
J Grid Computing (2010) 8:281–304
DOI 10.1007/s10723-010-9155-y

Searching for Software on the EGEE Infrastructure

George Pallis · Asterios Katsifodimos ·
Marios D. Dikaiakos

Received: 21 August 2009 / Accepted: 4 March 2010 / Published online: 23 March 2010
© Springer Science+Business Media B.V. 2010

Abstract Several large-scale Grid infrastructures
are currently in operation around the world,
federating an impressive collection of computa-
tional resources, a wide variety of application
software, and hundreds of user communities. To
better serve the current and prospective users of
Grid infrastructures, it is important to develop
advanced software retrieval services that could
help users locate software components suitable to
their needs. In this paper, we present the design
and implementation of Minersoft, a distributed,
multi-threaded harvester for application software

This work was supported in part by the European
Commission under the 7th Framework Programme
through the SEARCHiN project (Marie Curie Action,
contract number FP6-042467) and the Enabling Grids
for E-sciencE project (contract number
INFSO-RI-222667) and makes use of results produced
with the EGEE (www.eu-egee.org) Grid
infrastructure. The authors would like to thank EGEE
users that provided characteristic queries for
evaluating Minersoft.

G. Pallis (B) · A. Katsifodimos · M. D. Dikaiakos
Department of Computer Science, University
of Cyprus, Nicosia, 1678, Cyprus
e-mail: gpallis@cs.ucy.ac.cy

A. Katsifodimos
e-mail: asteriosk@cs.ucy.ac.cy

M. D. Dikaiakos
e-mail: mdd@cs.ucy.ac.cy

located in large-scale Grid infrastructures. Min-
ersoft crawls the sites of a Grid infrastructure,
discovers installed software resources, annotates
them with keyword-rich metadata, and creates
inverted indexes that can be used to support full-
text software retrieval. We present insights de-
rived from the implementation and deployment of
Minersoft on EGEE, one of the largest Grid pro-
duction services currently in operation. Experi-
mental results show that Minersoft achieves a high
performance in crawling EGEE sites and discov-
ering software-related files, and a high efficiency
in supporting software retrieval.

Keywords Software retrieval ·
Knowledge Grids · Management resources

1 Introduction

Currently, a number of large-scale Grid infra-
structures are in operation around the world,
federating an impressive collection of computa-
tional resources and a wide variety of application
software [1, 2]. These infrastructures provide
production-quality computing and storage ser-
vices to thousands of users that belong to a
wide range of scientific and business communi-
ties. In the context of large-scale Grids, it is im-
portant to establish advanced software discovery
services that can help end-users locate software

http://www.eu-egee.org


282 G. Pallis et al.

components that are suitable for their compu-
tational needs. Earlier studies have shown that
the difficulty in discovering software components
was one of the key inhibitors for the adoption of
component technologies and software reuse [8].
Therefore, the provision of a user-friendly tool to
search for software is expected to expand the base
of Grid users substantially.

Adopting a keyword-based search paradigm for
locating software seems like an obvious choice,
given that keyword search is currently the dom-
inant paradigm for information discovery [26].
To motivate the importance of such a tool, let
us consider a biologist who is searching for drug
discovery software deployed on a Grid infrastruc-
ture. Unfortunately, the manual discovery of such
software is a daunting, nearly impossible task.
Taking the case of EGEE (Enabling Grids for
E-SciencE), one of the largest production Grids
currently in operation, the software developer
would have to gain access and search inside 300
sites, several of which host well over one million
software-related files.

Existing alternatives to manual search for soft-
ware are limited. Although Grid infrastructures
comprise centralized Grid information registries
that can be queried to provide information about
the configuration and status of Grid resources,
these registries typically contain scarce and poorly
maintained tags about installed software [14]. The
lack of well organized and properly maintained
information about software is due to the intrin-
sic characteristics of software management across
large-scale, federated infrastructures: software in-
stallation and maintenance is performed by vari-
ous actors in an uncoordinated manner, and does
not follow a common standard for software pack-
aging and description.

It should be noted that existing Web search en-
gines cannot be used for the retrieval of software
residing in Grid infrastructures, the setup of which
is fundamentally different from the World-Wide
Web: in contrast to Web pages, access to installed
software cannot be gained through a common pro-
tocol (HTTP). Also, most software files are not
amenable to traditional information extraction
techniques used in Information Retrieval: their
content is often binary encoded and/or contains
little textual descriptions. Last, but not least, soft-

ware is stored in file systems along with numerous
other files of different kinds. Traditional file sys-
tems do not maintain metadata representing file
semantics and distinguishing between different
file types. Also, there are no hyperlinks explic-
itly linking software-related files. Consequently,
the software-search problem cannot be addressed
by traditional IR approaches or semantic search
techniques.

Envisioning the existence of a Grid software
search engine, a biologist would submit a query
to the search engine using some keywords (e.g.
“docking proteins biology,” “drug discovery,” or
“autodock”). In response to this query, the en-
gine would return a list of software matching the
query’s keywords, along with Grid sites where this
software could be found. Thus, the user would be
able to identify the sites hosting an application
suitable to her needs, and would accordingly pre-
pare and submit jobs to these sites. In another use-
case, a researcher might need the Matlab software
package in order to run experiments. The Matlab
software package is large in size and the deploy-
ment of the software on each job submission is
not realistic. In addition, licensing issues could
prohibit such an action. Thus the researcher would
have to locate sites where this software package is
already installed. Instead of contacting site admin-
istrators of over 300 sites, the researcher would
submit a query to the search engine searching for
“Matlab” and the search engine would provide
a list of sites that Matlab is already deployed.
The user would then contact the site administra-
tors of the sites returned by Minersoft, ensuring
that he/she is licensed to use the Matlab soft-
ware and he/she would prepare and submit jobs
accordingly.

To meet this vision, we need a new methodol-
ogy that will: i) discover automatically software-
related resources installed in file systems that host
a great number of files and a large variety of file
types; ii) extract structure and meaning from those
resources, capturing their context, and iii) dis-
cover implicit relationships among them. Also, we
need to develop methods for effective querying
and for deriving insight from query results. The
provision of full-text search over large, distributed
collections of unstructured data has been iden-
tified among the main open research challenges



Searching for Software on the EGEE Infrastructure 283

in data management that are expected to bring a
high impact in the future [3]. Searching for soft-
ware falls under this general problem since file-
systems treat software resources as unstructured
data and maintain very little if any metadata about
installed software.

To address the software search challenge, we
developed the Minersoft software harvester. The
main functionality of Minersoft is to discover Grid
computing sites that host application software of
interest. Once the user has located the software
that needs, he/she submits jobs to the resources
found in order to use that software. This is impor-
tant, since not all the software resources can be
deployed by one job submission (i.e., large soft-
ware packages like Matlab). Also, there are many
licensing issues that do not permit distribution of
software to third party resource providers (you
have to find where the software is installed and
run your experiments there, in case you have the
right to use that software).

To the best of our knowledge, Minersoft pro-
vides the first full-text search facility for locating
software resources installed in large-scale Grid
infrastructures. Minersoft visits Grid sites, crawls
their file systems, identifies software resources
of interest (software, libraries, documentation),
assigns type information to these resources, and
discovers implicit associations between software
and documentation files. Subsequently, it cre-
ates an inverted index of software resources that
is used to support keyword-based searches. To
achieve these tasks, Minersoft invokes file-system
utilities and object code analyzers, implements
heuristics for file-type identification and filename
normalization, and performs document analysis
algorithms on software documentation files and
source-code comments. The results of Minersoft
harvesting are encoded in the Software Graph,
which is used to represent the context of discov-
ered software resources. We process the Software
Graph to annotate software resources with meta-
data and keywords, and use these to build an
inverted index of software. Indexes from different
Grid sites are retrieved and merged into a central
inverted index, which is used to support full-text
searching for software installed on the nodes of a
Grid infrastructure. The present work continues
and improves upon the authors preliminary efforts

in [22]. The major contributions of this article are
the following:

– We present the design, the architecture, and
implementation of the Minersoft harvester.

– We provide a study about the installed soft-
ware resources in EGEE [1] infrastructure.

– We conduct an experimental evaluation
of Minersoft, on a real, large-scale Grid
testbed—the EGEE infrastructure, exploring
performance issues of the proposed scheme.

The remainder of this paper is organized as
follows. Section 2 presents an overview of related
work. In Section 3, we provide the definitions for
software resources, software package and Soft-
ware Graph. Section 4 describes the proposed
algorithm to create a Software Graph annotated
with keyword-based metadata. Section 5 describes
the architecture of Minersoft. In Section 6 we
present an experimental assessment of our work.
We conclude in Section 7.

2 Related Work

A number of research efforts [27, 40] have in-
vestigated the problem of software-component re-
trieval in the context of language-specific software
repositories and CASE tools (a survey of recent
work can be found in [29]). The distinguishing
traits of these approaches are i) the searching
paradigm; ii) the corpus upon which the search is
conducted; iii) the access and the retrieval process
of software resources. Table 1 presents a summary
of the most indicative tools for software retrieval.

