient space). Let E be a linear space, F ⊂ E a subspace. Then
defining x ∼ y by x − y ∈ F for x, y ∈ E is an equivalence relation. The equivalence
classes are given by

[x]∼ = {y ∈ E : y − x ∈ F} = {y ∈ E : y ∈ x+ F} = x+ F .
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Thus [x]∼ is an affine subspace. The quotient space E/F is defined by E/F := {x + F :
x ∈ E}. Via

[x]∼ + [y]∼ := [x+ y]∼ (x+ F ) + (y + F ) = (x+ y) + F and
λ[x]∼ := [λx]∼ λ(x+ F ) = (λx) + F

the space E/F becomes a linear space.

Now we combine the concepts of a normed space and quotient spaces by endowing rea-
sonable quotients of normed spaces with a natural norm.

Lemma 2.4. Let (E, ‖·‖) be a normed space and let F ⊂ E be a closed subspace. Then

‖x+ F‖ := inf{‖x+ y‖ : y ∈ F}

defines a norm on E/F . Moreover, if E is a Banach space so is E/F .

Proof. First we check the norm properties.
(i). If ‖x+ F‖ = 0, there exists a sequence (yn)n ⊂ F , such that

‖x− yn‖ → 0 ,

for n→∞. Since yn ∈ F and the subspace F is closed, we conclude x ∈ F , i. e.

x+ F = F = F = 0 + F = 0 .

(ii) There holds ‖λ(x+ F )‖ = ‖(λx) + F‖ = inf{‖λx+ y‖ : y ∈ F}. For λ = 0 we have:

|λ(x+ F )‖ = 0 = |λ|‖x+ F‖ .

For λ 6= 0 we have

‖λ(x+ F )‖ = inf {‖λx+ y‖ : y ∈ F}
= |λ| inf {‖x+ y‖ : y ∈ F}
= |λ|‖x+ F‖ .

(iii). For x, y ∈ E and ε > 0 choose z1, z2 ∈ F such that

‖x+ F‖ ≥ ‖x+ z1‖ −
ε

2 and ‖y + F‖ ≥ ‖y + z2‖ −
ε

2 .

This yields

‖(x+ F ) + (y + F )‖ = ‖(x+ y) + F‖ ≤ ‖x+ z1 + y + z2‖ ≤ ‖x+ F‖+ ‖y + F‖+ ε .

Now, let E be a Banach space. To show that also E/F is complete, let (xn + F )n∈N be a
Cauchy-sequence in E/F , i.e. for any ε > 0 there existsN ∈ N such that ‖(xn−xm)+F‖ ≤
ε for all n,m ≥ N . So for all i ∈ N we can find ni, such that ‖xni+i − xni + F‖ < 2−i.
In particular there exists yi ∈ F such that ‖xni+1 − xni + yi‖ < 2−i. We may assume
ni < ni+1. Now define

z1 := 0 ,
zi+1 := yi + zi i ≥ 1 .
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Then we have
‖(xni+1 + zi+1)− (xni + zi)‖ < 2−i .

Now we define ηi := xni + zi, which gives us ‖ηi+1 − ηi‖ < 2−i. By this,

‖ηm+k − ηm‖ ≤
k−1∑
i=0
‖ηm+i+1 − ηm+i‖ <

k−1∑
i=0

2−m−i ≤ 21−m ,

which means that (ηn) is a Cauchy-sequence in E and thus converges. Now we set
limn→∞ ηn =: x. We obtain:

‖(xn + F )− (x+ F )‖ = ‖(xn − x) + F‖
zi∈F
≤ ‖xni + zi − x‖ = ‖ηi − x‖ → 0 .

This gives us a convergent subsequence, so the Cauchy-sequence is covergent itself.

Indeed, completeness is not only inherited by closed subspaces and quotients by closed
subspaces. As a converse, we have the following lemma.

Lemma 2.5. Let E be a normed space, F ⊂ E a closed subspace. If F and E/F are
Banach spaces, then also E is a Banach space.

Proof. Let (xn) ⊂ E be a Cauchy-sequence in E. Hence

‖(xn + F )− (xm + F )‖ = ‖(xn − xm) + F‖ ≤ ‖xn − xm‖ .

So (xn + F )n ⊂ E/F is a Cauchy-sequence in E/F . With x + F := limn→∞ xn + F we
obtain:

inf {‖xn − x+ y‖ : y ∈ F} = ‖(xn − x) + F‖ → 0 .
This means that there exists (yn) ⊂ F with ‖xn − x + yn‖ → 0. This (yn) is in fact a
Cauchy sequence:

‖yn − ym‖ = ‖yn + xn − x− xn + xm − ym − xm + x‖

≤ ‖yn + xn − x‖+ ‖xn − xm‖+ ‖ym + xm − x‖
m,n→∞−−−−−→ 0 .

Hence, it converges. Put y := limn→∞ yn ∈ F . Now

‖xn − x+ y‖ ≤ ‖xn + yn − x‖+ ‖y − yn‖ n→∞−−−→ 0 .

Thus (xn) converges to x− y.

Using this, we show completeness of finite-dimensional spaces.

Korollar 2.6. A finite-dimensional normed space E is always a Banach space.

Proof. We prove the statement by induction over n = dimE. Let dimE = 1 and choose
x ∈ E such that ‖x‖ = 1. Then q : R 7→ E, q(λ) := λx, is isometric. So E ∼= R and E
is a Banach space. Assume that the claim holds for n and let dimE = n + 1. Choose
x ∈ E \ {0} and set F := span{x}. Because dimF = 1 we know that F is complete, so
closed. There holds

dim(E/F ) = dimE − dimF = n .

By assumption we get that E/F is complete, and by Lemma 2.5 we see that E is a Banach
space.
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Lemma 2.7. Let F be a closed subspace of a normed space E. Then for each x ∈ E \ F
there exist M,M ′ > 0 such that for all y ∈ F and all λ ∈ K we have

|λ| ≤M‖λx+ y‖ and ‖y‖ ≤M ′‖λx+ y‖ .

Proof. Because of x /∈ F we have ‖x+ F‖ 6= 0. We set

M := ‖x+ F‖−1 and M ′ := 1 +M‖x‖ .

Then for y ∈ F and λ ∈ K we obtain

|λ| = M |λ|‖x+ F‖ = M‖λx+ F‖ ≤M‖λx+ y‖ ,

and therefore also

‖y‖ ≤ ‖y + λx‖+ |λ|‖x‖ ≤ ‖y + λx‖+M‖λx+ y‖‖x‖ = ‖y + λx‖(1 +M‖x‖) .

This proves the lemma.

In the finite-dimensional case, also the boundedness of linear operators is always granted.

Lemma 2.8. Let T : E → X be a linear mapping between normed spaces E and X, where
dimE <∞. Then there exists c > 0, such that for all x ∈ E we have

‖Tx‖X ≤ c‖x‖E .

Proof. We set n := dimE. Let n = 1 and choose x0 ∈ E, ‖x0‖ = 1. Then

E = span{x0}

and for x = λx0 ∈ E we have:

‖Tx‖X = ‖T (λx0)‖X = |λ|‖Tx0‖X
‖x0‖=1= ‖Tx0‖X︸ ︷︷ ︸

=:c

‖λx0‖E︸ ︷︷ ︸
=‖x‖

.

Now assume that the statement holds for dimE = n and let dimE = n + 1. Choose an
n-dimensional subspace F ⊂ E. Let x0 ∈ E \ F . Then for each x ∈ E there are λ ∈ K,
y ∈ F , such that

x = λx0 + y ,

i.e. E = F u span{x0}. By assumption, we find c′ > 0, such that ‖Ty‖X ≤ c′‖y‖E for all
y ∈ F . Now, by Corollary 2.6, F is closed and with Lemma 2.7 we obtain:

‖T (λx0 + y)‖X ≤ |λ|‖Tx0‖X + c′‖y‖E ≤ (‖Tx0‖XM + c′M ′)‖λx0 + y‖ .

The lemma is proven.

We arrive at the following important corollary

Corollary 2.9. The following statements hold true:

(a) Each two norms on a finite-dimensional space are equivalent.
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(b) Let E, F be normed spaces and dimE < ∞. Then for every linear and bijective
mapping T : E → F there exist c, d > 0, such that

‖Tx‖ ≤ c‖x‖ and ‖T−1y‖ ≤ d‖y‖ .

(c) Let E be a normed space with dimE <∞ and A ⊂ E a subset. Then A is compact if
and only if A is bounded and closed.

Proof. (a). Consider the linear map

T : (E, ‖·‖1)→ (E, ‖·‖2) , Tx := x ,

x ∈ E, where ‖·‖i are norms on E for i = 1, 2. Then Lemma 2.8 implies

‖Tx‖1 ≤ c‖x‖2 and ‖Tx‖2 ≤ d‖x‖1

for some c, d > 0. Since Tx = x, this proves the claim.
(b). The inverse operator T−1 is linear, thus Lemma 2.8 implies the claim.
(c). It is well known that the statement holds for Kn with the Euclidean norm. Let
dimE = n. Then there exists a bijective linear map T : Kn → E. By (b) there exist
c, d > 0 with ‖Tx‖ ≤ c‖x‖ and ‖T−1y‖ ≤ d‖y‖. This implies that A is bounded/closed
if and only if T−1(A) is bounded/closed in Kn and A is compactif and only if T−1A is
compact, which finishes the proof.

Finally we show that finite-dimensional normed spaces are the only locally compact ones.

Theorem 2.10. For a normed space E, the following are equivalent.

(i) We have dimE <∞.

(ii) The space E is locally compact, i.e. each x ∈ E has a compact neighborhood.

(iii) The closed ball K1(0) is compact.

Proof. (i)⇒(ii). This follows from Corollary 2.9(c).
(ii)⇒(iii). Let K be a compact neighborhood of 0. Then there exists δ > 0 with Kδ(0) ⊂
K. But Kδ(0) is a closed subset of K, thus compact. Since the mapping x 7→ x

q maps
compact sets to compact sets, (iii) follows.
(iii)⇒(i). The compactness of K1(0) implies that K1(0) is totally bounded. Hence there
exists a finite 1

2 -net y1, . . . , yn of K1(0). Let F := span(y1, . . . , yn). If we prove E = F , we
are done. Assume F 6= E. Then there exists x0 ∈ E\F , i.e. dist(x0, F ) = infy∈F ‖x0−y‖ >
0 (since F is finite dimensional, thus closed). Let y0 ∈ F such that

‖x0 − y0‖ ≤ 2 dist(x0, F ) .

Define
x = x0 − y0

‖x0 − y0‖
∈ K1(0) .

For all y ∈ F we then have

‖x− y‖ = ‖x0 − y0‖−1
∥∥∥x0 −

(
y0 + ‖x0 − y0‖y

)∥∥∥ .
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Since y0 + ‖x0 − y0‖y ∈ F , this implies∥∥∥x0 −
(
y0 + ‖x0 − y0‖y

)∥∥∥ ≥ dist(x0, F ) .

Hence
‖x− y‖ ≥ ‖x0 − y0‖−1 dist(x0, F ) ≥ 1

2 dist(x0, F ) dist(x0, F ) = 1
2 .

Thus x is not in ⋃ni=1 U 1
2
(yi). This contradiction shows F = E.

Example 2.11.

(1) The metric d∞(f, g) = supx∈X |f(x)− g(x)| on B(X) is induced by the norm ‖f‖∞ :=
supx∈X |f(x)|. Hence (B(X), ‖·‖∞) is a Banach space.

(2) The spaces `p and Lp are Banach spaces.

(3) The space (Kn, ‖·‖p) is a closed subspace of `p, thus Kn is a Banach space.

(4) Let E, F be normed spaces over K. Then E × F is a normed space (the so-called
product space) if we define the operations

λ(x, y) := (λx, λy) ,
(x1, y1) + (x2, y2) := (x1 + x2, y1 + y2)

and the norm ‖(x, y)‖ = max(‖x‖E , ‖y‖F ). If E and F are Banach spaces, so is E×F .

Proof. Let (xn, yn))n∈N be a Cauchy sequence in E × F . Then (xn) and (yn) are
Cauchy sequences in E and F respectively, thus they converge to, say, x ∈ E, y ∈ F .
But then also (xn, yn)→ (x, y).

More generally, let E1, . . . , Er be normed spaces over K with norms ‖·‖1, . . . , ‖·‖r.
Then E1 × · · · × Er is also a normed space with norm

‖(x1, . . . , xr)‖∞ = max (‖x1‖1, . . . , ‖xr‖r) or

‖(x1, . . . , xr)‖p =
(

r∑
i=1
‖xi‖pi

) 1
p

.

If E1, . . . , Er are complete, then E1 × · · · × Er as well, and vice versa. Furthermore,
convergence in E1 × · · · ×Er is equivalent to convergence of each component xi ∈ Ei.
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The next main objects are (continuous) linear operators between normed spaces. The
following characterisation of continuity of linear operators will be of grave importance (it
would, however, be false in the mor general setting of topological vector spaces).

Lemma 3.1. Let E, F be normed spaces over K and T : E → F be a linear operator (a
linear map). Then the following are equivalent:

(i) The operator T is continuous on E.

(ii) The operator T is continuous in one point x0 ∈ E.

(iii) The operator T is bounded, i.e. ‖Tx‖ ≤ c‖x‖ for all x ∈ E and some c > 0.

Proof. (i)⇒(ii). This is trivial.
(ii)⇒(iii). Let T be continuous in x0. Then there exists δ > 0 such that for all x ∈ E with
‖x− x0‖ ≤ δ we have ‖Tx− Tx0‖ ≤ 1. Let y = δ−1 · (x0 − x), then

∥∥∥ δ·y‖y‖∥∥∥ ≤ δ. We obtain∥∥∥∥T (δ · y‖y‖
)∥∥∥∥ ≤ 1

and thus
‖Ty‖ ≤ ‖y‖

δ
.

(iii)⇒(i). Let ε > 0. Then ‖T (x− x0)‖ ≤ c‖x− x0‖ < ε if and only if ‖x− x0‖ ≤ ε
c . This

implies T (K ε
c
(x0)) ⊂ K ε

c
(Tx0). Thus, T is continous.

Now, we turn the set of continuous or, equivalently, bounded operators between two
normed spaces into another normed space.

Definition 3.2. Let E, F be normed spaces over K.

(i) We denote the set L(E,F ) of bounded linear operators from E to F by

L(E,F ) := {T : E → F : T is linear and bounded} .

If E = F we write L(E) instead of L(E,F ).

(ii) We define the operator norm on L(E,F ) by

‖T‖ := sup
‖x‖E≤1

‖Tx‖F .

Lemma 3.3. Let E, F , G be normed spaces over K.

(i) The space
(
L(E,F ), ‖·‖

)
is a normed linear space. Also for T ∈ L(E,F ) we have

‖T‖ = sup
‖x‖=1

‖Tx‖ = sup
x 6=0

‖Tx‖
‖x‖

= inf{c ≥ 0 : ‖Tx‖ ≤ c‖x‖ for all x ∈ E} .

(ii) If T ∈ L(E,F ) and S ∈ L(F,G) then S ◦ T ∈ L(E,G) and ‖S ◦ T‖ ≤ ‖S‖‖T‖.
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Proof. (i). It is well-known that the space of linear maps from E to F is a linear space.
Now, for T1, T2, T ∈ L(E,F ), λ ∈ K, and arbitrary x ∈ E with ‖x‖ = 1 we have

‖(T1 + T2)x‖ ≤ ‖T1x‖+ ‖T2x‖ ≤ ‖T1‖+ ‖T2‖

and
‖λTx‖ = |λ|‖Tx‖ ≤ |λ|‖T‖ .

Because of x being arbitrary, we have proven that (T1 + T2), λT ∈ L(E,F ), thus L(E,F )
is a linear space. It is also clear that ‖T‖ = 0 implies T = 0. Thus ‖·‖ is a norm on it.
Further,

sup
‖x‖≤1

‖Tx‖ ≥ sup
‖x‖=1

‖Tx‖ = sup
y 6=0

∥∥∥∥T ( y

‖y‖

)∥∥∥∥ = sup
y 6=0

‖Ty‖
‖y‖

≥ sup
y 6=0
‖y‖≤1

‖Ty‖
‖y‖

≥ sup
y 6=0
‖y‖≤1

‖Ty‖ ≥ sup
‖y‖≤1

‖Ty‖ .

This chain proves
‖T‖ = sup

‖x‖=1
‖Tx‖ = sup

x 6=0

‖Tx‖
‖x‖

.

Finally, if ‖Tx‖ ≤ c‖x‖ for all x ∈ E then for all x ∈ E we have ‖Tx‖‖x‖ ≤ c and thus
‖T‖ ≤ c. By this, ‖T‖ is a lower bound for {c ≥ 0 : ‖Tx‖ ≤ c‖x‖ for all x ∈ E}. On the
other hand, we have for each x 6= 0

‖Tx‖ = ‖Tx‖
‖x‖

‖x‖ ≤ ‖T‖‖x‖ .

Thus ‖T‖ ∈ {c : ‖Tx‖ ≤ c‖x‖ for all x ∈ E} and ‖T‖ is actually the greatest lower bound
for that set, i. e.

‖T‖ = inf{c : ‖Tx‖ ≤ c‖x‖ for all x ∈ E} .

(ii). Exercise.

The case F = K will be of particular interest.

Definition 3.4. Let E be a normed space over K. Then a map ` : E → K is called a
functional on E. The space L(E,K) of all bounded linear functionals is called the dual
space of E and is denoted by E∗.

Theorem 3.5. Let E be a normed space over K and let F be a Banach space over K.
Then L(E,F ) is a Banach space. In particular, E∗ is a Banach space.

Proof. Let (Tn)n be a Cauchy sequence in L(E,F ). Then since

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖ · ‖x‖ ,

also (Tnx)n is a Cauchy sequence in F for each x ∈ E. Since F is complete, we can find
Tx = limn→∞ Tnx. This defines a mapping T : E → F .
We show that T is linear: Let x, y ∈ E and λ, µ ∈ K. Then

T (λx+ µy) = lim
n→∞

Tn(λx+ µy) = λ · lim
n→∞

Tnx+ µ · lim
n→∞

Tny = λ · Tx+ µ · Ty .
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We show that T is bounded: Let ε > 0, Nε ∈ N such that ‖Tn−Tm‖ < ε for all m,n ≥ Nε.
This implies

‖Tnx− Tmx‖ ≤ ‖Tn − Tm‖‖x‖ < ε‖x‖

for all m,n ≥ Nε and x ∈ E. Letting n → ∞ we obtain ‖Tx − Tmx‖ ≤ ε‖x‖ for all
m ≥ Nε. Hence ‖Tx− TNεx‖ ≤ ε‖x‖. This implies

‖Tx‖ ≤ ε‖x‖+ ‖TNεx‖ ≤ (ε + ‖TNε‖) · ‖x‖

for all x ∈ E. Thus T ∈ L(E,F ).
We show Tn → T : With ‖Tx − Tmx‖ ≤ ε‖x‖ for all m ≥ Nε we obtain ‖T − Tm‖ ≤ ε.
Hence limm→∞ Tm = T .

Now we show that a continuous linear operator, defined on a subspace can be continuously
extended to the closure of this subspace leaving its norm fixed.

Lemma 3.6. Let E be a normed space over K, L ⊂ E a subspace, F a Banach space
and T : L → F a continous linear operator. Then there exists a unique S ∈ L(L,F ) with
S|L = T . We have

‖S‖ = ‖T‖ .

Proof. Let x ∈ L and let (xn) ⊂ L be a sequence which converges to x. We observe

‖Txn − Txm‖ ≤ ‖T‖‖xn − xm‖ .

This implies that (Txn) is a Cauchy sequence in F . The space F is complete – hence
(Txn) converges. For any other sequence (yn) which also converges to x we have

‖Txn − Tyn‖ ≤ ‖T‖‖xn − yn‖ .

Thus limn→∞ Txn = limn→∞ Tyn. We can now define

Sx = lim
n→∞

Txn

and have no concerns about well-defining issues. It follows immediately that S|L = T ,
because for x ∈ L we can just choose the constant sequence xn := x for all n as “defining
sequence”. The linearity of S is also easily proven:

S(x+ y) = lim
n→∞

T (xn + yn) = limn→∞Txn + Tyn = Sx+ Sy

and analogously S(λx) = λSx. Moreover, ‖S‖ ≥ ‖S|L‖ = ‖T‖. To prove the reverse
inequality, let 0 6= x ∈ L and let (xn) be a sequence in L converging to x. Then

‖Sx‖ = lim
n→∞

‖Txn‖ ≤ ‖T‖ lim
n→∞

‖xn‖ = ‖T‖‖x‖ ,

which implies that also ‖S‖ ≤ ‖T‖. Hence, ‖S‖ = ‖T‖, and S is bounded. It only remains
to prove the uniqueness of S. Consider another continous linear operator R with R|L = T ,
and x ∈ L. For any sequence converging to x we have

Rx = lim
n→∞

Rxn = lim
n→∞

Txn = Sx .

We used the continuity of R.
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We draw a corollary. It follows from the uniqueness part of the lemma.

Korollar 3.7. If two bounded linear operators S, T ∈ L(E,F ), where F is a Banach space
and E a normed space, coincide on a dense subspace of E, then they coincide on E.

Now we consider the inverse of a continuous linear operator.

Lemma 3.8. Let E, F be normed spaces over K and T : E → F linear. Then the following
are equivalent:

(i) There exists a linear, continous inverse operator

T−1 : T (E)→ E .

(ii) There exists c > 0 such that c‖x‖ ≤ ‖Tx‖ .

Proof. (i)⇒(ii). Assume T−1 exists. Its continuity gives us the existence of a γ > 0 such
that

‖T−1y‖ ≤ γ‖y‖

for all y ∈ T (E). For an arbitrary x ∈ E we put y = Tx to obtain

‖x‖ ≤ γ‖Tx‖ .

Putting c := 1
γ we have proven (ii).

(ii)⇒(i). We observe that (ii) secures the injectivity of T (if x ∈ ker(T ), then ‖x‖ = 0).
Thus T−1 : ranE → E exists. Now letting y = Tx in (ii) assures the existence of a c > 0
with c‖T−1y‖ ≤ ‖y‖ for all y ∈ T (E). Thus the inverse operator is continous.

Note that, unlike in the finite-dimensional case, this inverse does not have to be bounded
automatically.
Example 3.9. Consider E = C[0, 1] with ‖·‖∞-norm and let

T : E → F , (Tf)(t) =
ˆ t

0
f(s) ds ,

with F = {g ∈ C1[0, 1] : g(0) = 0} having ‖·‖∞ as a norm.

• The operator T is linear.

• The operator T is bounded, since ‖Tf‖∞ ≤ ‖f‖∞.

• The operator T is injective, since Tf = 0 implies f = 0.

• The operator T is surjective, since for g ∈ F we have T (g′) = g.

But: T−1 is not continuous! For this, choose fn(t) = tn. Then (Tfn)(t) = 1
n+1 t

n+1, but

‖T−1(Tfn)‖∞ = ‖fn‖∞ = 1

and ‖Tfn‖∞ = 1
n+1 .

Next we define closed operators.
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Definition 3.10 (Graph of T ). Let E, F be normed spaces, L ⊂ E a subspace and
T : L→ F a linear operator.

(i) We define the graph of T by

GT = {(x, Tx) : x ∈ L} ⊂ L× F ⊂ E × F .

(ii) The operator T is called closed if its graph GT is closed in E × F .

Remark 3.11. Note that we require the graph to be closed in E × F , not in L × F . For
example, let L ⊂ E not be closed and consider the identity Id : L→ E. Its graph is closed
as a subset of L × E but not as a subset of E × F , so this operator is not closed. In
particular, closedness of T : L→ F also depends on the superspace E of L.

Luckily, we have quite an easy method to check whether a given operator is closed.

Lemma 3.12. Let E, F , T and L be as above. Then the following are equivalent:

(i) The operator T is closed.

(ii) If (xn) ⊂ L converges to x ∈ E and (Txn) converges to y ∈ F , then x ∈ L and
y = Tx.

Proof. Since ∥∥(xn, Txn)− (x, y)
∥∥ = max

(
‖xn − x‖, ‖Txn − y‖

)
we have that if xn → x and Txn → y, then

lim
n→∞

(xn, Txn) = (x, y) .

