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Functional Analysis 1
Most Important Theorems

Name Theorem concept of proof
Baire’s
Theorem

(X, d) complete,Dn open and dense. Then:⋂
n∈NDn dense

For x ∈ X inductively define a se-
quence with limit in all Dn and in Ur(x):
Krn+1(xn+1) ⊆ Dn ∩ Urn(xn) and rn ≤ 1

n .
x1 = x, r1 = min{1, r}. Can choose next
element, since Dn∩Urn(xn) non-empty and
open. (xn) Cauchy sequence.

Corollary
from Baire

An closed, X =
⋃

n∈NAn. Then: ∃n ∈ N :
Ån 6= ∅

Ån = ∅, then X \An open and dense

Hahn-
Banach
Theorem

E normed space, F subspace, f ∈ F ∗.
Then: ∃` ∈ E∗ : `|F = f, ‖`‖ = ‖f‖

ρ(x) = ‖f‖‖x‖ seminorm, |f | ≤ ρ. Other
Theorem (using Zorn’s Lemma) implies: ∃
linear functional ` with `|F = f , |`| ≤ ρ.
This implies ‖`‖ = ‖f‖

Corollary
from
Hahn-
Banach

E normed space, F subspace, x ∈ E \ F
with dist(x, F ) > 0. Then: ∃` ∈ E∗ : `|F =
0, ‖`‖ = 1, `(x) = dist(x, F ). In particular:
F = {0}

Define g(y + λx) = λ dist(x, F ) on F u
span{x}. g linear, g|F = 0, ‖g‖ = 1, Hahn-
Banach

Open
Mapping
Theorem

E, F Banach, T ∈ L(E,F ) surjective.
Then: T open

U ⊆ E open, x ∈ U . Some previous Lem-
mas (proved with Baire’s Theorem) imp-
ly K1(0F ) ⊆ T (K2r(0E)) for some r > 0.
For some t > 0 with Kt(x) ⊆ U we get
t

2rK1(0F ) ⊆ T (U) − T (x). K t
2r

(T (x)) ⊆
T (U) ; T (U) open

Closed
Graph
Theorem

E, F Banach, T : E → F closed and linear.
Then: T bounded

E × F Banach, GT closed ; GT Banach.
S : (x, Tx) 7→ x is bijective, linear, bounded
(‖(x, Tx)‖ = max{‖x‖, ‖Tx‖}), Corollary
from Open Mapping Theorem implies S−1

bounded, ‖Tx‖ ≤ ‖S−1(x)‖
Uniform
Boun-
dedness
Principle

E Banach, F normed space, T ⊆ L(E,F )
pointwise bounded. Then: T bounded

En = {x ∈ E : ‖Tx‖ ≤ n ∀T ∈ T }. Corol-
lary from Baire ; E̊n0 6= ∅. Kr(x) ⊆ En0 ,
x ∈ En0 . ‖y‖ ≤ r ; ‖Ty‖ = ‖T (y + x) −
Tx‖ ≤ 2n0. With multiplying by r

‖y‖ for
each y ∈ E: ‖Ty‖ ≤ 2n0

r ‖y‖
Banach-
Steinhaus
Theorem

E Banach, F normed space, Tn ∈ L(E,F )
pointwise convergent to a linear opera-
tor. Then: (Tn) bounded And: E nor-
med space, F Banach, (Tn)n ⊆ L(E,F )
bounded, E0 ⊆ E dense subspace, such
that (Tnx), x ∈ E0, converges. Then: (Tn)
pointwise convergent to some T ∈ L(E,F ).

First: (‖Tnx‖) bounded ; Uniform boun-
dedness principle. Second: ∃T ∈ L(E,F ) :
T |E0 = T0 := limn→∞ Tn (pointwise). For
x ∈ E choose y ∈ E0 with ‖x − y‖ < ε. ;
‖Tnx−Tx‖ ≤ ‖Tnx−Tny‖+‖Tny−T0y‖+
‖T0y − Tx‖ ≤ ε(sup‖Tn‖+ 1 + ‖T‖)

Riesz
Repre-
sentation
Theorem

H Hilbert space, y ∈ H, ` ∈ H∗. Then:
〈· , y〉 =: fy ∈ H∗, ‖fy‖ = ‖y‖ and ∃!y ∈
H : ` = fy and y 7→ fy conjugate linear

Cauchy-Schwarz and fy(y) = ‖y‖2 give
‖fy‖ = ‖y‖, linearity is obvious. For ` ∈ H∗
write z′ = x+ z, where `(z′) = 1, x ∈ ker `,
z ∈ (ker `)⊥. Set y = z

〈z,z〉 .
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unnamed
(8.13)

H Hilbert space, {xi : i ∈ I} ONS. Then:
(i) {xi : i ∈ I} complete ⇔ (ii) span{xi :
i ∈ I} dense⇔ (iii) x =

∑
i〈x, xi〉xi ⇔ (iv)

〈x, y〉 =
∑

i〈x, xi〉〈xi, y〉 ∀x, y ∈ H

(i)⇒(ii) A Remark states {xi : i ∈
I}⊥ = {0} as the ONS is complete, H =
span{xi} ⊕ span{xi}⊥. (ii)⇒(iii) One can
show that (ii) ⇒ ⊕iHi

∼= H. Therefore
x =

∑
i λixi which implies 〈x, xi〉 = λi.

(iii)⇒(iv) Insert (iii) in 〈x, y〉, pull out sca-
lars. (iv)⇒(i) Assume there exists x 6= 0,
‖x‖ = 1, x ⊥ {xi}, then ‖x‖2 = 〈x, x〉 = 0.

unnamed
(9.12)

E Banach space, K ∈ K(E). Then: T :=
id−K Fredholm.

dim kerT < ∞ since K|ker T = id |ker T

compact. T (E) closed: T |G bijective, con-
tinuous, G closed complementary space
to kerT , . . . ; T |G(G) = T (E) closed.
dim(E/T (E)) < ∞ since (E/T (E)) iso-
metrically isomorphic to T (E)∗ = kerT ∗,
T ∗ = id−K∗ and K∗ compact.

Spectral
Theorem
(compact,
self-
adjoint)

H Hilbert space, K 6= 0 on H compact,
self-adjoint. Then: ∃(λn), (xn) finite or in-
finite, (|λn|) non-increasing, λn → 0 (if
infinite), Kxn = λxn, (xn) orthonormal
system, dimE(λ) number of appearences
of λ in (λn) and (most important) Kx =∑

n λn〈x, xn〉xn

Choose λ1 with |λ1| = ‖K‖, set H1 =
span{x1}. Consider K : H⊥1 → H⊥1 , conti-
nue (H2 = span{x1, x2}). Cases: Process
stops or not; check conditions.
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