
Closed operators

Theory of Closed Operators

We will now consider closed operators and prove some Theorems concerning them. First
of all, we have to define a closed operator.

Definition 1. Let E and F be normed spaces and D ⊂ E a subspace. A linear operator
T : D → F is called closed, if for each sequence (xn) ⊂ D we have that xn → x, Txn → y
imply x ∈ D and Tx = y.

This means, a closed operator is an operator T : D → F which graph is closed, i.e.(
xn

Txn

)
→
(
x
y

)
implies

(
x
y

)
∈ graphT .

Remark 2. If a linear operator is only defined on a subspace D, we call D the domain of
T and denote it by domT or D(T ).

Now we derive some properties from the closedness of an operator.

Theorem 3. Let E, F be Banach spaces and let T : E ⊃ domT → F be a closed operator.
Then

(i) ET := (domT, ‖·‖T ) with ‖x‖T := ‖x‖+ ‖Tx‖, x ∈ domT , is a Banach space.

(ii) T , considered as an operator from ET to F is bounded, i.e. T ∈ L(ET , F ).

Proof. (i). Let (xn) ⊂ ET be a Cauchy sequence in ET . We have

‖xn − xm‖T = ‖xn − xm‖+ ‖Txn − Txm‖ .

thus (xn) is a Cauchy sequence in E and (Txn) is a Cauchy sequence in F . Hence there
exist x ∈ E and y ∈ F such that xn → x, Txn → y. Since T is closed, we have x ∈ domT
and Tx = y and therefore

‖xn − x‖T = ‖xn − x‖+ ‖Txn − Tx‖ → 0, n→∞ .

(ii). Follows from
‖Tx‖ ≤ ‖x‖+ ‖Tx‖ = ‖x‖T , x ∈ domT .

Theorem 4. Let E and F be Banach spaces and let T : E ⊃ domT → F be closed and
bijective. Then T−1 : F → E is bounded, i.e. T−1 ∈ L(F,E).

Proof. The operator T̃ : ET → F is bounded and bijective, thus T̃−1 ∈ L(F,ET ), i.e.

‖T−1y‖T = ‖T−1y‖+ ‖y‖ ≤ c‖y‖

for some c > 0. This implies
‖T−1y‖ ≤ c‖y‖ .

Finally, we give an example for a closed operator. For this, we recall the definition of an
absolutely continuous function:
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Closed operators

Definition. A function f : [0, 1] → C is called absolutely continuous, if there exists g ∈
L1(0, 1) with

f(x) = f(0) +
ˆ x

0
g(t)dt .

Now let E = F = L2(0, 1) and

domT := {f ∈ L2(0, 1) : f is absolutely continuous and there exists f ′ ∈ L2(0, 1)} .

Define
T : E ⊃ domT → F, Tf := f ′ .

We claim that T is closed.

Proof. Let (fn) ⊂ domT such that fn → f and Tfn = f ′n → g in L2(0, 1). We have
fn(x) = fn(0) +

´ x
0 f
′
n(t)dt and by Hölder’s inequality

∣∣∣∣ˆ x

0
fn(t)dt−

ˆ x

0
g(t)dt

∣∣∣∣ ≤ ˆ 1

0
|f ′n(t)−g(t)|dt ≤

(ˆ 1

0
|f ′n(t)− g(t)|2dt

)1
2

= ‖f ′n−g‖2 → 0 .

We observe that for all x ∈ (0, 1) we have

fn(0)− fm(0) = fn(x)− fm(x) +
ˆ x

0
(f ′m(t)− f ′n(t))dt .

By the triangle inequality in L2(0, 1) we now have

|fn(0)− fm(0)| =
(ˆ 1

0
|fn(0)− fm(0)|dx

)1
2

=
(ˆ 1

0

∣∣∣∣fn(x)− fm(x) +
ˆ x

0
|f ′m(t)− f ′n(t)|dt

∣∣∣∣2 dx
)1

2

≤
(ˆ 1

0
|fn(x)− fm(x)|2dx

)1
2

+
(ˆ 1

0

∣∣∣∣ˆ x

0
|f ′m(t)− f ′n(t)|dt

∣∣∣∣2 dx
)1

2
→ 0

for n→∞. Thus, (fn(0)) is a Cauchy sequence. Set α := limn→∞ fn(0). Define

h(x) := α+
ˆ x

0
g(t)dt .

Then h is absolutely continuous and h′ = g ∈ L2(0, 1), i.e. h ∈ domT and Th = g. There
holds

fn(x)− h(x) = fn(0)− α+
ˆ x

0
(f ′n(t)− g(t))dt→ 0, n→∞

and thus
‖fn − h‖2 ≤ ‖fn − h‖∞ → 0 .

Hence h = f almost everywhere.
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