Because of GT being closed, (x, y) ∈ GT . Thus x ∈ L, y = Tx. Now consider a convergent
sequence (xn, yn) → (x, y) in GT . Because of the convergence of yn = Txn and (ii), it
follows that x ∈ L and y = Tx, thus (x, y) ∈ GT .

Remark 3.13. If L is closed, and T is continous, then T is closed. In particular, each
T ∈ L(E,F ) is closed.

Proof. If (xn, Txn)→ (x, y), then (L closed) x ∈ L. Continuity of T now implies Txn →
Tx, thus (x, y) ∈ GT .

We will now give a concrete computation of a dual space.

Theorem 3.14. Let 1 ≤ p <∞. Define q such that 1
p + 1

q = 1 , i.e.

q =
{

p
p−1 1 < p <∞
∞ p = 1 .

Moreover, for y ∈ `q define

fy : `p → K , x = (xn) 7→
∞∑
n=1

xnyn .

Then fy ∈ `∗p and y 7→ fy is an isometric isomorphism. In particular `q ∼= `∗p.
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Proof. First of all, fy is well-defined (i.e. the series converges) because of the Hölder-
inequality:

∞∑
n=1
|xnyn| ≤ ‖x‖p‖y‖q .

It is evident that fy is linear. Furthermore, by the above, we have

‖fy(x)‖ ≤ ‖x‖p‖y‖q .

Thus, fy is bounded. We conclude that fy ∈ `∗p. We now claim that ‖fy‖ = ‖y‖q. We
already proved ‖fy‖ ≤ ‖y‖q. To prove the inverse inequality, we consider the cases p = 1,
p > 1 separately.
First let p = 1: Let ε > 0. There exists an n ∈ N such that

|yn| ≥ ‖y‖q − ε .

Set x = en ∈ `1. We obtain fy(x) = yn. Because of ‖x‖ = 1 it follows that ‖fy‖ ≥ ‖y‖∞−ε.
Because of ε being arbitrary, we conclude ‖fy‖ ≥ ‖y‖q.
Now let p > 1: Define x by

xn =
{

0 yn = 0,
|yn|q
yn

otherwise .

Then ∞∑
n=1
|xn|p =

∞∑
n=1
|yn|p(q−1) =

∞∑
n=1
|yn|q <∞ ,

thus x ∈ `p.
We now compute fy(x):

fy(x) =
∞∑
n=1

xnyn =
∞∑
n=1
|yn|q = ‖y‖qq .

Thus |fy(x)|
‖x‖ = ‖y‖

q(p−1)
p = ‖y‖q, and we conclude ‖fy‖ ≥ ‖y‖q.

This proves that y 7→ fy is isometric. For the surjectivity let f ∈ `∗p and put

yn := f(en) .

To prove y = (yn) ∈ `q, we again treat the two cases p = 1, p > 1 separately .
Let p = 1. We have for all n

|yn| = |f(en)| ≤ ‖f‖‖en‖ = ‖f‖.

Thus, ‖y‖∞ ≤ ‖f‖, y ∈ `∞.
Let p > 1. For all m ∈ N there holds

m∑
n=1
|yn|q =

m∑
n=1
yn 6=0

|yn|q

yn
f(en) = f

(
m∑
n=1
yn 6=0

|yn|q

yn
en

)
≤ ‖f‖

∥∥∥∥∥
m∑
n=1
yn 6=0

|yn|q

yn
en

∥∥∥∥∥
p

.

We have ∥∥∥∥∥
m∑
n=1
yn 6=0

|yn|q

yn
en

∥∥∥∥∥
p

=
(

n∑
n=1
yn 6=0

|yn|p(q−1)
) 1

p

.
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And thus
m∑
n=1
|yn|q ≤ ‖f‖

(
m∑
n=1
|yn|q

) 1
p

,

which implies (
m∑
n=1
|yn|q

) 1
q

≤ ‖f‖ .

Letting m→∞, we get ‖y‖q <∞, implying y ∈ `q.
Finally, f = fy because for x = ∑m

n=1 xnen, there holds

f(x) =
m∑
n=1

xnf(en) =
m∑
n=1

xnyn = fy(x) .

Thus f coincides with fn on the dense linear subspace span(en)n∈N, hence (Lemma 3.6,
K is a Banach space) they are equal.

Finally, we will introduce the important concept of the dual operator.

Lemma 3.15. Let E, F be normed spaces, and let T ∈ L(E,F ). Then the operator
T ∗ : F ∗ → E∗ defined by

T ∗ϕ = ϕ ◦ T, ϕ ∈ F ∗ ,

satisfies T ∗ ∈ L(F ∗, E∗).
E

T //

T ∗ϕ ��

F

ϕ��
K

Proof. Obviously, T ∗ is linear. Further

‖(T ∗ϕ)x‖ = ‖ϕ(Tx)‖ ≤ ‖ϕ‖‖T‖‖x‖ .

This proves that T ∗ is bounded and ‖T ∗‖ ≤ ‖T‖.

Definition 3.16. Let E, F be normed spaces and T ∈ L(E,F ). Then the operator
T ∗ : F ∗ → E∗, ϕ 7→ ϕ ◦ T =: T ∗ϕ, is called the dual operator of T .
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4 Hahn-Banach Theorem and Corollaries

In this chapter we prove one of the most important theorems of this course; the Hahn-
Banach theorem. This will ensure us that we can extend continuous linear functionals from
subspaces to the entire space, actually guaranteeing the existence of nontrivial continuous
linear functionals on normed spaces. This simple statement will lead to a few important
corollaries and several forms of separation theorems.
First, we need some terminology.

Definition 4.1.

a) Let E be a linear space. Then the algebraic dual space of E is the space of linear
maps E → K. It is denoted E′.

b) Let E be an R-vector space. Then ρ : E → R is a sublinear functional on E if all
x, y ∈ E and λ > 0 satisfy ρ(x+ y) ≤ ρ(x) + ρ(y) and ρ(λx) = λρ(x).

On our way to the Hahn-Banach theorem, we need some lemmas. As we mentioned, our
goal is to extend a continuous linear functional from a subspace of a normed space to the
entire space, keeping some kind of bound. This will be done similarly to induction: First
we prove that we can extend functionals to a space with “one dimension more”.

Lemma 4.2. Let E be an R-vector space, F a linear subspace and x0 ∈ E \F . Let further
L be the space generated by x0 and F , i.e. L = F + Rx0, f ∈ F ′ and ρ be a sublinear
functional on E such that

f(x) ≤ ρ(x) for all x ∈ F .

Then there exists an ` ∈ L′ such that `|F = f and `(x) ≤ ρ(x) for all x ∈ L.

Proof. Note that each element y ∈ L has a unique representation y = x + λx0, x ∈ F ,
λ ∈ R. This follows from the fact that x0 is not an element of F . To define ` ∈ L′, observe
that

`(y) = `(x) + λ`(x0) = f(x) + λ`(x0) .

Thus, it is sufficient to choose `(x0). In other words, it suffices to show the existence of a
γ ∈ R with

f(x) + λγ ≤ ρ(x+ λx0) (4.1)

for all x ∈ F , λ ∈ R. First, we have for x, y ∈ F

f(x) + f(y) = f(x+ y) ≤ ρ(x+ y) = ρ
(
(x+ x0) + (y − x0)

)
≤ ρ(x+ x0) + ρ(y − x0) .

This implies
f(y)− ρ(y − x0) ≤ ρ(x+ x0)− f(x) (4.2)

for all x, y ∈ F . Next, define

A := {f(x)− ρ(x− x0) : x ∈ F} and
B := {ρ(x+ x0)− f(x) : x ∈ F} .

By (4.2), we get supA ≤ inf B. Choose γ ∈ [supA, inf B]. Then we have

f(x)− γ ≤ ρ(x− x0) and f(x) + γ ≤ ρ(x+ x0)
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for all x ∈ F . Now for λ > 0 we have

f(x)− λγ = λ
(
f(λ−1x)− γ

)
≤ λρ(λ−1x− x0) = ρ(x− λx0) ,

and
f(x) + λγ = λ

(
f(λ−1x) + γ

)
≤ λρ(λ−1x+ x0) = ρ(x+ λx0) .

Thus, (4.1) is proven.

Now, will use Zorn’s Lemma for some kind of “transfinite induction”. We will show the
existence of a maximal extension. To show that such a maximal extension is defined
everywhere, we apply the previous lemma, which says: If it were not, we could add yet
another dimension.

Lemma 4.3. Let E be an R-vector space, F ⊆ E a linear subspace and ρ a sublinear
functional on E. Further let f ∈ F ′ with f(x) ≤ ρ(x) for all x ∈ F . Then there exists
` ∈ E′ with `|F = f and `(x) ≤ ρ(x) for all x ∈ E.

Proof. Set

L =
{

(L, `) : L linear subspace of E with L ⊃ F and
` ∈ L′ with `|F = f and `(x) ≤ ρ(x) for all x ∈ L .

}
.

This is the space of all extensions of f satisfying the desired inequality. We have to prove
the existence of a pair of the form (E, `) ∈ L. As mentioned above, we will show that
there exists an extension which cannot be extended any further, a maximal extension. To
do this, we define a partial ordering on L:

(L1, `1) ≤ (L2, `2) :⇔ L1 ⊂ L2 ∧ `2|L1 = `1 .

We know that L 6= ∅ since (F, f) ∈ L.
Claim: Let K be a chain in L. Then K has an upper bound in L.
This is proved with a standard argument for Zorn’s Lemma. We take all our domains of
definition, unite them and use this as the domain of definition for our upper bound. So
we set

L̃ =
⋃
{L : there is ` ∈ L′ with (L, `) ∈ K }

and let ˜̀: L̃→ R be defined by

˜̀(x) := `(x) if x ∈ L and ` ∈ L′ with (L, `) ∈ K .

First, L̃ is a linear subspace since K is linearly ordered: if x, y ∈ L̃, there exist Lx, Ly with
x ∈ Lx, y ∈ Ly such that there exist `x, `y so that (Lx, `x), (Ly, `y) ∈ K . Now because of
the fact that K is a chain we can without loss of generality assume that Lx ⊂ Ly. But
then x+ y ∈ Ly, hence x+ y ∈ L̃. Checking λx ∈ L is trivial.
We show that ˜̀ is well-defined: Let x ∈ L̃. We know by the definition of L̃ that an
(L1, `1) ∈ K such that x ∈ L1 and `1 ∈ L′1 always exists. If (L2, `2) ∈ K is another pair
with x ∈ L2, then one of the pairs is bigger with respect to the ordering (K is a chain).
Without loss of generality, (L1, `1) ≤ (L2, `2). Then, because of x ∈ L1 ⊂ L2 we have
`2(x) = `1(x).
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Now we show ˜̀ ∈ L̃′: Let xi ∈ Li, αi ∈ R, (Li, `i) ∈ K , i = 1, 2. Without loss of
generality, (L1, `1) ≤ (L2, `2). Then x1 ∈ L2 and thus α1x1 + α2x2 ∈ L2. Hence, we have

˜̀(α1x1 + α2x2) = `2(α2x1 + α2x2) = α1 `2(x1)︸ ︷︷ ︸
=`1(x1)

+α2`2(x2)

= α1 ˜̀(x1) + α2 ˜̀(x2).

Finally, ˜̀(x) = `(x) ≤ ρ(x) for some ` for every x.
Zorn’s Lemma now provides the existence of a maximal element (L, `) ∈ L of L. We have
to prove that L = E. Suppose the opposite, then there exists x0 ∈ E \ L. By Lemma
4.2, there exists g ∈ (L + Rx0)′ with g|L = ` and g(x) ≤ ρ(x) for all x ∈ (L + Rx0). But
then we have (L, `) < (L + Rx0, g). This contradiction shows L = E, which proves the
lemma.

The following is also called the analytic version of the Hahn-Banach theorem.

Theorem 4.4. Let E be a vector space over K, F a linear subspace and f ∈ F ′. Let
ρ : E → R be a seminorm on E, i. e. for all x, y ∈ E, λ ∈ K

ρ(x+ y) ≤ ρ(x) + ρ(y) and
ρ(λx) = |λ|ρ(x).

Suppose that |f(x)| ≤ ρ(x) for all x ∈ F . Then there exists an ` ∈ E′ with `|F = f and
|`(x)| ≤ ρ(x) for all x ∈ E.

Proof. First consider K = R. Then f(x) ≤ ρ(x) for all x ∈ F and ρ(αx) = αρ(x) for all
x ∈ E, α ≥ 0. By Lemma 4.3, there exists some ` ∈ E′ with

`|F = f and `(x) ≤ ρ(x)

for all x ∈ E. Since also

−`(x) = `(−x) ≤ ρ(−x) = ρ(x) ,

we have |`(x)| ≤ ρ(x). The case K = C will be discussed in the exercises.

Finally we arrive at what the Hahn-Banach Theorem for normed spaces. It says essentially
that we may extend continuous linear functionals from (arbitrary) subspaces to all of our
space without enlarging the norm.

Theorem 4.5 (Hahn-Banach Theorem). Let E be a normed space, F a linear subspace
of E. Then for each f ∈ F ∗ there exists some ` ∈ E∗ with

`|F = f and ‖`‖ = ‖f‖ .

Proof. Let ρ be defined by
ρ(x) = ‖f‖‖x‖ .

Then ρ is a seminorm - the properties are inherited from the norm properties of ‖·‖.
Furthermore |f(x)| ≤ ρ(x) for all x ∈ F . By Theorem 4.4, there exists ` ∈ E′ with

`|F = f and |`(x)| ≤ ρ(x) = ‖f‖‖x‖ .

This proves in particular that ` ∈ E∗ and ‖`‖ ≤ ‖f‖. Because of `|F = f , the reverse
inequality holds. Thus ‖`‖ = ‖f‖.
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Remark 4.6. If G is another normed space, we remark that it is in general not possible
to extend an operator T ∈ L(F,G) to an operator S ∈ L(E,G) having the same norm.
One can show, however, that this can be done if G = `∞ (by applying the Hahn-Banach
Therem to each component). In the case G = c0, by a little more effort, it can be shown
that we can extend S ∈ L(F, c0) to T ∈ L(E, c0), where at least ‖S‖ ≤ 2‖TR. On the
other hand, let E be a Banach space, F ⊂ E a non-closed subspace and T ∈ L(F, F ) the
identity. Then there is no S ∈ L(E,F ) extending T .

Now we turn to some important corollaries.

Korollar 4.7. Let E be a normed space and F a linear subspace of E and x ∈ E such
that

δ := inf
y∈F
‖x− y‖ > 0 .

Then there exists an ` ∈ E∗ with

`|F = 0 , ‖`‖ = 1 and `(x) = δ .

In particular, for any x 6= 0 there exists an ` ∈ E∗ with ‖`‖ = 1 and `(x) = ‖x‖.

Proof. Let G = F + Kx and g : G→ K be defined by g(y + λx) = λδ for y ∈ F , λ ∈ K. g
is well defined, since x /∈ F implies G = F uKx. Further g is linear, g|F = 0 and g(x) = δ.
We now claim ‖g‖ = 1. There holds

|g(y + λx)| = |λ|δ = |λ| inf
z∈F
‖z − x‖

= inf
z∈F
‖λz − λx‖ = inf

z∈F
‖z + λx‖ ≤ ‖y + λx‖ .

Thus ‖g‖ ≤ 1. Secondly, for every ε > 0 there exists a zε ∈ F with δ ≤ ‖zε + x‖ ≤ δ + ε.
It follows that

g(x+ zε) = δ ≥ ‖x+ zε‖ − ε

and thus
g
(
‖x+ zε‖−1(x+ zε)

)
= δ

‖x+ zε‖
≥ 1− ε

‖x+ zε‖
≥ 1− ε

δ
.

Now apply Theorem 4.5 to lift g up to E∗. For the in-particular part, choose F = {0}.

As a particular case we obtain a way to represent a norm which will be of grave importance.

Korollar 4.8. Let E be a normed space. Then for each x ∈ E we have

‖x‖ = sup{|`(x)| : ` ∈ E∗, ‖`‖ ≤ 1} .

Moreover, this supremum is attained.

Proof. Let x ∈ E. Then S := sup{|`(x)| : ` ∈ E∗ , ‖`‖ ≤ 1} ≤ ‖x‖. By Corollary 4.7 there
exists some ` ∈ E∗ with ‖`‖ = 1 and |`(x)| = ‖x‖, hence S = ‖x‖ and the supremum is
attained.

We now turn to a geometric separation problem (the solution of which will lay on the Hahn-
Banach Theorem): Given two subsets U , V of a normed space E, under which conditions
is it possible to separate them by a closed hyperplane (the kernel of a continuous linear
functional). More explicit, we ask whether it is possible to find some f ∈ E∗ such that

sup
x∈U

Re f(x) ≤ inf
x∈V

Re f(x) , (4.3)
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or – in the real case – just supU f(x) ≤ infV f(x). Thinking of subsets of two- or three-
dimensional space and separating by a line or a plane, it is intuitive to restrict on convex
subsets U , V (also, they should not overlap ”too much”). Thus, we adress the following
question: Let E be a normed space and U, V ∈ E convex subsets. Under which additional
assumptions does there exist some f ∈ E∗ satisfying (4.3)?
To investigate this we need the help of Minkowski functionals.

Definition 4.9. Let E be an arbitrary vector space over K and let C ⊂ E be some subset.
Then the Minkowski functional ρC : E → [0,∞] is defined by

ρC(x) := inf{α > 0 : x ∈ αC} .

The set C is called absorbing if ρC(x) <∞ for all x ∈ E.

Lemma 4.10. Let E be a normed space and C ⊂ E be an open, convex subset containing
0. Then

(i) The Minkowski functional ρC is sublinear.

(ii) The set C is absorbing. In fact, there exists M ≥ 0 such that ρC(x) ≤M‖x‖ for all
x ∈ E.

(iii) The set C can be described as

C = {x ∈ E : ρC(x) < 1} .

Proof. Homework.

We are ready to state and prove our first separation theorem.

Theorem 4.11 (Hahn-Banach separation theorem). Let E be a normed space and U, V ⊂
E disjoint convex subsets. If further U is open, then there exists f ∈ E∗ such that

Re f(u) < Re f(v)

for all u ∈ U and v ∈ V .

Proof. Step 1: We assume that V consists of a single point, i. e. V = {x0} for some
x0 ∈ E. Further, we restrict to the case K = R – the proof for the complex case is done
similarly as you did for theorem 4.4 in the exercises.
We have to prove the existence of some f ∈ E∗ sich that f(x) < f(x0) for all x ∈ U .
W. l. o. g. assume 0 ∈ U . Otherwise fix u0 ∈ U and translate by u0: the shifted spaces
U − u0 and V − u0 still satisfy all of our assumptions and f(x) < f(x0) for all x ∈ U is
equivalent to f(x− u0) < f(x0− u0) for all x ∈ U by linearity of f . Now that we justified
the assumption 0 ∈ U let ρU be the Minkowski functional of U . We shall prove

ρU (x0) = inf{α > 0 : x0 ∈ αU} ≥ 1 . (4.4)

Clearly, x0 /∈ 1 · U = U as U ∩ V = ∅. Thus for α ∈ (0, 1) we have x0 /∈ αU since
αU ⊂ αU + (1− α)U ⊂ 1 · U by convexity of U . This shows (4.4).
Now let F := span{x0} and define ϕ : F → R, λx0 7→ λ. Then ϕ is obviously linear and ϕ
is dominated by ρU , i. e. ϕ(y) ≤ ρU (y) for all y ∈ F . To see this, note first that for λ ≥ 0
we have

ϕ(λx0) = λ ≤ λρU (x0) = ρU (λx0)
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by (4.4) while for λ < 0 there holds

ϕ(λx0) = λ < 0 ≤ ρU (λx0) .

Now, lemma 4.3 ensures the existence of f ∈ E′ such that f |F = ϕ and still f(x) ≤ ρU (x)
for all x ∈ E. In particular, f(x0) = ϕ(x0) = 1. By lemma 4.10 there exists M ≥ 0 such
that ρU (x) ≤M‖x‖ for all x ∈ E, implying continuity of f by

±f(x) = f(±x) ≤ ρU (±x) ≤M‖x‖ ,

thus f ∈ E∗. The claim now follows from lemma 4.10 as

f(x) ≤ ρU (x) < 1 = f(x0)

for all x ∈ U .
Step 2: Now, let V be an arbitrary convex subset disjoint to U . Define

W := U − V =
⋃
v∈V

(U − v)

which is nonempty and convex (since U and V are nonempty and convex) and open as a
union of open sets. Applying step 1 to W and {0} yields f ∈ E∗ such that f(u − v) <
f(0) = 0 for all u ∈ U , v ∈ V , i. e. f(u) < f(v) for all u ∈ U , v ∈ V .

In a second separation theorem we will separate closed sets from compact sets.

Lemma 4.12. Let (X, d) be a metric space and let A,B ⊂ X be two nonempty subsets
where A is compact and B is closed. Then

dist(A,B) := inf
{
d(a, b) : a ∈ A, b ∈ B

}
> 0 .

Proof. Tutorials.

Theorem 4.13 (Hahn-Banach strict separation theorem). Let E be a normed space,
U, V ⊂ E nonempty, disjoint and convex subsets. Further, let U be closed and V be
compact. Then there exists f ∈ E∗ and α1 < α2 ∈ R such that

Re f(u) ≤ α1 < α2 ≤ Re f(v)

for all u ∈ U and v ∈ V .

Proof. By the previous lemma, d := dist(U, V ) > 0. Let 0 < r < d and let

Ur := U + Ur(0) =
⋃
u∈U

(
u+ Ur(0)

)
which is open and convex (a neighborhood of U . Furthermore, Ur ∩ V = ∅ since for all
u+ x ∈ Ur, v ∈ V we have

‖(u+ x)− v‖ ≥ ‖u− v‖ − ‖x‖ ≥ d− r > 0 .

By our first separation theorem 4.11 there exists f ∈ E∗ such that

Re f(u+ x) < Re f(v)
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for all u + x ∈ Ur, v ∈ V . Now, let y ∈ U1(0), hence also −y ∈ U1(0) and ± r
2y ∈ Ur(0).

Therefore,
Re f

(
u± r

2y
)

= Re f(u)± r

2 Re f(y) < Re f(v)

for all u ∈ U , v ∈ V and thus

Re f(u) + r

2 sup
x∈U1(0)

|Re f(x)| ≤ Re f(v) .

As we take the supremum of the interior of the unit ball, we may rewrite this as

Re f(u) + r

2‖f‖ ≤ Re f(v) .

Letting ε := r
2‖f‖, we have

Re f(u) < Re f(u) + ε

2 < Re f(u) + ε ≤ Re f(v) .

Now, we have proved the claim by setting

α1 := sup
u∈U

Re f(u) and α2 := inf
v∈V

Re f(v) .

In the rest of this chapter we will use the Hahn-Banach Theorem to study annihilators
and reflexivity.

Definition 4.14. Let E be a normed space,M ⊂ E an arbitrary subset of E and L ⊂ E∗.
Then the annihilator of M in E∗ is defined by

M⊥ := {` ∈ E∗ : `(x) = 0 for all x ∈M}

and the annihilator of L in E is given by

L⊥ := {x ∈ E : `(x) = 0 for all ` ∈ L} .

Remark 4.15. The annihilators are closed linear subspaces of E∗ and E, respectively. This
follows from the continuity of ` 7→ `(x), x 7→ `(x).

Our first result concerns annihilators of annihilators.

Lemma 4.16. Let E be a normed space and ∅ 6= M ⊆ E. Then (M⊥)⊥ is the closed
linear hull of M , i.e. the smallest closed linear subspace of E which contains M .

Proof. If x ∈ M , then `(x) = 0 for all ` ∈ M⊥, thus x ∈ (M⊥)⊥. Hence, M ⊂ (M⊥)⊥.
Now let F be the closed linear hull of M . By Remark 4.15, F ⊆ (M⊥)⊥. Assume there
exists x ∈ (M⊥)⊥ \ F . Corollary 4.7 secures the existence of an ` ∈ (M⊥)∗⊥ with `|F = 0
and `(x) 6= 0. Theorem 4.5 now implies the existence of an f ∈ E∗ with f |(M⊥)⊥ = `.
The functional f is in M⊥ because of f |F = `|F = 0 and M ⊆ F . But f(x) 6= 0. A
contradiction!

Also, we are able now to characterize the dual space of a subspace and of quotient space.

Theorem 4.17. Let E be a normed space over K, and F ⊂ E a linear subspace.
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(i) The linear operator

Φ: E∗/F⊥ → F ∗ , Φ(f + F⊥) = f |F ,

f ∈ E∗, is an isometric isomorphism.

