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Dunford and Pettis Integral

While it is well known how to integrate functions from a measure space to R or Rn, we
do not yet have an integral for a function taking values in a normed space. The key idea
is to reduce this problem to a scalar problem like we did in reducing the integration of
Rn valued functions to the integration of scalar valued functions. Since mapping a vector
in Rn to one of its components is just a continuous linear functional, we would like to
apply elements of the dual space to a function taking values in a normed space, do our
integration theory and somehow rebuild the desired integral. But first, we have to give
means to measurability and integrability before defining an integral. In the following, let
(Ω,Σ, µ) a measure space, X a (real) normed space and f : Ω→ X some map.

Definition 1. The function f is called weakly measurable if, for any x∗ ∈ X∗, the real
valued function x∗f : Ω→ X → R is measurable. Similarly, f is called Dunford integrable
if x∗f is integrable for any x∗ ∈ X∗.

Remark 2.

• The term “weakly” will become more clear in Chapter 6 when we introduce weak
convergence and weak topologies – it can be translated as “reduced to the scalar
case by applying functionals”.

• Nelson Dunford is best known for his comprehensive book Linear Operators he wrote
with Jacob T. Schwartz. Its three volumes together contain more than 2500 pages.

• You may have noticed that we would obtain a notion of measurability by endowing
X with its Borel σ-algebra. This would not turn out to be helpful.

For a Dunford integrable f the integrals
´
x∗f dµ are well-defined and we would like to

reconstruct some element
´
f dµ of X satisfying x∗

´
f dµ =

´
x∗f dµ for any x∗ ∈ X∗. In

general, this will not be possible. Instead, this integral
´
f dµ will live in the bidual X∗∗

and satisfy
(´
f dµ

)
x∗ =

´
x∗f dµ for any x∗ ∈ X∗.

Lemma 3. If f is Dunford integrable, the mapping

X∗ → R , x∗ 7→
ˆ
x∗f dµ

is linear and continuous, thus an element of the bidual and denoted by
´
f dµ ∈ X∗∗ – the

Dunford integral.

Proof. Linearity is obvious, so we check boundedness. For this, let T : X∗ → L1(µ),
x∗ 7→ x∗f such that

∣∣´ x∗f dµ
∣∣ ≤ ´ |x∗f | dµ = ‖Tx∗‖. Now we want to show continuity of

T , i. e. the existence of c > 0 such that∣∣∣∣ˆ x∗f dµ
∣∣∣∣ ≤ ‖Tx∗‖ ≤ c‖x∗‖

which will imply the continuity of our functional. Since L1(µ) and X∗ are Banach spaces,
the closed graph theorem will tell us that it suffices to show closedness of T . If x∗n → x∗

in X∗ and Tx∗n → g in L1(µ), we note that Tx∗n = x∗nf → x∗f = Tx∗ pointwise, so Tx∗n
converges to g in L1 and pointwise to Tx∗, which implies Tx∗ = g.
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One may find it inconvenient that the integral of an X valued function appears to live in
X∗∗. Indeed, it is possible that

´
f dµ ∈ X∗∗ is not in X, i. e. not contained in the image

of the canonical embedding of X in X∗∗.
Example 4. As a measure space we choose [0, 1] with µ as the Lebesgue measure. Also,
let

f : [0, 1]→ c0 , t 7→
(
1(0,1](t), 21(0, 1

2 ](t), 31(0, 1
3 ](t), . . .

)
.

For α = (αn) ∈ `1 ∼= c∗0, we note that

αf =
∑

n

αnn1(0, 1
n

]

is measurable and also integrable with
ˆ
αf dµ =

∑
n

αnn

( 1
n
− 0

)
=
∑

n

αn .

Finally, the functional (αn) 7→∑
n αn is given by (1, 1, . . . , ) ∈ `∞, i. e.

ˆ
f dµ ∼= (1, 1, 1, . . . ) ∈ `∞ \ c0 .

Thus it is natural to consider X as embedded into X∗∗. One may also write X ⊂ X∗∗

which makes it more convenient to think of
´
f dµ just living in some larger space instead

of some space of functionals on a dual space. In the same manner, by a slight abuse of
notation we write

´
f dµ ∈ X if

´
f dµ can be identified via the canonical embedding with

an element of X. In the setting of the above example, we could also integrate the function
g being constantly some element x = (xn) ∈ c0. Then the integral

´
g dµ corresponds the

sequence (xn) as an element of `∞. Hence, we may write
´
g dµ = x ∈ c0.

If the integral of f over any measurable subset of Ω is in the image of the canonical
embedding (which we identify with X), we shall call f Pettis integrable.

Definition 5. If ˆ
E
f dµ :=

ˆ
1E f dµ ∈ X

for any E ∈ Σ, f is called Pettis integrable and
´
f dµ is its Pettis integral.

Here, again,
´
1E f dµ ∈ X means that this element of the bidual actually is of the

form x̂, where x ∈ X and the hat denotes the canonical embedding. (then we identify´
1E f dµ = x.)

Example 6. We have already seen an example for a Dunford integrable but not Pettis
integrable function f : [0, 1]→ c0. More caution is needed in the following. For this f , let

g : [0, 2]→ c0 , t 7→
{
f(t) t ≤ 1 ,
−f(t− 1) t > 1 .

This is again weakly measurable and Dunford integrable when endowing [0, 2] with its
Lebesgue measure µ, where

ˆ
[0,2]

g dµ =
ˆ

[0,1]
f dµ−

ˆ
[0,1]

f dµ = 0 ,

thus
´
g dµ ∈ X. However, g is not Pettis integrable, since

´
[0,1] g dµ =

´
[0,1] f dµ /∈ c0.
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Finally we use the Hahn-Banach separation theorem in this theory.

Theorem 7. Let f be Dunford integrable with
´
f dµ ∈ X and let µ(Ω) <∞. Then

1
µ(Ω)

ˆ
f dµ ∈ conv

(
f(Ω)

)
.

Intuitively, the mean value of f is in the closed convex hull of its values.

Proof. If this were not the case, the Hahn-Banach separation theorem would yield a func-
tional x∗ ∈ X∗ with

x∗
( 1
µ(Ω)

ˆ
f dµ

)
< 0 ≤ x∗f(ω)

for any ω ∈ Ω. Integrating over Ω gives

µ(Ω)x∗
( 1
µ(Ω)

ˆ
f dµ

)
= x∗

ˆ
f dµ < 0 ≤

ˆ
x∗f dµ .

But now, by the definition of the Dunford integral, we may interchange x∗ and integration,
yielding ˆ

x∗f dµ <
ˆ
x∗f dµ ,

which is a contradiction.

Remark 8. As a final remark we mention the existence of a notion of strong measura-
bility (also called Bochner measurability) which essentially means that a function can be
approximated by simple functions. Suprisingly, a strongly measurable and Dunford inte-
grable function is automatically Pettis integrable if X contains no copy of c0, i. e. has no
subspace isomorphic to c0.
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