2.1 Searching Paradigm

The keyword-based search paradigm for locating
software is the dominant paradigm for software
resources discovery. In [30], Maarek et al. pre-
sented GURU, possibly the first effort to estab-
lish a keyword-based paradigm for the retrieval
of source codes and software description docu-
ments. Other well-known keyword-based IR sys-
tems for software resources are the Maracatu [38],



284 G. Pallis et al.

Table 1 Existing tools for software retrieval

Approach Searching Corpus Software resources retrieval
paradigm Binaries/ Source codes/ Software-description Binary

scripts libraries documents libraries
GURU keyword-based Repository ! !
Marakatu keyword-based Repository !
SEC keyword-based Repository !
Wumpus keyword-based File system search !
Extreme keyword-based Web !

harvesting
SPARS-J keyword-based CVS repositories !
Sourcerer keyword-based Internet repositories !
Koders keyword-based Internet open-source ! !

repositories
Google code keyword-based Web ! !

search
Minersoft keyword-based Grid, cloud, cluster, ! ! ! !

repository

SEC [23], SPARS-J [32], Sourcerer [27], Google
CodeSearch Search1 and Koders.2

2.2 Corpus

Most software retrieval systems (GURU [30],
Maracatu [38], SEC [23]) have been developed for
the retrieval of source code residing inside soft-
ware repositories or file systems (Wumpus [39]).
Also, the Web has been used as a platform for
storing and publishing software repositories. A
number of research efforts and tools have fo-
cused on supporting topical Web searches that
target software resources. Specifically, in [27],
authors developed a keyword-based paradigm,
called Sourcerer, for searching source-code repos-
itories available on the Web. Google Code Search
is for developers interested in open-source de-
velopment. The user can search for open source-
code and a list of Google services which support
public APIs. Koders is a search engine for open
source code. It enables software developers to
easily search and browse source code in thousands
of projects posted at hundreds of open source
repositories. Finally, other researchers use as cor-

1Google Code search engine: http://google.com/codesearch.
2Koders search engine: http://www.koders.com/.

pus publicly available CVS repositories, in order
to build their own software search engines (e.g.,
SPARS-J) [32].

2.3 Software Resources Retrieval

All the existing software-dedicated IR systems
retrieve source files, while most of them retrieve
also software-description documents. Regarding
the mapping between queries and documented
software resources, the cosine similarity metric
is mainly used. GURU uses probabilistic model-
ing (quantity of information) to map documents
to terms providing results that include both full
and partial matches. Similar approaches have also
been proposed in [6, 28, 31]. All these works ex-
ploit source-code comments and documentation
files. The methodology that they follow is to rep-
resent them as term-vectors and then they use sim-
ilarity metrics from Information Retrieval (IR) to
identify associations between software resources.
Results showed that such schemes work well in
practice and are able to discover links between
documentation files and source codes [6, 28, 31].

In order to improve the representation of
software resources, the use of folksonomy con-
cepts has been investigated in the context of the
Maracatu system [38]. Folksonomy is a coopera-
tive classification scheme where the users assign

http://google.com/codesearch
http://www.koders.com/


Searching for Software on the EGEE Infrastructure 285

keywords (called tags) to software resources. A
drawback of this approach is that it requires user
intervention to manually tag software resources.
Finally, the use of ontologies is proposed in [23];
however, this work provides little evidence on the
applicability and effectiveness of its solution.

The search for software can also benefit from
extended file systems that capture file-related
metadata and/or semantics, such as the Semantic
File System [16], the Linking File System (LiFS)
[5], or from file systems that provide extensions
to support search through facets [24], contextual-
ization [36], desktop search (e.g., Confluence [17],
Wumpus [39]), etc. Although Minersoft could
easily take advantage of the above file systems
offering this kind of support, in our current de-
sign we assume that the file system provides
the metadata found in traditional Unix and
Linux systems that are common in most Grid
infrastructures.

Regarding the crawling process, in [18], authors
described an approach for harvesting software
components from the Web. The basic idea is to
use the Web as the underlying repository, and to
utilize standard search engines, such as Google,
as the means of discovering appropriate software
assets.

2.4 Minersoft vs. Existing Approaches

Although we are not aware of any work that
provides keyword-based searching for software
resources on large-scale Grid infrastructures, our
work overlaps with prior work on software re-
trieval [6, 30, 31, 38]. These works mostly focus
on developing schemes that facilitate the retrieval
of software source files using the keyword-based
paradigm. Minersoft differs from these works in a
number of system and implementation aspects:

– System aspects:

– Minersoft supports searching for software
installed in the file systems of Grid and
cluster infrastructures, as well as in soft-
ware repositories;

– Minersoft supports searching not only for
source codes but also for executables and
libraries stored in binary format;

– Implementation aspects:

– Minersoft does not presume that file
systems maintain metadata (tags etc.)
to support software search; instead, the
Minersoft harvester generates such meta-
data automatically by invoking standard
file-system utilities and tools and by ex-
ploiting the hierarchical organization of
file systems;

– Minersoft introduces the concept of the
Software Graph, a weighted, typed graph.
The Software Graph is used to repre-
sent software resources and associations
thereof under a single data structure, ame-
nable to further processing.

– Minersoft addresses a number of addi-
tional implementation challenges that are
specific to Grid infrastructures:
• Software management is a decentral-

ized activity; different machines in
Grids may follow different policies
about software installation, directory
naming etc. Also, software entities
on such infrastructures often come
in a wide variety of packaging con-
figurations and formats. Therefore, so-
lutions that are language-specific or
tailored to some specific software-
component architecture are not ap-
plicable in the Minersoft context.

• Harvesting the software resources
found in Grid infrastructures is a com-
putationally demanding task. There-
fore, this task can be distributed to
the computational resources available
in the infrastructure, achieving load
balancing and reducing data commu-
nication overhead between the search
engine and Grid sites.

• The users of a Grid infrastructure
do not have direct access to servers.
Therefore, a harvester has to be either
part of middleware services (some-
thing that would require the inter-
vention to the middleware) or to be
submitted for execution as a normal
job, through the middleware. Min-
ersoft is implemented to operate at



286 G. Pallis et al.

the application level in the software
stack of a Grid infrastructure so as
to work on top of many different
Grid infrastructures. Although, part of
Minersoft’s search facilities could be
integrated in the information services
of a Grid middleware, such a service
has been kept out of the Grid mid-
dleware stack to preserve middleware
independency.

3 Background

In this section we provide some background
about EGEE infrastructure and define software
resource, software package and Software Graph,
which are the main focus of this paper.

3.1 EGEE Infrastructure

The EGEE (Enabling Grid for E-sciencE) project
brings together experts from over 50 countries
with the common aim of building on recent ad-
vances in Grid technology and developing a pro-
duction Grid infrastructure which is available to
scientists. The project aims to provide researchers
in academia and industry with access to major
computing resources, independent of their geo-
graphic location.

The EGEE infrastructure3 comprises large
numbers of heterogeneous resources (computing,
storage), distributed across multiple administra-
tive domains (sites) and interconnected through
an open network. Coordinated sharing of re-
sources that span multiple sites is made possible
in the context of Virtual Organizations [15]. A
Virtual Organization (VO) provides its members
with access to a set of central middleware services,
such as resource discovery and job submission.
Through those services, the VO offers some level
of resource virtualization, exposing only high-
level functionality to Grid application program-
mers and end-users.

The conceptual architecture of EGEE consists
of four layers: fabric, core middleware, user-level

3EGEE Project Web site: http://project.eu-egee.org/.

middleware and Grid applications. The Grid fab-
ric layer consists of the actual hardware and lo-
cal Operating System resources. The core Grid
middleware provides services that abstract the
complexity and heterogeneity of the fabric layer
(i.e., remote process management, storage access,
information registration and discovery etc.). The
user-level Grid middleware utilizes the interfaces
provided by the low level middleware so as to
provide higher abstractions and services, such as
programming tools, resource brokers for manag-
ing resources and scheduling application tasks for
execution on global resources. Finally, the Grid
applications layer utilizes the services provided by
user-level middleware so as to offer engineering
and scientific applications and software toolkits to
Grid users.

3.2 Definitions

Definition 1 (Software Resource) A software re-
source is a file that is installed on a machine
and belongs to one of the following categories:
i) executables (binary or script), ii) software
libraries, iii) source codes written in some pro-
gramming language, iv) conf iguration f iles re-
quired for the compilation and/or installation of
code (e.g. makefiles), v) unstructured or semi-
structured software-description documents, which
provide human-readable information about the
software, its installation, operation, and mainte-
nance (manuals, readme files, etc).

The identification of a software resource and
its classification into one of these categories can
be done by heuristics that have been addressed
by human experts (system administrators, soft-
ware engineers, advanced users). The heuristics
used for classification are defined manually and
are based on the file’s filename, its placement in
the filesystem and the output of the GNU Linux
“file” command when executed against the file
(the “file” command prints a description of the file
that it runs against trying to describe it). For in-
stance, two examples of classification rules are: i)
a file described as an EFL/LSB executable by the
“file” command is considered an “executable”,
ii) if a file is under a directory called man fol-
lowed by a number between 1 and 9 (e.g. man6,

http://project.eu-egee.org/


Searching for Software on the EGEE Infrastructure 287

man1) and its content is described as troff by the
“file” command, then it is considered a “software-
description file”.

The heuristics used for classification are
defined manually and are based on i) files’ com-
mand descriptions, ii) filenames and iii) files’
placements in the filesystem.

Definition 2 (Software Package) A software
package consists of one or more content or/and
structurally associated software resources that
function as a single entity to accomplish a task, or
group of related tasks.

Human experts can recognize the associations
that establish the grouping of software resources
into a software package. Normally, these associa-
tions are not represented through some common,
explicit metadata format maintained in the file-
system. Instead, they are expressed implicitly by
location and naming conventions or hidden in-
side configuration files (e.g., makefiles, software
libraries). Therefore, the automation of software-
file classification and grouping is a non-trivial task.
To represent the software resources found in a
file-system and the associations between them we
introduce the concept of the Software Graph.