(ii) If F is closed, then the linear operator

Φ: (E/F )∗ → F⊥ , (Φf)(x) = f(x+ F ) ,

x ∈ E, f ∈ (E/F )∗, is an isometric isomorphism.

Proof. (i). Consider the map T : E∗ → F ∗, Tf := f |F , f ∈ E∗. We have kerT = F⊥.
Hence, Φ is well-defined, linear, and injective. By Theorem 4.5, for each ` ∈ F ∗ there
exists some f ∈ E∗ with f |F = `. Hence, Φ is surjective. Finally, let f ∈ E∗, and choose
g ∈ E∗ such that

‖g‖ = ‖f |F ‖ and g|F = f |F .

Then, we obtain

‖f + F⊥‖ ≤ ‖f + (g − f)‖ = ‖g‖ = ‖f |F ‖ = ‖Φ(f + F⊥)‖ .

On the other hand, for all g ∈ F⊥,

‖Φ(f + F⊥)‖ = ‖f |F ‖ = ‖(f + g)|F ‖ ≤ ‖f + g‖ .

Hence, ‖Φ(f + F⊥)‖ ≤ ‖f + F⊥‖.
(ii). First, Φf : E → K, x 7→ f(x+ F ), is linear. Since

|(Φf)(x)| = |f(x+ F )| ≤ ‖f‖ · ‖x+ F‖ ≤ ‖f‖ · ‖x‖ ,

we have Φf ∈ E∗. If x ∈ F , then (Φf)(x) = f(F ) = 0, hence Φf ∈ F⊥. Therefore, indeed
Φ: (E/F )∗ → F⊥. It is obvious that Φ is linear and injective. To prove surjectivity, let
g ∈ F⊥, and let f : E/F → K be defined by

f(x+ F ) = g(x), x ∈ E .

The functional f is is well-defined since F ⊂ ker g. Moreover, f is linear, and for all x ∈ E,
y ∈ F we have

|f(x+ F )| = |g(x)| = |g(x+ y)| ≤ ‖g‖ · ‖x+ y‖ ,

which implies f ∈ (E/F )∗. In addition, Φf = g, and surjectivity is proved.
It remains to show that Φ is isometric. For this, note that |(Φf)(x)| ≤ ‖f‖ · ‖x‖, x ∈ E,
implies ‖Φf‖ ≤ ‖f‖ for all f ∈ (E/F )∗. On the other hand, for each ε > 0 there exists
x ∈ E with

‖x+ F‖ = 1 and |f(x+ F )| ≥ ‖f‖ − ε .

Since 1 = ‖x+F‖ = infy∈F ‖x+ y‖, there exists y ∈ F with ‖x+ y‖ ≤ 1 + ε. This implies∥∥∥x+y
1+ε

∥∥∥ ≤ 1 and hence
∣∣∣∣(Φf)

(
x+ y

1 + ε

)∣∣∣∣ = |f(x+ F )|
1 + ε

≥ ‖f‖ − ε

1 + ε
.

Thus ‖Φf‖ ≥ ‖f‖−ε1+ε , which yields ‖Φf‖ ≥ ‖f‖. This proves that Φ is isometric.
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We observe that one may naturally identify elements of a normed space with elements of
its second dual space.
Lemma 4.18. Let E be a normed space over K. For x ∈ E let x̂ : E∗ → K be defined by
x̂(`) = `(x), ` ∈ E∗. Then ΛE : E → (E∗)∗, ΛEx = x̂, is an isometric linear operator.

Proof. The operator ΛE is linear, and for x ∈ E we have

sup{|x̂(`)| : ` ∈ E∗, ‖`‖ = 1} = sup{|`(x)| : ` ∈ E∗, ‖`‖ = 1} = ‖x‖ ,

where the last equality follows from Corollary 4.7. This proves that indeed x̂ ∈ (E∗)∗ and
that ‖ΛEx‖ = ‖x̂‖ = ‖x‖ for all x ∈ E.

If we can identify a normed space with all of its bidual in this way (!), the space will be
called reflexive.
Definition 4.19. Let E be a normed space over K, and let ΛE be defined as above. Then
ΛE is called canonical map or canonical embedding of E in E∗∗ := (E∗)∗. The space E is
called reflexive, if ΛE is surjective. The space E∗∗ is the bi-dual of E, and ΛE(E) is the
completion of E.
Remark 4.20. Only Banach spaces can be reflexive. The class of reflexive spaces is a highly
important class of Banach spaces. Intriguingly, there exist non-reflexive Banach spaces,
which are isometrically isomorphic to their bi-dual (like the James space). Moreover,
notice that finite-dimensional spaces are always reflexive because of dimE∗∗ = dimE.
We relate reflexivity of a space to reflexivity of subspaces, quotient spaces and dual spaces.
Theorem 4.21. Let E be a normed space over K.

(i) If E is reflexive and F ⊂ E a closed linear subspace, then F is also reflexive.

(ii) If E is a Banach space, then E is reflexive if and only if E∗ is reflexive.

Proof. (i). We have to show that for each ϕ ∈ F ∗∗ there exists some y ∈ F with ϕ(f) =
f(y) for all f ∈ F ∗. For this, let ϕ ∈ F ∗∗ and let ψ : E∗ → K be defined by ψ(`) := ϕ(`|F ),
` ∈ E∗. Since

|ψ(`)| ≤ ‖ϕ‖ · ‖`|F ‖ ≤ ‖ϕ‖ · ‖`‖ ,
we have ψ ∈ E∗∗. The space E being reflexive then implies that there exists y ∈ E with
ψ(`) = `(y) for all ` ∈ E∗. Next, towards a contradiction, assume that y /∈ F . Then there
exists some ` ∈ E∗ with `(y) 6= 0 and `|F = 0. Hence, 0 6= `(y) = ψ(`) = ϕ(`|F ) = 0,
which is a contradiction. Finally, for f ∈ F ∗ there exists some ` ∈ E∗ with `|F = f , hence

ϕ(f) = ϕ(`|F ) = ψ(`) = `(y) = f(y) .

This shows that F is reflexive.
(ii). Let E be reflexive. We need to show that for each u ∈ E∗∗∗ there exists some f ∈ E∗
with u(ϕ) = ϕ(f) for all ϕ ∈ E∗∗. For this, let u ∈ E∗∗∗, and set f(x) := u(x̂), x ∈ E.
Then f ∈ E∗. Next, let ϕ ∈ E∗∗. Since there hence exists some x ∈ E with x̂ = ϕ, we
obtain

u(ϕ) = u(x̂) = f(x) = x̂(f) = ϕ(f) .
Therefore, E∗ is reflexive.
For the converse, let E∗ be reflexive. Then, by the above, E∗∗ is reflexive. By (i), also
ΛE(E) = ΛE(E) is reflexive. The claim now follows from the fact that E and ΛE(E) are
(isometrically) isomorphic (see Exercise Sheet 6, Exercise 1(ii)).
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Theorem 4.22. Let E be a Banach space and F ⊂ E a closed linear subspace. Then the
following are equivalent:

(i) E is reflexive.

(ii) F and E/F are reflexive.

Proof. (i)⇒(ii). By (i) and Theorem 4.21(i), also F is reflexive. By Theorem 4.21(ii), E∗
is reflexive, hence F⊥ is reflexive. By Theorem 4.17(ii), F⊥ is isometrically isomorphic
to (E/F )∗ which is therefore also reflexive. By Theorem 4.21(ii), this finally implies that
E/F is reflexive.
(ii)⇒(i). Let ϕ ∈ E∗∗. We will again use the isometric isomorphism

Φ: (E/F )∗ → F⊥ ⊂ E∗ , (Φu)(x) = u(x+ F ) ,

u ∈ (E/F )∗, x ∈ E from Theorem 4.17. Then we can define ψ ∈ (E/F )∗∗ by ψ(u) :=
ϕ(Φu) for u ∈ (E/F )∗. Since E/F is reflexive, there exists some x ∈ E with x̂+ F = ψ,
i. e.

ϕ(Φu) = ψ(u) = (x̂+ F )(u) = u(x+ F ) = (Φu)(x) = x̂(Φu) ,

u ∈ (E/F )∗. Hence, (ϕ− x̂)|F⊥ = 0.
To utilize the reflexivity of F , we next define a suitable ρ ∈ F ∗∗. For each f ∈ F ∗, choose
some g ∈ E∗ with g|F = f and ‖g‖ = ‖f‖. Then define ρ(f) := (ϕ − x̂)(g). This is a
proper definition since for two extensions g, h ∈ E∗ of f we have (g − h)|F = 0 and thus
g − h ∈ F⊥. A similar argument shows that ρ is linear. Moreover,

|ρ(f)| ≤ ‖ϕ− x̂‖ · ‖g‖ = ‖ϕ− x̂‖ · ‖f‖ .

Thus, ρ ∈ F ∗∗. As F is reflexive, there exists some y ∈ F with ρ(f) = f(y) for all f ∈ F ∗.
Now, we conclude that for all g ∈ E∗ we have

ŷ(g) = g(y) = (g|F )(y) = ρ(g|F ) = (ϕ− x̂)(h)

with some h ∈ E∗ satisfying h|F = g|F and ‖h‖ = ‖g|F ‖. Hence, h − g ∈ F⊥ and thus
ŷ(g) = (ϕ− x̂)(g) for all g ∈ E∗. Equivalently, ϕ = x̂+ ŷ = x̂+ y ∈ ΛE(E), which shows
that E is reflexive.

The next result is just another nice consequence of the Hahn-Banach Theorem.

Theorem 4.23. Let E and F be normed spaces, E 6= {0}. If L(E,F ) is complete, then
so is F .

Proof. First, choose x0 ∈ E with ‖x0‖ = 1. Then there exists some f ∈ E∗ with f(x0) =
‖x0‖ = 1 = ‖f‖. Next, let (yn)n∈N ⊂ F be a Cauchy sequence, and define Tn : E →
F by Tnx := f(x)yn, x ∈ E. Since ‖Tnx‖ ≤ ‖f‖‖x‖‖yn‖ = ‖yn‖‖x‖ for x ∈ E, we
have Tn ∈ L(E,F ). Further, ‖Tnx − Tmx‖ = |f(x)|‖yn − ym‖ ≤ ‖yn − ym‖‖x‖ implies
‖Tn−Tm‖ ≤ ‖yn−ym‖. Hence (Tn)n∈N is a Cauchy sequence in L(E,F ) and thus converges
to some T ∈ L(E,F ). This implies yn = Tnx0 → Tx0 as n → ∞, i. e. (yn)n∈N converges
in F .
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5 The Open Mapping, Closed Graph and Banach-Steinhaus
Theorem

In this section we will prove three theorems which are of fundamental importance in
operator theory – the field in functional analysis which deals with linear operators on and
between Banach spaces. These are the open mapping theorem, the closed graph theorem
and the Banach-Steinhaus theorem.
Starting with the open mapping theorem, we will need some lemmas.

Lemma 5.1. Let E be a normed space, F a Banach space and T ∈ L(E,F ) surjective.
Then K1(0F ) ⊂ T (Kr(0E)) for some r > 0.

Proof. Since T is surjective, F =
∞⋃
n=1

T (Kn(0E)). As F is complete, there exists some
m ∈ N with (

T (Km(0E))
)◦
6= ∅

by Remark 1.11 on page 7. Therefore, there exist y0 ∈ F and s > 0 with

Ks(y0) ⊂ T (Km(0E)) =: A .

Now take y ∈ Ks(0F ). Then ‖(y + y0)− y0‖ ≤ s and ‖(y0 − y)− y0‖ ≤ s. Hence,

y ± y ∈ Ks(y0) ⊂ A .

If z1, z2, z ∈ A, then −z, 1
2(z1 + z2) ∈ A. This implies y = 1

2((y + y0) − (y0 − y)) ∈ A.
Thus,

Ks(0F ) ⊂ T (Km(0E)) .
Hence, we conclude

K1(0F ) = 1
s
Ks(0F ) ⊂ 1

sT
(
Km(0E)

)
= T

(
Km

s
(0E)

)
.

The lemma is proved with r = m/s.

Lemma 5.2. Let E be a Banach space, F a normed space and T ∈ L(E,F ). Suppose
further that there exists r > 0 with

K1(0F ) ⊂ T (Kr(0E)) .

Then
K1(0F ) ⊂ T (K2r(0E))

and T is surjective.

Proof. Let y ∈ K1(0F ). By induction, we define a sequence (yn)n∈N ⊂ T (Kr(0E)) with∥∥∥∥∥y −
n∑
k=1

yk
2k−1

∥∥∥∥∥ ≤ 1
2n

for all n ∈ N. By hypothesis, there exists y1 ∈ T (Kr(0E)) with ‖y − y1‖ ≤ 1
2 . Assume

that y1, . . . , yn are constructed, i.e.

2n
(
y −

n∑
k=1

yk
2k−1

)
∈ K1(0F ) ⊂ T (Kr(0E)) .
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Then there exists yn+1 ∈ T (Kr(0E)) with∥∥∥∥∥2n
(
y −

n+1∑
k=1

yk
2k−1

)∥∥∥∥∥ =
∥∥∥∥∥2n

(
y −

n∑
k=1

yk
2k−1

)
− yn+1

∥∥∥∥∥ ≤ 1
2 .

This shows that such a sequence exists.
For each n ∈ N, let xn ∈ Kr(0E) be such that T (xn) = yn. Since ‖2−k+1xn‖ ≤ 2−k+1r,
the sequence (

n∑
k=1

xk
2k−1

)
n∈N

is a Cauchy-sequence in E. And as E is complete, we can define

x = lim
n→∞

n∑
k=1

xk
2k−1 .

We have
‖x‖ = lim

n→∞

∥∥∥∥∥
n∑
k=1

xk
2k−1

∥∥∥∥∥ ≤ lim
n→∞

n∑
k=1

‖xk‖
2k−1 ≤

∞∑
k=1

r

2k−1 = 2r .

Thus x ∈ K2r(0E). As the operator T is continuous,

Tx = lim
n→∞

T

(
n∑
k=1

xk
2k−1

)
= lim

n→∞

n∑
k=1

yk
2k−1 = y ,

and therefore y ∈ T (K2r(0E)). This shows K1(0F ) ⊂ T (K2r(0E)).
It remains to show that T is surjective. For this, let y ∈ F , y 6= 0. We have y

‖y‖ ∈
K1(0F ) ⊂ T (E). Therefore there exists x ∈ E with Tx = y

‖y‖ . Hence T (‖y‖x) = y.

We arrive at the Open Mapping Theorem. First, we should say what we mean by an open
map.

Definition 5.3. Let E, F be normed spaces. An operator T ∈ L(E,F ) is called open, if
T (U) is open in F for each open U ⊂ E.

As we have seen in the exercises, any open operator between normed spaces is surjective.
The Open Mapping Theorem is the converse of this statement for operators between
Banach spaces.

Theorem 5.4 (Open Mapping Theorem). For Banach spaces E, F , any surjective oper-
ator T ∈ L(E,F ) is open.

Proof. For an open set U ⊂ E and x ∈ U there exists t > 0 with Kt(x) ⊂ U . Then

Kt(0) = Kt(x)− x = {y − x : y ∈ Kt(x)} ⊂ U − x .

From Lemma 5.1 it follows that there exists some r > 0 with

K1(0F ) ⊂ T (Kr(0E)) .

Lemma 5.2 implies
K1(0F ) ⊂ T (K2r(0E)) .
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Moreover, we have

K t
2r

(0F ) = t
2rK1(0F ) ⊂ t

2rT (K2r(0E)) = T (Kt(0E)) ⊂ T (U)− Tx

and hence
K t

2r
(Tx) = K t

2r
(0F ) + Tx ⊂ T (U) .

Thus, T (U) ist open.

The importance of this theorem may become clearer when we emphasize that it implies
the continuity of inverse operators between Banach spaces.
Corollary 5.5.

(i) Let E, F be Banach spaces and T ∈ L(E,F ) bijective. Then T−1 is continuous.

(ii) If ‖·‖1 and ‖·‖2 are Banach space norms on E and if ‖x‖1 ≤ c‖x‖2 for all x ∈ E
and some c > 0, then ‖·‖1 and ‖·‖2 are equivalent.

Proof. (i). By Theorem 5.4, T is open. Equivalently, T (U) =
(
T−1)−1 (U) is open for

each open U ⊂ E, which is the continuity of T−1.
(ii). Set T = Id, consider T : (E, ‖·‖1)→ (E, ‖·‖2) and apply the first statement.

Recall Example 3.9, where we saw a bijective operator with unbounded inverse. There,
the space F was not complete, so if E is a Banach space, F only a normed space, and
T : E → F bijective, T ∈ L(E,F ) does not imply that T−1 is continuous.
Our next fundamental theorem will be the closed graph theorem, giving a criterion for
continuity.
Theorem 5.6 (Closed Graph Theorem). Let E, F be Banach spaces and T : E → F be a
closed linear operator. Then T is bounded.

Proof. The product space E × F is a Banach space and the operator T is closed, hence
the graph GT is closed in E × F and thus a Banach space. Now define S : GT → E by
S(x, Tx) = x. This operator S is linear, bijective and continuous:

‖S(x, Tx)‖ = ‖x‖ ≤ max{‖x‖, ‖Tx‖} = ‖(x, Tx)‖ .

By Corollary 5.5, S−1 : E → GT is continuous, meaning

‖Tx‖ ≤ ‖(x, Tx)‖ = ‖S−1(x)‖ ≤ ‖S−1‖ ‖x‖

for all x ∈ E.

Remark 5.7. While we used the Open Mapping Theorem to prove the Closed Graph
Theorem, we could also use the latter to prove the first. Indeed, if E and F are Banach
spaces and T ∈ L(E,F ) is surjective, let us first assume that T is also injective. Then, T−1

is a closed operator, since T is. But the Closed Graph Theorem now implies continuity
of T−1, i. e. openness of T . If T is not injective, we may factorize T as T = T̃ · Φ, where
Φ: E → E/ kerT is the natural projection and T̃ : E/ kerT → F is now injective.

E
T //

Φ $$

F

E/ kerT
T̃

;;

By the first step, T̃ is open and since Φ is open (Exercises), also T = T̃Φ is open.
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The following theorem gives a characterization of operators with closed range and is an-
other one of the central theorems of functional analysis.

Theorem 5.8 (Closed Range Theorem). Let X and Y be Banach spaces and let T ∈
L(X,Y ). Then the following are equivalent:

(i) The space ranT is closed.

(ii) We have ranT = (kerT ∗)⊥.

(iii) The space ranT ∗ is closed.

(iv) We have ranT ∗ = (kerT )⊥.

Proof. (i)⇔(ii). There holds ranT = (kerT ∗)⊥ (c.f. Exercise).
(i)⇒(iv). Let ranT be closed. Let x∗ ∈ ranT ∗. Then there exists y∗ ∈ Y ∗ with T ∗y∗ = x∗.
Hence, for x ∈ kerT we have

x∗(x) = (T ∗y∗)(x) = y∗(Tx) = y∗(0) = 0 ,

in explicit kerT ⊂ kerx∗ and thus x∗
∣∣
kerT = 0 and therefore x∗ ∈ (kerT )⊥, i.e. ranT ∗ ⊂

(kerT )⊥. To show the converse inclusion, let x∗ ∈ (kerT )⊥. Define

f : X/ kerT → K, f [x] := x∗(x) T̂ : X/ kerT → ranT, T̂ [x] = Tx .

f and T̂ are well-defined, bounded and T̂ is bijective. Corollary 5.5 implies that T̂−1 is
bounded. Define z∗ := f ◦ T̂−1 ∈ (ranT )∗. Let y∗ ∈ Y ∗ be a Hahn Banach extension of
z∗. For x ∈ X we have

(T ∗y∗)(x) = y∗(Tx) = z∗(Tx) = f(T̂−1Tx) = f [x] = x∗(x)

and thus, x∗ = T ∗y∗ ∈ ranT ∗.
(iv)⇒(iii). Obvious.
To show that (iii) implies (i) we define the sets

RN :=
{
y ∈ Y : there is x ∈ X with ‖y − Tx‖ ≤ 1

2‖y‖ and ‖x‖ ≤ N‖y‖
}
.

First claim: Let M ⊂ Y be a subspace such that ranT ⊂M ⊂ RN for some N ∈ N. Then
ranT = M .
Proof: Let y ∈ M . Then there exists x1 ∈ X such that ‖y − Tx1‖ ≤ 1

2‖y‖ and ‖x1‖ ≤
N‖y‖. Now, y − Tx1 ∈M + ranT = M ⊂ RN . Thus, there exists x2 ∈ X such that

‖y − Tx1 − Tx2‖‖ ≤ 1
2‖y − Tx1‖ ≤ 1

4‖y‖

and ‖x2‖ ≤ N‖y − Tx1‖ ≤ N
2 ‖y‖. Proceeding like this, we obtain a sequence (xn) ⊂ X

with
‖y − Tx1 − · · · − Txn‖ ≤ 1

2n ‖y‖ and ‖xn‖ ≤ N
2n−1 ‖y‖ .

Setting un = ∑n
k=1 xn we have that (un) is a Cauchy sequence and thus there exists

u ∈ X with un → u. Therefore Tun → Tu but also Tun = Tx1 + · · ·+ Txn → y. Hence,
y = Tu ∈ ranT .
This proves the first claim.
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Second claim: If M ⊂ Y is a subspace such that M 6⊂ RN for all N ∈ N. Then for each
n ∈ N there exists yn ∈M with ‖yn‖ = 1 such that for all x ∈ X we have ‖yn − Tx‖ > 1

2
or ‖x‖ > n.
Proof: For all n ∈ N there exists vn ∈M , vn /∈ Rn (thus vn 6= 0). We put yn := vn

‖vn‖ . Let
x ∈ X. Then ‖vn − T (‖vn‖x)‖ > 1

2‖vn‖ or ‖‖vn‖x‖ > n‖vn‖. Hence ‖yn − Tx‖ > 1
2 oder

‖x‖ > n.
This proves the second claim.
Third claim: If ranT 6⊂ RN for each N ∈ N, then ranT ∗ is not closed.
Proof: Consider X × Y with the norm

‖(x, y)‖1 := ‖x‖+ ‖y‖ .

Then (X × Y, ‖·‖1) is a Banach space and graphT is a closed subspace of X × Y . For
n ∈ N define

Vn :=
{(

1
nx, Tx

)
: x ∈ X

}
= graph(nT ) .

Vn is a closed subspace of X×Y . By the second claim, there exists a sequence (yn) ⊂ ranT
with ‖yn‖ = 1 such that for all x ∈ X there holds ‖yn − Tx‖ > 1

2 or ‖x‖ > n. Hence

‖(0, yn)− ( 1
nx, Tx)‖1 = ‖(− 1

nx, yn − Tx)‖1 = 1
n‖x‖+ ‖yn − Tx‖ > 1

2

and thus (0, yn) has a positive distance to Vn. By Hahn-Banach there exists z∗n ∈ (X×Y )∗
with ‖z∗n‖ = 1 such that

z∗n(0, yn) = 1 and z∗n
∣∣
Vn

= 0 .

Now, for n ∈ N and y ∈ Y we set y∗n(y) := z∗n(0, y). Then y∗n ∈ Y ∗ and dist(y∗n, kerT ∗) ≥ 1,
because

(y∗n − y∗)(yn) = y∗n(yn) = z∗n(0, yn) = 1

for all y∗ ∈ kerT ∗, since ranT = (kerT ∗)⊥. For x ∈ X and n ∈ N we now have

|(T ∗y∗n)(x)| = |y∗n(Tx)| = |z∗n(0, Tx)| =
∣∣∣∣z∗n(( 1

nx, Tx)∈Vn
− ( 1

nx, 0)
)∣∣∣∣

= |z∗n( 1
nx, 0)| ≤ 1

n ‖z
∗
n‖︸ ︷︷ ︸

=1

‖x‖ .

Hence, T ∗y∗n → 0 in X∗. Now define the operator

A : Y ∗/ kerT ∗ → ranT ∗, A[y∗] := T ∗y∗ .

A is bounded and bijective and if further ranT ∗ is closed, A−1 is bounded by the Open
Mapping Theorem 5.4. We have A[y∗n] = T ∗y∗n → 0 and ‖[y∗n]‖ = dist(y∗n, kerT ∗) ≥ 1.
Applying A−1 yields [y∗n]→ 0, thus ranT ∗ cannot be closed.
This proves the third claim.
Finally, we can show that (iii) implies (i): Assume, ranT ∗ is closed. Then by the third
claim, we have ranT ⊂ Rn for some n ∈ N. This implies ranT ⊂ ranT ⊂ Rn (for some
n ∈ N). By the first claim, we have ranT = ranT .

