Andreas Kunft

Andreas Kunft

Office EN 734
Einsteinufer 17
10587 Berlin, Germany

+49 30 314 22799

firstname.lastname@tu-berlin.de

LinkedIn Profil von Andreas Kunft anzeigen :octocat:


I am a research associate / PhD candiate at Technische Universität Berlin in the Database Systems and Information Management Group (DIMA) led by Volker Markl since April 2014. Prior to that, I received my M.Sc. degree at TU Berlin and worked as student assistant at the compiler group.

My research interests include massive parallel processing frameworks, database optimization, and compilers, with focus on holistic optimizations over mixed linear and relational algebra pipelines.


Publications

SoCC '18 PDF

ScootR: Scaling R Dataframes on Dataflow Systems
Andreas Kunft, Lukas Stadler, Daniele Bonetta, Cosmin Basca, Jens Meiners, Sebastian Breß, Tilmann Rabl, and Volker Markl. To appear in the ACM Symposium on Cloud Computing 2018 (SoCC '18), Oct 11 - 13, 2018, Carlsbad, CA, USA.

VLDB '17 PDF

BlockJoin: Efficient Matrix Partitioning Through Joins
Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Tilmann Rabl, and Volker Markl. Proceedings of the VLDB Endowment 10.13 (2017).

TPCTC '17 PDF

PEEL: A Framework for Benchmarking Distributed Systems and Algorithms
Christoph Boden, Alexander Alexandrov, Andreas Kunft, Tilmann Rabl, and Volker Markl. The Technology Conference on Performance Evaluation and Benchmarking. Springer, Cham, 2017.

BEYONDMR '16 PDF

Bridging the gap: towards optimization across linear and relational algebra
Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, and Volker Markl. Proceedings of the 3rd ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond. ACM, 2016.

SIGMOD '15 PDF

Implicit Parallelism through Deep Language Embedding
Alexander Alexandrov, Andreas Kunft, Asterios Katsifodimos, Felix Schüler, Lauritz Thamsen, Odej Kao, Tobias Herb, Volker Markl. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. ACM, 2015.

© Andreas Kunft   |   Imprint and Data Privacy