Definition 3 (Software Graph) Software Graph is
a weighted, metadata-rich, typed graph G(V, E).
The vertex-set V of the graph comprises: i) ver-
tices representing software resources found on
the file-system of a computing node (f ile-vertices),
and ii) vertices representing directories of the file-
system (directory-vertices). The edges E of the
graph represent structural and content associa-
tions between vertices.

Structural associations correspond to relation-
ships between software resources and file-system
directories. These relationships are derived from
file-system structure according to various con-
ventions (e.g., about the location and naming of
documentation files) or from configuration files
that describe the structuring of software packages
(RPMs, tar files, etc). Content associations corre-
spond to relationships between software resources
derived by text similarity.

The Software Graph is “typed” because its ver-
tices and edges are assigned to different types
(classes). Each vertex v of the Software Graph
G(V, E) is annotated with a number of associated
metadata attributes, describing its content and
context:

– name(v) is the normalized name4 of the soft-
ware resource represented by v.

– type(v) denotes the type of v; a vertex can be
classified into one of a finite number of types
(more details on this are given in the next
sections).

– site(v) denotes the computing site where file v

is located.
– path(v) is a set of terms derived from the path-

name of software resource v in the file system
of site(v).

– zonel(v), l = 1, . . . , zv is a set of zones as-
signed to vertex v. Each zone contains terms
extracted from a software resource that is as-
sociated to v and which contains textual con-
tent. In particular, zone1(v) stores the terms
extracted from v’s own contents, whereas
zone2(v), . . . , zonezv

(v) store terms extracted
from software documentation files associated
to v. The number (zv − 1) of these files de-
pends on the file-system organization of site(v)

and on the algorithm that discovers such asso-
ciations (see subsequent section). Each term
of a zone is assigned an associated weight
wi, 0 < wi ≤ 1 equal to the term’s TF/IDF
value in the corpus (software resources found
on the file-system of a computing node). Fur-
thermore, each zonel(v) is assigned a weight
gl so that

∑zv

l=1 gl = 1. Zone weights are intro-
duced to support weighted zone scoring in the
resolution of end-user queries.

Each edge e of the graph has two attributes:
e = (type, w), where type denotes the association
represented by e and w is a real-valued weight
(0 < w ≤ 1) expressing the degree of correlation
between the edge’s vertices.

The Software Packages are coherent clusters
of “correlated” software resources in Software

4Normalization techniques for filenames are presented
in [35].



288 G. Pallis et al.

Graph. Next, we focus on presenting how the
Software Graph can be constructed (Section 4),
the architecture of Minersoft (Section 5) and we
evaluate its contribution (Section 6).

4 Software Graph Construction and Indexing

4.1 Overview

A key responsibility of the Minersoft harvester
is to construct a Software Graph (SG) for each
computing site, starting from the contents of its
file system. Figure 1 depicts an example of a
filesystem that contains a set of software resources
(binary executables, libraries, text files, source
codes, readme files and manual pages) and it is
converted to a Software Graph.

To this end, we propose an algorithm compris-
ing of the following steps:

1. FST construction.
2. Classification and pruning.
3. Structural dependency mining.

(a) Structural-context enrichment

4. Keyword scraping.
5. Keyword flow.

(a) Content enrichment

D R

D

T S

D

D B B B

D

/

DD

S D SL D L

M MMB

D: Directory
B: Binary Executable
M: Manual Page
T: Text File
S: Source Code
L: Library File
/: Filesystem Tree Root

Initial FST edge

Minersoft SG edge

Fig. 1 An example of a filesystem tree converted to a
Software Graph

6. Content association mining.

(a) Content association

7. Inverted index construction.

The main objectives of the Minersoft algorithm
are to i) discover software-related resources in-
stalled in file systems; ii) extract structure and
meaning from those resources, capturing their
context, iii) discover implicit relationships among
them, and iv) enrich them with keywords. In the
next section, we present the steps of the Minersoft
algorithm. A detailed description of these steps
can be found in [33].

4.2 Minersoft Algorithm

FST construction Initially, Minersoft scans the
file system of a site and creates a f ile-system tree
(FST) data structure. The internal vertices of the
tree correspond to directories of the file system;
its leaves correspond to files. Edges represent con-
tainment relationships between directories and
sub-directories or files. All FST edges are assigned
a weight equal to one. During the scan, Minersoft
ignores a stop list of files and directories that do
not contain information of interest to software
search (e.g., /tmp, /proc).

Classification and pruning Names and path-
names play an important role in file classification
and in the discovery of associations between files.
Accordingly, Minersoft normalizes filenames and
pathnames of FST vertices, by identifying and
removing suffixes and prefixes [35]. The normal-
ized names are stored as metadata annotations in
the FST vertices. Subsequently, Minersoft applies
a combination of system utilities and heuristics
to classify each FST file-vertex into one of the
following categories: binary executables, source
code (e.g. Java, C++ scripts), libraries, software-
description documents (e.g. man-pages, readme
files, html files) and irrelevant files. Minersoft
prunes all FST leaves found to be irrelevant to
software search (vertices that do not belong to any
category), dropping also all internal FST vertices
(directories) that are left with no descendants.
This step results to a pruned version of the FST



Searching for Software on the EGEE Infrastructure 289

that contains only software-related file-vertices
and the corresponding directory-vertices.

Structural dependency mining Subsequently,
Minersoft searches for “structural” relationships
between software-related files (leaves of the
file-system tree). Discovered relationships are
inserted as edges that connect leaves of the FST,
transforming the tree into a graph. Structural
relationships can be identified by: i) Rules that
represent expert knowledge about file-system
organization, such as naming and location
conventions. For instance, a set of rules link files
that contain man-pages to the corresponding
executables; Readme and html files are linked to
related software files. ii) Dynamic dependencies
that exist between libraries and binary exe-
cutables. Binary executables and libraries usually
depend on other libraries that need to be
dynamically linked during runtime. iii) Package
management tools that exist in operating systems
(i.e., Unix/Linux). These dependencies are mined
from the headers of libraries and executables.

The structural dependency mining step pro-
duces the first version of the SG, which captures
software resources and their structural relation-
ships. Subsequently, Minersoft seeks to enrich
file-vertex annotation with additional metadata
and to add more edges into the SG, in order to
better express content associations between soft-
ware resources.

Keyword scraping In this step, Minersoft per-
forms deep content analysis of each file-vertex of
the SG in order to extract descriptive keywords.
This is a resource-demanding computation that
requires the transfer of all file contents from disk
to memory to perform content parsing, stop-word
elimination, stemming and keyword extraction.
Different keyword-scraping techniques are used
for different types of files: for instance, in the case
of source code, we extract keywords only from
the comments inside the source, since the actual
code lines would create unnecessary noise without
producing descriptive features. Binary executable
files and libraries contain strings that are used for
printing out messages to the users, debugging in-
formation, logging etc. All this textual information
can be used to extract useful features for these

resources. Hence, Minersoft parses the binary files
byte by byte and captures the printable character
sequences that are at least four characters long
and are followed by an unprintable character. The
extracted keywords are saved in the zones of the
file-vertices of the SG.

Keyword flow Software files (executables, li-
braries, source code) usually contain little or no
free-text descriptions. Therefore, keyword scrap-
ing typically discovers very few keywords inside
such files. To enrich the keyword sets of software-
related file-vertices, Minersoft identifies edges
that connect software-documentation file-vertices
with software file-vertices, and copies selected
keywords from the former into the zones of the
latter. The keyword-flow algorithm is simple: for
all software-related vertices v, we find all adja-
cent edges ed = (w, v) in the SG, where w is a
documentation vertex. For each such edge ed, we
create an extra documentation zone for v. Con-
sequently, v ends up with an associated set of
zones zone(v) = {zonev

1, . . . , zonev
zv

}, where zonev
1

corresponds to textual content extracted from v

itself and zonev
i , i = 2, . . . , zv correspond to key-

words extracted from documentation vertices ad-
jacent to v. Each zone has a different degree of
importance in terms of describing the content of
the software file of v, we assign to each zonev

i a
different weight gi, which is computed as follows:
i) For i = 1, namely for the zone that includes
the textual content extracted from v itself, we set
g1 = αv , where 0 < α ≤ 1. ii) For each remaining
zone of v (i = 2 . . . , zv), gi is set to αv multiplied by
the weight of the SG edge that introduced zonev

i
to v. The value of αv is chosen so that

∑zv

i=1 gi = 1.

Content association mining Similar to [6] and
[31], we further improve the density of SG by
calculating the cosine similarity between the SG
vertices of source files. To implement this cal-
culation, we represent each source-file vertex as
a weighted term-vector derived from its source-
code comments. To improve the performance of
content association mining, we apply a feature
extraction technique [30] to estimate the quantity
of information of individual terms and to disre-
gard keywords of low value. Specifically, we drop
terms with quantity of information (Q(t)) value



290 G. Pallis et al.

less than a specific threshold (for our experiments
we remove the terms where Q(t) < 3.5). The rea-
son is that low-Q terms would be useful for iden-
tifying different classes of vertices. In our case,
however, we already know the class where each
vertex belongs to (this corresponds to the type of
the respective file). Therefore, by dropping terms
that are frequent inside the source-code class, we
maintain terms that can be useful for discrimi-
nating between files inside a source-code class.
Source codes that exhibit a high cosine-similarity
value are joined through an edge that denotes the
existence of a content relationship between them.

Inverted index construction To support full-text
search for software resources, Minersoft creates
an inverted index of software-related file-vertices
of the SG. The inverted index has a set of terms,
with each term being associated to a “posting”
list of pointers to the software files containing the
term. The terms are extracted from the zones of
SG vertices.