We now tackle the Banach-Steinhaus theorem. This name is frequently given to the
following Uniform Boundedness Principle but will here be reserved for another theorem.
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Theorem 5.9 (Uniform Boundedness Principle). Let E be a Banach space, F a normed
space and let T ⊂ L(E,F ). Let T be pointwise bounded, i.e., for each x ∈ E there exists
Mx <∞ such that ‖Tx‖ ≤Mx for all T ∈ T . Then T is bounded, i.e., there exists some
M <∞ such that ‖T‖ ≤M for all T ∈ T .

Proof. For n ∈ N let

En := {x ∈ E : ‖Tx‖ ≤ n for all T ∈ T } .

By hypothesis, E =
∞⋃
n=1

En. Let x = lim
j→∞

xj with xj ∈ En for fixed n. Since ‖Txj‖ ≤ n

for all j we have
‖Tx‖ = lim

j→∞
‖Txj‖ ≤ n .

Thus x ∈ En, and hence En is closed. By Remark 1.11 on page 7 on Baire’s Theorem,
there exists some n0 ∈ N with

E̊n0 6= ∅ .

Hence, Kr(x) ⊂ En0 for some x ∈ En0 , r > 0. Let y ∈ E with ‖y‖ ≤ r. Then y + x ∈
Kr(x) = x+Kr(0). This implies

‖Ty‖ = ‖T (y + x)− Tx‖ ≤ ‖T (y + x)‖+ ‖Tx‖ ≤ 2n0 (5.1)

for all T ∈ T . Now let y ∈ E, y 6= 0 arbitrary. Then

r

‖y‖
‖Ty‖ =

∥∥∥∥T ( ry

‖y‖

)∥∥∥∥ ≤ 2n0 ,

where the inequality follows from (5.1). This implies ‖Ty‖ ≤ 2n0
r ‖y‖ and thus ‖T‖ ≤

2n0
r .

Remark 5.10. It is possible to prove the Uniform Boundedness Principle without using
Baire’s Theorem (instead using a “gliding hump argument”). One may find the outline of
such a proof as an Exercise in An Introduction to Banach Space Theory by Megginson.
Example 5.11. In general, Theorem 5.9 does not hold, if E is not a Banach space. Consider

E = c00 := {x = (xn)n∈N ∈ `∞ : xn = 0 for almost all n ∈ N} ⊂ `∞ ,

the space F being the field K and T being the sequence (fn), where fn(x) = nxn for
x ∈ E. We see that T is pointwise bounded, since xn = 0 from some n ≥ N on, but
‖fn‖ = n for n ∈ N.

We obtain a first consequence of the above theorem.

Corollary 5.12. Let E be a Banach space, F a normed space and Tn ∈ L(E,F ). Suppose
that (Tnx)n∈N is convergent in F for every x ∈ E. Then define T : E → F by

Tx := lim
n→∞

Tnx.

Then T ∈ L(E,F ), (‖Tn‖)n∈N is bounded, and

‖T‖ ≤ lim inf
n→∞

‖Tn‖.
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Proof. By definition, T obviously is linear and (‖Tnx‖)n∈N is bounded. By Theorem 5.9,
‖Tn‖ ≤M for all n ∈ N. Hence, for all x ∈ E

‖Tx‖ = lim
n→∞

‖Tnx‖ ≤M‖x‖ .

This shows that T ∈ L(E,F ). Let (‖Tnk
‖)k∈N be a convergent subsequence of (‖Tn‖)n∈N.

Then
‖Tx‖ = lim

k→∞
‖Tnk

x‖ ≤ ‖x‖ lim
k→∞

‖Tnk
‖ .

Thus
‖T‖ ≤ lim

k→∞
‖Tnk

‖ ,

and hence
‖T‖ ≤ lim inf

n→∞
‖Tn‖ .

The next lemma is a reformulation of Lemma 3.6.

Lemma 5.13. Let E be a normed space and F a Banach space. Let E0 be a dense linear
subspace of E, and T0 ∈ L(E0, F ). Then there exists a unique T ∈ L(E,F ) with

T |E0 = T0 and ‖T‖ = ‖T0‖ .

We finally arrive at the Banach-Steinhaus theorem.

Theorem 5.14 (Banach-Steinhaus Theorem).

(i) Let E be a Banach space and F a normed space. Further, let Tn ∈ L(E,F ), n ∈ N.
If (Tn)n∈N is pointwise convergent to some T : E → F which is linear, then

sup
n∈N
‖Tn‖ <∞ .

(ii) Let E be a normed space and F a Banach space. Further, let Tn ∈ L(E,F ), n ∈ N.
If

(a) sup
n∈N
‖Tn‖ <∞ and

(b) there exists a dense linear subspace E0 of E such that (Tnx)n∈N is convergent in
F for each x ∈ E0,

then there exists some T ∈ L(E,F ) with Tx = limn→∞ Tnx for all x ∈ E.

Proof. (i). This is Corollary 5.12
(ii). For each y ∈ E0 set T0y := limn→∞ Tny, which exists by (iib). The operator T0 is
linear and, by (iia),

‖T0y‖ = lim
n→∞

‖Tny‖ ≤ sup
n∈N
‖Tn‖‖y‖ <∞ .
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Hence T0 ∈ L(E0, F ). By Lemma 5.13, there exists some T ∈ L(E,F ) with T |E0 = T0.
Let x ∈ E, and ε > 0. Then let y ∈ E0 with ‖x − y‖ ≤ ε and choose N ∈ N such that
‖Tny − T0y‖ ≤ ε for all n ≥ N , which is possible by (iib). Then for all n ≥ N ,

‖Tnx− Tx‖ ≤ ‖Tnx− Tny‖︸ ︷︷ ︸
≤‖Tn‖ ‖x−y‖

+ ‖Tny − T0y‖︸ ︷︷ ︸
≤ε

+ ‖T0y − Tx‖︸ ︷︷ ︸
≤‖T‖ ‖y−x‖

≤ ‖Tn‖‖x− y‖+ ε + ‖T‖‖y − x‖
≤ ε(‖Tn‖+ 1 + ‖T‖)

≤ ε

(
sup
n∈N
‖Tn‖︸ ︷︷ ︸

<∞ by (iia)

+1 + ‖T‖
)
.

This implies Tnx→ Tx as n→∞.

Also, the Uniform Boundedness Principle gives rise to a criterion for a subset of a normed
space to be bounded.

Theorem 5.15. Let E be a normed space and M ⊂ E. Then the following conditions are
equivalent:

(i) The set M is bounded.

(ii) For each f ∈ E∗ the set f(M) ⊂ K is bounded2.

Remark 5.16 (Geometric interpretation of Theorem 5.15). Suppose that for every closed
hyperplane H in E (kernel of some f ∈ E∗) there exists some c with M lying between
H + c and H − c. Then M is already contained in a ball.

Proof. (i)⇒(ii). This follows from ‖x‖ < c implying ‖f(x)‖ ≤ c‖f‖ for all x ∈M .
(ii)⇒(i). Consider the set

M̂ = {x̂ : f 7→ f(x) : x ∈M} ⊂ L(E∗,K) = E∗∗ .

Since M̂(f) = f(M), M̂ is pointwise bounded by (ii). By Theorem 5.9, M̂ is bounded.
Since the embedding is isometric, also M is bounded.

This gives rise to a criterion for continuity of operators.

Corollary 5.17. Let E, F be normed spaces and T : E → F be linear. Then T is contin-
uous if and only if f ◦ T ∈ E∗ for all f ∈ F ∗.

Proof. The operator T is bounded if and only if T
(
K1(0)

)
is bounded in F . By Theorem

5.15 this is equivalent to f
(
T (K1(0))

)
being bounded for all f ∈ F ∗, which means f ◦ T ∈

E∗ for all f ∈ F ∗.

2One also says that M is weakly bounded
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6 Weak Convergence and Weak Topology

We have already seen that the closed unit ball of an infinite-dimensional normed space
is not compact. Wishing to extract convergent subsequences under certain conditions,
we weaken the notion of continuity. This will lead us to weak convergence and the weak
topology.
Let us outline the concept of weak convergence. The key idea is to reduce the question
of convergence in a normed space to a scalar problem by applying any continuous linear
functional. As a motivation, remember convergence in Kn was characterized by compo-
nentwise convergence. From our point of view, sending a vector to one of its components
defines a continuous linear functional and these functionals in fact span the whole dual
space of Kn. Now, weak convergence will be a natural generalization.

Definition 6.1. Let E be a normed space. Then (xn)n∈N ⊂ E is weakly convergent to
x ∈ E, if

f(xn)→ f(x) for all f ∈ E∗ .
Then x is called the weak limit of (xn), and we write xn w−→ x.

Remark 6.2.

(a) Convergence implies weak convergence, i.e. if (xn)n∈N ⊂ E converges to x ∈ E
(w.r.t. the norm), then (xn) is also weakly convergent to x. To see this, observe
|f(xn)− f(x)| = |f(xn − x)| ≤ ‖f‖‖xn − x‖ → 0 as n→∞.

(b) The weak limit of a weak convergent sequence is unique, i.e. if (xn)n∈N ⊂ E is weakly
convergent to both x ∈ E and y ∈ E, then x = y: Since (xn)n∈N converges weakly
to x and y, it follows that f(x) = f(y) and thus f(x − y) = 0 for all f ∈ E∗. Hence
x = y (see Corollary 4.8).

(c) If (xn)n∈N ⊂ E and (yn)n∈N ⊂ E are weakly convergent sequences with xn w−→ x and
yn

w−→ y, then (xn + λyn)n∈N, λ ∈ K, is weakly convergent to x + λy. Thus, the
linear operations on E are compatible with weak convergence. For this, note that
f(xn + λyn) = f(xn) + λf(yn)→ f(x) + λf(y) = f(x+ λy).

(d) The converse of (a) is in general not true:

Example: Let E = C[0, 1], endowed with the L2-norm ‖f‖2 :=
(´ 1

0 |f(t)|2 dt
) 1

2 . For
fn(t) = sin(nt) we have

‖fn‖22 =
ˆ 1

0
|sin(nt)|2 dt = 1

2

(
1− 1

2n sin(n · 2)
)

n→∞−−−→ 1
2 ,

so (fn) is not convergent to 0. But fn w−→ 0 as n→∞.

(e) It can be shown that for sequences in `1 convergence is the same as weak convergence
which is sometimes called Schur’s property. (Proof uses Remark 3.13/Lemma 3.15.)

Another point of view is that weak convergence is just “pointwise convergence on any
element of the dual space”. This becomes more natural in the following definition.

Definition 6.3. Let E be a normed space. Then (fn)n∈N ⊂ E∗ is weak∗-convergent to
f ∈ E∗, if

fn(x)→ f(x) for all x ∈ E.

We write fn w∗−−→ f .
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Remark 6.4. Remark 6.2 (a), (b), (c) holds similarly.

We will now apply the Banach-Steinhaus Theorem to these new concepts.

Theorem 6.5. The following statements hold true:

(i) Let E be a normed space, (xn)n∈N ⊂ E, x ∈ E. Then the following conditions are
equivalent:

(a) xn w−→ x.
(b) We have:

(I) sup
n∈N
‖xn‖ <∞

(II) There exists a dense subspace D ⊂ E∗ such that

f(xn)→ f(x)

for all f ∈ D.

(ii) Let E be a Banach space, (fn)n∈N ⊂ E∗, f ∈ E∗. Then the following conditions are
equivalent:

(a) fn w∗−−→ f .
(b) We have:

(I) sup
n∈N
‖fn‖ <∞

(II) There exists a dense subspace D ⊂ E such that

fn(x)→ f(x)

for all x ∈ D.

Proof. (i).(a)⇒(b). Since (xn) converges weakly to x, we have f(xn) → f(x) as n→∞
for all f ∈ E∗. This implies (II). Moreover, {f(xn) : n ∈ N} ⊂ K is bounded for each
f ∈ E∗. By Theorem 5.15, also {xn : n ∈ N} is bounded, i.e. (I) is true.
(b)⇒(a). For this, consider the canonical embedding of E in E∗∗. Then, by (II), x̂n(f)→
x̂(f) for all f ∈ D and ‖x̂n‖ = ‖xn‖. By the Banach-Steinhaus Theorem (applied to
(x̂n)n∈N, x̂ ∈ L(E∗,K) and using (I)) we obtain x̂n(f) → x̂(f) as n→∞ for all f ∈ E∗
and thus f(xn)→ f(x) for all f ∈ E∗.
(ii). This is Banach-Steinhaus Theorem (Theorem 5.14).

We arrive at a first theorem ensuring the existence of (weak∗-)convergent subsequences
under certain conditions.

Theorem 6.6. Let E be a normed space, which is separable (i.e. there exists a countable
dense subset). Then every bounded sequence in E∗ contains a weak∗-convergent subse-
quence.

Proof. Let {x1, x2, x3, . . . } be a dense countable subset of E and let (fn)n∈N ⊂ E∗ be a
sequence in E∗ with ‖fn‖ ≤ C for all n ∈ N, C ∈ K fixed. First, we have that the sequence

(fn(x1))n∈N ⊂ K
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is bounded, hence there exists a convergent subsequence

(fn,1(x1))n∈N ⊂ K .

Also (fn,1(x2))n∈N ⊂ K is bounded, hence has a convergent subsequence (fn,2(x2))n∈N ⊂
K. We continue this way and select the diagonal sqeuence

gn := fn,n , n ∈ N ,

of (fn)n∈N. By construction, (gn(xm))n∈N is convergent for any m ∈ N. By the Banach-
Steinhaus theorem, we know that (gn)n∈N is pointwise convergent to some g ∈ E∗. Thus
gn

w∗−−→ g.

Example 6.7. The separability of E is neccessary condition in Theorem 6.6. In general,
without separability, Theorem 6.6 is not true. For this, consider E = `∞, x = (xn)n∈N
and define the sequence (fn) by fn(x) = xn, n ∈ N. Then ‖fn‖ = 1 for all n ∈ N, which
implies boundedness. Let (fnk

)k∈N be a subsequence of (fn)n∈N. Then, for x = (xn)n ∈ E
defined by

xn =
{

1 n = nk and k is even
0 otherwise

we have that

fnk
(x) =

{
1 k is even
0 otherwise .

Hence fnk
(x) is not convergent and (fn) has no weak∗-convergent subsequence.

After having discussed weak and weak∗ convergence, we will introduce corresponding
topologies, the weak and weak∗ topologies. The weak topology of an infinite dimensional
space and the weak∗ topology on the dual of an infinite-dimensional Banach space will not
be metrizable, i. e. we cannot define them by giving a metric. Instead, we will need the
notions of general topology, using the language of open sets to define a topology. Let us
mention the most basic definitions.

Definition 6.8 (An excursion to topology). Let X be a nonempty set

(i) A topology T on X is a family of subsets of X with the following properties:

(T1) The empty set and X are contained in T , i. e. ∅, X ∈ T .
(T2) If γ ⊂ T , then ⋃S∈γ S ∈ T .
(T3) If S1, . . . , Sr ∈ T , then

⋂r
i=1 S ∈ T .

The pair (X, T ) is then called a topological space. The sets in T are called open and
the sets X \ U , U ∈ T , are called closed.
A subset B ⊂ T is called a basis for T , if each U ∈ T can be written as the union of
elements of B.
Remark: If (X, d) is a metric space, then the set of open subsets (w.r.t. d) is a
topology on X, the topology induced by d. The set of open balls Uε(x) is a basis for
T .

(ii) A family U ⊂ T is an open covering of X, if X ⊂ ⋃U∈U. The space X is compact, if
every open covering contains a finite subcover.
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(iii) Let X, Y be topological spaces. Then f : X → Y is continuous, if f−1(U) is open in
X for every open set U ⊂ Y . If f is bijective and f, f−1 are continuous, f is called
a homeomorphism.
Remark: A continuous function f : X → Y maps compact sets to compact sets.

Proof. Let K ⊂ X be compact and U an open covering of f(K). Then, by continuity
of f ,

f−1(U) = {f−1(U) : U ∈ U}

is an open covering of the compact set K, hence there exists a finite subcover
f−1(U1), . . . , f−1(Un). Thus, U1, . . . , Un is a finite subcover of U.

Lemma 6.9. Let (X, T ) be a topological space, γ ⊂ T , and B the set of all finite intersec-
tions of sets in γ. Assume furthermore that B is a basis for T . Then, if each open cover
U ⊂ γ of X contains a finite subcover, X is compact.

Proof. First, towards a contradiction, assume that there exists a cover U0 ⊂ T of X
without a finite subcover. Define

Ω := {U ⊂ T : U ⊃ U0 and U does not contain a finite subcover} .

Then Ω 6= ∅, since U0 ∈ Ω. Also, Ω is partially ordered by inclusion “⊂”.
Claim 1. Ω satisfies the hypothesis of Zorn’s Lemma.
Proof. Let K be a chain in Ω and set

Ũ :=
⋃
{U : U ∈ K} .

If Ũ contains a finite subcover, then there exist Ui ∈ K, Ui ∈ Ui, i = 1, . . . , r, with

X =
r⋃
i=1

Ui .

Since K is a chain, there exists Ui0 ∈ K with Ui ⊂ Ui0 , i = 1, . . . , r. Thus Ui0 contains the
finite subcover {Ui}ri=1, which is a contradiction. Therefore, Ũ does not contain a finite
subcover, which implies Ũ ∈ Ω. Claim 1 is proved.
By Zorn’s Lemma there exists a maximal elementM ∈ Ω (i.e. no element in Ω is larger
thanM (containsM)).
Claim 2. If A,B ∈ T , A /∈M, B /∈M, then A ∩B /∈M.
Proof. Since A /∈M andM is maximal, it follows thatM∪{A} contains a finite subcover
{A,M1, . . . ,Mn}. Similarly M∪ {B} contains a finite subcover {B,M ′1, . . . ,M ′m}. This
implies {A ∩ B,M1, . . . ,Mn,M

′
1, . . . ,M

′
m} is a finite subcover of M ∪ {A ∩ B} of X,

therefore A ∩B /∈M. By induction, A1, . . . , An /∈M and thus ⋂ni=1Ai /∈M.
Claim 3. We have ⋃

M∈M
M =

⋃
M∈γ∩M

M .

Proof. Let x ∈M ∈M. Then there exist S1, . . . , Sr ∈ γ, such that

x ∈
r⋂
i=1

Si ⊂M .
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Since the existence of a finite subcover of M∪ {S1 ∩ . . . ∩ Sr} implies the existence of a
finite subcover ofM∪ {M} =M, we have thatM∪ {S1 ∩ . . . ∩ Sr} ∈ Ω. Because ofM
beeing the maximal element of Ω and claim 2, there exists some i ∈ {1, . . . , r} such that
Si ∈M, hence x ∈ Si ∈M∩ γ. This proves Claim 3.
SinceM covers X, claim 3 implies thatM∩γ is another cover of X which has, by hypoth-
esis of the lemma, a finite subcover. Hence M has a finite subcover, which contradicts
M∈ Ω.

Lemma 6.10. Let X 6= ∅ and let γ be a set of subsets of X, i.e. γ ⊂ P(X). By L denote
the set consisting of all finite intersections of sets in γ, the empty set and X itself. Let T
be the set which consists of all unions of sets in L. Then T is a topology on X, and L is
a basis for T .

Proof. Tutorials.

Definition 6.11. Let X 6= ∅ and γ ⊂ P(X). Then the topology defined in Lemma 6.10
is denoted by T (γ). If (X, T ) is a topological space, a set γ ⊂ P(X) is called a subbasis
for T , if T = T (γ).

Lemma 6.12. The intersection of arbitrarily many topologies on a set X is again a
topology on X. For a set γ ⊂ P(X) we have

T (γ) =
⋂
{T : T is a topology on X with γ ⊂ T } .

That is, T (γ) is the smallest topology containing γ.

Proof. Exercise.

Definition 6.13. Let X be a set, I an index set, let be (Xi, Ti) topological spaces and
fi : X → Xi, i ∈ I. The weak topology with respect to the mappings fi is defined as T (γ),
where

γ :=
{
f−1
i (V ) : V ∈ Ti , i ∈ I

}
.

This is just the “coarsest” (smallest) topology on X under which all fi are continuous.

Lemma 6.14. Let X, I, Xi, Ti and fi be as above. For i ∈ I let γi be a subbasis of Ti.
Then the weak topology T with respect to the fi is given by T (γ), where

γ =
{
f−1
i (V ) : V ∈ γi, i ∈ I

}
.

Moreover, T is the smallest topology on X with respect to which all fi are continuous. In
particular, each fi is (X, T )-(Xi, Ti)-continuous.

Proof. The second claim is almost immediate from Lemma 6.12. The first is exercise.

Definition 6.15. Let E be a normed space over K. The weak topology on E is defined as
the weak topology on E with respect to the mappings f : E → K, f ∈ E∗. It is denoted
by σ(E,E∗). The weak∗ topology on E∗ is the weak topology on E∗ with respect to the
mappings x̂ : E∗ → K, where x̂(f) = f(x), x ∈ E, f ∈ E∗. It is denoted by σ(E∗, E).

Remark 6.16. We have
σ(E∗, E) ⊂ σ(E∗, E∗∗) .

This follows from the fact that each x̂ is an element of E∗∗ and hence σ(E∗, E∗∗)-
continuous.
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Lemma 6.17. Let E be a normed space. Then a subbasis for of the weak topology σ(E,E∗)
on E is given by the sets {x ∈ E : |f(x)−a| < ε}, where f ∈ E∗, a ∈ K and ε > 0. For the
weak∗-topology σ(E∗, E) on E∗, a subbasis is given by the sets {f ∈ E∗ : |f(x)− a| < ε},
where x ∈ E, a ∈ K and ε > 0.

Proof. This is a consequence of Lemma 6.14. According to this Lemma, a subbasis is
given by sets of the form f−1(Uε(a)), where f ∈ E∗, a ∈ K and ε > 0, since Uε(a), a ∈ K,
ε > 0 form a basis of the standard topology on K. Now

f−1(Uε(a)) = {x ∈ E : |f(x)− a| < ε} .

The second claim is proven by a similar argument.

Definition 6.18. Let I be an index set and let (Xi, Ti), i ∈ I, be topological spaces.
Denote by X = ∏

i∈I Xi the cartesian product of the Xi. Let further pi be the canonical
projection from X onto Xi, i.e. pj((xi)i∈I) = xj . Then the weak topology with respect to
the pi is called the product topology on X.

The next theorem actually is, again, a statement from topology, but is often counted as a
functional analytic one.

Theorem 6.19 (Tychonoff). Let I be an index set and let (Xi, Ti) be topological spaces.
Denote the product topology on X = ∏

i∈I Xi by T . Then (X, T ) is compact if and only if
each (Xi, Ti) is.

Proof. First, let (X, T ) be compact. We know that each pi is continous. Therefore Xi =
pi(X) is compact for all i ∈ I.
For the converse, assume that each (Xi, Ti) is compact. By definition, γ := {p−1

i (Vi) : Vi ∈
Ti, i ∈ I} is a subbasis for T . Suppose that (X, T ) is not compact. Then, by Lemma 6.9
there exists W ⊂ γ which is a cover of X but does not contain a finite subcover. For i ∈ I
put

Wi := {Vi ∈ Ti : p−1
i (Vi) ∈W} .

The familyWi is then not a cover ofXi, since otherwise there would exist Vi,1, . . . , Vi,n ∈Wi

with Xi = ⋃n
k=1 Vi,k (since (Xi, Ti) is compact). This would imply X = p−1

i (Xi) =⋃n
k=1 p

−1
i (Vi,k)︸ ︷︷ ︸
∈W

, which would be a contradiction. For i ∈ I, pick xi ∈ Xi \
⋃
Vi∈Wi

Vi and

set x := (xi)i∈I ∈ X. Since W is a cover of X, there exists V ∈ W such that x ∈ V .
By the inclusion W ⊂ γ there exist i ∈ I and Vi ∈ Ti such that V = p−1

i (Vi). Now,
Vi ∈Wi by the definition of Wi. But from pi(x) = xi /∈ Vi, we conclude x /∈ V , which is a
contradiction.

In the following, BX for a normed space X will denote the closed unit ball K1(0X) ⊂ X.

Theorem 6.20 (Alaoglu). Let E be a normed space and let M ⊂ E∗ be bounded as well as
closed in σ(E∗, E). ThenM is σ(E∗, E)-compact. In particular, BE∗ is σ(E∗, E)-compact.

Proof. Put c := sup{‖f‖ : f ∈ M} and for x ∈ E let Ax := {z ∈ K : |z| ≤ c‖x‖}. By
Theorem 6.19, A = ∏

x∈E Ax, endowed with the product topology TA, is compact (Ax ⊂ K
is bounded and closed, thus compact). Define the mapping

ϕ : M → A , ϕ(f) = (f(x))x∈E .

49 Functional Analysis I



6 Weak Convergence and Weak Topology

Indeed, ϕ is well-defined because of |f(x)| ≤ ‖f‖‖x‖ ≤ c‖x‖ implying f(x) ∈ Ax. Evi-
dently, f is injective as ϕ(f) = ϕ(g) means f(x) = g(x) for all x ∈ E, thus f = g. In fact,
ϕ is a homeomorphism between M and ϕ(M). The surjectivity is clear. To prove that ϕ
is continous, we first conclude from Lemma 6.14 and 6.17 that the collection of sets of the
form

V (a, x, ε) = {g ∈ E∗ : |g(x)− a| < ε} ,

a ∈ K, x ∈ E, ε > 0, is a subbasis for σ(E∗, E) and the sets

W (a, x, ε) = {(zy)y∈E : |zx − a| < ε} ,

a ∈ K, x ∈ E, ε > 0, form a subbasis for TA. We have

ϕ
(
V (a, x, ε) ∩M

)
= W (a, x, ε) ∩ ϕ(M). (6.1)

Together with the injectivity of ϕ, this implies that both ϕ and ϕ−1 are continuous3.
We will now prove that ϕ(M) is closed in A. We will use that x ∈ A if and only if U∩A 6= ∅
for all open neighborhoods U of x (this is a tutorial exercise). Let a = (ax)x∈E ∈ ϕ(M)
and define the functional

f : E → K , x 7→ ax .

To show that f is linear, let ε > 0 be arbitrary and let x, y ∈ E, λ, µ ∈ K. Then the set

W := W (ax, x, ε) ∩W (ay, y, ε) ∩W (aλx+µy, λx+ µy, ε)

is a TA-open neighbourhood of a (a is in all the sets by definition and finite intersections
of open sets are open). Therefore, there exists g ∈ M such that ϕ(g) ∈ W . Hence, we
have

|aλx+µy − (λax + µay)| ≤ |aλx+µy − g(λx+ µy)|+ |λg(x)− λax|+ |µg(y)− µay)|
≤ ε + |λ|ε + |µ|ε .

Since ε was chosen arbitrarily, we conclude that aλx+µy = λax + µay, which is linearity.
Moreover, we have |f(x)| = |ax| ≤ c‖x‖ for all x ∈ E, thus f is bounded. Now let
U ∈ σ(E∗, E) be a neighborhood of f . Then there exist a1, . . . , an ∈ K and x1, . . . , xn ∈ E
and ε > 0 such that f ∈ ⋂nk=1 V (ak, xk, ε) ⊂ U . This is because the sets of that form form
a basis of σ(E∗, E). This implies |axk

− ak| = |f(xk)− ak| < ε for all k and thus

a ∈
n⋂
k=1

W (ak, xk, ε) .

Since a ∈ ϕ(M), it follows that

ϕ(M) ∩
n⋂
k=1

W (ak, xk, ε) 6= ∅ .

From (6.1) it is seen that alsoM∩⋂nk=1 V (ak, xk, ε) is nonempty. AsM is σ(E∗, E)-closed,
we conclude that f ∈ M (any neighborhood U of f has non-empty intersection with M ,
thus f ∈ M = M .) This means a = ϕ(f) ∈ ϕ(M) and thus ϕ(M) is closed. Since A is
compact, ϕ(M) as a closed subset is also. As ϕ is a homeomorphism from M to ϕ(M),
the set M is compact in σ(E∗, E).

3One easily proves that f : X → Y is continous if for a subbasis γ, f−1(V ) is open in X for all V ∈ γ
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Now we prove that BE∗ is compact. It is sufficient to prove that it is weak∗-closed, or
equivalently, that

{f ∈ E∗ : ‖f‖ > 1}

is open. Let f ∈ E∗ have norm larger than 1. Then there exists x ∈ E with ‖x‖ = 1 with
|f(x)| > 1. And since

V
(
f(x), x, |f(x)| − 1

)
∩BE∗ = ∅

the claim is proven.

Lemma 6.21. Let E be a normed space, ϕ ∈ BE∗∗, f1, . . . , fn ∈ E∗, and define h : E → R
by

h(x) =
n∑
i=1
|ϕ(fi)− fi(x)|2 .

Then
inf
‖x‖≤1

h(x) = 0 .

Proof. (missing)

Corollary 6.22. Let E be a normed space. Then B̂E is σ(E∗∗, E∗)-dense in BE∗∗.

Proof. For ϕ ∈ BE∗∗ define (for ε > 0, f1, . . . , fn ∈ E∗)

U
(
ϕ, f1, . . . , fn, ε

)
:= {ψ ∈ E∗∗ : |ψ(fi)− ϕ(fi)| < ε for i = 1, . . . , n} .

Then the sets U(ϕ, f1, . . . , fn, ε) are a basis for the neighborhoods of ϕ in σ(E∗∗, E∗). By
Lemma 6.21,there exists an x ∈ BE , such that

|ϕ(fi)− x̂(fi)| ≤
√
h(x) < ε

for i = 1, . . . , n. Hence x̂ ∈ U(ϕ, f1, . . . , fn, ε). (and x̂ ∈ B̂E)

Theorem 6.23. Let E be a normed space. Then the following are equivalent:

(i) The space E is reflexive.

(ii) The unit ball BE is σ(E,E∗)-compact.

Proof. (i)⇒(ii). First, we have

ΛE(U(x, f1, . . . , fn, ε)) = Ê ∩ U(x̂, f1, . . . , fn, ε).

We have:
ΛE : (E, σ(E,E∗))→ (E∗∗, σ(E∗∗, E∗))

is continuous and a homeomorphism. By Theorem 6.20, BE∗∗ is σ(E∗∗, E∗)-compact. By
(i) BE = Λ−1

E

(
BE∗∗

)
is σ(E,E∗)-compact.

(ii)⇒(i). (ii) implies that B̂E is σ(E∗∗, E∗)-compact, hence B̂E is closed. By Corollary
6.22, B̂E is σ(E∗∗, E∗)-dense in BE∗∗ . This implies that

B̂E = BE∗∗ .

and thus Ê = E∗∗, which is (i).
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7 Hilbert Spaces and Riesz Representation Theorem

Definition 7.1. Let E be a linear space over K. A Hermitian form on E is a map

〈· , ·〉 : E × E → K

satisfying

(a) the homogeneity relation 〈λx, y〉 = λ〈x, y〉 in its first argument,

(b) the additivity relation 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 in its first argument and

(c) the hermiticity relation 〈x, y〉 = 〈y, x〉

for all x, x′, y ∈ E, λ ∈ K. The Hermitian form 〈· , ·〉 is called positive semidefinite, if

〈x, x〉 ≥ 0

for all x ∈ E. If further 〈x, x〉 = 0 ⇔ x = 0, 〈· , ·〉 is called positive definite. A scalar
product (inner product) is a positive definite Hermitian form. If 〈· , ·〉 is positive definite,
then (E, 〈· , ·〉) is called an inner product space (space with a scalar product).

Lemma 7.2 (Cauchy-Schwarz Inequality). Let E be a K-vector space and let 〈· , ·〉 be a
positive semidefinite Hermitian form on E. Then

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉

for all x, y ∈ E. If 〈· , ·〉 is positive definite, then equality holds if and only if x and y are
linearly dependent.

Proof. For the sake of brevity, we write ‖x‖ :=
√
〈x, x〉 for x ∈ E. As will be seen in the

next lemma, this is a norm if 〈· , ·〉 is positive definite. By sesqui-linearity and hermiticity
of 〈· , ·〉 we have for x, y ∈ E:∥∥∥‖y‖2x− 〈x, y〉y∥∥∥2

= ‖y‖4‖x‖2 − 2 Re
〈
‖y‖2x, 〈x, y〉y

〉
+ |〈x, y〉|2‖y‖2

= ‖y‖4‖x‖2 − ‖y‖2|〈x, y〉|2 = ‖y‖2
(
‖x‖2‖y‖2 − |〈x, y〉|2

)
.

This proves the Cauchy-Schwarz inequality and also that equality in it, in the positive
definite case, implies that x and y are linearly dependent. Finally, it is clear that |〈x, y〉|2 =
‖x‖2‖y‖2 if x and y are linearly dependent.

Lemma 7.3. Let 〈· , ·〉 be a scalar product on E. Then

‖x‖ :=
√
〈x, x〉

defines a norm on E, and the map

(x, y) 7→ 〈x, y〉 , E × E → K

is continuous.
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Proof. By positive definiteness ‖x‖ = 0 is equivalent to x = 0. Also

‖λx‖ =
√
〈λx, λx〉 =

√
|λ|2〈x, x〉 = |λ|‖x‖ .

By Lemma 7.2,

‖x+ y‖2 = 〈x+ y, x+ y〉 = 〈x, x〉+ 2 Re〈x, y〉+ 〈y, y〉 ≤ 〈x, x〉+ 2|〈x, y〉|+ 〈y, y〉
≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2 .

Thus, ‖·‖ is a norm. For continuity we observe that

|〈x, y〉 − 〈x0, y0〉| ≤ |〈x− x0, y〉|+ |〈x0, y − y0〉| ≤ ‖x− x0‖‖y‖+ ‖x0‖‖y − y0‖
≤ ‖x− x0‖‖y − y0‖+ ‖x− x0‖‖y0‖+ ‖x0‖‖y − y0‖ .

This is small, if both ‖x− x0‖ and ‖y − y0‖ are small.

Definition 7.4. Let (H, 〈· , ·〉) be an inner product space. If the normed space (H, ‖·‖)
with ‖x‖ =

√
〈x, x〉 is complete, then H is called Hilbert space.

Lemma 7.5. Let (E, ‖·‖) be a normed space. Then the following are equivalent:

(i) There exists a scalar product 〈· , ·〉 on E such that

‖x‖ =
√
〈x, x〉

for all x ∈ E.

(ii) For ‖·‖, the parallelogram identity

‖x+ y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

holds for all x, y ∈ E.

Proof. (i) ⇒ (ii). This is an easy calculation.
(ii) ⇒ (i). First, assume K = C. Let us show that

〈x, y〉 := 1
4

(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
,

x, y ∈ E, defines an inner product. First, 〈x, y〉 = 〈y, x〉 is immediate. Second, to prove
that 〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉, we have to show that

‖x+ x′ + y‖2 − ‖x+ x′ − y‖2 + i‖x+ x′ + iy‖2 − i‖x+ x′ − iy‖2

equals

‖x+y‖2−‖x−y‖2 +i‖x+iy‖2−i‖x−iy‖2 +‖x′+y‖2−‖x′−y‖2 +i‖x′+iy‖2−i‖x′−iy‖2 .

By (ii), we have for z ∈ E

‖x+ x′ + z‖2 = 1
2‖x+ x′ + z‖2 + 1

2‖x+ x′ + z‖2

= ‖x+ z‖2 + ‖x′‖2 − 1
2‖x+ z − x′‖2 + ‖x′ + z‖2 + ‖x‖2 − 1

2‖x
′ + z − x‖2 .

Choose z = y and z = −y and substract. Then

‖x+ x′ + y‖2 − ‖x+ x′ − y‖2 = ‖x+ y‖2 + ‖x′ + y‖2 − (‖x− y‖2 + ‖x′ − y‖2) .
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Next, choose z = iy and z = −iy and substract. This proves

〈x+ x′, y〉 = 〈x, y〉+ 〈x′, y〉 .

Third, show that
〈λx, y〉 = λ〈x, y〉 (7.1)

for all λ ∈ C, x, y ∈ E. We already proved that 〈mx, y〉 = m〈x, y〉 for all m ∈ N, x, y ∈ E.
Since obviously 〈−x, y〉 = −〈x, y〉, this also holds for m ∈ Z. For m,n ∈ Z, n 6= 0, this
implies

n

〈
m

n
x, y

〉
= 〈mx, y〉 = m〈x, y〉

and thus 〈
m

n
x, y

〉
= m

n
〈x, y〉 .

We know that
λ 7→ 〈λx, y〉 − λ〈x, y〉

is continuous (since ‖·‖ is continuous) and zero on Q, hence on all R. Also 〈ix, y〉 = i〈x, y〉
follows by definition of 〈· , ·〉, so that (7.1) is proved.
For K = R we define

〈x, y〉 := 1
2
(
‖x+ y‖2 − ‖x− y‖2

)
.

Then, similar arguments as above show that 〈· , ·〉 is an inner product inducing the norm
‖·‖.

Remark 7.6. Let (E, 〈· , ·〉) be an inner product space and ΛE : E → E∗∗ the canonical
embedding of E into E∗∗. Endow E with ‖·‖ =

√
〈· , ·〉. The completion of (E, ‖·‖) is

given by
H := ΛE(E) ⊂ E∗∗ .

As ΛE is isometric, the parallelogram identity also holds for ΛE(E). Since the norm on
E∗∗ is continuous, this identity also holds for H. On ΛE(E) we set

〈x̂, ŷ〉 := 〈x, y〉 ,

x, y ∈ E. By continuity, this inner product on ΛE(E) can be extended to H, so that
(H, 〈· , ·〉) is a Hilbert space, the so-called Hilbert space completion of E.

Lemma 7.7. Let H be a Hilbert space, K ⊂ H, K 6= ∅, convex and closed in H. Then
there exists a unique x ∈ K with

inf
y∈K
‖y‖ = ‖x‖ .

Proof. Set d := infy∈K ‖y‖ and let (xn) ⊂ K with ‖xn‖ n→∞−−−→ d. We show that (xn) is s
Cauchy-sequence: Since K is convex, we have 1

2(xn + xm) ∈ K for all m,n ∈ N. Thus,

‖xn + xm‖ ≥ 2d . (7.2)

By the parallelogram identity we have

0 ≤ ‖xn − xm‖2 = 2(‖xn‖2 + ‖xm‖2)− ‖xn + xm‖2 ≤ 2(‖xn‖2 + ‖xm‖2)− 4d2 . (7.3)
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For each ε > 0, there exists Nε with ‖xn‖2 ≤ d2 + ε
4 for all n ≥ Nε. By (7.3) we have

0 ≤ ‖xn − xm‖2 ≤ 2(2d2 + ε
2)− 4d2 = ε

for all n,m ≥ Nε. Hence (xn) is a Cauchy sequence. Let x := limn→∞ xn. Then x ∈ K
since K is closed, and

‖x‖ = lim
n→∞

‖xn‖ = d .

It remains to prove uniqueness: For this let x, y ∈ K with ‖x‖ = ‖y‖ = d. Since 1
2(x+y) ∈

K by convexity, it follows that

d2 ≤
∥∥∥∥1

2(x+ y)
∥∥∥∥2

= 2
(∥∥∥∥x2

∥∥∥∥2
+
∥∥∥∥y2
∥∥∥∥2
)
−
∥∥∥∥1

2(x− y)
∥∥∥∥2

= d2

2 + d2

2 −
∥∥∥∥x− y2

∥∥∥∥2
.

This implies x = y.

Definition 7.8. Let H be an inner product space. Then x, y ∈ H are called orthogonal
(x ⊥ y) if

〈x, y〉 = 0 .

For M ⊂ H we define by

M⊥ := {y ∈ H : 〈y, x〉 = 0 for all x ∈M}

the orthogonal complement of M.

Lemma 7.9. Let H be an inner product space, M ⊂ H. Then

M ∩M⊥ = {0} ,

and M⊥ is a closed linear subspace of H.

Proof. The first part follows directly from definition 7.8. The second part follows from
the properties of the inner product 〈· , ·〉.

Let M and N be subspaces of an inner product space with M ∩N = {0}. Then the sum
M + N is direct which we express by writing M u N . If, in addition, M ⊥ N , then we
write M ⊕N for the orthogonal direct sum. By Lemma 7.9, M +M⊥ = M ⊕M⊥.

Lemma 7.10. Let M be a closed subspace of the Hilbert space H. Then

H = M ⊕M⊥ .

Proof. Let x ∈ H and set

K := {x− y : y ∈M} = x−M .

In particular K is closed. Since for y1, y2 ∈M

λ(x− y1) + (1− λ)(x− y2) = x− (λy1 + (1− λ)y2) ∈ K ,

the set K is convex. By 7.7 there exists a unique x2 ∈ K with

‖x2‖ = inf
y∈K
‖y‖ .
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By definition of K, x2 = x− x1 for some x1 ∈M . Hence, x = x1 + x2, and we are done if
we can show that x2 ∈M⊥. For this, let y ∈M \ {0} be arbitrary. Then

‖x2‖2 ≤ ‖ x2 − λy︸ ︷︷ ︸
∈K−M=K

‖2 (7.4)

for all λ ∈ K. Choose λ = 〈x2,y〉
〈y,y〉 . By (7.4)

0 ≤
∥∥∥x2 − 〈x2,y〉

〈y,y〉 y
∥∥∥2
− ‖x2‖2 = − |〈x2,y〉|2

〈y,y〉 ≤ 0 .

This implies 〈x2, y〉 = 0, so x2 ∈M⊥.

Theorem 7.11 (Riesz Representation Theorem). Let H be a Hilbert space. For y ∈ H
define

fy : H → K , fy(x) := 〈x, y〉 .

Then fy ∈ H∗ and ‖fy‖ = ‖y‖.
Conversely, for each f ∈ H∗ there exists a unique y ∈ H such that

f = fy .

Finally, the Riesz map
y 7→ fy , H → H∗ ,

is conjugate linear, that is, fy1 + fy2 = fy1+y2 and fλy = λfy.

Proof. By definition of an inner product, fy is linear and y 7→ fy is conjugate linear. By
Cauchy-Schwarz (Lemma 7.2), we have

|fy(x)| = |〈x, y〉| ≤ ‖x‖‖y‖

and thus ‖fy‖ ≤ ‖y‖. Further,

|fy(y)| = 〈y, y〉 = ‖y‖2 = ‖y‖‖y‖

and hence ‖fy‖ = ‖y‖.
Now, let f ∈ H∗, f 6= 0, be arbitrary. We have to find y ∈ H such that f(x) = 〈x, y〉 for
all x ∈ H. For this, denote by N the kernel of f and find z′ ∈ H with f(z′) = 1. Since
N is closed and H is complete, we can decompose z′ as x + z with x ∈ N and z ∈ N⊥
(Lemma 7.10). Then

1 = f(z′) = f(x) + f(z) = f(z).

For arbitrary x ∈ H we now have x− f(x)z ∈ N and thus

f(x) =
〈
f(x)z, ‖z‖−2z

〉
=
〈

(x− f(x)z) + f(x)z, ‖z‖−2z
〉

=
〈
x, ‖z‖−2z

〉
= 〈x, y〉,

where y := ‖z‖−2z.

Remark 7.12. Note that the first claim in Theorem 7.11 also holds if H is merely an inner
product space. If the Riesz map H → H∗, y 7→ fy, is surjective, then H is a Hilbert space.

Proof. By assumption, y 7→ fy is a surjective isometry from H to H∗. The space H∗ is
complete, thus H is as well.
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Theorem 7.13. Let H be a Hilbert space and for f ∈ H∗ let yf ∈ H be defined by
f(x) = 〈x, yf 〉 for all x ∈ H. Then H∗ is a Hilbert space with inner product

〈f, g〉H∗ := 〈yg, yf 〉.

Proof. For f 6= 0 we have yf 6= 0 and thus

〈f, f〉 = 〈yf , yf 〉 > 0.

Further,
〈f, g〉 = 〈yg, yf 〉 = 〈yf , yg〉 = 〈g, f〉

and

〈f1 + f2, g〉 = 〈yg, yf1+f2〉 = 〈yg, yf1 + yf2〉
= 〈yg, yf1〉+ 〈yg, yf2〉 = 〈f1, g〉+ 〈f2, g〉

and

〈λf, g〉 = 〈yg, yλf 〉 = 〈yg, λyf 〉
= λ〈yg, yf 〉 = λ〈f, g〉.

For f ∈ H∗ we now have

〈f, f〉 = 〈yf , yf 〉 = ‖yf‖2 = ‖f‖2 (Riesz map is an isometry).

Thus 〈· , ·〉H∗ really induces the dual norm. Also, H∗ is complete.

Corollary 7.14. Hilbert spaces are reflexive.

Proof. Let ϕ ∈ H∗∗ be arbitrary. There is a unique fϕ ∈ H∗ with

ϕ(f) = 〈f, fϕ〉

for all f ∈ H∗. Using the same notation as above,

ŷfϕ(f) = f(yfϕ) = 〈yfϕ , yf 〉 = 〈f, fϕ〉 = ϕ(f).

Thus ŷfϕ = ϕ.

Corollary 7.15. Let H be a Hilbert space and L ⊂ H a linear subspace, g ∈ L∗. Then
there is a unique f ∈ H∗ with

f |L = g and ‖f‖ = ‖g‖.

Proof. Apart from uniqueness this follows from Hahn-Banach, Theorem 4.5 on page 28.
But there is a direct proof: Define g : L→ K by continuously extending g. Then ‖g‖ = ‖g‖.
So without loss of generality, L is closed, hence a Hilbert space.
By Riesz, there exists a y ∈ L with g(x) = 〈x, y〉 for all x ∈ L, and ‖g‖ = ‖y‖. Define
f : H → K, x 7→ 〈x, y〉. Then f |L = g and ‖f‖ = ‖y‖ = ‖g‖.
To prove uniqueness, let f ′ ∈ H∗ with f ′|L = g and ‖f ′‖ = ‖g‖. By Riesz f ′(x) = 〈x, y′〉
for some y′ ∈ H with ‖y′‖ = ‖f ′‖. Since f ′|L = g, 0 = 〈x, y′−y〉 for all x ∈ L. This means
y′ − y ∈ L⊥ and thus y′ = y + z with z ∈ L⊥. Then we have

‖f ′‖2 = ‖y′‖2 = ‖y + z‖2 = ‖y‖2 + ‖z‖2 = ‖g‖2 + ‖z‖2,

and hence z = 0⇒ y = y′ ⇒ f = f ′.
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Theorem 7.16. Let H be a Hilbert space. If A ∈ L(H) and ϕ(x, y) := 〈Ax, y〉 for
x, y ∈ H, then ϕ is a sesquilinear form on H, i.e. linear in x and conjugate linear in y.
Further,

sup
x,y 6=0

|ϕ(x, y)|
‖x‖‖y‖

= ‖A‖. (7.5)

Conversely for a sesquilinear form ϕ with

sup
x,y 6=0

|ϕ(x, y)|
‖x‖‖y‖

<∞

there exists a unique A ∈ L(H) with ϕ(x, y) = 〈Ax, y〉 and (7.5).

Proof. Given some operator A ∈ L(H), ϕ defined by ϕ(x, y) := 〈Ax, y〉 is sesquilinear.
Now,

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

= sup
x 6=0

‖fAx‖
‖x‖

= sup
x 6=0
‖x‖−1 sup

y 6=0

|〈Ax, y〉|
‖y‖

= sup
x,y 6=0

|〈Ax, y〉|
‖x‖‖y‖

= sup
x,y 6=0

|ϕ(x, y)|
‖x‖‖y‖

.

Conversely, let ϕ by a sesquilinear form with M := supx,y 6=0
|ϕ(x,y)|
‖x‖‖y‖ <∞. Then define

fx(y) := ϕ(x, y).

fx is linear and bounded:

|fx(y)| = |ϕ(x, y)| ≤M‖x‖‖y‖.

Thus, fx ∈ H∗. By Riesz, there is a unique zx ∈ H with fx(y) = ϕ(x, y) = 〈y, zx〉 and
‖fx‖ = ‖zx‖. Define

A : H → H, x 7→ zx.