5 Minersoft Architecture

Creating an information retrieval system for soft-
ware resources that can cope with the scale of
Grid computing infrastructures presents several
challenges. Fast crawling technology is required
to gather the software resources and keep them
up to date. Storage space must be used efficiently
to store indexes and metadata. The indexing sys-
tem must process hundreds of gigabytes of data
efficiently. In this section, we provide a descrip-
tion of how the Minersoft architecture, depicted
in Fig. 2.

For the efficient implementation of Minersoft
in a Grid setting, we take advantage of various
parallelization techniques in order to:

– Distribute parts of the Minersoft computation
to Grid resource providers. Thus, we take
advantage of their computation and storage
power, to speedup the file retrieval and index-
ing processes, to reduce the communication
exchange between the Minersoft system and

Fig. 2 Minersoft
architecture

Job Manager (Ganga) J
o

b
M

a
n

ip
u

la
to

r
Q

u
e

ry
E

n
g

in
e

Query Interface

M
o

n
ito

r

Data/Job Monitor
Data Retriever Job Submitter

Query Executor

Ranker
Query 

Processor

D
a

ta
s

to
re

 Inverted 
 Index

Software
Graphs

Minersoft

EGEE Infrastructure

Data Services

Storage
Elements

LCG File 
Catalogs

Job Services

Workload Management
Services

Computing Elements

Logging & Bookkeeping 
Services

Crawler
Indexer



Searching for Software on the EGEE Infrastructure 291

local Grid sites, and to sustain the scalability
of Minersoft with respect to the total number
of Grid sites. Minersoft tasks are wrapped as
jobs that are submitted for execution to the
Grid workload management system.

– Avoid overloading Grid sites by applying
load-balancing techniques when deploying
Minersoft jobs to Grid .

– Improve the performance of Minersoft jobs
by employing multi-threading to overlap local
computation with Input/Output (I/O).

– Adapt to the policies put in place by different
Grid resource providers regarding their limi-
tations, such as the number of jobs that can
be accepted by their queuing systems, the total
time that each of these jobs is allowed to run
on a given Grid site, etc.

5.1 Overview

Minersoft adopts a MapReduce-like architec-
ture [13]; the crawling and indexing is done by
several distributed multi-threaded crawler and in-
dexer jobs, which run in parallel for improved per-
formance and efficiency. The crawler and indexer
jobs process a specific number of files, called splits.
The key components of the Minersoft architecture
are (see Fig. 2):

1. The job manipulator manages crawler and in-
dexer jobs and their outputs.

2. The monitor module maintains the overall su-
pervision of Minersoft jobs. To this end, the
monitor communicates with the job manager,
the datastore, the LCG File Catalogs and the
Logging and Bookkeeping services of EGEE
infrastructure.

3. The datastore module stores the resulted Soft-
ware Graphs and the full-text inverted indexes
centrally.

4. The query engine module is responsible for
providing quality search results in response
to user searches. The query engine module
comprises the query processor and the ranker.
The former receives search queries and ex-
ecutes them against the inverted indexes of
Minersoft. The latter ranks query results. To
this end, a ranking algorithm is used to im-
prove the accuracy and relevance of replies,

especially when keyword-based searching
produces very large numbers of “relevant”
software resources. Ranker uses the Lucene
relevance ranking.5 In particular, Lucene pro-
vides a scoring algorithm that includes ad-
ditional data to find best matches to user
queries. The default scoring algorithm is fairly
complex and considers such factors as the fre-
quency of a particular query term with indi-
vidual software resources and the frequency
of the term in the total population of software
resources.

5.2 Minersoft Crawler

The crawler is a multi-threaded program that per-
forms FST construction, classification and prun-
ing, and structural dependency mining. To this
end, the crawler scans the file-system of a com-
puting site and constructs the FST, identifies
software-related files and classifies them into the
categories described earlier (binaries, libraries,
documentation, etc), drops irrelevant files, and
applies the structural dependency mining rules
and algorithms described earlier. The crawler ter-
minates after finishing with the processing of all
splits assigned to it by the job manager.

The output of the crawler is the first version
of the SG that corresponds to the site assigned
to the crawler. This output is saved as a metadata
store f ile comprising the file-id, name, type, path,
size, and structural dependencies for all identified
software resources. The metadata store files are
saved at the storage services associated with the
computing site visited by the crawler, that is, at the
local Storage Element of a Grid site.

5.3 Minersoft Indexer

The Minersoft indexer is a multi-threaded pro-
gram that reads the files captured in the metadata
store f iles and creates full-text inverted indexes.
To this end, the indexer performs first keyword
scraping, keyword flow and content association
mining, in order to enrich the vertices of its as-
signed SG with keywords mined from associated

5Apache Lucene: http://lucene.apache.org/java/docs/.

http://lucene.apache.org/java/docs/


292 G. Pallis et al.

documentation-related vertices. This results in en-
riching the terms and posting lists of inverted in-
dexes with extra keywords. At the end of indexing
process, for each Grid site there is an inverted
index containing a set of terms, with each term
associated to a posting list of pointers to the
software files containing the term. The terms are
extracted from the zones of SG vertices.

5.4 Distributed Crawling and Indexing Process
in EGEE Infrastructure

The crawling and indexing of EGEE Grid sites
for software requires the retrieval and processing
of large parts of the file systems of numerous
sites. These tasks need to address various perfor-
mance, reliability and policy issues. To address
these issues, Minersoft undertakes the crawling
and indexing of software resources installed in
EGEE infrastructure in a distributed manner. The
job submitter sends a number of multi-threaded
crawler/ indexer jobs to the Workload Manage-
ment Services (WMSs) of Grid sites.

A challenge for crawler/indexer jobs is to
process all the software resources residing within
EGEE Grid sites, without exceeding the time con-
straints imposed by site policies. The jobs which
run longer than the allowed time are terminated
by the sites batch systems. The maximum wall
clock time for an EGEE Grid site usually ranges
between 2 and 72 h.

In this context, the file-system of each EGEE
Grid site is decomposed into a number of splits,
where the size of each split is chosen so that the
crawling can be distributed evenly and efficiently
within the constraints of the underlying net-
worked computing infrastructure. The number of
splits is determined by the communication be-
tween the job manager and the monitor. The
splits are assigned to crawler/indexer jobs on a
continuous basis: When a Grid site finishes with
its assigned splits, the monitor informs the job
manager in order to send more splits for process-
ing. If a Grid site becomes laggard, the moni-
tor sends a message to job manager. Then, the
crawler/indexer job is canceled and rescheduled to
run when the Grid site’s workload is reduced. Fur-
thermore, if the batch system queue of a Grid site

is full and does not accept new jobs, the monitor
sends a signal and the job submitter suspends sub-
mitting crawler/indexer jobs to that Grid site until
the batch system becomes ready to accept more.

When the crawling completes, Minersoft’s data
retriever module fetches the metadata store f iles
from all machines, and merges them into a f ile
index. The f ile index comprises information about
each software resource and is temporally stored
in the Datastore. The f ile index will be used in
order to identify the duplicate files during the
indexing process; the duplication reduction policy
is described in the following subsection. When
the indexing has been completed, the f ile index
is deleted. Then, the data retriever fetches the
resulted inverted indexes and the individual SGs
from all sites. Both the full-text inverted indexes
and the SGs are stored in the Datastore.

5.5 Duplication Reduction Policy

Typically, popular software applications and pack-
ages are installed on multiple sites of distributed
computing infrastructures. If we identify dupli-
cates, we will be able to avoid indexing them
multiple times. Consequently, the performance of
indexing is improved.

To address this issue, the job manager uses a
duplicate reduction policy to identify the exact
duplicate files. According to our policy, a dupli-
cate file is assigned to the Grid site which has
the minimum number of assigned files that should
be indexed. The key idea behind this policy is
to avoid multiple indexing of duplicate software
resources in Grid sites so as to prevent their over-
loading. In this context, for each Grid site/, the
following steps take place:

1. The f ile index is sorted in ascending order with
respect to the count of Grid sites that a file
exists.

2. The files which do not have duplicates are di-
rectly assigned to the corresponding Grid site.

3. If a file belongs to more than one Grid
sites, the file is assigned to the site with the
minimum number of assigned files.



Searching for Software on the EGEE Infrastructure 293

5.6 Minersoft Crawler/Indexer Job’s Lifecycle
in EGEE Infrastructure

Minersoft indexer and crawler jobs follow the
same principles for file-staging and execution. The
lifecycle of a crawler/ indexer job in EGEE in-
frastructure starts by copying its executable files
to a Storage Element (SE) and terminates by
downloading its output files (file-indexes, SGs,
inverted file indexes) to the centralized Minersoft
infrastructure. Their lifecycle is depicted in Fig. 3.
The details of each of the individual steps are
described below:

1. Store & register executables: In order to submit
and run crawler and indexer jobs efficiently,
the executable files of these jobs are stored
into SEs and registered to LCG File Cata-
logs (LFCs). Thus, the Workload Manage-
ment System (WMS) and Minersoft avoid

extra workload. Note that in most cases we
have to submit a large number of jobs, where
each job needs executables that their total size
is about 3 MB.

2. Submit jobs: When the executables have been
stored to the SEs, Minersoft submits the
crawler/ indexer jobs using the WMS. The
WMS moves the crawler/ indexer jobs to
the Computing Elements (CEs) of EGEE in-
frastructure in order to be executed.