The map x 7→ fx is conjugate linear as well as fx 7→ zx, therefore their composition x 7→ zx
is linear. Also,

ϕ(x, y) = fx(y) = 〈y, zx〉 = 〈zx, y〉 = 〈Ax, y〉,
which in particular implies

‖Ax‖2 = ϕ(x,Ax) ≤M‖x‖‖Ax‖,

and thus ‖Ax‖ ≤ M‖x‖ for all x ∈ H. Hence, A ∈ L(H), and ‖A‖ = M follows from the
first part.
For the uniqueness part, let B ∈ L(H) with ϕ(x, y) = 〈Bx, y〉. Then 〈(A − B)x, y〉 = 0
for all x, y ∈ H. In particular, with y := (A−B)x we conclude that (A−B)x = 0 for all
x ∈ H and therefore A = B.

Remark 7.17. Let I be an index set and `2(I) the set of maps x : I → K with x(i) 6= 0 for
only countably many i and ∑

i∈I
|x(i)|2 <∞.

Then
〈x, y〉 :=

∑
i∈I

x(i)y(i), x, y ∈ `2(I),

defines an inner product on `2(I), and (`2(I), 〈· , ·〉) is a Hilbert space. For I = N this is
the usual `2 defined in chapter 1. In this case, the Riesz Representation Theorem coincides
with Theorem 3.14 on page 23 (stating that `p ∼= `∗q) for p = q = 2.
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8 Orthogonality and Bases

Definition 8.1. Let E be a normed space, {xi : i ∈ I} ⊂ E and x ∈ E. Then the set
{xi : i ∈ I} is called summable to x if for every ε > 0 there exists some finite Iε ⊂ I such
that for all finite J ⊂ I with Iε ⊂ J we have∥∥∥∥∑

i∈J
xi − x

∥∥∥∥ ≤ ε .

Obviously, {xi : i ∈ I} can only be summable to at most one x ∈ E. We write

x =
∑
i∈I

xi .

We call {xi : i ∈ I} summable, if it is summable to some x ∈ E.

Remark 8.2. If {xi}i∈I and {yi}i∈I are summable, so are {λxi}i∈I and {xi + yi : i ∈ I}.
There holds ∑

i∈I
λxi = λ

∑
i∈I

xi

as well as ∑
i∈I

xi + yi =
∑
i∈I

xi +
∑
i∈I

yi .

Lemma 8.3. Let E be a Banach space and {xi}i∈I ⊂ E. Then we have

(i) The set {xi}i∈I is summable to some x ∈ E if and only if for every ε > 0 there exists
some finite Iε ⊂ I such that for all finite J ⊂ I with Iε ∩ J = ∅ we have∥∥∥∥∑

i∈J
xi

∥∥∥∥ < ε .

(ii) The set {xi}i∈I is summable to x if and only if there exists a countable set J ⊂ I
with xi = 0 ∀i ∈ I \ J and for any bijection N→ J, k 7→ ik we have

lim
n→∞

n∑
k=1

xik = x

or, if J is finite, x = ∑
j∈J xj.

Proof. (i). Let {xi}i∈I be summable to x ∈ E. For every ε > 0, let Iε ⊂ I be finite such
that ∥∥∥∥∑

i∈L
xi

∥∥∥∥ ≤ ε

2 for all finite L ⊃ Iε .

Let J ⊂ I be finite with J ∩ Iε = ∅. Then we obtain∥∥∥∥∑
i∈J

xi

∥∥∥∥ =
J∩Iε=∅

∥∥∥∥ ∑
i∈J∪Iε

xi −
∑
i∈Iε

xi

∥∥∥∥ ≤ ∥∥∥∥ ∑
i∈J∪Iε

xi − x
∥∥∥∥+

∥∥∥∥∑
i∈Iε

xi − x
∥∥∥∥ < ε

2 + ε

2 ,

where in the last step we used the fact that J ∪ Iε and Iε are both finite supersets of Iε.
Conversely, let for n ∈ N the set Jn ⊂ I be finite such that for each finite J ⊂ I with
J ∩ Jn = ∅ we have ‖∑i∈J xi‖ < 1

n . Then

(yn) =
(∑

i∈J1∪···∪Jn
xi
)
n∈N
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is a Cauchy sequence since for m ≥ n we have

‖ym − yn‖ =
∥∥∥∥ ∑
i∈
⋃m

k=1 Jk\
⋃n

k=1 Jk

xi

∥∥∥∥ ≤ 1
n

because ⋃mk=1 Jk\
⋃n
k=1 Jk is finite and disjoint from Jn. Let y = limn→∞ yn. For ε > 0,

let n ∈ N be such that ‖y − yn‖ < ε
2 and ‖∑i∈L xi‖ < ε

2 for all finite sets L ⊂ I with
L ∩ Jn = ∅. We then have with Iε := ⋃n

k=1 Jk for L ⊃ Iε∥∥∥∥y −∑
i∈L

xi

∥∥∥∥ ≤ ∥∥∥∥y −∑
i∈Iε

xi

∥∥∥∥+
∥∥∥∥ ∑
i∈L\Iε

xi

∥∥∥∥ < ‖y − yn‖+ ε

2 ,

since (L \ Iε) ∩ Jn = ∅. This means that y = ∑
i∈I xi.

(ii). Let {xi}i∈I be summable to x. By (i), for n ∈ N we can choose a finite Jn ⊂ I with
‖
∑
i∈J xi‖ ≤ 1

n for all finite J ⊂ I with J ∩ Jn = ∅.
The set {i : xi 6= 0} is contained in ⋃n∈N Jn. To prove this, let i /∈ ⋃n∈N Jn and take
J = {i}. Then J ∩ Jn = ∅ for all n ∈ N. This implies∥∥∥∥∑

j∈J
xj

∥∥∥∥ = ‖xi‖ ≤ 1
n ∀n ∈ N .

Thus, xi = 0 and {xi : xi 6= 0} is contained in a countable set, and hence is countable.
Let N→ ⋃

n∈N Jn, k 7→ ik be a bijection (if ⋃n∈N Jn is infinite). Then

x = lim
n→∞

n∑
k=1

xik .

This can be seen as follows: For ε > 0, let Iε ⊂ I be finite with
∥∥∥x−∑j∈J xj

∥∥∥ < ε for all
finite supersets J of Iε. Then choose N ∈ N with

Iε ∩ {i ∈ I : xi 6= 0} ⊂ {xik : k = 1, . . . , N} .

This is possible due to the bijectivity of k 7→ ik. The injectivity and the above now implies
that for every m ≤ N , we have ∥∥∥∥x− m∑

k=1
xik

∥∥∥∥ < ε.

Conversely, assume that {xi : i ∈ I} is not summable to x. Then there exists an ε > 0
such that for every finite I ′ ⊂ I, there is some finite I ′′ ⊃ I ′ with∥∥∥∥x−∑

i∈I′′
xi

∥∥∥∥ ≥ ε .

If J = {i ∈ I, xi 6= 0} is not countable, we are done. Furthermore, J cannot be finite,
otherwise {xi}i∈I would be summable to ∑j∈J xj .
Let N → J, l → jl be a bijection. Set I ′1 = {j1} and I ′′1 some superset of I ′1, say
I ′′1 = {i1, . . . in1}, with ∥∥∥∥x− n1∑

k=1
xik

∥∥∥∥ ≥ ε .
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Then set I ′2 = I ′′1 ∪ {jr} where r is minimally chosen with jr /∈ I ′′1 . Furthermore let
I ′′2 = I ′′1 ∪ {in1+1, . . . , in2} with ∥∥∥∥x− n2∑

k=1
xik

∥∥∥∥ ≥ ε .

Continue this process inductively.
Then k 7→ ik is a bijection (we have never chosen some i twice and k 7→ ik is surjective
due to k ∈ I ′′k ) and for all m ∈ N ∥∥∥∥x− nm∑

k=1
xik

∥∥∥∥ ≥ ε

thus ∑n
k=1 xik → x.

Korollar 8.4. Let ai ≥ 0, i ∈ I. Then {ai : i ∈ I} is summable if and only if

S := sup
{∑
i∈J

ai : J ⊂ I finite
}
< ∞ .

In this case, {ai : i ∈ I} is summable to S.

Proof. If {ai : i ∈ I} is summable, then S < ∞ follows directly from Lemma 8.3(ii).
Conversely, assume that S <∞ and let ε > 0. Then there exists a finite Iε ⊂ I such that

S −
∑
i∈Iε

ai < ε .

Hence, the same holds with Iε replaced by any finite J ⊃ Iε. This shows that {ai : i ∈ I}
is summable to S.

Remark 8.5. Let H be an inner product space and let {xi}i∈I be summable in H. Then
for all y ∈ H

〈· , ·〉
∑
i∈I

xi, y =
∑
i∈I
〈· , ·〉xi, y .

Proof. Let J ⊂ I be finite and ‖x−∑j∈J xj‖ < ε. Then for every y ∈ H we have∣∣∣∣〈· , ·〉x, y −∑
j∈J
〈· , ·〉xj , y

∣∣∣∣ ≤ ‖y‖∥∥∥∥x−∑
j∈J

xj

∥∥∥∥ ≤ ‖y‖ε .
This proves the claim.

Lemma 8.6. Let H be a Hilbert space and {xi}i∈I a family of pairwise orthogonal elements
in H. Then the following are equivalent:

(i) The set {xi}i∈I is summable in H.

(ii) The set {‖xi‖2}i∈I is summable in R.

Moreover ‖
∑
i∈I xi‖

2 = ∑
i∈I‖xi‖2. In particular, summability is not equivalent to absolute

convergence in infinite dimensions.
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Proof. (i)⇒(ii). For ε > 0, let Iε be finite satisfying∥∥∥∥∑
j∈J

xj

∥∥∥∥ < ε for all finite J with J ∩ Iε = ∅ .

For x, y ∈ H with x ⊥ y we have (“Pythagoras”)

‖x‖2 + ‖y‖2 = ‖x+ y‖2 .

Hence ∑j∈J‖xj‖2 =
∥∥∥∑j∈J xj

∥∥∥2
< ε2 for all finite J with J ∩ Iε = ∅ - this is (ii).

(ii)⇒(i). If {‖xi‖2}i∈I is summable in R, then for all ε > 0 there exists a finite Iε ⊂ I,
such that for every finite J with J ∩ Iε = ∅,∥∥∥∥∑

j∈J
xj

∥∥∥∥2
=
∑
j∈J
‖xj‖2 < ε .

Thus, {xi}i∈I is summable in H.

Definition 8.7. Let H be a an inner product space and M ⊂ H. The set M is called an
orthonormal system (ONS) if

x ⊥ y ∀x 6= y ∈M and ‖x‖ = 1 ∀x ∈M .

An orthonormal system M in H is called complete, maximal or an orthonormal basis
(ONB) if for all orthonormal systems N with M ⊂ N we have M = N .

Remark 8.8. An orthonormal system M ⊂ H is complete if and only if M⊥ = {0}.

Proof. Let M be complete and let y ∈M⊥. If y 6= 0, then N := M ∪ {y/‖y‖} is an ONS
with M ( N . Therefore, y = 0 follows.
Conversely, assume that M⊥ = {0}, and let N ⊃ M be an ONS. Suppose there exists
y ∈ N \M . Then 〈y, x〉 = 0 for all x ∈M . Hence, y = 0 follows. But ‖y‖ = 1 as N is an
ONS. This implies M = N .

Theorem 8.9. Let H be an inner product space and {xi}i∈I be an orthonormal system.
Then there hold

(i) the Bessel inequality ∑
i∈I
|〈x, xi〉|2 ≤ ‖x‖2

for all x ∈ H.

(ii) and the Parseval identity, i. e. ∑
i∈I
|〈x, xi〉|2 = ‖x‖2

holds if and only if
x =

∑
i∈I
〈x, xi〉xi .
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Proof. (i). For all finite J ⊂ I, we have

0 ≤
∥∥∥∥x−∑

i∈J
〈x, xi〉xi

∥∥∥∥2

= ‖x‖2 −
∑
i∈J
〈x, xi〉〈x, xi〉 −

∑
i∈J
〈x, xi〉〈x, xi〉+

∑
i,j∈J
〈x, xi〉〈x, xj〉〈xi, xj〉

= ‖x‖2 −
∑
i∈J
|〈x, xi〉|2 .

This implies that ∑i∈I |〈x, xi〉|2 exists and satisfies the Bessel inequality for all x ∈ H.
(ii). From ∥∥∥∥x−∑

i∈J
〈x, xi〉xi

∥∥∥∥2
= ‖x‖2 −

∑
i∈J
|〈x, xi〉|2

for all finite J ⊂ I, we obtain that

‖x‖2 =
∑
i∈I
|〈x, xi〉|2 ,

is equivalent to: For all ε > 0, finite Iε ⊂ I and finite J ⊃ Iε we have

‖x‖2 −
∑
i∈J
|〈x, xi〉|2 ≤ ε .

This is again equivalent to: For all ε > 0, finite Iε ⊂ I and finite J ⊃ Iε we have∥∥∥∥x−∑
i∈J
〈x, xi〉xi

∥∥∥∥2
≤ ε .

And this is equivalent to the summability to x of {〈x, xi〉xi : i ∈ I}.

Definition 8.10. The orthogonal sum H of Hilbert spaces Hi, i ∈ I, denoted by

H =⊕
i∈I

Hi,

is defined as the set of all
x = (xi)i∈I ∈

∏
i∈I
Hi

with the property that ∑i∈I‖xi‖2 exists (i.e., {‖xi‖2 : i ∈ I} is summable).

Remark 8.11. The orthogonal sum H =⊕i∈I Hi is a linear space, since for any elements
(xi)i∈I , (yi)i∈I ∈ H we have∑

i∈I
‖xi + yi‖2 ≤

∑
i∈I
‖xi‖2 + 2

∑
i∈I
|〈xi, yi〉|+

∑
i∈I
‖yi‖2

≤
∑
i∈I
‖xi‖2 + 2

∑
i∈I
‖xi‖‖yi‖+

∑
i∈I
‖yi‖2

≤
∑
i∈I
‖xi‖2 + 2

(∑
i∈I
‖xi‖2

)1/2(∑
i∈I
‖yi‖2

)1/2

+
∑
i∈I
‖yi‖2.

Also 〈·, ·〉, defined by
〈(xi)i, (yi)i〉 =

∑
i∈I
〈xi, yi〉,

is an inner product on H.
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Lemma 8.12. Let Hi, i ∈ I, be Hilbert spaces.

(i) The space H =⊕i∈I Hi is a Hilbert space.

(ii) We can interpret each Hi as a subspace of H, i.e. there is an isometric isomorphism
from Hi to some subspace of H.

Proof. (i). Let (xn)n ⊂ H be a Cauchy-sequence in H, xn = (xn,i)i, and let ε > 0. Then
there exists an Nε ∈ N with

‖xn − xm‖2 = ‖(xn,i)i − (xm,i)i‖2 ≤ ε ∀n ≥ Nε.

Then we obtain for all i ∈ I

‖xn,i − xm,i‖2 ≤
∑
j∈I
‖xn,j − xm,j‖2 = ‖(xn,j)j − (xm,j)j‖2 ≤ ε.

Hence (xn,i)n is a Cauchy-sequence in Hi. Now, let

xi := lim
n→∞

xn,i.

For each finite J ⊂ I and n ≥ Nε we have∑
i∈J
‖xn,i − xi‖2 = lim

m→∞

∑
i∈J
‖xn,i − xm,i‖2 ≤ ε

and thus(∑
i∈J
‖xi‖2

)1/2

≤
(∑
i∈J
‖xn,i − xi‖2

)1/2

+
(∑
i∈J
‖xn,i‖2

)1/2

≤ ε1/2 + ‖xn‖ .

This shows that both {‖xn,i−xi‖2 : i ∈ I} and {‖xi‖2 : i ∈ I} are summable (see Corollary
8.4) and ∑

i∈I
‖xn,i − xi‖2 ≤ ε ∀n,m ≥ Nε .

Hence, x := (xi)i ∈ H and ‖xn − x‖ → 0 as n→∞.
(ii). Let i ∈ I and consider the map

Hi → H, y 7→ (xj)j∈I with xj = δijy .

This map is linear and isometric.

Theorem 8.13. For an orthonormal system {xi : i ∈ I} in a Hilbert space H, the following
conditions are equivalent:

(i) The system {xi : i ∈ I} is complete.

(ii) The space span{xi : i ∈ I} is dense in H.

(iii) If Hi := span xi, i ∈ I, then⊕i∈I Hi is isometrically isomorphic to H by

(λixi)i∈I 7→
∑
i∈I

λixi .
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(iv) For all x ∈ H,
x =

∑
i∈I
〈x, xi〉xi .

(v) For all x, y ∈ H,
〈x, y〉 =

∑
i∈I
〈x, xi〉〈xi, y〉 .

Proof. (i)⇒(ii). Define L := span{xi : i ∈ I}. Then, by Lemma 7.10,

H = L⊕ L⊥ .

But L⊥ ⊂ {xi : i ∈ I}⊥ = {0} by Remark 8.8. Hence L = H.
(ii)⇒(iii). Let F be the linear subspace of all (λixi)i∈I ∈⊕i∈I Hi with λi 6= 0 for an at
most finite number of indices i ∈ I. Since∥∥∥∥∑

i∈I
λixi

∥∥∥∥2
=
∑
i,j∈I

λiλj〈xi, xj〉 =
∑
i∈I
|λi|2 = ‖(λixi)i∈I‖2 ,

the linear map
` : (λixi)i 7→

∑
i∈I

λixi F → `(F ) =: L

is isometric. Since F is dense in ⊕i∈I Hi (by definition of F ), there exists a unique
extension of ` to

ϕ : ⊕
i∈I
Hi → H ,

which is linear and isometric, too. By (ii), also L is dense in H and ϕ(⊕i∈I Hi) ⊂ H
is complete, hence closed. Thus, ϕ(⊕i∈I Hi) = H. It remains to prove that for all
x = (λixi)i ∈⊕i∈I Hi, we have

ϕ(x) =
∑
i∈I

λixi ,

i.e. {λixi : i ∈ I} is summable to ϕ(x). For this, let ε > 0. Then there exists a finite
Iε ⊂ I with ∑

i/∈Iε

|λi|2 =
∑
i/∈Iε

‖λixi‖2 < ε .

For a finite subset J ⊃ Iε, J ⊂ I, define

yi =
{
λixi i ∈ J ,
0 otherwise.

We have
‖x− y‖2 =

∑
i/∈J
|λi|2 < ε .

This implies that

ε ≥ ‖ϕ(x)− ϕ(y)‖2 =
∥∥∥∥ϕ(x)−

∑
i∈J

λixi

∥∥∥∥2
.

(iii)⇒(iv). By (iii), each element x ∈ H can be uniquely written as

x =
∑
i∈I

λixi.
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Thus
〈x, xj〉 =

〈∑
i∈I

λixi, xj

〉
= λj .

(iv)⇒(v). By (iv),

〈x, y〉 =
〈∑
i∈I
〈x, xi〉xi,

∑
j∈I
〈y, xj〉xj

〉
=
∑
i∈I
〈x, xi〉〈xi, y〉 .

(v)⇒(i). Let x ∈ {xi : i ∈ I}⊥. Then, by (v),

‖x‖2 =
∑
i∈I
|〈x, xi〉|2 = 0 .

Now, (i) follows from Remark 8.8.

Theorem 8.14. Every Hilbert space H 6= {0} possesses an orthogonal basis, and all
orthogonal bases have the same cardinalitity.

Proof. Let γ be the family of all orthonormal systems in H. First, observe that γ 6= ∅,
since there exists some x ∈ H, x 6= 0, with ‖x‖ = 1. Now we order γ by inclusion. Let K
be a chain in γ and set

T =
⋃
S∈K

S.

Let x1, x2 ∈ T , x1 6= x2 (if this is not possible, we have T ∈ γ). Then x1 ∈ S1, x2 ∈ S2 for
some S1, S2 ∈ K. Without loss of generality S1 ⊂ S2, hence x1, x2 ∈ S2. Hence

〈x1, x2〉 = 0.

This shows that also T ∈ γ. By Zorn’s lemma, there exists a maximal ONS in γ, which
is, by definition, an orthonormal basis.
For the second claim, let B and C be orthonormal bases of H. For each x ∈ B define

Cx = {y ∈ C : 〈x, y〉 6= 0}.

By Theorem 8.13,
x =

∑
y∈C
〈x, y〉y,

hence, Cx is at most countable. By Theorem 8.13, for each y ∈ C there exists an xy ∈ B
with

〈xy, y〉 6= 0.
Now set

M := {(x, y) : x ∈ B, y ∈ Cx},
and consider the map

y 7→ (xy, y), C →M.

This map is injective, hence
|C| ≤ |M |.

If |B| =∞, then
|C| ≤ |M | ≤ |B| · ℵ0 = |B|.4

By symmetry, both cardinalities are the same.
4ℵ0 is the cardinality of N.
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Definition 8.15. Let H be a Hilbert space over K. Then the dimension of H (dim H) is
the cardinality of some (and hence of each) orthonormal basis of H.

Theorem 8.16. Let H1,H2 6= {0} be Hilbert spaces over K. Then the following conditions
are equivalent.

(i) The equation dimH1 = dimH2 holds.

(ii) The spaces H1 and H2 are isometrically isomorphic.

Proof. (i)⇒(ii). Let {xi : i ∈ I} and {yi : i ∈ I} be orthonormal bases of H1 and H2,
respectively. Then the map

ϕ : H1 → H2,
∑
i∈I

λixi 7→
∑
i∈I

λiyi, (λi)i ∈ `2(I),

fulfills the desired properties.
(ii)⇒(i). Let B be an orthonormal basis of H1 and ϕ : H1 → H2 a surjective isometry.
Then ϕ(B) = {ϕ(x) : x ∈ B} is an ONS in H2. If y ∈ ϕ(B)⊥, then ϕ−1(y) ∈ B⊥ which
implies ϕ−1(y) = 0 and thus y = 0. Hence, ϕ(B) is an orthonormal basis of H2 which has
the same cardinality as B.

Corollary 8.17. Let H be a Hilbert space, and I an index set of an orthonormal basis of
H. Then H is isometrically isomorphic to `2(I).

Proof. Note that the unit vectors ej = (δij)i∈I form an orthonormal basis for `2(I). The
claim now follows from Theorem 8.16.

Theorem 8.18 (Schmidt Orthogonalization Method). Let H be an inner product space,
and let {x1, x2, . . . } be a linearly independent set in H. Then define {y1, y2, . . . } by

y1 = ‖x1‖−1x1

n ≥ 1 : yn+1 =
∥∥∥∥∥xn+1 −

n∑
i=1
〈xn+1, yi〉yi

∥∥∥∥∥
−1

·
(
xn+1 −

n∑
i=1
〈xn+1, yi〉yi

)

Then {y1, y2, . . . } is an ONS and

span{y1, . . . , yk} = span{x1, . . . , xk} ∀k ∈ N.

Proof. For each n ∈ N, we prove that {y1, . . . , yn} is an ONS and

span{y1, . . . , yn} = span{x1, . . . , xn}.

Nothing is to prove for n = 1. Assume that the claim holds for n. First of all, we
have xn+1 −

∑n
i=1〈xn+1, yi〉yi 6= 0, since span{y1, . . . , yn} = span{x1, . . . , xn} and the set

{x1, . . . , xn+1} is linearly independent. ‖yn+1‖ = 1 and for all k = 1, . . . , n we have

〈yn+1, yk〉 =
∥∥∥∥∥xn+1 −

n∑
i=1
〈xn+1, yi〉yi

∥∥∥∥∥
−1

·
(
〈xn+1 −

n∑
i=1
〈xn+1, yi〉yi, yk〉

)

=
∥∥∥∥∥xn+1 −

n∑
i=1
〈xn+1, yi〉yi

∥∥∥∥∥
−1

·

〈xn+1, yk〉 −
n∑
i=1
〈xn+1, yi〉 〈yi, yk〉︸ ︷︷ ︸

=δik


= 0.
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We know that span{x1, . . . , xn} = span{y1, . . . , yn}. By definition of yn+1, it then follows
that also span{x1, . . . , xn+1} = span{y1, . . . , yn+1}.

Theorem 8.19. Let H be a Hilbert space. Then the following conditions are equivalent.

(i) The space H possesses an at most countable orthonormal basis.

(ii) The space H is separable (i. e. there exists a dense countable subset of H).

Proof. (ii)⇒(i). Let D = {x1, x2, . . .} be a dense countable subset of H. By induction,
we delete from (xn)n∈N each xn, which is contained in span{x1, . . . , xn−1}. This creates a
subsequence (xnk

)k∈N which is now linearly independent.
Also by construction

span{x1, x2, . . .} = span{xn1 , xn2 , . . .} =: L.