3. Retrieve job executables: The crawler/ indexer
jobs are moved from the CE into one of its
workernodes. The executable files of jobs are
downloaded from the SEs.

4. Jobs running: When the executables have
been downloaded, the crawler/indexer jobs
start their execution.

5. Store & register outputs: When the jobs have
successfully finished their execution, their out-
puts are stored in the SEs and registered to the
LFCs making them available to Minersoft for

Fig. 3 Minersoft
crawler/indexer job’s
lifecycle Minersoft

Data Services

Storage
Elements

LCG File 
Catalogs

Workload Management
Service

Computing Element

1. Store & register executables

2. Submit Jobs

Workernodes

5. Store & register outputs

6. Retrieve Outputs

3. Retrieve executables

4. Jobs Running



294 G. Pallis et al.

further processing (SG processing, merging
inverted indexes etc.).

6. Retrieve outputs: The data retriever mod-
ule of Minersoft retrieves the outputs from
the SEs and stores them to its centralized
infrastructure.

5.7 Minersoft Implementation and Deployment

The implementation of the job manager and mon-
itor relies upon the Ganga system [10], which
is used to create and submit jobs as well as to
resubmit them in case of failure. We adopted
Ganga in order to have full control of the jobs
and their respective arguments and input files. In
this context, the monitor (through Ganga scripts)
monitors the status of jobs after their submission
and keeps a list of Grid sites and their failure rate.
If there are Grid sites with a high failure rate, the
monitor eventually puts them in a black list and
notifies job manager so as to stop submitting jobs
to them, thus excluding them from the current
indexing/crawling session. Sites that are not fully
crawled or indexed are not included in the search
results.

The crawler is written in Python. The Python
code scripts are put in a tar file and copied on
a SE before job submission starts. The tar file is
being downloaded and untarred to the target Grid
site before the crawler execution starts. By doing
that, the size of the jobs input sandbox is reduced,
thus job submission is accelerated because the
workload management system has to deal with
much less files per job.

The indexer is written in Java and Bash and
uses an open-source high performance, full-text
index and search library (Apache Lucene). In
order to execute the indexer jobs, we follow the
same code-deployment scenario as with crawlers.

The job manager has to distribute the crawling
and indexing workload before the job submission
starts. This is done by creating splits for each Grid
site that Minersoft has to crawl. The input file (list
of files) for each split resides on a SE and is regis-
tered to a file catalog. The split input is then down-
loaded from a SE and used to start the processing
of files. The split input is a text file containing the
list of files that have to be crawled or indexed. Af-
ter execution, the jobs upload their outputs on SEs

and register the output files to a file catalog. The
logical file names and the directories containing
them in the file catalog are properly named so that
they implicitly state the split number and the site
that they came from or going to.

6 Evaluation

6.1 Testbed

The usefulness of the findings of any study de-
pends on the realism of the data upon which the
study operates. For this purpose, the experiments
are conducted on ten Grid sites of EGEE (En-
abling Grid for E-sciencE). The EGEE infrastruc-
ture is one of the largest Grid production services
currently in operation and its objective is to pro-
vide researchers in academia and industry with
access to major computing resources, independent
of their geographic location. Totally, the Grid
testbed includes six million files where their total
size is over 366 GB. Table 2 presents the Grid that
have been crawled and indexed by Minersoft.

Files in the workernodes of EGEE are not al-
ways readable by all users that are allowed to run
jobs on them. In some cases, access to files is only
given to specific VOs because of licensing and/or
site-policy reasons. In our experiments, Minersoft
runs as a user from the South East Europe (SEE)
VO and the files that it can read are all the files
that are readable by that VO users in each EGEE
site.

Table 2 EGEE testbed

Grid site # of files Size (MB)
ce01.kallisto.hellasgrid.gr 3,541,403 259,953,246.2
ce301.intercol.edu 97,906 3,711,925.517
grid-ce.ii.edu.mk 194,556 4,981,889.552
paugrid1.pamukkale.edu.tr 132,645 3,912,987.884
ce01.grid.info.uvt.ro 270,445 10,849,994.58
grid-lab-ce.ii.edu.mk 109,286 2,824,409.829
ce01.mosigrid.utcluj.ro 70,419 19,539,562.62
ce101.grid.ucy.ac.cy 1,278,851 64,886,738.85
ce64.phy.bg.ac.yu 150,661 6,685,600.57
testbed001.grid.ici.ro 125,028 7,117,152.75
Total 5,971,200 384,463,508.4



Searching for Software on the EGEE Infrastructure 295

6.2 Crawling and Indexing Evaluation

In this section, we elaborate on the performance
evaluation of the crawling and indexing tasks of
Minersoft. Our objective is to show that Minersoft
is a useful application for developers, administra-
tors and researchers in EGEE infrastructure.

6.2.1 Examined Metrics

To assess the crawling and indexing in Minersoft,
we investigate the performance of crawler and
indexer jobs; recall that each job is responsible for
a number of files (called splits) that exist on a Grid
site. In this context, we use the following metrics:

– Run time: the average time that a crawler/
indexer job spends on a Grid site, including
processing and I/O; this metric measures the
average elapsed time that Minersoft needs to
process (crawl or index) a split.

– CPU time: the average CPU time in
seconds spent by a crawler/indexer job while
processing a split on a Grid site.

– File rate: the number of files that Minersoft
crawls/ indexes per second on a Grid site.

– Size rate: the size of files in bytes that Miner-
soft crawls/indexes per second on a Grid site.

In our experiments, each crawler and indexer
job was configured to run with five threads. We

also ran experiments with different numbers of
threads (from 1, 5, 9 to 13) and concluded that
5 threads per crawler/indexer job provide a good
trade-off between crawling/indexing performance
and server workload. Smaller or larger numbers
of threads per crawler/indexer job usually result
to significantly higher run times, due to poor CPU
utilization or I/O contention, respectively. Recall,
that the crawler and indexer jobs process a specific
number of files, called splits. In our experiments,
the maximum number of files that a split can
process is 100.000.

6.2.2 Crawling Evaluation

Figure 4 depicts the per-job average run-time and
per-job average CPU-time for crawling the Grid
sites. The per-job CPU time takes into account
the total time that all the job’s threads spend in
the CPU. The run-time values are significantly
larger than the CPU times due to the system calls
and I/O that each crawler performs while process-
ing its file split. I/O is much more expensive in
the case of Grid sites with shared file systems.
Another observation is that the run-time and
CPU-time of crawler jobs vary significantly across
different Grid sites. This imbalance is due to sev-
eral factors, including the hardware heterogene-
ity of the infrastructure, the dynamic workload
conditions of shared sites, and the dependence

Fig. 4 Average times for
jobs in EGEE
infrastructure

0
500

1000
1500
2000
2500
3000
3500
4000
4500

ce
01

.ka
llis

to.
he

lla
sg

rid
.gr

ce
30

1.i
nte

rco
l.e

du

gr
id-

ce
.ii.

ed
u.m

k

pa
ug

rid
1.p

am
uk

ka
le.

ed
u.t

r

ce
01

.gr
id.

inf
o.u

vt.
ro

gr
id-

lab
-ce

.ii.
ed

u.m
k

ce
01

.m
os

igr
id.

utc
luj

.ro

ce
10

1.g
rid

.uc
y.a

c.c
y 

ce
64

.ph
y.b

g.a
c.y

u 

tes
tbe

d0
01

.gr
id.

ici
.ro

A
vg

. T
im

e 
pe

r 
10

00
00

 fi
le

s 
(s

ec
) 

Grid Sites 

CPU Time (crawling) Run Time (crawling) CPU Time (indexing) Run Time (indexing) 



296 G. Pallis et al.

of the crawler processing on site-dependent as-
pects. For example, the crawler performs expen-
sive “deep” processing of binary and library files
to deduce their type and extract dependencies.
This is not required for text files. Consequently,
the percentage of binaries/libraries found in each
site determines to some extent the corresponding
crawling computation.

Table 3 depicts the throughput achieved by
the Minersoft crawler on different Grid sites, ex-
pressed in terms of the number of files and the
number of bytes processed. Results show that
Minersoft achieves high crawling rates.

The files found by the crawlers to be irrelevant
to software search are pruned from subsequent
processing. Figure 5 presents the percentage
of files that have been dropped in Grid sites.
We observe that a large percentage of content
in most Grid sites includes software resources.
Specifically, on average 75% of total files’ size
that exist in Grid sites have been classified as soft-
ware resources. These findings confirm the need
to establish advanced software services in Grid
infrastructures. The software-related files are cat-
egorized with respect to their type. From Table 4,
we can see that most software-related files in
the EGEE infrastructure are documentation files
(man-pages, readme files, html files) and sources.
Sources are files written in any programming lan-
guage. Executable scripts (e.g. python, perl, bash)
are also considered as sources (e.g. Java, C++).
Table 5 presents the number of splits that have
been created in order to crawl the files.

Table 3 Crawling rates in EGEE infrastructure

Grid site File rate Size rate
(files/s) (MB/s)

ce01.kallisto.hellasgrid.gr 59.287 4.067
ce301.intercol.edu 335.773 6.085
grid-ce.ii.edu.mk 255.395 4.141
paugrid1.pamukkale.edu.tr 372.467 4.744
ce01.grid.info.uvt.ro 557.289 14.762
grid-lab-ce.ii.edu.mk 300.905 2.766
ce01.mosigrid.utcluj.ro 245.074 23.382
ce101.grid.ucy.ac.cy 211.604 9.577
ce64.phy.bg.ac.yu 417.031 9.075
testbed001.grid.ici.ro 134.300 3.111

6.2.3 Indexing Evaluation

Figure 4 depicts the per-job average run-time and
the per-job CPU time for indexing Grid sites.
As expected, we observe that indexing is more
computationally-intensive than crawling, since we
need to conduct “deep” parsing inside the content
of all files.

Removing the duplicate files via the duplicate
reduction policy leads to reducing the number of
files. Consequently, this improves the indexing
performance. Our results showed that about 11%
of files belong to more than one Grid sites. In
a previous study [22] we had also observed a
large number of duplicate files in Grid infrastruc-
ture. So, the main conclusion of these findings is
that there is a large number of duplicate files in
Grid infrastructures. Table 5 presents the number
of splits and the size of inverted file indexes in
each Grid site of EGEE. In order to study the
benefits of duplicate reduction policy, we also
present the number of splits without perform-
ing duplication. From this table we observe that
ce01.kallisto.hellasgrid.gr has 31 splits instead of
33 splits (including duplicate files). Moreover,
even if the number of splits is not reduced, it is
reduced the number of files that have been as-
signed in a split. Consequently, the total indexing
time is significantly reduced. Regarding the size of
inverted indexes, we present the size of inverted
indexes with and without performing stemming.
We observe that stemming decreases the size of
inverted indexes about 10%.

Finally, Table 6 depicts the throughput of the
indexer expressed in terms of the number of files
and the number of bytes processed per second
in each Grid site of EGEE. The performance of
indexing is affected by the hardware (disk seek,
CPU/memory performance), file types, and the
workload of each site.

To sum up, our experimentations concluded to
the following empirical observations:

– Minersoft successfully crawled about six mil-
lion valid files (384 GB size) and sustained
high crawling rates.

– A large percentage of duplicate files exists in
EGEE infrastructure. Identifying these files,



Searching for Software on the EGEE Infrastructure 297

Fig. 5 Percentage of
irrelevant files in EGEE
infrastructure

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

ce
01

.k
al

lis
to

.h
el

la
sg

rid
.g

r
ce

30
1.

in
te

rc
ol

.e
du

gr
id

-c
e.

ii.
ed

u.
m

k
pa

ug
rid

1.
pa

m
uk

ka
le

.e
du

.tr
ce

01
.g

rid
.in

fo
.u

vt
.ro

gr
id

-la
b-

ce
.ii

.e
du

.m
k

ce
01

.m
os

ig
rid

.u
tc

lu
j.r

o
ce

10
1.

gr
id

.u
cy

.a
c.

cy
 

ce
64

.p
hy

.b
g.

ac
.y

u 
te

st
be

d0
01

.g
rid

.ic
i.r

o

P
er

ce
nt

ag
e

Grid Sites 

Irrelevant Files Irrelevant Files Size

Table 4 Files categories
in EGEE infrastructure

Grid Site Binaries Sources Libraries Docs Irrelevant
ce01.kallisto.hellasgrid.gr 41,990 1,407,701 142,873 1,672,246 276,593
ce301.intercol.edu 34,134 8,972 3,724 23,536 27,540
grid-ce.ii.edu.mk 16,869 69,915 8,080 61,469 38,223
paugrid1.pamukkale.edu.tr 7,383 47,388 7,935 43,861 26,078
ce01.grid.info.uvt.ro 8,999 40,442 3,778 42,652 174,574
grid-lab-ce.ii.edu.mk 7,703 46,116 2,983 37,333 15,151
ce01.mosigrid.utcluj.ro 17,828 12,475 2,310 18,091 19,715
ce101.grid.ucy.ac.cy 26,377 433,115 37,463 672,211 109,685
ce64.phy.bg.ac.yu 6,047 31,889 7,672 67,388 37,665
testbed001.grid.ici.ro 29,261 22,961 6,120 28,239 38,447
Total 196,591 2,120,974 222,938 2,667,026 763,671

Table 5 Crawling & Indexing statistics in EGEE infrastructure

Grid sites Crawling statistics Indexing statistics
# of splits # of splits # of splits Inverted index Inverted index

including size with size w/o
duplicates stemming (MB) stemming (MB)

ce01.kallisto.hellasgrid.gr 37 31 33 58,129.359 60,988.246
ce301.intercol.edu 2 1 1 358.312 395.089
grid-ce.ii.edu.mk 1 1 2 702.796 778.972
paugrid1.pamukkale.edu.tr 3 1 2 632.035 702.296
ce01.grid.info.uvt.ro 4 1 1 1,152.386 1,258.464
grid-lab-ce.ii.edu.mk 3 1 1 57.414 62.863
ce01.mosigrid.utcluj.ro 2 1 1 257.984 288.214
ce101.grid.ucy.ac.cy 14 10 12 13,588.468 14,073.417
ce64.phy.bg.ac.yu 3 1 2 871.449 964.621
testbed001.grid.ici.ro 3 1 1 646.671 715.148



298 G. Pallis et al.

Table 6 Indexing rates in EGEE infrastructure

Grid site File rate Size rate
(files/s) (MB/s)

ce01.kallisto.hellasgrid.gr 25.359 1.363
ce301.intercol.edu 84.620 1.238
grid-ce.ii.edu.mk 93.297 1.211
paugrid1.pamukkale.edu.tr 106.283 1.135
ce01.grid.info.uvt.ro 39.143 0.618
grid-lab-ce.ii.edu.mk 45.387 0.323
ce01.mosigrid.utcluj.ro 55.363 2.850
ce101.grid.ucy.ac.cy 31.231 1.149
ce64.phy.bg.ac.yu 106.818 1.760
testbed001.grid.ici.ro 51.127 0.827

the performance of indexing is significantly
improved.

– The crawling and indexing in EGEE in-
frastructure is significantly affected by the
hardware (local disk, shared file system), file
types and the current workload of Grid sites.

– In most cases, more than 70% of files that exist
in the workernodes file systems of Grid sites
are software files. Advanced software discov-
ery services in Grid infrastructures should be
established.

6.3 Software Retrieval Evaluation

In this section, we evaluate the effectiveness of the
Minersoft search engine for locating software on
EGEE infrastructure. A difficulty in the evalua-
tion of such a system is that there are not widely
accepted any benchmark data collections dedi-
cated to software (e.g., TREC, OHSUMED etc).
In this context, we use the following methodology
in order to evaluate the performance of Minersoft:

– Data collection: Our dataset consists of the
software installed in ten Grid sites of EGEE
infrastructure (Table 2). Table 4 presents the
software resources that have been identified
by Minersoft on those Grid sites.

– Queries: We use a collection of 26 keyword
queries, which were extracted i) by EGEE
users and ii) by real user-queries from the
Sourcerer system [27]. These queries comprise
either single- or multiple-keywords. Each
query has an average of two keywords; this
is comparable to values reported in the lit-

erature for Web search engines [37]. To fur-
ther investigate the sensitivity of Minersoft,
we have classified the queries into two cate-
gories: general-content and software-specific
(see Table 7).

– Relevance judgment: A software resource is
considered relevant if it addresses the stated
information need and not because it just hap-
pens to contain all the keywords in the query.
A software resource returned by Minersoft in
response to some query is given a binary clas-
sification as either relevant or non-relevant
with respect to the user information need be-
hind the query. In addition, the result of each
query has been rated at three levels of user sat-
isfaction: “not satisfied”, “satisfied”, “very sat-
isfied”. These classifications have been done
manually by EGEE administrators and expe-
rienced users and are referred to as the gold
standard for our experiments.

6.3.1 Performance Measures

The effectiveness of Minersoft should be eval-
uated on the basis of how much it helps users
achieve their software searches efficiently and
effectively. In this context, we used the following
performance measures:

– Precision@10 reports the fraction of software
resources ranked in the top ten results that
are labeled as relevant. The relevance of the
retrieved results is determined by the gold
standard. By default, we consider that the

Table 7 Queries

General-content Software-specific
queries queries
Java virtual machine; Imagemagick; octave numerical

statistical analysis computations; lapack library;
software; ftp client; gsl library; boost c++
regular expression; library; glite data
sigmoid function; management; xerces xml;
histogram plot; subversion client; gcc fortran;
binary tree; lucene; jboss; mpich;
zip deflater; autodock docking; atlas
pdf reader software; linear algebra

package; fftw library;
earthquake analysis



Searching for Software on the EGEE Infrastructure 299

results are ranked with respect to the ranking
function of Lucene, which is based on TF-
IDF of software files and has extensively been
used in the literature [7, 12]. The maximum
Precision@10 value that can be achieved is 1.

– NDCG (Normalized Discounted Cumulative
Gain) is a retrieval measure devised spe-
cifically for evaluating user satisfaction [19].
For a given query q, the top − K ranked
results are examined in decreasing order
of rank, and the NDCG computed as:
NDCGq = Mq · ∑K=10

j=1
2r( j)−1

log2(1+ j) , where each
r(j) is an integer relevance label (0 = “not
satisfied”, 1 = “satisfied”, 2 = “very satisfied”)
of the result returned at position j and Mq is
a normalization constant calculated so that a
perfect ordering would obtain NDCG of 1.

– NCG (Normalized Cumulative Gain) is the
predecessor of NDCG and its main difference
is that it does not take into account the
position of the results. For a given query
q, the NCG is computed as: NCGq = Mq ·∑K=10

j=1 r( j). A perfect ordering would obtain
NCG of 1.

Cumulative gain measures (NDCG, NCG) and
precision complement each other when evaluating
the effectiveness of IR systems [4, 11]. In our
evaluation metrics we do not consider the recall
metric (the percentage of the number of relevant
results). Such a metric requires to have full knowl-
edge about all the relevant software resources
with respect to a query. However, such a knowl-
edge is not feasible in a large-scale networked
environment.