Apply Schmidt (Theorem 8.18) to generate an ONS {y1, y2 . . . } with

span{y1, y2, . . .} = L.

Since D ⊂ L, also L is dense in H. By Theorem 8.13, {y1, y2, . . .} is an orthonormal basis
of H.
(i)⇒(ii). Let {y1, y2, . . .} be a countable orthonormal basis of H. Set M = Q, if K = R,
and M = Q + i ·Q, if K = C. Then define D := {∑n

i=1 λiyi : λi ∈ M,n ∈ N}. Since M is
countable, also D is countable. Let x ∈ H and ε > 0. By Theorem 8.13, there exist n ∈ N
and µi ∈ K with ∥∥∥∥∥x−

n∑
i=1

µiyi

∥∥∥∥∥ ≤ ε
2 .

For each µi there exists λi ∈M with |λi − µi| ≤ ε
2n . This gives∥∥∥∥∥x−

n∑
i=1

λiyi

∥∥∥∥∥ ≤
∥∥∥∥∥x−

n∑
i=1

µiyi

∥∥∥∥∥+
∥∥∥∥∥
n∑
i=1

(µi − λi)yi
∥∥∥∥∥ ≤ ε.

Hence, D is dense in H.
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9 Compact Operators

Definition 9.1. Let E and F be normed spaces. A linear operator T : E → F is called
compact, if for all bounded sets B ⊂ E the set T (B) is compact. The set of all compact
operators from E to F is denoted by K(E,F ). If E = F , then usually the notion K(E) is
used instead of K(E,E).

Lemma 9.2. Let E and F be normed spaces. Then:

(i) K(E,F ) ⊂ L(E,F ),

(ii) For an operator T : E → F the following are equivalent:

(a) T is compact.
(b) T (K1(0)) is compact.
(c) If (xn) ⊂ E is bounded, (Txn) ⊂ F contains a convergent subsequence.

Proof. (i). Let T ∈ K(E,F ). Then T (K1(0)) is compact. Thus, T (K1(0)) = {Tx : ‖x‖ ≤
1} is bounded. Therefore, sup{‖Tx‖ : ‖x‖ ≤ 1} <∞ which shows that T ∈ L(E,F ).
(ii). The implication (a)⇒(b) is obvious.
(b)⇒(a). Let B ⊂ E be bounded. Then there exists r > 0 such that B ⊆ rK1(0). Now,

T (B) ⊆ T (rK1(0)) = rT (K1(0)) .

Hence, the closed set T (B) is contained in the compact set rT (K1(0)) and is therefore
itself compact.
(a)⇔(c). It is well-known, that a metric space X is compact if and only if each sequence
in X contains a convergent subsequence, see Theorem 1.13. This implies (a)⇔(c).

Lemma 9.3. Let E, F and G be normed spaces. Then:

(i) K(E,F ) is a linear subspace of L(E,F ).

(ii) For S ∈ L(F,G) and T ∈ L(E,F ) we have ST ∈ K(E,G), if S ∈ K(F,G) or
T ∈ K(E,F ).

Proof. (i). Let S, T ∈ K(E,F ), α, β ∈ K and let (xn) ⊆ E be bounded. Then (Sxn)
contains a convergent subsequence (Sxnk

). Since (xnk
) is bounded, (Txnk

) contains a
convergent subsequence (Txnkj

). Thus (αSxnkj
+ βTxnkj

) converges.
(ii). Let (xn) ∈ E be bounded. If T is compact, then (Txn) contains a convergent
subsequence (Txnk

). Thus (STxnk
) converges. If S is compact, then (STxn) contains a

convergent subsequence, since (Txn) is bounded.

Lemma 9.4. Let E be a normed space and let F be a Banach space. Then K(E,F ) is
closed in L(E,F ).

Proof. Let T ∈ K(E,F ). For any ε > 0 there exists an operator S ∈ K(E,F ) such that
‖S − T‖ < ε

3 . Now, we use that S(K1(0)) is compact. Hence, the set S(K1(0)) is totally
bounded. By Lemma 1.14 on page 10, S(K1(0)) is totally bounded. Therefore there
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exist x1, . . . , xr ∈ K1(0) such that S(K1(0)) ⊆ ⋃rj=1Kε/3(Sxj) holds. If x ∈ K1(0), then
Sx ∈ Kε/3(Sxj) for some j. Hence

‖Tx− Txj‖ ≤ ‖T − S‖‖x‖+ ‖Sx− Sxj‖+ ‖S − T‖‖xj‖ < ε .

Therefore, Tx ∈ Kε(Txj) and T (K1(0)) ⊆ ⋃r
j=1Kε(Txj). Thus T (K1(0)) is totally

bounded, and by Corollary 1.15 on page 10 its closure is compact.

Example 9.5. (1) The identity operator Id : E → E, x 7→ x is compact if and only if E is
finite-dimensional (by Theorem 2.10 on page 17).

(2) The zero-operator is compact.

(3) An operator T ∈ L(E,F ) is called finite-dimensional if dimT (E) < ∞. A finite-
dimensional operator is compact.

Proof. Let (xn)n ⊆ E be bounded. Then (Txn)n is a bounded sequence in the finite-
dimensional space T (E) and hence contains a convergent subsequence.

(4) By Lemma 9.4, also each limit of finite-dimensional operators Tn ∈ L(E,F ) is compact,
if F is a Banach space. The converse does not hold in Banach spaces, i.e. a compact
operator is not always the limit of finite-dimensional operators (Enflo 1973), but in
Theorem 9.7 we will show that it holds in Hilbert spaces.

(5) Let E = (C[a, b], ‖·‖∞), let k : [a, b]× [a, b]→ K be continuous, and define an operator
K : E → E by

(Kf)(s) :=
ˆ b

a
k(s, t)f(t)dt, f ∈ E .

Then K is compact.

Proof. By Arzelà-Ascoli we need to prove that for each bounded B ⊆ E, K(B) is
equicontinuous and pointwise bounded. For this, observe that

|(Kf)(s)| ≤ (b− a)‖f‖∞‖k‖∞ .

This shows thatK(B) is pointwise bounded. Since k is uniformly continuous, for ε > 0
there exists a δ > 0 such that for t ∈ [a, b] and |s1−s2| < δ we have |k(s1, t)−k(s2, t)| <
ε. Thus,

|(Kf)(s1)− (Kf)(s2)| ≤
ˆ b

a
|k(s1, t)− k(s2, t)||f(t)|dt ≤ (b− a)ε‖f‖∞ ,

if |s1 − s2| < δ. Therefore, and since B is bounded, K(B) is equicontinuous.

Definition 9.6. LetH be a Hilbert space and L ⊂ H a closed subspace. ThenH = L⊕L⊥.
If x = u + v with u ∈ L, v ∈ L⊥, then set PLx := u. The operator PL : H → H is then
well-defined, linear and bounded. It is called the orthogonal projection onto L. Moreover,
we have that kerPL = L⊥, P 2

L = PL and ‖PL‖ = 1 if L 6= {0}. More generally, an operator
P : H → H with P 2 = P is called a projection.

Theorem 9.7. Let E be a normed space, H a Hilbert space and T ∈ K(E,H). Then there
exist finite-dimensional operators Tn ∈ L(E,H) with ‖T − Tn‖ → 0.
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Proof. Compactness of T (K1(0)) implies that T (K1(0)) is totally bounded. Thus, for each
n ∈ N there exist xn,1, . . . , xn,rn in K1(0) such that T (K1(0)) ⊂ ⋃rn

i=1K1/n(Txn,i). Put
Ln := span{Txn,i : i = 1, . . . , rn} and Pn := PLn . Then dimLn ≤ rn. In particular, Ln
is closed in H. Now, let n ∈ N. Then for each x ∈ K1(0), Tx ∈ K1/n(Txn,i) for some i.
Thus for x ∈ K1(0)

‖Tx− PnTx‖ ≤ ‖Tx− Txn,i‖+ ‖Txn,i − PnTxn,i‖+ ‖PnTxn,i − PnTx‖
≤ ‖Tx− Txn,i‖+ ‖Txn,i − Tx‖ ≤ 2

n ,

hence ‖T − PnT‖ → 0 as n→∞, i.e. the finite-dimensional operators PnT converge to
T .

Theorem 9.8. Let E, F be normed spaces, T ∈ L(E,F ). Also let T ∗ : F ∗ → E∗,
(T ∗f)(x) = f(Tx) be the dual operator. Then the following holds:

(i) If T is compact, then also T ∗ is compact.

(ii) If T ∗ is compact and F is a Banach space, then T is compact.

Proof. (i). Let (fn)n ⊆ F ∗ be bounded. By Lemma 9.2 it is sufficient to prove that (T ∗fn)n
contains a convergent subsequence. Y := T (K1(0)) is compact in F . Now, consider

F := {fn|Y : n ∈ N} ⊆ C(Y ) .

Setting C := supn ‖fn‖, we first observe that

• |fn(y)| ≤ C‖y‖, hence F is pointwise bounded.

• |fn(y1)− fn(y2)| ≤ C‖y1 − y2‖ , i.e F is equicontinous.

Hence, by Arzelà-Ascoli F ⊆ (C(Y ), ‖ · ‖∞) is compact. This implies that there exists a
convergent subsequence (fnk

|Y )k. Hence for all ε > 0 there exists N ∈ N with

‖fnk
|Y − fnl

|Y ‖∞ < ε ∀k, l ≥ N . (9.1)

This yields
‖T ∗fnk

− T ∗fnl
‖ = sup

‖x‖=1
|fnk

(Tx)− fnl
(Tx)| < ε

for all k, l ≥ N . Thus (T ∗fnk)k is a Cauchy-sequence in E∗, and hence converges.
(ii). Since T ∗ is compact, by (i) also T ∗∗ is compact. It is easily seen that ΛFT = T ∗∗ΛE .
Hence,

ΛF
(
T (K1(0E))

)
= T ∗∗

(
ΛE(K1(0E))

)
⊆ T ∗∗

(
K1(0E∗∗)

)
,

which is a compact subset of F ∗∗. Therefore, ΛF (T (K1(0E))) is compact. Since F is a
Banach space, also T (K1(0E)) is compact. By Lemma 9.2, T is compact.

Definition 9.9. Let E be a linear space, F , G linear subspaces, such that E = F +̇G
(direct sum). Then G is called a complementary subspace to F in E.

Bemerkung 9.10. Let E be a Banachspace and let F,G ⊂ E be closed linear subspaces
such that E = F uG. Then the mapping P : E → F , x+ y 7→ x, where x ∈ F , y ∈ G, is
a continuous projection.
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Proof. It is clear that P is a projection, i.e. P 2 = P . To see that it is continuous, by the
Closed Graph Theorem we only need to prove that P is closed. For this, let (xn)n ⊆ F
and (yn)n ⊆ G such that xn + yn → u and xn = P (xn + yn)→ x as n→∞. Then x ∈ F
since F is closed, and yn → u − x =: y. Since also G is closed, we have y ∈ G and thus
u = x+ y ∈ F uG. Therefore, Pu = x, which we had to prove.

Lemma 9.11. Let E be a normed space, F a closed linear subspace, such that dimF <∞
or dimE/F <∞, then there exists a closed complementary subspace to F in E.

Proof. Assume that dimE/F <∞. Let x1, . . . , xn ∈ E be such that {x1 +F, . . . , xn +F}
is a basis of E/F . Then G := span{x1, . . . , xn} ⊆ E is closed, since dimG < ∞. Let us
show that E = F + G and F ∩ G = {0}. For x ∈ E we have x + F = ∑n

i=1 λi(xi + F )
with some λ1, . . . , λn ∈ K. Put g := ∑n

i=1 λixi ∈ G and f := x− g. Then x = f + g and
f + F = (x+ F )− (g + F ) = 0, and hence f ∈ F . This shows E = F +G. If x ∈ F ∩G,
then x = ∑n

i=1 λixi since x ∈ G and 0 = x + F = ∑n
i=1 λi(xi + F ) since x ∈ F . As the

xi + F are linearly independent, we conclude that λ1 = . . . = λn = 0 and thus x = 0.
Assume now that dimF <∞. Let {x1, . . . , xn} be a basis of F . Now let f1, . . . , fn ∈ F ∗
such that

fi(xj) = δij ∀i, j ∈ {1, . . . , n} .

This defines a basis of F ∗ (the so-called dual basis). By Hahn-Banach, there exist
`1, . . . , `n ∈ E∗ such that `i|F = fi. Now let P : E → E be defined by

Px =
n∑
j=1

`j(x)xj .

In particular, P is linear and continous and P |F = Id |F , since P (xk) = xk. Further,
P 2 = P since

P 2x =
n∑
j=1

`j(x)Pxj =
n∑
j=1

`j(x)xj = Px .

Define G := kerP . Then G is closed, G ∩ F = {0}, and E = F +G, since x = Px+ (x−
Px).

Theorem 9.12. Let E be a Banach space, and K : E → E a compact operator. Set
T := Id−K ∈ L(E), Then

(i) dim(kerT ) <∞,

(ii) T (E) is closed in E and

(iii) dim
(
E/T (E)

)
<∞.

Proof. (i). Since
Id |kerT = K|kerT ,

Id |kerT is compact. Hence, kerT must be finite-dimensional.
(ii). Set F = kerT . Since dimF < ∞, there exists a closed complementary subspace G
to F . Now we consider

S : G→ T (E), Sx := Tx, x ∈ G .
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S is continuous and bijective. In particular, S(G) = T (E). Let (yn)n ⊆ T (E), yn → y as
n → ∞. Then yn = xn −Kxn, where xn = S−1yn ∈ G, n ∈ N. We have to prove that
y ∈ T (E).
Suppose that (xn)n has no bounded subsequence. Then ‖xn‖ → ∞. Put un := xn

‖xn‖ ∈ G,
n ∈ N. Then un − Kun = yn

‖xn‖ → 0 as n → ∞. As (un)n is bounded, there exists
a subsequence (unj )j such that Kunj → v as j → ∞ for some v ∈ E. But then also
unj → v, implying v ∈ G and also Kunj → Kv. Consequently, Sv = v − Kv = 0 and
‖v‖ = limj ‖unj‖ = 1, contradicting the fact that S is injective.
Hence, (xn)n has a bounded subsequence (xnj )j such that Kxnj → v as j →∞ for some
v ∈ E. This implies xnj = Sxnj + Kxnj → y + v as j → ∞ and thus y = limj Sxnj =
S(y + v) ∈ S(G) = T (E).
(iii). Since T (E) is closed, by Theorem 4.17 we know that

(E/T (E))∗ is isometrically isomorphic to T (E)⊥ .

Note that T (E)⊥ = kerT ∗:

T (E)⊥ = {f ∈ E∗ : f(Tx) = 0 ∀x ∈ E}
= {f ∈ E∗ : (T ∗f)x = 0 ∀x ∈ E}
= {f ∈ E∗ : T ∗f = 0} .

Since K∗ is compact by Theorem 9.8, and T ∗ = Id−K∗, by (i) we obtain

dim(kerT ∗) <∞ .

Hence, we can conclude that
dim

(
E/T (E)

)∗
<∞ ,

which implies (iii).

Definition 9.13. An operator T ∈ L(E) which satisfies (i) - (iii) in Theorem 9.12 is called
Fredholm operator. Further, the integer

ind(T ) := dim(kerT )− dim
(
E/T (E)

)
is called the index of the Fredholm operator T . F(E) shall denote the set of all Fredholm
operators on E, hence Id−K(E) ⊆ F(E).

Lemma 9.14. Let E and F be Banach spaces and let T ∈ L(E,F ) be bijective. Let
T−1 ∈ L(F,E) be the inverse of T and S ∈ L(E,F ) be such that

‖S − T‖ < ‖T−1‖−1 ,

then S is also invertible.

Proof. We first write
S = T

(
Id−T−1(T − S)

)
,

and set
Q = T−1(T − S) .

For c := ‖T − S‖‖T−1‖ < 1 we obtain∥∥∥∥ n∑
k=m+1

Qk
∥∥∥∥ =

∥∥∥∥ n∑
k=m+1

(T−1(T − S))k
∥∥∥∥ ≤ n∑

k=m+1
ck .
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Thus the geometric series ∑∞k=0Q
k is convergent in L(E). Finally,

∞∑
k=0

QkT−1S = lim
n→∞

n∑
k=0

Qk(Id−Q) = lim
n→∞

(Id−Qn+1) = Id ,

and also

S
∞∑
k=0

QkT−1 =
∞∑
k=0

T (Id−Q)QkT−1 = T

( ∞∑
k=0

(Id−Q)Qk
)
T−1 = Id .

This shows that S is invertible with S−1 = ∑∞
k=0Q

kT−1.

Bemerkung 9.15. If E is a Banach space and T ∈ L(E) with ‖T‖ < 1, then Lemma 9.14
implies that Id−T is invertible, and it follows from the above proof that the inverse of
Id−T is given by

(Id−T )−1 =
∞∑
k=0

T k .

This series is called the Neumann series.
Theorem 9.16. Let E be a Banach space. Then F(E) is open in L(E) and the map

T 7→ indT , F(E)→ Z

is continuous.

Proof. to be added

Bemerkung 9.17. Note that Theorem 9.16 implies that each set

Fk(E) := {T ∈ F(E) : indT = k}

is open in L(E). Since these sets are mutually disjoint, it follows that the index is constant
on each connected component of F(E). The set of invertible operators is a (proper) subset
of the open set F0(E) and is itself open. This follows from Lemma 9.14. Note furthermore
that F(E) = F0(E) if E is finite-dimensional.
Corollary 9.18. Let E be a Banach space and K ∈ K(E). Then ind(Id−K) = 0.

Proof. By Theorem 9.16 the map

R→ F(E)→ Z , t 7→ Id−tK 7→ ind(Id−tK) .

is continuous which implies

ind(Id−K) = ind(Id) = 0 .

Corollary 9.19. Let E be a Banach space and K ∈ K(E). Define T := Id−K. Then

dim(kerT ) = dim(kerT ∗) .

Proof. By Theorem 9.8, K∗ is compact. Also,

kerT ∗ = T (E)⊥ and T (E)⊥ ∼= (E/T (E))∗ .

By Corollary 9.18, ind(T ) = 0, and we have

dim
(
ker(T ∗)

)
= dim

(
T (E)⊥

)
= dim

(
(E/T (E))∗

)
= dim

(
E/T (E)

)
= dim(kerT ) .
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Definition 10.1. Let E be a normed space over K and T ∈ L(E).

(1) λ ∈ K is an eigenvalue of T , if ker(λ Id−T ) 6= {0}. The elements of ker(λ Id−T ) \ {0}
are called eigenvectors of T associated with λ. Then

E(λ) := {x ∈ E : Tx = λx}

is called the eigenspace of T with respect to λ.

(2) λ ∈ K is called a spectral value of T , if λ Id−T does not possess an inverse in L(E).
The set of all spectral values is called the spectrum of T and is denoted by σ(T ). The
complement ρ(T ) := K \ σ(T ) is called the resolvent set of T . The elements of ρ(T )
are called regular values of T .

Remark 10.2. (i) If λ is an eigenvalue of T , then it is also a spectral value of T . If
dimE < ∞, then also each spectral value is an eigenvalue (since, if λ ∈ σ(T ), then
λ Id−T is not bijective, hence not injective, thus λ is an eigenvalue.).

(ii) Let E be a Banach space. Then (λ Id−T )−1 exists if and only if λ Id−T is bijective.
This is a direct consequence of the open mapping theorem.

(iii) If dimE = ∞ and T ∈ K(E), then 0 ∈ σ(T ) since 0 ∈ ρ(T ) implies that T is
invertible, hence open. Then T (K1(0)) is a compact neighborhood of 0 in E.

Lemma 10.3. σ(T ) is closed, and for every λ ∈ σ(T ) we have

|λ| ≤ ‖T‖ .

Proof. Let λ0 ∈ ρT and let λ ∈ K be such that∥∥(λ Id−T )− (λ0 Id−T )
∥∥ = |λ− λ0| < ‖(λ0 Id−T )−1‖−1 .

Lemma 9.14 implies that λ Id−T is (boundedly) invertible, thus λ ∈ ρT . This argument
shows that ρT is open, thus σ(T ) is closed.
Now let λ ∈ K be such that |λ| > ‖T‖. Then∥∥(λ Id−T )− λ Id

∥∥ = ‖T‖ < |λ| = ‖(λ Id)−1‖−1 .

Again, Lemma 9.14 implies that λ Id−T is invertible, hence λ ∈ ρT .

Lemma 10.4. Let E be a Banach space and T ∈ L(E).

(i) If |λ| > ‖T‖, then

(λ Id−T )−1 =
∞∑
n=0

Tn

λn+1 and ‖(λ Id−T )−1‖ ≤ (|λ| − ‖T‖)−1 .

(ii) If T is invertible and S ∈ L(E) with

‖T − S‖ ≤ ε‖T−1‖−1

for some ε ∈ (0, 1), then ‖T−1 − S−1‖ ≤ 1
1−ε‖T

−1‖2‖S − T‖.
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Proof. (i). It suffices to prove that for A = 1
λT we have

(Id−A)−1 =
∞∑
n=0

An .

We know that ‖A‖ < 1. Hence
∞∑
n=0
‖A‖n <∞ .

Therefore, Bm := ∑m
n=0A

n converges to some B ∈ L(E) as m→∞. We have

(Id−A)Bm = Id−Am+1 = Bm(Id−A) .

Since ‖Am+1‖ → 0 as m→∞, we can let m tend to infinity and obtain

(Id−A)B = Id = B(Id−A) .

This proves the first part. We also have

‖(Id−A)−1‖ ≤
∞∑
n=0
‖A‖n = 1

1− ‖A‖ .

Multiplication with |λ| yields the second claim.
(ii). This is proved similarly as Lemma 9.14.

Theorem 10.5 (Gelfand-Mazur, 1941). Let E be a Banach space over C and T ∈ L(E).
Then σ(T ) 6= ∅.

Proof. Let f ∈ L(E)∗ and define

ϕ : ρT → C, ϕ(λ) := f
(
(λ Id−T )−1

)
, λ ∈ ρ(T ).

For λ, λ0 ∈ ρT we have

ϕ(λ)− ϕ(λ0) = f
(
(λ Id−T )−1 − (λ0 Id−T )−1

)
= (λ0 − λ)f

(
(λ Id−T )−1(λ0 Id−T )−1

)
.

By Lemma 10.4, the inverse is continous. Therefore

lim
λ→λ0

ϕ(λ)− ϕ(λ0)
λ− λ0

= −f
(
(λ0 Id−T )−2

)
.

Hence ϕ is holomorphic on ρ(T ).
Towards a contradiction, assume σ(T ) = ∅. Then ϕ is holomorphic on C – in other words,
it is an entire function. Moreover, lim|λ|→∞ ϕ(λ) = 0 by Lemma 10.4(i). Liouville’s
Theorem (from complex analysis) implies that ϕ is constant, and hence zero. Since this
is true for any f ∈ L(E)∗, Corollary 4.8 implies (λ Id−T )−1 = 0 for each λ ∈ ρ(T ). A
contradiction.

Theorem 10.6 (Formula for the spectral radius, Gelfand 1941). Let E be a Banach space
over C and T ∈ L(E). Then

sup
λ∈σ(T )

|λ| = lim
n→∞

‖Tn‖
1
n .
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The left hand side of the above equation is called the spectral radius of T .

Proof. Let λ ∈ σ(T ). From

Tn − λn Id = (T − λ Id)
n∑
k=1

λk−1Tn−k =
(

n∑
k=1

λk−1Tn−k
)

(T − λ Id)

it is seen that λn ∈ σ(Tn). Lemma 10.3 now implies |λ|n ≤ ‖Tn‖. Thus, if r(T ) denotes
the spectral radius,

r(T ) ≤ lim inf
n→∞

‖Tn‖
1
n .

Next we consider
ϕ(λ) := f

(
(λ Id−T )−1

)
for some f ∈ L(E)∗ and λ ∈ ρ(T ). We know by the proof of Theorem 10.5 that ϕ is
holomorphic on {λ ∈ C : |λ| > r(T )}. As seen from methods in complex analysis, ϕ is
given by the Laurent series

ϕ(λ) =
∞∑
n=0

1
λn+1 f(Tn).

We conclude that this series converges for all |λ| > r(T ). In particular,

sup
n
|f(Tn)
λn | <∞ ∀|λ| > r(T ), f ∈ L(E)∗.