6.3.2 Examined Approaches

In order to evaluate the Minersoft efficiency,
we evaluate the construction phases of Miner-
soft’s inverted index. Specifically, we examine the
following:

– Full-text search: Inverted index terms are only
extracted from the full-text content of dis-
covered files in the examined testbed in-
frastructure without any preprocessing. This
approach is relevant to the desktop search
systems (also known as file system search—

e.g., Confluence [17], Wumpus [39]). Full-
text search is used as a baseline for our
experiments.

– Path-enhanced search: The terms of inverted
index are extracted from the content and path
of SG vertices. The irrelevant files are dis-
carded.

– Context-enhanced search: The files have been
classified into file categories. The irrele-
vant files are discarded. We also exclude
the software-description documents from the
posting lists. The terms of the inverted index
are extracted from the content and path of SG
vertices.

– Software-description-enriched search: The
terms of inverted index are extracted from
the content of SG vertices as well as from the
zones of documentation files (i.e., man-pages
and readme files) and the path of SG vertices.

– Text-f iles-enriched search: The terms of in-
verted index are extracted from the content,
the path and the zones from the other text
files of SG vertices with the same normal-
ized filename. Recall that Minersoft normal-
izes filenames and pathnames of SG vertices,
by identifying and removing suffixes and
prefixes.

6.3.3 Evaluation

Figures 6, 7, and 8 present the results of the
examined approaches with respect to the query
types for Precision@10, NDCG and NCG. Each
approach is a step towards the construction of
the inverted index that is implemented in Miner-
soft. For completeness of presentation, we present
the average and median values of the examined
metrics. The general observation is that Miner-
soft improves significantly both the Precision@10
and the examined cumulative gain measures
compared with the baseline approach—full-text
search—for both types of queries. Specifically,
Minersoft improves the Precision@10 about
139%, the NDCG about 142% and the NCG
about 135% with respect to the baseline ap-
proach. Another general observation is that Min-
ersoft achieves quite similar performance for both
software-specific and general-content queries.



300 G. Pallis et al.

Fig. 6 Precision@10
results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average median average median average median average median average median

Full-text search Path-enhanced
search

Context-enhanced
search

Software-description-
enriched search 

Text-files-enriched 
search

P
re

ci
si

on
@

10

Total  Software-specific General-content

Fig. 7 NDCG results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average median average median average median average median average median

Full-text search Path-enhanced
search

Context-enhanced
search

Software-description-
enriched search 

Text-files-enriched 
search

N
D
C
G

Total  Software-specific General-content

Fig. 8 NCG results

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

average median average median average median average median average median

Full-text search Path-enhanced
search

Context-enhanced
search

Software-description-
enriched search 

Text-files-enriched 
search

N
C

G

Total  Software-specific General-content



Searching for Software on the EGEE Infrastructure 301

Regarding the intermediate steps for the con-
struction of SG, the highest improvement is ob-
served at Context-enhanced search. This explained
by the fact that the non-relevant software files
have been removed and the searching is done
only at software files. Our findings show also that
the addition of metadata attribute of path in soft-
ware resources makes Minersoft more effective.
In particular, Path-enhanced search improves both
the Precision@10 about 40% and the cumulative
gain measures about 53% for NDCG and 44% for
DCG with respect to the baseline approach. This
is an indication that the paths of software files in-
clude descriptive keywords for software resources.

The enrichment of software-description doc-
uments increases the precision as well as user
satisfaction. Specifically, Software-description-
enriched search achieves higher Precision@10
(about 3%) and higher cumulative gain measures
(on average about 3% for NDCG and 4.3% for
NCG) than the Context-enhanced search. The
improvements during the Software-description-
enriched search step are affected by the number of
the executables and software libraries that exist in
the data set. The larger the number of these types
of files exist in repositories, the better results
are obtained. Another interesting observation is
that most of queries indicate Precision@10 close
to 1 (see median values), whereas the average
Precision@10, NDCG and NCG values for all the
queries are about 0.77, 0.71, 0.69 respectively.

Regarding the text-f iles-enriched search, we ob-
serve that this approach does not improve the
general system’s performance. This is explained
by the fact the software developers use similar
filenames in their software packages. However,

taking a deeper look at the results, we observe
text-f iles-enriched search improves user satisfac-
tion about 2% for software-specific queries since
more results are returned to users than the previ-
ous examined approach.

To sum up, the results show that Minersoft is a
powerful tool since it achieves high effectiveness
for both types of queries. Focusing on the query
types, we observe that Minersoft presents high
efficiency for both types of queries, achieving very
high performance for software-specific queries.
Specifically, our experimentations concluded to
the following empirical observations:

– Minersoft improves the Precision@10 about
139% and Cumulative gain measures (NDCG,
NCG) over 135% with respect to the baseline
approach.

– The paths of software files in file-systems in-
clude descriptive keywords for software re-
sources.

– Software developers use similar filenames for
their software packages.

6.3.4 Software Graph Statistics

Table 8 presents the statistics of the resulted SGs.
Recall that Minersoft harvester constructs a SG in
each Grid site. We do not present further analysis
of the SGs since this is out of the scope of this
work. Of course, a thorough study of the structure
and evolution of SGs would lead to insightful
conclusions in software engineering community.
In the literature, a large number of dynamic large-
scale networks have been extensively studied [25]
in order to identify their latent characteristics.

Table 8 Software Graphs
statistics in EGEE
infrastructure

Grid sites V E (total edges) ESD ECA

ce01.kallisto.hellasgrid.gr 3,264,810 1,291,884,123 9,540,597 1,282,343,526
ce301.intercol.edu 70,366 150,033 96,922 53,111
grid-ce.ii.edu.mk 156,333 1,659,309 322,495 1,336,814
paugrid1.pamukkale.edu.tr 106,567 1,195,702 223,529 972,173
ce01.grid.info.uvt.ro 95,871 1,465,779 199,537 1,266,242
grid-lab-ce.ii.edu.mk 94,135 179,127 158,733 20,394
ce01.mosigrid.utcluj.ro 50,704 158,451 86,249 72,202
ce101.grid.ucy.ac.cy 1,169,166 97,967,442 2,117,300 95,850,142
ce64.phy.bg.ac.yu 112,996 987,759 201,950 785,809
testbed001.grid.ici.ro 86,581 772,005 225,591 546,414
Total 5,207,529 1,396,419,730 13,172,903 1,383,246,827



302 G. Pallis et al.

Here, we briefly present the main characteris-
tics of these graphs. Table 8 presents the edges
that have been added due to structure dependency
(ESD) and content associations (ECA). For com-
pleteness of presentation, the index size of each
graph is presented. Based on these statistics, a
general observation is that the SGs are not sparse.
Specifically, we found that most of them follow
the relation E = Vα , where 1.1 < α < 1.36; note
that α = 2 corresponds to an extremely dense
graph where each node has, on average, edges to a
constant fraction of all nodes. Another interesting
observation is that most of the edges are due
to content associations. However, most of these
edges have lower weights (0.05 ≤ w < 0.2) than
the edges which are due to structure dependency
associations.

7 Conclusion—Future Work

In this paper, we present Minersoft—a tool which
enables keyword-based searches for software in-
stalled on Grid computing infrastructures. The
software design of Minersoft enables the dis-
tribution of its crawling and indexing tasks to
large-scale network environments. The results of
Minersoft harvesting are encoded in a weighted,
typed graph, called the SG. The SG is used to an-
notate automatically the software resources with
keyword-rich metadata. Using a real testbed, we
present the performance issues of crawling and in-
dexing. Experimental results showed that SG rep-
resents in an efficient way the software resources,
improving the searching of software packages in
large-scale network environments.

Minersoft can be easily extended to support
search on Cloud infrastructures like Amazon’s
EC2. There are two main issues that Minersoft
has to overcome in order to support searching in
Cloud infrastructures: i) job submission protocol:
Minersoft has to be provided access to machines
on an infrastructure through a job submission
protocol or other means of access; ii) data storage
facilities: Minersoft needs storage space available
in order to store the software graph and index files
as well as a data access protocol to manipulate

them. In order to overcome the job submission
protocol issues, Minersoft uses the Ganga system
to submit and monitor jobs. Ganga is a middle-
ware/infrastructure which is independent and it
can be extended to support many protocols of job
submission to different infrastructures through
plugins (e.g., it can submit jobs through the SSH
protocol). Cloud infrastructures that provide vir-
tual servers on demand (like Amazon’s EC2 and
Rackspace’s Cloud Servers) can be searched from
Minersoft by changing the underlying job submis-
sion protocol in Ganga to use SSH (or any con-
nectivity tool that is provided by the Cloud service
provider). As far as data storage is concerned,
instead of storing files in Grid Storage Elements,
file storage services, such as the Amazon S3 and
Rackspace Cloud Files can be used, given the
APIs of the respective data access protocols.

For future work, we plan to further exploit the
SG so as to be able to identify software pack-
ages. In the literature, a wide range of algorithms
have been proposed towards to this goal [21].
The identification of coherent clusters of software
resources is also beneficial in terms of locating rel-
evant individual softwares, classifying and labeling
them with a set of tags [34]. Last but not least,
the SG may contribute in improving the rank-
ing of query results [20]. Ranking is an integral
component of any information retrieval system.
In the case of software search in large-scale net-
work environments the role of ranking the results
becomes critical. To this end, the SG may offer
a rich context of information which is expressed
through its edges. A ranking function can be built
by analyzing these edges. Kleinberg et al. [9] have
built upon this idea by introducing the area of
link analysis ranking on the Web, where hyperlink
structures are used to rank Web pages.

References

1. Enabling Grids for E-sciencE project.: http://www.eu-
egee.org/. Last accessed: February 2010

2. teragrid.: http://www.teragrid.org/index.php. Last ac-
cessed: February 2010

3. Agrawal, R., et al.: The Claremont report on database
research. SIGMOD Rec. 37(3), 9–19 (2008)

http://www.eu-egee.org/
http://www.eu-egee.org/
http://www.teragrid.org/index.php


Searching for Software on the EGEE Infrastructure 303

4. Al-Maskari, A., Sanderson, M., Clough, P.: The rela-
tionship between IR effectiveness measures and user
satisfaction. In: SIGIR ’07, New York, NY, USA, pp.
773–774 (2007)

5. Ames, A., Maltzahn, C., Bobb, N., Miller, E.L., Brandt,
S.A., Neeman, A., Hiatt, A. Tuteja, D.: Richer file sys-
tem metadata using links and attributes. In: MSST ’05,
Washington, DC, USA, pp. 49–60. IEEE Computer
Society, Washington, DC (2005)

6. Antoniol, G., Canfora, G., Casazza, G., Lucia, A.D.,
Merlo, E.: Recovering traceability links between code
and documentation. IEEE Trans. Softw. Eng. 28(10),
970–983 (2002)

7. Bao, S., Xue, G., Wu, X., Yu, Y., Fei, B., Su, Z.: Opti-
mizing web search using social annotations. In: WWW
’07, New York, NY, USA, pp. 501–510. ACM, New
York (2007)

8. Bass, L., Clements, P., Kazman, R., Klein, M.: Evaluat-
ing the software architecture competence of organiza-
tions. In: WICSA ’08, pp. 249–252 (2008)

9. Borodin, A., Roberts, G.O., Rosenthal, J.S., Tsaparas,
P.: Link analysis ranking: algorithms, theory, and ex-
periments. ACM TOIT 5(1), 231–297 (2005)

10. Brochu, F., Egede, U., Elmsheuser, J., Harrison, K.,
et al.: Ganga: a tool for computational-task manage-
ment and easy access to Grid resources. Comput. Phys.
Commun. 180, 2303–2316 (2009). http://ganga.web.
cern.ch/ganga/documents/index.php

11. Clarke, C.L., et al.: Novelty and diversity in informa-
tion retrieval evaluation. In: SIGIR ’08, New York,
NY, USA, pp. 659–666. ACM, New York (2008)

12. Cohen, S., Domshlak, C., Zwerdling, N.: On ranking
techniques for desktop search. ACM TOIS 26(2), 1–24
(2008)

13. Dean, J., Ghemawat, S.: MapReduce: simplified data
processing on large clusters. In: Proceedings of OSDI
’04: 6th Symposium on Operating System Design
and Implementation, pp. 137–150. Usenix Association,
Berkeley (2004)

14. Dikaiakos, M.D., Sakellariou, R., Ioannidis, Y.: Infor-
mation services for large-scale grids: a case for a Grid
search engine. In: Chapter Engineering the Grid: Sta-
tus and Perspectives, pp. 571–585. American Scientific,
Stevenson Ranch (2006)

15. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of
the Grid: enabling scalable virtual organizations. Int. J.
Supercomput. Appl. 15(3), 200–222 (2001)

16. Gifford, D.K., Jouvelot, P., Sheldon, M.A., O’Toole,
J.J.W.: Semantic file systems. In: SOSP ’91, New York,
NY, USA, pp. 16–25. ACM, New York (1991)

17. Gyllstrom, K.A., Soules, C., Veitch, A.: Confluence:
enhancing contextual desktop search. In: SIGIR ’07,
New York, NY, USA, pp. 717–718. ACM, New York
(2007)

18. Hummel, O., Atkinson, C.: Extreme harvesting: test
driven discovery and reuse of software components.
In: Proceedings of the 2004 IEEE International Con-
ference on Information Reuse and Integration, IRI—
2004, Las Vegas Hilton, Las Vegas, NV, USA, pp. 66–
72 (2004)

19. Järvelin, K., Kekäläinen, J.: Cumulated gain-based
evaluation of IR techniques. ACM TOIS 20(4), 422–
446 (2002)

20. Kao, H.-Y., Lin, S.-F.: A fast pagerank convergence
method based on the cluster prediction. In: WI ’07,
Washington, DC, USA, pp. 593–599. IEEE, Washing-
ton (2007)

21. Katsaros, D., Pallis, G., Stamos, K., Vakali, A.,
Sidiropoulos, A., Manolopoulos, Y.: CDNs con-
tent outsourcing via generalized communities. IEEE
TKDE 21(1), 137–151 (2009)

22. Katsifodimos, A., Pallis, G., Dikaiakos, D.M.: Harvest-
ing large-scale grids for software resources. In: CC-
GRID ’09, Shanghai, China. IEEE Computer Society,
Shanghai (2009)

23. Khemakhem, S., Drira, K., Jmaiel, M.: Sec+: an en-
hanced search engine for component-based software
development. SIGSOFT Softw. Eng. Notes 32(4), 4
(2007)

24. Koren, J., Leung, A., Zhang, Y., Maltzahn, C., Ames,
S., Miller, E.: Searching and navigating petabyte-scale
file systems based on facets. In: PDSW ’07, pp. 21–25
(2007)

25. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evo-
lution: densification and shrinking diameters. ACM
TKDD 1(1):2 (2007)

26. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease:
an effective 3-in-1 keyword search method for unstruc-
tured, semi-structured and structured data. In: SIG-
MOD 2008, New York, NY, USA, pp. 903–914. ACM,
New York (2008)

27. Linstead, E., Bajracharya, S., Ngo, T., Rigor, P., Lopes,
C., Baldi, P.: Sourcerer: mining and searching internet-
scale software repositories. Data Min Knowl Discov
18(2), 300–336 (2009)

28. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Re-
covering traceability links in software artifact man-
agement systems using information retrieval methods.
ACM Trans. Softw. Eng. Methodol. 16(4), 13 (2007)

29. Lucrédio, D., do Prado, A.F., de Almeida, E.S.: A
survey on software components search and retrieval.
In: Proceedings of the 30th Euromicro Conference, pp.
152–159 (2004)

30. Maarek, Y.S., Berry, D.M., Kaiser, G.E.: An informa-
tion retrieval approach for automatically constructing
software libraries. IEEE Trans. Softw. Eng. 17(8), 800–
813 (1991)

31. Marcus, A., Maletic, J.: Recovering documentation-to-
source-code traceability links using latent semantic in-
dexing. In: ICSE 2003, pp. 125–135 (2003)

32. Matsushita, M.: Ranking significance of software com-
ponents based on use relations. IEEE Trans. Softw.
Eng. 31(3), 213–225 (2005)

33. Pallis, G., Katsifodimos, A., Dikaiakos, D.M.:
Effective keyword search for software resources
installed in large-scale Grid infrastructures. In: 2009
IEEE/WIC/ACM International Conference on Web
Intelligence, Milano, Italy (2009)

34. Ramage, D., Heymann, P., Manning, C.D., Garcia-
Molina, H.: Clustering the tagged web. In: WSDM ’09,

http://ganga.web.cern.ch/ganga/documents/index.php
http://ganga.web.cern.ch/ganga/documents/index.php


304 G. Pallis et al.

New York, NY, USA, pp. 54–63. ACM, New York
(2009)

35. Robinson, D., Sung, I., Williams, N.: File systems, uni-
code, and normalization. In: Unicode ’06 (2006)

36. Soules, C.A.N., Ganger, G.R.: Connections: using con-
text to enhance file search. SIGOPS Oper. Syst. Rev.
39(5), 119–132 (2005)

37. Teevan, J., Adar, E., Jones, R., Potts, M.A.S.: Infor-
mation re-retrieval: repeat queries in Yahoo’s logs. In:
SIGIR ’07, New York, NY, USA, pp. 151–158. ACM,
New York (2007)

38. Vanderlei, T., et al.: A cooperative classification mech-
anism for search and retrieval software components.
In: SAC ’07, New York, NY, USA, pp. 866–871. ACM,
New York (2007)

39. Yeung, P.C., Freund, L., Clarke, C.L.: X-site: a work-
place search tool for software engineers. In: SIGIR ’07,
New York, NY, USA. ACM, New York (2007)

40. Zaremski, A.M., Wing, J.M.: Specification matching
of software components. ACM TOSEM 6(4), 333–369
(1997)


	Searching for Software on the EGEE Infrastructure
	Abstract
	Introduction
	Related Work
	Searching Paradigm
	Corpus
	Software Resources Retrieval
	Minersoft vs. Existing Approaches

	Background
	EGEE Infrastructure
	Definitions

	Software Graph Construction and Indexing
	Overview
	Minersoft Algorithm

	Minersoft Architecture
	Overview
	Minersoft Crawler
	Minersoft Indexer
	Distributed Crawling and Indexing Process in EGEE Infrastructure
	Duplication Reduction Policy
	Minersoft Crawler/Indexer Job's Lifecycle in EGEE Infrastructure
	Minersoft Implementation and Deployment

	Evaluation
	Testbed
	Crawling and Indexing Evaluation
	Examined Metrics
	Crawling Evaluation
	Indexing Evaluation

	Software Retrieval Evaluation
	Performance Measures
	Examined Approaches
	Evaluation
	Software Graph Statistics


	Conclusion---Future Work
	References