By Theorem 5.15, for each λ ∈ C with |λ| > r(T ) there exists some Mλ > 0 such that∥∥∥Tn

λn

∥∥∥ ≤Mλ ∀n ∈ N.

This implies that lim supn→∞‖Tn‖
1
n ≤ |λ| for all λ ∈ C with |λ| > r(T ). Hence

lim sup
n→∞

‖Tn‖
1
n ≤ r(T ).

Finally, r(T ) = limn→∞‖Tn‖
1
n .

Lemma 10.7. Let E be a normed space and T ∈ L(E). Further, let F and G be closed
subspaces of E with F ⊆ G, F 6= G, and

(Id−T )G ⊆ F.

Then there exists some a ∈ G with ‖a‖ = 1 and

‖Ta− Tx‖ ≥ 1
2 ∀x ∈ F.

Proof. Choose b ∈ G\F . Consider

α = dist(b, F ) = inf
x∈F
‖x− b‖.

α > 0, since F is closed. This implies that there exists a y ∈ F such that ‖b − y‖ < 2α.
Define

a := b− y
‖b− y‖

∈ G.
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Then a has norm 1 and for arbitrary z ∈ F , we have

‖z − a‖ = 1
‖b−y‖

∥∥ z‖b− y‖+ y︸ ︷︷ ︸
∈F

−b
∥∥ ≥ α

2α = 1
2 .

Finally, for each x ∈ F

‖Tx− Ta‖ = ‖x− (Id−T )x+ (Id−T )a︸ ︷︷ ︸
∈F

−a‖ ≥ 1
2 .

Lemma 10.8. Let E be a linear space, T : E → E a linear operator and M be a set of
eigenvectors of T such that any two elements in M are eigenvectors to different eigenval-
ues. Then M is linearly independent, i.e. each finite subset of M is linearly independent.

Proof. LetMn be the collection of all subsets of M with n elements. We show the claim
via induction over n. Clearly, each set in M1 is linearly independent. Assume now that
the claim is proven for n − 1 and let x1, . . . xn ∈ M , Txi = λixi. Then ∑n

i=1 αixi = 0
implies

n∑
i=1

αiλixi =
n∑
i=1

αiTxi = T

(
n∑
i=1

αixi

)
= 0 .

We also have ∑n
i=1 αiλnxi = 0. This implies

0 = α1(λ1 − λn)x1 + · · ·+ αn−1(λn−1 − λn)xn−1.

By induction hyphothesis the vectors x1, . . . , xn−1 are linearly independent. Hence

αi(λi − λn) = 0 ∀i = 1, . . . , n− 1.

Since the λi are mutually distinct, this yields αi = 0 for i = 1, . . . , n − 1. Finally,
αn = 0.

Theorem 10.9. Let E be a normed space and K : E → E a compact operator. Then the
set M of eigenvalues of K is at most countable and can only accumulate to 0.

Proof. It suffices to prove that for each δ > 0, the set

Mδ := {µ ∈M : |µ| > δ}

is finite. Towards a contradiction, assume that Mδ is infinite for some δ > 0, i.e. there
exist µn ∈Mδ, n ∈ N, with µn 6= µm, m 6= n. Now, let 0 6= xn ∈ E with

Kxn = µnxn

for all n ∈ N. Next define
Fn = span{x1, . . . , xn}.

By Lemma 10.8, the xn are linearly independent, hence

Fn ( Fn+1.
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If y = ∑n
i=1 αixi ∈ Fn, then

(K − µn Id)y =
n∑
i=1

αiKxi − µn
n∑
i=1

αixi =
n∑
i=1

αiµixi − µn
n∑
i=1

αixi

=
n∑
i=1

αi(µi − µn)xi ∈ Fn−1,

thus
(Id− 1

µn
K)Fn ⊆ Fn−1.

For each n ∈ N, Fn is closed, hence by Theorem 10.7 (inductively) there exists a sequence
(yn)n∈N ⊆ E with

yn ∈ Fn, ‖yn‖ = 1 and ‖Kyn −Kym‖ ≥ 1
2 |µn| ∀m > n, n ∈ N.

This implies
‖Kyn −Kym‖ ≥ 1

2δ ∀m > n, n ∈ N.

Thus (Kyn)n∈N cannot contain a convergent subsequence although (yn)n∈N is bounded
which contradicts the compactness of K.

Theorem 10.10. Let E be a Banach space and let K : E → E be compact.

(i) If 0 6= λ ∈ σ(K), then λ is an eigenvalue.

(ii) The eigenspace E(λ), λ 6= 0, is finite-dimensional.

(iii) σ(K) is at most countable and can only accumulate to 0.

Proof. (i). By Corollary 9.18,
ind(Id− 1

λK) = 0.

Therefore, Id− 1
λK (and thus also λ Id−K) is injective if and only if it is surjective.

(ii). Id− 1
λK is a Fredholm operator, hence

dim(ker(Id− 1
λK)) <∞.

Since E(λ) = ker(Id− 1
λK), we conclude dim(E(λ)) <∞.

(iii). This follows from Theorem 10.9 and (i).
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Let H be a Hilbert space, T ∈ L(H) and ϕ : H×H → K defined by

ϕ(x, y) = 〈x, Ty〉 .

Then ϕ is a sesquilinear form, and we have

sup
x,y 6=0

|ϕ(x, y)|
‖x‖‖y‖

≤ ‖T‖ <∞ .

By Theorem 7.16 on page 58 there exists a unique operator T ∗ ∈ L(H) with

〈T ∗x, y〉 = ϕ(x, y) .

This implies 〈x, Ty〉 = 〈T ∗x, y〉 and 〈Tx, y〉 = 〈x, T ∗y〉 for all x, y ∈ H.

Definition 11.1. Let H be a Hilbert space and T ∈ L(H). Then T ∗ from the above
discussion is called the adjoint operator to T . If T = T ∗, T is called self-adjoint.

Remark 11.2. Let j : H → H∗ be the conjugate linear map y 7→ fy (Riesz map). Further
let T ∈ L(H), T̃ ∗ be the associated dual operator (“Banach space adjoint”) and let T ∗ be
the (Hilbert space) adjoint. Then

T ∗ = j−1T̃ ∗j .

Remark 11.3. Let H be a finite-dimensional inner product space and T : H → H be self-
adjoint. Linear algebra gives us the existence of an orthonormal basis {u1, . . . , un} of H
which consists of eigenvectors of T (Tui = λiui, i = 1, . . . , n). For x = ∑n

i=1〈x, ui〉ui ∈ H,
we have

Tx =
n∑
i=1

λi〈x, ui〉ui .

We now aim for a corresponding result for compact self-adjoint operators on a Hilbert
space.

Lemma 11.4. If T ∈ L(H) is self-adjoint, then the eigenvalues of T are real. Also, the
eigenspaces corresponding to two different eigenvalues are orthogonal.

Proof. Let λ be an eigenvalue of T . Then for an eigenvector x to λ we have

λ‖x‖2 = λ〈x, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = λ〈x, x〉 = λ‖x‖2

and hence λ = λ.
Now let λ 6= µ be two eigenvalues of T . For x ∈ E(λ), y ∈ E(µ), x, y 6= 0, we have

(λ− µ)〈x, y〉 = λ〈x, y〉 − µ〈x, y〉 = 〈Tx, y〉 − 〈x, Ty〉 = 0 .

This proves 〈x, y〉 = 0.

Lemma 11.5. Let T ∈ L(H) and α > 0 with

|〈Tx, x〉| ≤ α‖x‖2 for all x ∈ H .

Then the following holds:
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(i) |〈Tx, y〉+ 〈Ty, x〉| ≤ 2α‖x‖‖y‖ for all x, y ∈ H.

(ii) If further K = C, then

|〈Tx, y〉|+ |〈Ty, x〉| ≤ 2α‖x‖‖y‖

for all x, y ∈ H.

Proof. (i). First of all, we observe that with

〈T (x+ y), x+ y〉 − 〈T (x− y), x− y〉 = 2(〈Tx, y〉+ 〈Ty, x〉)

we obtain by the parallelogram identity

2|〈Tx, y〉+ 〈Ty, x〉| ≤ α
(
‖x+ y‖2 + ‖x− y‖2

)
= 2α

(
‖x‖2 + ‖y‖2

)
for all x, y ∈ H. By substituting x by c−1x and y by cy, we have

|〈Tx, y〉+ 〈Ty, x〉| ≤ α
(
c−2‖x‖2 + c2‖y‖2

)
.

Now, choose c by
c :=

(
‖x‖
‖y‖

)1/2

for y 6= 0. This yields
|〈Tx, y〉+ 〈Ty, x〉| ≤ 2α‖x‖‖y‖ .

(ii). Substituting x by eitx, t ∈ R, and multiplying (i) with 1 = |eis|, s ∈ R, gives

|eis〈T (eitx), y〉+ eis〈Ty, eitx〉| ≤ 2α‖x‖‖y‖ .

Thus
|ei(s+t)〈Tx, y〉+ ei(s−t)〈Ty, x〉| ≤ 2α‖x‖‖y‖ .

For suitable u, v ∈ R such that

eiu〈Tx, y〉 = |〈Tx, y〉| and eiv〈Ty, x〉 = |〈Ty, x〉|

choose s = 1
2(u+ v) and t = 1

2(u− v) such that u = s+ t and v = s− t. Then

|〈Tx, y〉|+ |〈Ty, x〉| ≤ 2α‖x‖‖y‖

for all x, y ∈ H.

Corollary 11.6. Let H be a Hilbert space and T ∈ L(H). Then

‖T‖ = sup{|〈Tx, y〉| : ‖x‖ = ‖y‖ = 1} = inf{c > 0 : |〈Tx, y〉| ≤ c‖x‖‖y‖ ∀x, y ∈ H} .

If T is self-adjoint, then

‖T‖ = sup{|〈Tx, x〉| : ‖x‖ = 1} = inf{α > 0 : |〈Tx, x〉| ≤ α‖x‖2} .
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Proof. First, we have that

sup
‖x‖=1

sup
‖y‖=1

|〈Tx, y〉| = sup
‖x‖=1

‖fTx‖ = sup
‖x‖=1

‖Tx‖ = ‖T‖ ,

since the Riesz map is an isometry. With |〈Tx, y〉| ≤ c‖x‖‖y‖ and thus∣∣∣〈T x
‖x‖ ,

y
‖y‖

〉∣∣∣ ≤ c ,
we also obtain that

sup{|〈Tx, y〉| : ‖x‖ = ‖y‖ = 1} = inf{c > 0 : |〈Tx, y〉| ≤ c‖x‖‖y‖} .

Now, let T be self-adjoint. We only need to prove ‖T‖ = α := sup{|〈Tx, x〉| : ‖x‖ = 1}.
Then the rest follows similarly as above. Obviously,

α ≤ sup{|〈Tx, y〉| : ‖x‖ = ‖y‖ = 1} = ‖T‖ .

Moreover, since |〈Tx, x〉| ≤ α‖x‖2 for all x ∈ H, by Lemma 11.5 we have for x, y ∈ H with
‖x‖ = ‖y‖ = 1:

|〈Tx, y〉| = 1
2 |〈Tx, y〉+ 〈x, Ty〉| ≤ 1

2

{
|〈Tx, y〉+ 〈Ty, x〉| if K = R
|〈Tx, y〉|+ |〈Ty, x〉| if K = C

≤ α .

This proves ‖T‖ = sup{|〈Tx, y〉| : ‖x‖ = ‖y‖ = 1} ≤ α.

Lemma 11.7. Let H be a Hilbert space and K : H → H be a compact and self-adjoint
operator. Then ‖K‖ or −‖K‖ is an eigenvalue of K.

Proof. First, observe that

〈Kx, x〉 = 〈x,Kx〉 = 〈Kx, x〉

for all x ∈ H, hence 〈Kx, x〉 ∈ R. By Corollary 11.6, there exists a sequence (xn)n ⊆ H
such that

‖xn‖ = 1 and lim
n→∞

|〈Kxn, xn〉| = ‖K‖ .

It is no restriction to assume K 6= 0 and that the real sequence (〈Kxn, xn〉)n is convergent.
Set

c := lim
n→∞

〈Kxn, xn〉 .

Then |c| = ‖K‖. Since K is compact and (xn)n is bounded, we can furthermore assume
that (Kxn)n is convergent. Next,

0 ≤ ‖Kxn − cxn‖2 = ‖Kxn‖2 + ‖cxn‖2 − 2c〈Kxn, xn〉 ≤ ‖K‖2 + c2 − 2c〈Kxn, xn〉
= 2‖K‖2 − 2c 〈Kxn, xn〉︸ ︷︷ ︸

→c

→ 2‖K‖2 − 2c2 = 0 .

Hence, ‖Kxn − cxn‖ → 0, n→∞. Since (Kxn)n is convergent and c 6= 0, also (xn)n is
convergent. Set

x = lim
n→∞

xn .

We have ‖x‖ = 1 and
Kx− cx = lim

n→∞
(Kxn − cxn) = 0 .

Thus, c ∈ {−‖K‖, ‖K‖} is an eigenvalue of K.
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Theorem 11.8 (Spectral Theorem for compact self-adjoint operators). Let H be a Hilbert
space, and let 0 6= K : H → H be a compact self-adjoint operator. Then there exist se-
quences (λn)n ⊆ R and (xn)n ⊆ H (either finite or infinite sequences) such that

(i) the numbers λn are ordered by |λ1| ≥ |λ2| ≥ · · · , λn 6= 0, and limn→∞ λn = 0 (if
(λn)n is infinite),

(ii) the sequence (xn)n forms an orthonormal system in H and Kxn = λnxn,

(iii) if λ 6= 0 is an eigenvalue of K, then λ appears in (λn)n exactly dimE(λ) times and

(iv) for each x ∈ H,
Kx =

∑
n

λn〈x, xn〉xn .

Proof. By Lemma 11.7, K has an eigenvalue λ1 with |λ1| = ‖K‖ and λ1 ∈ R. Let x1 be
an eigenvector associated to λ1 with ‖x1‖ = 1. Now set

H1 := span{x1} .

Since x ∈ H⊥1 implies that

〈Kx, x1〉 = 〈x,Kx1〉 = 〈x, λ1x1〉 = 0 ,

we have
K(H⊥1 ) ⊆ H⊥1 .

The restriction K|H⊥1 : H⊥1 → H⊥1 is still a compact self-adjoint operator.
Case K|H⊥1 = 0. Let x = y + z, y ∈ H1, z ∈ H⊥1 . Then

Kx = Ky +Kz = K(〈y, x1〉x1) = 〈y, x1〉Kx1 = λ1〈y, x1〉x1 = λ1〈x, x1〉x1 .

Case K|H⊥1 6= 0. By applying Lemma 11.7 to K|H⊥1 , there exists some λ2 ∈ R with

|λ2| = ‖K|H⊥1 ‖ ≤ ‖K‖ = |λ1| .

Let x2 ∈ H⊥1 be an eigenvector to λ2 with ‖x‖2 = 1, i.e. Kx2 = λ2x2, and set

H2 = span{x1, x2} .

H2 is a two-dimensional, closed subspace ofH. As before we obtain thatK|H⊥2 : H⊥2 → H⊥2
is compact and self-adjoint.
Case K|H⊥2 = 0. Let x = y + z, y ∈ H2, z ∈ H⊥2 . Then

Kx = Ky +Kz = K(〈y, x1〉x1 + 〈y, x2〉x2)
= λ1〈y, x1〉x1 + λ2〈y, x2〉x2

= λ1〈x, x1〉x1 + λ2〈x, x2〉x2 .

Case K|H⊥2 6= 0. Continue this process.

Case 1 If at some point, K|H⊥n = 0, then

Kx =
n∑
i=1

λi〈x, xi〉xi ∀x ∈ H . (11.1)
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In this case, (i), (ii) and (iv) are satisfied. It remains to show (iii). For this, let λ 6= 0 be
an eigenvalue of K and x ∈ E(λ). Then

x = 1
λKx =

n∑
i=1

λi
λ 〈x, xi〉xi .

Moreover, equation (11.1) shows that K(H) = span{x1, . . . , xn}. Hence, by (ii) and since
x = λ−1Kx ∈ K(H), we also have

x =
n∑
i=1
〈x, xi〉xi .

This implies that 〈x, xi〉 = 0 for each i with λ 6= λi. Thus

E(λ) = span{xi : λi = λ} .

This shows that λ appears dimE(λ) = nλ times in (λi)ni=1.
Case 2 Now assume that the process does not stop. This yields sequences (λn) and (xn)
with ‖xn‖ = 1, Kxn = λnxn and xn ⊥ xm for n 6= m. Now, (ii) is satisfied. For (i) assume
that

|λn| ≥ δ > 0

for infinitely many n ∈ N. This implies

‖Kxn −Kxm‖2 = ‖Kxn‖2 + ‖Kxm‖2 = λ2
n + λ2

m ≥ 2δ2 .

But this contradicts the compactness of K (no convergent subsequence).
For (iv) define L = span{xn : n ∈ N}. Then, for x ∈ L⊥, we have

〈Kx, xn〉 = 〈x,Kxn〉 = λn〈x, xn〉 = 0 ,

thus K(L⊥) ⊆ L⊥. Now let x ∈ L⊥. Then, as x ∈ H⊥n for each n,

|〈Kx, x〉| ≤
∥∥∥K|H⊥n ∥∥∥ ‖x‖2 = |λn+1|‖x‖2 → 0, n→∞ .

By Corollary 11.6, 〈Kx, x〉 = 0 for all x ∈ L⊥ implies

K|L⊥ = 0.

For each x ∈ H we write x = y + z, y ∈ L, z ∈ L⊥. Then

Kx = Ky +Kz = Ky = K

∑
n∈N
〈y, xi〉xi

 =
∑
n∈N

λi〈y, xi〉xi =
∑
n∈N

λi〈x, xi〉xi .

(iii) can be shown exactly as in the first case.

Remark 11.9. (1) The orthonormal system (xn)n is an orthonormal basis of (kerK)⊥ =
K(H), and if P0 is the orthogonal projection of H onto kerK, then

x = P0x+
∑
n

〈x, xn〉xn, x ∈ H .

(2) Extending (xn)n by an orthonormal basis of kerK yields an orthonormal basis of H,
which consists of eigenvectors of K. Hence H is the direct sum of eigenspaces.
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(3) For each eigenvalue λ 6= 0, let Pλ be the orthogonal projection onto E(λ). Then by
Theorem 11.8,

K =
∑

λ∈σ(K)
λPλ .

This is the spectral decomposition of K.
(4) Kx, x ∈ H, is completely determined by the eigenvalues and eigenvectors of K.

85 Functional Analysis I



11 Spectral Theory for Compact Operators

Functional Analysis I 86



Index
absorbing set . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
adjoint operator . . . . . . . . . . . . . . . . . . . . . . . . 80
algebraic dual space. . . . . . . . . . . . . . . . . . . . .26
annihilator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Arzelà-Ascoli . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Baire’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 7
Banach space . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Banach-Steinhaus Theorem . . . . . . . . . . . . . 42
Bessel inequality . . . . . . . . . . . . .see inequality
bounded

totally . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
B(X) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

canonical embedding . . . . . . . . . . . . . . . . . . . . 34
canonical map . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Cauchy-sequence . . . . . . . . . . . . . . . . . . . . . . . . . 5
closed

ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Closed Graph Theorem . . . . . . . . . . . . . . . . . 38
Closed Range Theorem . . . . . . . . . . . . . . . . . 39
closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
compact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
compact oparator . . . . . . . . . . . . . . . . . . . . . . . 69
complementary subspace . . . . . . . . . . . . . . . . 71
complete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5, 62
completion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
continuous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

equicontinuous. . . . . . . . . . . . . . . . . . . . . .11
uniformly . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

C[a, b] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
convergent sequence. . . . . . . . . . . . . . . . . . . . . .5

dense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
dual operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
dual space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

eigenspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
eigenvector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
equicontinuous . . . . . . . . . . . . . .see continuous
equivalent norms. . . . . . . . . . . . . . . . . . . . . . . .13

Fredholm operator . . . . . . . . . . . . . . . . . . . . . . 73
functional. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Hahn-Banach separation theorem . . . . . . . 30
Hahn-Banach Theorem . . . . . . . . . . . . . . . . . 28
Hermitian form . . . . . . . . . . . . . . . . . . . . . . . . . 52
Hilbert space . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Hilbert space completion . . . . . . . . . . . . . . . . 54
Hölder’s inequality. . . . . . . . . . .see inequality
homeomorphism . . . . . . . . . . . . . . . . . . . . . . . . 10

index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
inequality

Bessel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Cauchy-Schwarz’ . . . . . . . . . . . . . . . . . 2, 52
Hölder’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Minkowski’s . . . . . . . . . . . . . . . . . . . . . . . . . 3
triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

inner product . . . . . . . . . . . see scalar product
interior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
interior point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
isometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

limit point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
linear operator . . . . . . . . . . . . . . . . . . . . . . . . . . 19
`p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

maximal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Minkowski functional . . . . . . . . . . . . . . . . . . . 30
Minkowski’s inequality. . . . . . .see inequality

neighborhood . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
norm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

open
ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Open Mapping Theorem . . . . . . . . . . . . . . . . 37
orthogonal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
orthogonal complement . . . . . . . . . . . . . . . . . 55
orthogonal projection . . . . . . . .see projection
orthonormal basis . . . . . . . . . . . . . . . . . . . . . . .62
orthonormal system. . . . . . . . . . . . . . . . . . . . . 62

Parseval identity . . . . . . . . . . . . . . . . . . . . . . . . 62
positive (semi-)definite . . . . . . . . . . . . . . . . . . 52
product space . . . . . . . . . . . . . . . . . . . . . . . . . . .18
projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

87



Index

orthogonal . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Pythagoras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

quotient space . . . . . . . . . . . . . . . . . . . . . . . . . . 13

reflexive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
regular value . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
resolvent set . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
resolvents . . . . . . . . . . . . . . . . . see resolvent set
Riesz map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Riesz Representation Theroem . . . . . . . . . . 56

scalar product . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Schmidt Orthogonalization Method . . . . . 67
Schwarz’ inequality . . . . . . . . . . see inequality
self-adjoint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
Spectral Theorem. . . . . . . . . . . . . . . . . . . . . . . 83
spectral value . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
subbasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
sublinear functional . . . . . . . . . . . . . . . . . . . . . 26
summable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

T (γ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
theorem

Hahn-Banach separation . . . . . . . . . . . . 30
totally bounded . . . . . . . . . . . . . . . see bounded
triangle inequality . . . . . . . . . . . see inequality

uniform boundedness principle . . . . . . . . . . 41
uniformly continuos . . . . . . . . .see continuous

weak topology . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Functional Analysis I 88



References

[1] H. W. Alt, Lineare Funktionalanalysis. Eine anwendungsorientierte Einführung, 6.
Aufl., Springer, 2012.

[2] J. B. Conway, A course in functional analysis, 2. Aufl., Springer, 1990.

[3] H. Heuser, Funktionalanalysis. Theorie und Anwendung, 4. Aufl., Teubner, 2006

[4] W. Rudin, Functional Analysis, McGraw-Hill, 1991.

[5] D. Werner, Funktionalanalysis, 7. Aufl., Springer, 2011.

[6] O. Christensen, Frames and bases: an introduction course, Birkhäuser, 2008

89

http://www.springer.com/mathematics/analysis/book/978-3-642-22260-3
http://www.springer.com/mathematics/analysis/book/978-3-642-22260-3
http://www.springer.com/mathematics/analysis/book/978-0-387-97245-9
http://www.amazon.de/Funktionalanalysis-Anwendung-Anwendung-Mathematische-Leitfaeden/dp/3835100262/
http://www.amazon.com/Functional-Analysis-International-Applied-Mathematics/dp/0070542368
http://www.springer.com/mathematics/analysis/book/978-3-642-21016-7
http://www.springer.com/birkhauser/mathematics/book/978-0-8176-4677-6

	Metric Spaces
	Normed Spaces
	Linear Operators, Dual Space
	Hahn-Banach Theorem and Corollaries
	The Open Mapping, Closed Graph and Banach-Steinhaus Theorem
	Weak Convergence and Weak Topology
	Hilbert Spaces and Riesz Representation Theorem
	Orthogonality and Bases
	Compact Operators
	The Spectrum of an Operator
	Spectral Theory for Compact Operators
	Index
	Literature

